A Scop with a loop outside it is not handled currently by
PPCGCodeGeneration. The test case is such that the Scop has only one inner loop
that is detected. This currently breaks codegen.
The fix is to reuse the existing mechanism in `IslNodeBuilder` within
`GPUNodeBuilder.
Differential Revision: https://reviews.llvm.org/D36290
llvm-svn: 310193
This logic is duplicated, so we refactor it into a separate function.
This will be used in a later patch to teach PPCGCodeGen code generation
for loops that are outside the scop.
Differential Revision: https://reviews.llvm.org/D36310
llvm-svn: 310192
We populate `IslNodeBuilder::ValueMap` which contains replacements for
`llvm::Value`s. There was no simple method to pick up a replacement if
it exists, otherwise fall back to the original.
Create a method `IslNodeBuilder::getLatestValue` which provides this
functionality.
This will be used in a later patch to fix bugs in `PPCGCodeGeneration`
where the latest value is not being used.
Differential Revision: https://reviews.llvm.org/D36000
llvm-svn: 309674
When performing invariant load hoisting we check that invariant load expressions
are not too complex. Up to this commit, we performed this check by counting the
sum of dimensions in the access range as a very simple heuristic. This heuristic
is a little too conservative, as it prevents hoisting for any scops with a
very large number of parameters. Hence, we update the heuristic to only count
existentially quantified dimensions and set dimensions. We expect this to still
detect the problematic expressions in h264 because of which this check was
originally introduced.
For some unknown reason, this complexity check was originally committed in
IslNodeBuilder. It really belongs in ScopInfo, as there is no point in
optimizing a program which we could have known earlier cannot be code generated.
The benefit of running the check early is that we can avoid to even hoist checks
that are expensive to code generate as invariant loads. This can be seen in
the changed tests, where we now indeed detect the scop, but just not invariant
load hoist the complicated access.
We also improve the formatting of the code, document it, and use isl++ to
simplify expressions.
llvm-svn: 308659
We need to relax constraints on invariant loads so that they do not
create fake RAW dependences. So, we do not consider invariant loads as
scalar dependences in a region.
During these changes, it turned out that we do not consider `llvm::Value`
replacements correctly within `PPCGCodeGeneration` and `ISLNodeBuilder`.
The replacements dictated by `ValueMap` were not being followed in all
places. This was fixed in this commit. There is no clean way to decouple
this change because this bug only seems to arise when the relaxed
version of invariant load hoisting was enabled.
Differential Revision: https://reviews.llvm.org/D35120
llvm-svn: 307907
This patch aims to implement the option of allocating new arrays created
by polly on heap instead of stack. To enable this option, a key named
'allocation' must be written in the imported json file with the value
'heap'.
We need such a feature because in a next iteration, we will implement a
mechanism of maximal static expansion which will need a way to allocate
arrays on heap. Indeed, the expansion is very costly in terms of memory
and doing the allocation on stack is not worth considering.
The malloc and the free are added respectively at polly.start and
polly.exiting such that there is no use-after-free (for instance in case
of Scop in a loop) and such that all memory cells allocated with a
malloc are free'd when we don't need them anymore.
We also add :
- In the class ScopArrayInfo, we add a boolean as member called IsOnHeap
which represents the fact that the array in allocated on heap or not.
- A new branch in the method allocateNewArrays in the ISLNodeBuilder for
the case of heap allocation. allocateNewArrays now takes a BBPair
containing polly.start and polly.exiting. allocateNewArrays takes this
two blocks and add the malloc and free calls respectively to
polly.start and polly.exiting.
- As IntPtrTy for the malloc call, we use the DataLayout one.
To do that, we have modified :
- createScopArrayInfo and getOrCreateScopArrayInfo such that it returns
a non-const SAI, in order to be able to call setIsOnHeap in the
JSONImporter.
- executeScopConditionnaly such that it return both start block and end
block of the scop, because we need this two blocs to be able to add
the malloc and the free calls at the right position.
