*** to conform to clang-format’s LLVM style. This kind of mass change has
*** two obvious implications:
Firstly, merging this particular commit into a downstream fork may be a huge
effort. Alternatively, it may be worth merging all changes up to this commit,
performing the same reformatting operation locally, and then discarding the
merge for this particular commit. The commands used to accomplish this
reformatting were as follows (with current working directory as the root of
the repository):
find . \( -iname "*.c" -or -iname "*.cpp" -or -iname "*.h" -or -iname "*.mm" \) -exec clang-format -i {} +
find . -iname "*.py" -exec autopep8 --in-place --aggressive --aggressive {} + ;
The version of clang-format used was 3.9.0, and autopep8 was 1.2.4.
Secondly, “blame” style tools will generally point to this commit instead of
a meaningful prior commit. There are alternatives available that will attempt
to look through this change and find the appropriate prior commit. YMMV.
llvm-svn: 280751
"frame variable" and "target variable" are trying to emulate the expression parser when doing things like:
(lldb) frame variable &my_struct.my_bitfield
And since the expression parser doesn't allow this, we shouldn't allow "frame variable" or "target variable" to succeed.
<rdar://problem/27208607>
llvm-svn: 274703
Currently, the DataExtractor::GetMaxU64Bitfield and GetMaxS64Bitfield
routines assume the incoming "bitfield_bit_offset" parameter uses
little-endian bit numbering, i.e. a bitfield_bit_offset 0 refers to
a bitfield whose least-significant bit coincides with the least-
significant bit of the surrounding integer.
On many big-endian systems, however, the big-endian bit numbering
is used for bit fields. Here, a bitfield_bit_offset 0 refers to
a bitfield whose most-significant bit conincides with the most-
significant bit of the surrounding integer.
Now, in principle LLDB could arbitrarily choose which semantics of
bitfield_bit_offset to use. However, there are two problems with
the current approach:
- When parsing DWARF, LLDB decodes bit offsets in little-endian
bit numbering on LE systems, but in big-endian bit numbering
on BE systems. Passing those offsets later on into the
DataExtractor routines gives incorrect results on BE.
- In the interim, LLDB's type layer combines byte and bit offsets
into a single number. I.e. instead of recording bitfields by
specifying the byte offset and byte size of the surrounding
integer *plus* the bit offset of the bit field within that field,
it simply records a single bit offset number.
Now, note that converting from byte offset + bit offset to a
single offset value and back is well-defined if we either use
little-endian byte order *and* little-endian bit numbering,
or use big-endian byte order *and* big-endian bit numbering.
Any other combination will yield incorrect results.
Therefore, the simplest approach would seem to be to always use
the bit numbering that matches the system byte order. This makes
storing a single bit offset valid, and makes the existing DWARF
code correct. The only place to fix is to teach DataExtractor
to use big-endian bit numbering on big endian systems.
However, there is only additional caveat: we also get bit offsets
from LLDB synthetic bitfields. While the exact semantics of those
doesn't seem to be well-defined, from test cases it appears that
the intent was for the user-provided synthetic bitfield offset to
always use little-endian bit numbering. Therefore, on a big-endian
system we now have to convert those to big-endian bit numbering
to remain consistent.
Differential Revision: http://reviews.llvm.org/D18982
llvm-svn: 266312
When the parent of an expression is anonymous, skip adding '.' or '->' before the expression name.
Differential Revision: http://reviews.llvm.org/D18005
llvm-svn: 263166
This patch adds support for printing global static const variables which are given a DW_AT_const_value DWARF tag by clang.
Fix for bug https://llvm.org/bugs/show_bug.cgi?id=25653
Reviewers: clayborg, tberghammer
Subscribers: emaste, lldb-commits
Differential Revision: http://reviews.llvm.org/D15576
llvm-svn: 255887
This latter determination may or may not be possible on a per-language basis; and neither is mandatory to implement for any language
Use this knowledge in the ValueObjectPrinter to generalize the notion of IsObjCNil() and the respective printout
llvm-svn: 252663
In this way, when a language needs to tell itself things that are not bound to a type but to a value (imagine a base-class relation, this is not about the type, but about the ValueObject), it can do so in a clean and general fashion
The interpretation of the values of the flags is, of course, up to the language that owns the value (the value object's runtime language, that is)
llvm-svn: 252503
Summary:
Along with this, support for an optional argument to the "num_children"
method of a Python synthetic child provider has also been added. These have
been added with the following use case in mind:
Synthetic child providers currently have a method "has_children" and
"num_children". While the former is good enough to know if there are
children, it does not give any insight into how many children there are.
