Fixed test.
Summary:
Enables source location in diagnostic messages from the backend. This
is after parsing, during finalization. This requires the SourceMgr, the
inline assembly string buffer, and DiagInfo to still be alive after
EmitInlineAsm returns.
This patch creates a single SourceMgr for inline assembly inside the
AsmPrinter. MCContext gets a pointer to this SourceMgr. Using one
SourceMgr per call to EmitInlineAsm would make it difficult for
MCContext to figure out in which SourceMgr the SMLoc is located, while a
single SourceMgr can figure it out if it has multiple buffers.
The Str argument to EmitInlineAsm is copied into a buffer and owned by
the inline asm SourceMgr. This ensures that DiagHandlers won't print
garbage. (Clang emits a "note: instantiated into assembly here", which
refers to this string.)
The AsmParser gets destroyed before finalization, which means that the
DiagHandlers the AsmParser installs into the SourceMgr will be stale.
Restore the saved DiagHandlers.
Since now we're using just one SourceMgr for multiple inline asm
strings, we need to tell the AsmParser which buffer it needs to parse
currently. Hand a buffer id -- returned from SourceMgr::
AddNewSourceBuffer -- to the AsmParser.
Reviewers: rnk, grosbach, compnerd, rengolin, rovka, anemet
Reviewed By: rnk
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29441
llvm-svn: 294458
A virtual destructor is needed, since the derived classes are stored in
`iplist<PredicateBase> AllInfos;` and, apparently, ilist_node doesn't have a
virtual destructor.
llvm-svn: 294443
Summary:
Enables source location in diagnostic messages from the backend. This
is after parsing, during finalization. This requires the SourceMgr, the
inline assembly string buffer, and DiagInfo to still be alive after
EmitInlineAsm returns.
This patch creates a single SourceMgr for inline assembly inside the
AsmPrinter. MCContext gets a pointer to this SourceMgr. Using one
SourceMgr per call to EmitInlineAsm would make it difficult for
MCContext to figure out in which SourceMgr the SMLoc is located, while a
single SourceMgr can figure it out if it has multiple buffers.
The Str argument to EmitInlineAsm is copied into a buffer and owned by
the inline asm SourceMgr. This ensures that DiagHandlers won't print
garbage. (Clang emits a "note: instantiated into assembly here", which
refers to this string.)
The AsmParser gets destroyed before finalization, which means that the
DiagHandlers the AsmParser installs into the SourceMgr will be stale.
Restore the saved DiagHandlers.
Since now we're using just one SourceMgr for multiple inline asm
strings, we need to tell the AsmParser which buffer it needs to parse
currently. Hand a buffer id -- returned from SourceMgr::
AddNewSourceBuffer -- to the AsmParser.
Reviewers: rnk, grosbach, compnerd, rengolin, rovka, anemet
Reviewed By: rnk
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29441
llvm-svn: 294433
Summary:
This patch adds a utility to build extended SSA (see "ABCD: eliminating
array bounds checks on demand"), and an intrinsic to support it. This
is then used to get functionality equivalent to propagateEquality in
GVN, in NewGVN (without having to replace instructions as we go). It
would work similarly in SCCP or other passes. This has been talked
about a few times, so i built a real implementation and tried to
productionize it.
Copies are inserted for operands used in assumes and conditional
branches that are based on comparisons (see below for more)
Every use affected by the predicate is renamed to the appropriate
intrinsic result.
E.g.
%cmp = icmp eq i32 %x, 50
br i1 %cmp, label %true, label %false
true:
ret i32 %x
false:
ret i32 1
will become
%cmp = icmp eq i32, %x, 50
br i1 %cmp, label %true, label %false
true:
; Has predicate info
; branch predicate info { TrueEdge: 1 Comparison: %cmp = icmp eq i32 %x, 50 }
%x.0 = call @llvm.ssa_copy.i32(i32 %x)
ret i32 %x.0
false:
ret i23 1
(you can use -print-predicateinfo to get an annotated-with-predicateinfo dump)
This enables us to easily determine what operations are affected by a
given predicate, and how operations affected by a chain of
predicates.
Reviewers: davide, sanjoy
Subscribers: mgorny, llvm-commits, Prazek
Differential Revision: https://reviews.llvm.org/D29519
Update for review comments
Fix a bug Nuno noticed where we are giving information about and/or on edges where the info is not useful and easy to use wrong
Update for review comments
llvm-svn: 294351
Add explicit conversions between forward and reverse ilist iterators.
These follow the conversion conventions of std::reverse_iterator, which
are off-by-one: the newly-constructed "reverse" iterator dereferences to
the previous node of the one sent in. This has the benefit of
converting reverse ranges in place:
- If [I, E) is a valid range,
- then [reverse(E), reverse(I)) gives the same range in reverse order.
ilist_iterator::getReverse() is unchanged: it returns a reverse iterator
to the *same* node.
llvm-svn: 294349
They are currently modelled incorrectly (as calls, which clobber
registers, confusing e.g. Machine Copy Propagation).
Reverting until we figure out the proper solution.
llvm-svn: 294348
Summary:
The intrinsic, marked as returning it's first argument, has no code
generation effect (though currently not every optimization pass knows
that intrinsics with the returned attribute can be looked through).
