The return type was specified incorrectly for proxy iterators that
define `reference` to be a class that implicitly converts to
`value_type`. `__iter_move` would end up returning an object of type
`reference` which would then implicitly convert to `value_type`; thus,
the function will return a `value_type&&` rvalue reference to the local
temporary.
Differential Revision: https://reviews.llvm.org/D130197
In particular remove the ability to expel incomplete features from the
library at configure-time, since this can now be done through the
_LIBCPP_ENABLE_EXPERIMENTAL macro.
Also, never provide symbols related to incomplete features inside the
dylib, instead provide them in c++experimental.a (this changes the
symbols list, but not for any configuration that should have shipped).
Differential Revision: https://reviews.llvm.org/D128928
- create the headers (but not include them from `<algorithm>`);
- define the niebloid and its member functions with the right signatures
(as no-ops);
- make sure all the right headers are included that are required by each
algorithm's signature;
- update `CMakeLists.txt` and the module map;
- create the test files with the appropriate synopses.
The synopsis in `<algorithm>` is deliberately not updated because that
could be taken as a readiness signal. The new headers aren't included
from `<algorithm>` for the same reason.
Differential Revision: https://reviews.llvm.org/D129549
implement `std::ranges::set_intersection` by reusing the classic `std::set_intersenction`
added unit tests
Differential Revision: https://reviews.llvm.org/D129233
It is meant to be used in ranges algorithm tests.
It is much simplified version of C++23's tuple + zip_view.
Using std::swap would cause compilation failure and using `std::move` would not create the correct rvalue proxy which would result in copies.
Differential Revision: https://reviews.llvm.org/D129099
Display 'static_assert failed: message' instead of
'static_assert failed "message"' to be consistent
with other implementations and be slightly more
readable.
Reviewed By: #libc, aaron.ballman, philnik, Mordante
Differential Revision: https://reviews.llvm.org/D128844
The debug mode has been broken pretty much ever since it was shipped
because it was possible to enable the debug mode in user code without
actually enabling it in the dylib, leading to ODR violations that
caused various kinds of failures.
This commit makes the debug mode a knob that is configured when
building the library and which can't be changed afterwards. This is
less flexible for users, however it will actually work as intended
and it will allow us, in the future, to add various kinds of checks
that do not assume the same ABI as the normal library. Furthermore,
this will make the debug mode more robust, which means that vendors
might be more tempted to support it properly, which hasn't been the
case with the current debug mode.
This patch shouldn't break any user code, except folks who are building
against a library that doesn't have the debug mode enabled and who try
to enable the debug mode in their code. Such users will get a compile-time
error explaining that this configuration isn't supported anymore.
In the future, we should further increase the granularity of the debug
mode checks so that we can cherry-pick which checks to enable, like we
do for unspecified behavior randomization.
Differential Revision: https://reviews.llvm.org/D122941
We are introducing branchless variants for sort3, sort4 and sort5.
These sorting functions have been generated using Reinforcement
Learning and aim to replace __sort3, __sort4 and __sort5 variants
for integral types.
The libc++ benchmarks were run on isolated machines for Skylake, ARM and
AMD architectures and achieve statistically significant improvement in
sorting random integers on test cases from sort1 to sort262144 for
uint32 and uint64.
A full performance overview for Intel Skylake, AMD and Arm can be
found here: https://bit.ly/3AtesYf
Reviewed By: ldionne, #libc, philnik
Spies: daniel.mankowitz, mgrang, Quuxplusone, andreamichi, philnik, libcxx-commits, nilayvaish, kristof.beyls
Differential Revision: https://reviews.llvm.org/D118029
All supported compilers that support C++20 now support concepts. So, remove
`_LIB_LIBCPP_HAS_NO_CONCEPTS` in favor of `_LIBCPP_STD_VER > 17`. Similarly in
the tests, remove `// UNSUPPORTED: libcpp-no-concepts`.
Differential Revision: https://reviews.llvm.org/D121528
The renames the output_iterator to cpp17_output_iterator. These
iterators are still used in C++20 so it's not possible to change the
current type to the new C++20 requirements. This is done in a similar
fashion as the cpp17_input_iterator.
Reviewed By: #libc, Quuxplusone, ldionne
Differential Revision: https://reviews.llvm.org/D117950
... from testing with MSVC's STL. Mostly truncation warnings and variables that are only used in `LIBCPP_ASSERT`.
Differential Revision: https://reviews.llvm.org/D116878
Since we officially don't support several older compilers now, we can
drop a lot of the markup in the test suite. This helps keep the test
suite simple and makes sure that UNSUPPORTED annotations don't rot.
This is the first patch of a series that will remove annotations for
compilers that are now unsupported.
Differential Revision: https://reviews.llvm.org/D107787
This is a fairly mechanical change, it just moves each algorithm into
its own header. This is intended to be a NFC.
This commit re-applies 7ed7d4ccb8, which was reverted in 692d7166f7
because the Modules build got broken. The modules build has now been
fixed, so we're re-committing this.
Differential Revision: https://reviews.llvm.org/D103583
Attribution note
----------------
I'm only committing this. This commit is a mix of D103583, D103330 and
D104171 authored by:
Co-authored-by: Christopher Di Bella <cjdb@google.com>
Co-authored-by: zoecarver <z.zoelec2@gmail.com>
This is a fairly mechanical change, it just moves each algorithm into its own header. This is a NFC.
Note: during this change, I burned down all the includes, so this follows "include only and exactly what you use."
Differential Revision: https://reviews.llvm.org/D103583
`__debug_less` ends up running the comparator up-to-twice per comparison,
because whenever `(x < y)` it goes on to verify that `!(y < x)`.
This breaks the strict "Complexity" guarantees of algorithms like
`inplace_merge`, which we test in the test suite. So, just skip the
complexity assertions in debug mode.
Differential Revision: https://reviews.llvm.org/D101677