Though the latter serves this purpose, calculating the number for children
of a data structure could be an O(N) operation if the data structure has N
children. The new method added in this change provide a middle ground.
One can call GetNumChildren(K) to know if a child exists at an index K
which can be as large as the callers tolerance can be. If the caller wants
to know about children beyond K, it can make an other call with 2K. If the
synthetic child provider maintains state about it counting till K
previosly, then the next call is only an O(K) operation. Infact, all
calls made progressively with steps of K will be O(K) operations.
Reviewers: vharron, clayborg, granata.enrico
Subscribers: labath, lldb-commits
Differential Revision: http://reviews.llvm.org/D13778
llvm-svn: 250930
The ClangExpressionVariable::CreateVariableInList functions looked cute, but
caused more confusion than they solved. I removed them, and instead made sure
that there are adequate facilities for easily adding newly-constructed
ExpressionVariables to lists.
I also made some of the constructors that are common be generic, so that it's
possible to construct expression variables from generic places (like the ABI and
ValueObject) without having to know the specifics about the class.
llvm-svn: 249095
Also added some target-level search functions so that persistent variables and
symbols can be searched for without hand-iterating across the map of
TypeSystems.
llvm-svn: 249027
the corresponding TypeSystem. This makes sense because what kind of data there
is -- and how it can be looked up -- depends on the language.
Functionality that is common to all type systems is factored out into
PersistentExpressionState.
llvm-svn: 248934
There are still a bunch of dependencies on the plug-in, but this helps to
identify them.
There are also a few more bits we need to move (and abstract, for example the
ClangPersistentVariables).
llvm-svn: 248612
Summary:
With the recent changes to separate clang from the core structures
of LLDB, many inclusions of clang headers can be removed.
Reviewers: clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D12954
llvm-svn: 248004
stores information about a variable that different parts of LLDB use, from the
compiler-specific portion that only the expression parser cares about.
http://reviews.llvm.org/D12602
llvm-svn: 246871
This is still something I need to fix, but at least it's not so ugly, and it's
consistent with the other code that does that so we will catch it when we purge
all such code.
llvm-svn: 246738
Clang-specific part, create the ExpressionVariable source/header file and
move ClangExpressionVariable into the Clang expression parser plugin.
It is expected that there are some ugly #include paths... these will be resolved
by either (1) making that code use generic expression variables (once they're
separated appropriately) or (2) moving that code into a plug-in, often
the expression parser plug-in.
llvm-svn: 246737
Create a new "lldb_private::CompilerDeclContext" class that will replace all direct uses of "clang::DeclContext" when used in compiler agnostic code, yet still allow for conversion to clang::DeclContext subclasses by clang specific code. This completes the abstraction of type parsing by removing all "clang::" references from the SymbolFileDWARF. The new "lldb_private::CompilerDeclContext" class abstracts decl contexts found in compiler type systems so they can be used in internal API calls. The TypeSystem is required to support CompilerDeclContexts with new pure virtual functions that start with "DeclContext" in the member function names. Converted all code that used lldb_private::ClangNamespaceDecl over to use the new CompilerDeclContext class and removed the ClangNamespaceDecl.cpp and ClangNamespaceDecl.h files.
Removed direct use of clang APIs from SBType and now use the abstract type systems to correctly explore types.