It is about to be used to by the PredicateInfo pass to attach
predicate information to existing operands, and be able to tell what
the predicate information affects.
We deliberately do not attach any info through a second operand so
that the intrinsics do not need to dominate the comparisons/etc (since
in the case of assume, we may want to push them up the post-dominator
tree).
Reviewers: davide, sanjoy
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29517
llvm-svn: 294341
Summary:
GenericDomTreeConstruction had its own written DFS walk.
It is basically identical to the DFS walk df_* is doing in the iterators.
the one difference is that df_iterator uses an internal visited set.
The GenericDomTreeConstruction one reused a field in an existing densemap lookup.
Time-wise, this way is actually more cache-friendly (the previous way has a random store
into a successor's info, the new way does that store at the same time and in the same place
as other stores to the same info)
It costs some very small amount of memory to do this, and one we pay in some other part of
dom tree construction *anyway*, so we aren't really increasing dom tree constructions's
peak memory usage.
It could still be changed to use the old field with a little work on df_ext_* if we care
(and if someone find performance regressions)
Reviewers: chandlerc
Reviewed By: chandlerc
Subscribers: Eugene.Zelenko, llvm-commits
Differential Revision: https://reviews.llvm.org/D8932
llvm-svn: 294339
Summary:
This change allows usage of store instruction for implicit null check.
Memory Aliasing Analisys is not used and change conservatively supposes
that any store and load may access the same memory. As a result
re-ordering of store-store, store-load and load-store is prohibited.
Patch by Serguei Katkov!
Reviewers: reames, sanjoy
Reviewed By: sanjoy
Subscribers: atrick, llvm-commits
Differential Revision: https://reviews.llvm.org/D29400
llvm-svn: 294338
Summary:
The formatter has three knobs:
- the user can choose which time unit to use for formatting (default: whatever is the unit of the input)
- he can choose whether the unit gets displayed (default: yes)
- he can affect the way the number itself is formatted via standard number formatting options (default:default)
Reviewers: zturner, inglorion
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29481
llvm-svn: 294326
passed into CRTP base classes.
This can sometimes happen and not cause an immediate failure when the
derived class is, itself, a template. You can end up essentially calling
methods on the wrong derived type but a type where many things will
appear to "work".
To fail fast and with a clear error message we can use a static_assert,
but we have to stash that static_assert inside a method body or nested
type that won't need to be completed while building the base class. I've
tried to pick a reasonably small number of places that seemed like
reliably places for this to be instantiated.
llvm-svn: 294272
into CRTP base classes.
This can sometimes happen and not cause an immediate failure when the
derived class is, itself, a template. You can end up essentially calling
methods on the wrong derived type but a type where many things will
appear to "work".
To fail fast and with a clear error message we can use a static_assert,
but we have to stash that static_assert inside a method body or nested
type that won't need to be completed while building the base class. I've
tried to pick a reasonably small number of places that seemed like
reliably places for this to be instantiated.
llvm-svn: 294271
The patch committed in r293017, as discussed on the list, doesn't really
make sense but was causing an actual issue to go away.
The issue turns out to be that in one place the extra template arguments
were dropped from the OuterAnalysisManagerProxy. This in turn caused the
types used in one set of places to access the key to be completely
different from the types used in another set of places for both Loop and
CGSCC cases where there are extra arguments.
I have literally no idea how anything seemed to work with this bug in
place. It blows my mind. But it did except for mingw64 in a DLL build.
I've added a really handy static assert that helps ensure we don't break
this in the future. It immediately diagnoses the issue with a compile
failure and a very clear error message. Much better that staring at
backtraces on a build bot. =]
llvm-svn: 294267
Summary: Checking CS.getCalledFunction() == nullptr does not necessary indicate indirect call. We also need to check if CS.getCalledValue() is not a constant.
Reviewers: davidxl
Reviewed By: davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29570
llvm-svn: 294260
We don't handle all cases yet (see arm64-fallback.ll for an example), but this
is enough to cover most common C++ code so it's a good place to start.
llvm-svn: 294247
DWARF info contains info about the line number at which a function starts (DW_AT_decl_line).
This patch creates a function to look up the start line number for a function, and returns it in
DILineInfo when looking up debug info for a particular address.
Patch by Simon Que!
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D27962
llvm-svn: 294231
iteration.
The lazy formation of RefSCCs isn't really the most important part of
the laziness here -- that has to do with walking the functions
themselves -- and isn't essential to maintain. Originally, there were
incremental update algorithms that relied on updates happening
predominantly near the most recent RefSCC formed, but those have been
replaced with ones that have much tighter general case bounds at this
point. We do still perform asserts that only scale well due to this
incrementality, but those are easy to place behind EXPENSIVE_CHECKS.
Removing this simplifies the entire analysis by having a single up-front
step that builds all of the RefSCCs in a direct Tarjan walk. We can even
easily replace this with other or better algorithms at will and with
much less confusion now that there is no iterator-based incremental
logic involved. This removes a lot of complexity from LCG.