Differential Revision: https://reviews.llvm.org/D33688
llvm-svn: 306540
Allow the BlockGenerator to generate memory writes that are not defined
over the complete statement domain, but only over a subset of it. It
generates a condition that evaluates to 1 if executing the subdomain,
and only then execute the access.
Only write accesses are supported. Read accesses would require a PHINode
which has a value if the access is not executed.
Partial write makes DeLICM able to apply mappings that are not defined
over the entire domain (for instance, a branch that leaves a loop with
a PHINode in its header; a MemoryKind::PHI write when leaving is never
read by its PHI read).
Differential Revision: https://reviews.llvm.org/D33255
llvm-svn: 303517
- We use the outermost dimension of arrays since we need this
information to generate GPU transfers.
- In general, if we do not know the outermost dimension of the array
(because the indexing expression is non-affine, for example) then we
simply cannot generate transfer code.
- However, for Fortran arrays, we can use the Fortran array
representation which stores the dimensions of all arrays.
- This patch uses the Fortran array representation to generate code that
computes the outermost dimension size.
Differential Revision: https://reviews.llvm.org/D32967
llvm-svn: 303429
Summary:
In case two arrays share base pointers in the same invariant load equivalence
class, we canonicalize all memory accesses to the first of these arrays
(according to their order in the equivalence class).
This enables us to optimize kernels such as boost::ublas by ensuring that
different references to the C array are interpreted as accesses to the same
array. Before this change the runtime alias check for ublas would fail, as it
would assume models of the C array with differing (but identically valued) base
pointers would reference distinct regions of memory whereas the referenced
memory regions were indeed identical.
As part of this change we remove most of the MemoryAccess::get*BaseAddr
interface. We removed already all references to get*BaseAddr in previous
commits to ensure that no code relies on matching base pointers between
memory accesses and scop arrays -- except for three remaining uses where we
need the original base pointer. We document for these situations that
MemoryAccess::getOriginalBaseAddr may return a base pointer that is distinct
to the base pointer of the scop array referenced by this memory access.
Reviewers: sebpop, Meinersbur, zinob, gareevroman, pollydev, huihuiz, efriedma, jdoerfert
Reviewed By: Meinersbur
Subscribers: etherzhhb
Tags: #polly
Differential Revision: https://reviews.llvm.org/D28518
llvm-svn: 302636
Summary:
A couple of the utilities used to analyze or build IR make explicit use of the legacy PM on their interface, to access analysis results. This patch removes the legacy PM from the interface, and just passes the required results directly.
This shouldn't introduce any function changes, although the API technically allowed to obtain two different analysis results before, one passed by reference and one through the PM. I don't believe that was ever intended, however.
Reviewers: grosser, Meinersbur
Reviewed By: grosser
Subscribers: nemanjai, pollydev, llvm-commits
Tags: #polly
Differential Revision: https://reviews.llvm.org/D31653
llvm-svn: 299423
Introduce another level of alias metadata to distinguish the individual
non-aliasing accesses that have inter iteration alias-free base pointers
marked with "Inter iteration alias-free" mark nodes. It can be used to,
for example, distinguish different stores (loads) produced by unrolling of
the innermost loops and, subsequently, sink (hoist) them by LICM.
Reviewed-by: Tobias Grosser <tobias@grosser.es>
Differential Revision: https://reviews.llvm.org/D30606
llvm-svn: 298510
Map the new load to the base pointer of the invariant load hoisted load
to be able to find the alias information for it.
Reviewed-by: Tobias Grosser <tobias@grosser.es>
Differential Revision: https://reviews.llvm.org/D30605
llvm-svn: 298507
When not adding constraints on parameters using -polly-ignore-parameter-bounds,
the context may not necessarily list all parameter dimensions. To support code
generation in this situation, we now always iterate over the actual parameter
list, rather than relying on the context to list all parameter dimensions.
llvm-svn: 298197
Marking a pass as preserved is necessary if any Polly pass uses it, even
if it is not preserved within the generated code. Not marking it would
cause the the Polly pass chain to be interrupted. It is not used by any
Polly pass anymore, hence we can remove all references to it.
llvm-svn: 295983
Instead of keeping two separate maps from Value to Allocas, one for
MemoryType::Value and the other for MemoryType::PHI, we introduce a single map
from ScopArrayInfo to the corresponding Alloca. This change is intended, both as
a general simplification and cleanup, but also to reduce our use of
MemoryAccess::getBaseAddr(). Moving away from using getBaseAddr() makes sure
we have only a single place where the array (and its base pointer) for which we
generate code for is specified, which means we can more easily introduce new
access functions that use a different ScopArrayInfo as base. We already today
experiment with modifiable access functions, so this change does not address
a specific bug, but it just reduces the scope one needs to reason about.