Bulk renames for things that used to return a ClangASTType which is now CompilerType:
"Type::GetClangFullType()" to "Type::GetFullCompilerType()"
"Type::GetClangLayoutType()" to "Type::GetLayoutCompilerType()"
"Type::GetClangForwardType()" to "Type::GetForwardCompilerType()"
"Value::GetClangType()" to "Value::GetCompilerType()"
"Value::SetClangType (const CompilerType &)" to "Value::SetCompilerType (const CompilerType &)"
"ValueObject::GetClangType ()" to "ValueObject::GetCompilerType()"
many more renames that are similar.
llvm-svn: 245905
Eliminated ENABLE_128_BIT_SUPPORT and union ValueData from Scalar.cpp and use llvm::APInt and llvm::APFloat for all integer and floating point types. Also used Scalar in RegisterValue.cpp
Reviewers: tberghammer, ovyalov, clayborg, labath
Subscribers: lldb-commits, nitesh.jain, jaydeep
Differential: http://reviews.llvm.org/D12100
llvm-svn: 245547
Eliminated ENABLE_128_BIT_SUPPORT and union ValueData from Scalar.cpp and use llvm::APInt and llvm::APFloat for all integer and floating point types. Also used Scalar in RegisterValue.cpp
Reviewers: jaydeep, clayborg, jasonmolenda, ovyalov, emaste
Subscribers: tberghammer, ovyalov, emaste, mohit.bhakkad, nitesh.jain, bhushan
Differential: http://reviews.llvm.org/D10919
llvm-svn: 245216
This is more preparation for multiple different kinds of types from different compilers (clang, Pascal, Go, RenderScript, Swift, etc).
llvm-svn: 244689
This is the work done by Ryan Brown from http://reviews.llvm.org/D8712 that makes a TypeSystem class and abstracts types to be able to use a type system.
All tests pass on MacOSX and passed on linux the last time this was submitted.
llvm-svn: 244679
This change :
- Fixes offsets of all register sets for Mips.
- Adds MSA register set and FRE=1 mode support for FP register set.
- Separates lldb register numbers and register infos of freebsd/mips64 from linux/mips64.
- Re-orders the register numbers of all kinds for mips to be consistent with freebsd order of register numbers.
- Eliminates ENABLE_128_BIT_SUPPORT and union ValueData from Scalar.cpp and uses llvm::APInt and llvm::APFloat for all integer and floating point types.
Reviewers : emaste, jaydeep, clayborg
Subscribers : emaste, mohit.bhakkad, nitesh.jain, bhushan
Differential : http://reviews.llvm.org/D10919
llvm-svn: 244308
This was of course overridable by using DumpValueObjectOptions, but the default should be saner and the previous behavior made for a few fun investigations....
rdar://problem/21065149
llvm-svn: 238961
Since interaction with the python interpreter is moving towards
being more isolated, we won't be able to include this header from
normal files anymore, all includes of it should be localized to
the python library which will live under source/bindings/API/Python
after a future patch.
None of the files that were including this header actually depended
on it anyway, so it was just a dead include in every single instance.
llvm-svn: 238581
And they also do not have a thread/frame attached to them
That makes dynamic and synthetic values attached to them impossible to update - which, among other things, makes it impossible to properly display persistent variables of types that could have such dynamic/persistent values
Fix this by making it so that a ValueObject can control its constantness (hint: dynamic and synthetic values cannot be constant) and whether it wants to let itself be updated when an invalid thread is around
llvm-svn: 237504
Summary:
After r236447, ValueObject::GetAddressOf returns LLDB_INVALID_ADDRESS
when the value type is eValueHostAddress. For such a case, clients of
GetAddressOf should get the address from the scalar part of the value
instead of using the value returned by GetAddressOf directly.
This change also makes ValueObject::GetAddressOf set the address type to
eAddressTypeHost for values of eValueHostAddress so that clients can
recognize that they need to fetch the address from the scalar part
of the value.
Test Plan: ninja check-lldb on linux
Reviewers: clayborg, ovyalov
Reviewed By: ovyalov
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D9490
llvm-svn: 236473
Summary:
This fixes TestRegisterVariables for clang and hence it is enabled in this commit.
Test Plan: dotest.py -C clang -p TestRegisterVariables
Reviewers: clayborg
Reviewed By: clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D9421
llvm-svn: 236447
Summary:
The code for GetSyntheticArrayMemberFromPointer and
GetSyntheticArrayMemberFromArray was identical, so just collapse the
the methods into one.