Another advantage of moving in this direction is that it simplifies
testing the system substantially as we no longer have to worry about
observing and mutating the graph half-way through the RefSCC formation.
We still need a somewhat special iterator for RefSCCs because we want
the iterator to remain stable in the face of graph updates. However,
this now merely involves relative indexing to the current RefSCC's
position in the sequence which isn't too hard.
Differential Revision: https://reviews.llvm.org/D29381
llvm-svn: 294227
Endian functions only support reading and writing when the
endianness is known at compile time. This patch adds overloads
where the endianness is a runtime value, and then delegates the
compile-time versions to the runtime versions.
Differential Revision: https://reviews.llvm.org/D29467
llvm-svn: 294209
Currently we only combine shuffle nodes if they have a single user to prevent us from causing code bloat by splitting the shuffles into several different combines.
We don't take into account that in some cases we will already have combined all the users during recursively calling up the shuffle tree.
This patch keeps a list of all the shuffle nodes that have been combined so far and permits combining of further shuffle nodes if all its users are in that list.
Differential Revision: https://reviews.llvm.org/D29399
llvm-svn: 294183
for a quite big function with source like
%add = add nsw i32 %mul, %conv
%mul1 = mul nsw i32 %add, %conv
%add2 = add nsw i32 %mul1, %add
%mul3 = mul nsw i32 %add2, %add
; repeat couple of thousands times
that can be produced by loop unroll, getAddExpr() tries to recursively construct SCEV and runs almost infinite time.
Added recursion depth restriction (with new parameter to set it)
Reviewers: sanjoy
Subscribers: hfinkel, llvm-commits, mzolotukhin
Differential Revision: https://reviews.llvm.org/D28158
llvm-svn: 294181
Summary:
Make this interface reusable similarly to std::call_once and std::once_flag interface.
This makes porting LLDB to NetBSD easier as there was in the original approach a portable way to specify a non-static once_flag. With this change translating std::once_flag to llvm::once_flag is mechanical.
Sponsored by <The NetBSD Foundation>
Reviewers: mehdi_amini, labath, joerg
Reviewed By: mehdi_amini
Subscribers: emaste, clayborg
Differential Revision: https://reviews.llvm.org/D29566
llvm-svn: 294143
Summary: As per title. I ran into that limitation of the API doing some other work, so I though that'd be a nice addition.
Reviewers: jroelofs, compnerd, majnemer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29503
llvm-svn: 294063
This generalizes memory access sorting to use differences between SCEVs,
instead of relying on constant offsets. That allows us to properly do
SLP vectorization of non-sequentially ordered loads within loops bodies.
Differential Revision: https://reviews.llvm.org/D29425
llvm-svn: 294027
Currently these flags are always the inverse of each other, so there is
no need to keep them separate.
Differential Revision: https://reviews.llvm.org/D29471
llvm-svn: 294016
The importer was previously using ModuleLinker in a sort of "IRMover mode". Use
IRMover directly instead in order to remove a level of indirection.
I will remove all importing support from ModuleLinker in a separate
change.
Differential Revision: https://reviews.llvm.org/D29468
llvm-svn: 294014
This reverts commit r293970.
After more discussion, this belongs to the linker side and
there is no added value to do it at this level.
llvm-svn: 293993
When a symbol is not exported outside of the
DSO, it is can be hidden. Usually we try to internalize
as much as possible, but it is not always possible, for
instance a symbol can be referenced outside of the LTO
unit, or there can be cross-module reference in ThinLTO.
This is a recommit of r293912 after fixing build failures,
and a recommit of r293918 after fixing LLD tests.
Differential Revision: https://reviews.llvm.org/D28978
llvm-svn: 293970
Summary: This allows clients of the LTO API to determine the name of the fallback symbol for COFF weak externals.
Reviewers: pcc
Reviewed By: pcc
Subscribers: mehdi_amini
Differential Revision: https://reviews.llvm.org/D29365
llvm-svn: 293960
Summary: Some compilers, including MSVC and Clang, allow linker options to be specified in source files. In the legacy LTO API, there is a getLinkerOpts() method that returns linker options for the bitcode module being processed. This change adds that method to the new API, so that the COFF linker can get the right linker options when using the new LTO API.
Reviewers: pcc, ruiu, mehdi_amini, tejohnson
Reviewed By: pcc
Differential Revision: https://reviews.llvm.org/D29207
llvm-svn: 293950
On ELF every section can have a corresponding section symbol. When in
an assembly file we have
.quad .text
the '.text' refers to that symbol.
The way we used to handle them is to leave .text an undefined symbol
until the very end when the object writer would map them to the
actual section symbol.
The problem with that is that anything before the end would see an
undefined symbol. This could result in bad diagnostics
(test/MC/AArch64/label-arithmetic-diags-elf.s), or incorrect results
when using the asm streamer (est/MC/Mips/expansion-jal-sym-pic.s).
Fixing this will also allow using the section symbol earlier for
setting sh_link of SHF_METADATA sections.
This patch includes a few hacks to avoid changing our behaviour when
handling conflicts between section symbols and other symbols. I
reported pr31850 to track that.
llvm-svn: 293936