Reviewers: granata.enrico, clayborg
Reviewed By: clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D7911
llvm-svn: 230708
There was a test in the test suite that was triggering the backtrace logging output that requested that the client pass an execution context. Sometimes we need the process for Objective C types because our static notion of the type might not align with the reality when being run in a live runtime.
Switched from an "ExecutionContext *" to an "ExecutionContextScope *" for greater ease of use.
llvm-svn: 228892
A runtime support value is a ValueObject whose only purpose is to support some language runtime's operation, but it does not directly provide any user-visible benefit
As such, unless the user is working on the runtime support, it is mostly safe for them not to see such a value when debugging
It is a language runtime's job to check whether a ValueObject is a support value, and that - in conjunction with a target setting - is used by frame variable and target variable
SBFrame::GetVariables gets a new overload with yet another flag to dictate whether to return those support values to the caller - that which defaults to the setting's value
rdar://problem/15539930
llvm-svn: 228791
And since enough of these are doing the right thing, add a test case to verify we are doing the right thing with freeze drying ObjC object types
Fixes rdar://18092770
llvm-svn: 227282
This is necessary because the byte size of an ObjC class type is not reliably statically knowable (e.g. because superclasses sit deep in frameworks that we have no debug info for)
The lack of reliable size info is a problem when trying to freeze-dry an ObjC instance (not the pointer, the pointee)
This commit lays the foundation for having language runtimes help in figuring out byte sizes, and having ClangASTType ask for runtime help
No feature change as no runtime actually implements the logic, and nowhere is an ExecutionContext passed in yet
llvm-svn: 227274
Most of the time, we can use context information just fine to choose a language (i.e. the language of the frame that the root object was defined in, if any); but in some cases, synthetic children may be fabricated as root frame-less entities, and then we wouldn't know any better
This patch allows (internal) synthetic child providers to set a display language on the children they generate, should they so choose
llvm-svn: 226634
It also comes with a (rudimentary) test case that gets itself in a failed update scenario, and checks that we don't crash
This is the easiest case I could think of that forces the failed update case Zachary was seeing
llvm-svn: 225463
Function pointers had a summary generated for them bypassing formatters, directly as part of the ValueObject subsystem
This patch transitions that code into a hardcoded summary
llvm-svn: 223906
Because of the way they are created, synthetic children cannot (in general) have a sane expression path
A solution to this would be letting the parent front-end generate expression paths for its children
Doing so requires a significant amount of refactoring, and might not always lead to better results (esp. w.r.t. C++ templates)
This commit takes a simpler approach:
- if a synthetic child is of pointer type and it's a target pointer, then emit *((T)value)
- if a synthetic child is a non-pointer, but its location is in the target, then emit *((T*)loadAddr)
- if a synthetic child has a value, emit ((T)value)
- else, don't emit anything
Fixes rdar://18442386
llvm-svn: 223836
track of the checksum of the object so we can
track if it is modified. This fixes a testcase
(test/expression_command/issue_11588) on OS X.
Patch by Enrico Granata.
llvm-svn: 223830
- adds a new flag to mark ValueObjects as "synthetic children generated"
- vends new Create functions as part of the SyntheticChildrenFrontEnd that set the flag automatically
- moves synthetic child providers over to using these new functions
No visible feature change, but preparatory work for feature change
llvm-svn: 223819
Such a persisted version is equivalent to evaluating the value via the expression evaluator, and holding on to the $n result of the expression, except this API can be used on SBValues that do not obviously come from an expression (e.g. are the result of a memory lookup)
Expose this via SBValue::Persist() in our public API layer, and ValueObject::Persist() in the lldb_private layer
Includes testcase
Fixes rdar://19136664
llvm-svn: 223711
Two flags are introduced:
- preferred display language (as in, ObjC vs. C++)
- summary capping (as in, should a limit be put to the amount of data retrieved)
The meaning - if any - of these options is for individual formatters to establish
The topic of a subsequent commit will be to actually wire these through to individual data formatters
llvm-svn: 221482
The recent StringPrinter changes made this behavior the default, and the setting defaults to yes
If you want to change this behavior and see non-printables unescaped (e.g. "a\tb" as "a b"), set it to false
Fixes rdar://12969594
llvm-svn: 221399
The way to do this is to write a synthetic child provider for your type, and have it vend the (optional) get_value function.
If get_value is defined, and it returns a valid SBValue, that SBValue's value (as in lldb_private::Value) will be used as the synthetic ValueObject's Value
The rationale for doing things this way is twofold:
- there are many possible ways to define a "value" (SBData, a Python number, ...) but SBValue seems general enough as a thing that stores a "value", so we just trade values that way and that keeps our currency trivial
- we could introduce a new level of layering (ValueObjectSyntheticValue), a new kind of formatter (synthetic value producer), but that would complicate the model (can I have a dynamic with no synthetic children but synthetic value? synthetic value with synthetic children but no dynamic?), and I really couldn't see much benefit to be reaped from this added complexity in the matrix
On the other hand, just defining a synthetic child provider with a get_value but returning no actual children is easy enough that it's not a significant road-block to adoption of this feature
Comes with a test case
llvm-svn: 219330
Rationale:
Pretty simply, the idea is that sometimes type names are way too long and contain way too many details for the average developer to care about. For instance, a plain ol' vector of int might be shown as
std::__1::vector<int, std::__1::allocator<....
rather than the much simpler std::vector<int> form, which is what most developers would actually type in their code
Proposed solution:
Introduce a notion of "display name" and a corresponding API GetDisplayTypeName() to return such a crafted for visual representation type name
Obviously, the display name and the fully qualified (or "true") name are not necessarily the same - that's the whole point
LLDB could choose to pick the "display name" as its one true notion of a type name, and if somebody really needs the fully qualified version of it, let them deal with the problem
Or, LLDB could rename what it currently calls the "type name" to be the "display name", and add new APIs for the fully qualified name, making the display name the default choice
The choice that I am making here is that the type name will keep meaning the same, and people who want a type name suited for display will explicitly ask for one
It is the less risky/disruptive choice - and it should eventually make it fairly obvious when someone is asking for the wrong type
Caveats:
- for now, GetDisplayTypeName() == GetTypeName(), there is no logic to produce customized display type names yet.
- while the fully-qualified type name is still the main key to the kingdom of data formatters, if we start showing custom names to people, those should match formatters
llvm-svn: 209072
Set the correct FormatManager revision before starting to figure out the new formatters
This can avoid entering some corner cases where as part of figuring out formatters we try to figure out dynamic types, and in turn that causes us to go back in trying to fetch new formatters - it is not only a futile exercise, it's also prone to endless recursion
This would only cause a behavior change if getting this chain started would eventually cause something to run and alter the formatters, a very unlikely if at all possible sequence of events
llvm-svn: 205928
This is a purely mechanical change explicitly casting any parameters for printf
style conversion. This cleans up the warnings emitted by gcc 4.8 on Linux.
llvm-svn: 205607
For some reason, the libc++ vector<bool> data formatter was essentially a costly no-up, doing everything required of it, except actually generating the child values!
This restores its functionality
llvm-svn: 205259
read during materialization. First of all, report
if we can't read the data for some reason. Second,
consult the ValueObject's error and report that if
there's some problem.
<rdar://problem/16074201>
llvm-svn: 202552
Revert the spirit of r199857 - a convincing case can be made that overriding a summary's format markers behind its back is not the right thing to do
This commit reverts the behavior of the code to the previous model, and changes the test case to validate the opposite of what it was validating before
llvm-svn: 201455
The many many benefits include:
1 - Input/Output/Error streams are now handled as real streams not a push style input
2 - auto completion in python embedded interpreter
3 - multi-line input for "script" and "expression" commands now allow you to edit previous/next lines using up and down arrow keys and this makes multi-line input actually a viable thing to use
4 - it is now possible to use curses to drive LLDB (please try the "gui" command)
We will need to deal with and fix any buildbot failures and tests and arise now that input/output and error are correctly hooked up in all cases.
llvm-svn: 200263
The "type format add" command gets a new flag --type (-t). If you pass -t <sometype>, upon fetching the value for an object of your type,
LLDB will display it as-if it was of enumeration type <sometype>
This is useful in cases of non-contiguous enums where there are empty gaps of unspecified values, and as such one cannot type their variables as the enum type,
but users would still like to see them as-if they were of the enum type (e.g. DWARF field types with their user-reserved ranges)
The SB API has also been improved to handle both types of formats, and a test case is added
llvm-svn: 198105
TypeFormatImpl used to just wrap a Format (and Flags for matching), and then ValueObject itself would do the printing deed
With this checkin, the responsibility of generating a value string is centralized in the data formatter (as it should, and already is for summaries)
This change is good practice per se, and should also enable us to extend the type format mechanism in a cleaner way
llvm-svn: 197874
<rdar://problem/15314403>
This patch adds a new lldb_private::SectionLoadHistory class that tracks what shared libraries were loaded given a process stop ID. This allows us to keep a history of the sections that were loaded for a time T. Many items in history objects will rely upon the process stop ID in the future.
llvm-svn: 196557
pure virtual base class and made StackFrame a subclass of that. As
I started to build on top of that arrangement today, I found that it
wasn't working out like I intended. Instead I'll try sticking with
the single StackFrame class -- there's too much code duplication to
make a more complicated class hierarchy sensible I think.
llvm-svn: 193983
defines a protocol that all subclasses will implement. StackFrame
is currently the only subclass and the methods that Frame vends are
nearly identical to StackFrame's old methods.
Update all callers to use Frame*/Frame& instead of pointers to
StackFrames.
This is almost entirely a mechanical change that touches a lot of
the code base so I'm committing it alone. No new functionality is
added with this patch, no new subclasses of Frame exist yet.
I'll probably need to tweak some of the separation, possibly moving
some of StackFrame's methods up in to Frame, but this is a good
starting point.
<rdar://problem/15314068>
llvm-svn: 193907
Fixing a problem where ValueObject::GetPointeeData() would not accept "partial" valid reads (i.e. asking for 10 items and getting only 5 back)
While suboptimal, this situation is not a flat-out failure and could well be caused by legit scenarios, such as hitting a page boundary
Among others, this allows data formatters to print char* buffers allocated under libgmalloc
llvm-svn: 193704
One of the things that dynamic typing affects is the count of children a type has
Clear out the flag that makes us blindly believe the children count when a dynamic type change is detected
llvm-svn: 193663
This commit reimplements the TypeImpl class (the class that backs SBType) in terms of a static,dynamic type pair
This is useful for those cases when the dynamic type of an ObjC variable can only be obtained in terms of an "hollow" type with no ivars
In that case, we could either go with the static type (+iVar information) or with the dynamic type (+inheritance chain)
With the new TypeImpl implementation, we try to combine these two sources of information in order to extract as much information as possible
This should improve the functionality of tools that are using the SBType API to do extensive dynamic type inspection
llvm-svn: 193564
Constant ValueObjects should clear their description as well as their summary. Rationale being that both can depend on deeper-than-constified data
so both are subject to changes in "unpredictable" ways
To see this consider repeatedly po'ing a persistent variable of a type whose -description result changes at each invocation
llvm-svn: 192259
Formats (as in "type format") are now included in categories
The only bit missing is caching formats along with synthetic children and summaries, which might be now desirable
llvm-svn: 192217
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
Now that SBValues can be setup to ignore synthetic values, this is no longer necessary, and so m_suppress_synthetic_value can go away
Another Hack Bites the Dust
llvm-svn: 191338
SVN r189964 provided a sample Python script to inspect unordered(multi){set|map} with synthetic children, contribued by Jared Grubb
This checkin converts that sample script to a C++ provider built into LLDB
A test case is also provided
llvm-svn: 190564
A long time ago we start with clang types that were created by the symbol files and there were many functions in lldb_private::ClangASTContext that helped. Later we create ClangASTType which contains a clang::ASTContext and an opauque QualType, but we didn't switch over to fully using it. There were a lot of places where we would pass around a raw clang_type_t and also pass along a clang::ASTContext separately. This left room for error.
This checkin change all type code over to use ClangASTType everywhere and I cleaned up the interfaces quite a bit. Any code that was in ClangASTContext that was type related, was moved over into ClangASTType. All code that used these types was switched over to use all of the new goodness.
llvm-svn: 186130
Fixing an issue where formats would not propagate from parents to children in all cases
Details follow:
an SBValue has children and those are fetched along with their values
Now, one calls SBValue::SetFormat() on the parent
Technically, the format choices should propagate onto the children (see ValueObject::GetFormat())
But if the children values are already fetched, they won't notice the format change and won't update themselves
This commit fixes that by making ValueObject::GetValueAsCString() check if any format change intervened from the previous call to the current one
A test case is also added
llvm-svn: 183030
Enabling LLDB to write to variables that are stored in registers
Previously, this would not work since the Value's Context loses the notion of the data being in a register
We now store an "original" context that comes out of DWARF parsing, and use that context's data when attempting a write
llvm-svn: 180803
variables in the ValueObject code:
- Report an error if the variable does not have
a valid address.
- Return the contents of the data to GetData(),
even if the value is constant.
<rdar://problem/13690855>
llvm-svn: 179876
lets a ValueObject's contents be set from raw
data. This has certain limitations (notably,
registers can only be set to data that is as
large as the register) but will be useful for
the new Materializer.
I also exposed this interface through SBValue.
I have added a testcase that exercises various
special cases of SBValue::SetData().
llvm-svn: 179437
This patch fixes the issue that we were using the C stack as a measure of depth of ValueObject hierarchies, in the sense that we were assuming that recursive ValueObject operations would never be deeper than the stack allows.
This assumption is easy to prove wrong, however.
For instance, after ~10k runs through this loop:
struct node
{
int value;
node* child;
node (int x)
{
value = x;
child = nullptr;
}
};
int main ()
{
node root(1);
node* ptr = &root;
int j = 2;
while (1)
{
ptr->child = new node(j++);
ptr = ptr->child;
}
return 0;
}
the deepmost child object will be deeper than the stack on most architectures, and we would be unable to display it
This checkin fixes the issue by introducing a notion of root of ValueObject hierarchies.
In a couple cases, we have to use an iterative algorithm instead of going to the root because we want to allow deeper customizations (e.g. formats, dynamic values).
While the patch passes our test suite without regressions, it is a good idea to keep eyes open for any unexpected behavior (recursion can be subtle..)
Also, I am hesitant to introduce a test case since failing at this will not just be marked as an "F", but most definitely crash LLDB.
llvm-svn: 179330
LLDB is crashing when logging is enabled from lldb-perf-clang. This has to do with the global destructor chain as the process and its threads are being torn down.
All logging channels now make one and only one instance that is kept in a global pointer which is never freed. This guarantees that logging can correctly continue as the process tears itself down.
llvm-svn: 178191
Ensure that option -Y also works for expression as it does for frame variable
Also, if the user passes an explicit format specifier when printing a variable, override the summary's decision to hide the value.
This is required for scenarios like this to work:
(lldb) p/x c
(Class) $0 = 0x0000000100adb7f8 NSObject
Previously this would say:
(lldb) p/x c
(Class) $0 = NSObject
ignoring the explicit format specifier
llvm-svn: 177893
commands of the form
frame variable -f c-string foo
where foo is an arbitrary pointer (e.g. void*) now do the right thing, i.e. they deref the pointer and try to get a c-string at the pointed address instead of dumping the pointer bytes as a string. the old behavior is used as a fallback if things don’t go well
llvm-svn: 177799
Adding data formatters for iterators for std::map and std::vector (both libc++ and libstdcpp)
This does not include reverse iterators since they are both trickier (due to requirements the standard imposes on them) and much less useful
llvm-svn: 175787
1 - A store off the end of a buffer in ValueObject.cpp
2 - DataExtractor had cases where bad offsets could cause invalid memory to be accessed.
llvm-svn: 174757
Providing a compact display mode for "po" to use where the convenience variable name and the pointer value are both hidden.
This is for convenience when dealing with ObjC instances where the description often gets it right and the debugger-provided information is not useful to most people.
If you need either of these, "expr" will still show them.
llvm-svn: 173748
Data formatters now cache themselves.
This commit provides a new formatter cache mechanism. Upon resolving a formatter (summary or synthetic), LLDB remembers the resolution for later faster retrieval.
Also moved the data formatters subsystem from the core to its own group and folder for easier management, and done some code reorganization.
The ObjC runtime v1 now returns a class name if asked for the dynamic type of an object. This is required for formatters caching to work with the v1 runtime.
Lastly, this commit disposes of the old hack where ValueObjects had to remember whether they were queried for formatters with their static or dynamic type.
Now the ValueObjectDynamicValue class works well enough that we can use its dynamic value setting for the same purpose.
llvm-svn: 173728
Major fixed to allow reading files that are over 4GB. The main problems were that the DataExtractor was using 32 bit offsets as a data cursor, and since we mmap all of our object files we could run into cases where if we had a very large core file that was over 4GB, we were running into the 4GB boundary.
So I defined a new "lldb::offset_t" which should be used for all file offsets.
After making this change, I enabled warnings for data loss and for enexpected implicit conversions temporarily and found a ton of things that I fixed.
Any functions that take an index internally, should use "size_t" for any indexes and also should return "size_t" for any sizes of collections.
llvm-svn: 173463
Extending ValueObjectDynamicValue so that it stores a TypeAndOrName instead of a TypeSP.
This change allows us to reflect the notion that a ValueObject can have a dynamic type for which we have no debug information.
Previously, we would coalesce that to the static type of the object, potentially losing relevant information or even getting it wrong.
This fix ensures we can correctly report the class name for Cocoa objects whose types are hidden classes that we know nothing about (e.g. __NSArrayI for immutable arrays).
As a side effect, our --show-types argument to frame variable no longer needs to append custom dynamic type information.
llvm-svn: 173216
Providing a data formatter for libc++ std::wstring
In the process, refactoring the std::string data formatter to be written in C++ so that commonalities between the two can be exploited
Also, providing a new API on the ValueObject to navigate a hierarchy by index-path
Lastly, an appropriate test case is included
llvm-svn: 172282
Supporting a compact display syntax for ObjC pointers where 0x00.....0 is replaced by a much more legible "nil"
e.g. this would show:
(NSArray *) $2 = nil
instead of:
(NSArray *) $2 = 0x0000000000000000 <nil>
llvm-svn: 170161
- remove unused members
- add NO_PEDANTIC to selected Makefiles
- fix return values (removed NULL as needed)
- disable warning about four-char-constants
- remove unneeded const from operator*() declaration
- add missing lambda function return types
- fix printf() with no format string
- change sizeof to use a type name instead of variable name
- fix Linux ProcessMonitor.cpp to be 32/64 bit friendly
- disable warnings emitted by swig-generated C++ code
Patch by Matt Kopec!
llvm-svn: 169645
Fixed zero sized arrays to work correctly. This will only happen once we get a clang that emits correct debug info for zero sized arrays. For now I have marked the TestStructTypes.py as an expected failure.
llvm-svn: 169465
- add new header lldb-python.h to be included before other system headers
- short term fix (eventually python dependencies must be cleaned up)
Patch by Matt Kopec!
llvm-svn: 169341
The attached patch adds eValueTypeVector to lldb_private::Value. The nested struct Vector is patterned after RegisterValue::m_data.buffer. This change to Value allows ClangExpressionDeclMap::LookupDecl to return vector register data for consumption by InterpreterStackFrame::ResolveValue. Note that ResolveValue was tweaked slightly to allocate enough memory for vector registers.
An immediate result of this patch is that "expr $xmm0" generates the same results on Linux as on the Mac, which is good enough for TestRegisters.py. In addition, the log of m_memory.PrintData(data_region.m_base, data_region.m_extent) shows that the register content has been resolved successfully. On the other hand, the output is glaringly empty:
runCmd: expr $xmm0
output: (unsigned char __attribute__((ext_vector_type(16)))) $0 = {}
Expecting sub string: vector_type
Matched
llvm-svn: 167033
Removing the IsDynamic() and GetStaticValue() calls, so that they will default to the base class behavior:
- non-dynamic
- itself as the static value
This is in contrast with the previous behavior which could be confusing and could potentially cause issues when using those objects
llvm-svn: 166857