Another motivation for this patch is https://reviews.llvm.org/D28518, where
memory accesses with different base pointers could possibly be mapped to a
single ScopArrayInfo object. Such a mapping is currently not possible, as we
currently generate alloca instructions according to the base addresses of the
memory accesses, not according to the ScopArrayInfo object they belong to. By
making allocas ScopArrayInfo specific, a mapping to a single ScopArrayInfo
object will automatically mean that the same stack slot is used for these
arrays. For D28518 this is not a problem, as only MemoryType::Array objects are
mapping, but resolving this inconsistency will hopefully avoid confusion.
llvm-svn: 293374
Summary:
Instead of forbidding such access functions completely, we verify that their
base pointer has been hoisted and only assert in case the base pointer was
not hoisted.
I was trying for a little while to get a test case that ensures the assert is
correctly fired in case of invariant load hoisting being disabled, but I could
not find a good way to do so, as llvm-lit immediately aborts if a command
yields a non-zero return value. As we do not generally test our asserts,
not having a test case here seems OK.
This resolves http://llvm.org/PR31494
Suggested-by: Michael Kruse <llvm@meinersbur.de>
Reviewers: efriedma, jdoerfert, Meinersbur, gareevroman, sebpop, zinob, huihuiz, pollydev
Reviewed By: Meinersbur
Differential Revision: https://reviews.llvm.org/D28798
llvm-svn: 292213
Aligning data to cache lines boundaries helps to avoid overheads related to
an access to it ([1]). This patch aligns newly created arrays and adds an
option to specify the first level cache line size. By default we use 64 bytes,
which is a typical cache-line size ([2]).
In case of Intel Core i7-3820 SandyBridge and the following options,
clang -O3 gemm.c -I utilities/ utilities/polybench.c -DPOLYBENCH_TIME
-march=native -mllvm -polly -mllvm -polly-pattern-matching-based-opts=true
-DPOLYBENCH_USE_SCALAR_LB -mllvm -polly-target-cache-level-associativity=8,8
-mllvm -polly-target-cache-level-sizes=32768,262144 -mllvm
-polly-target-latency-vector-fma=8
it helps to improve the performance from 11.303 GFlops/sec (39,247% of
theoretical peak) to 12.63 GFlops/sec (43,8542% of theoretical peak).
Refs.:
[1] - http://www.alexonlinux.com/aligned-vs-unaligned-memory-access
[2] - http://igoro.com/archive/gallery-of-processor-cache-effects/
Differential Revision: https://reviews.llvm.org/D28020
Reviewed-by: Tobias Grosser <tobias@grosser.es>
llvm-svn: 290253
In '[DBG] Allow to emit the RTC value at runtime' the diagnostics were printed
without a newline at the end of each diagnostic. We add such a newline to
improve readability.
llvm-svn: 288323
Introduce the new flag -polly-codegen-generate-expressions which forces Polly
to code generate AST expressions instead of using our SCEV based access
expression generation even for cases where the original memory access relation
was not changed and the SCEV based access expression could be code generated
without any issue.
This is an experimental option for better testing the isl ast expression
generation. The default behavior of Polly remains unchanged. We also exclude
a couple of cases for which the AST expression is not yet working.
llvm-svn: 287694
The new command line flag "polly-codegen-emit-rtc-print" can be used to
place a "printf" in the generated code that will print the RTC value and
the overflow state.
llvm-svn: 287265
This makes polly generate a CFG which is closer to what we want
in LLVM IR, with a loop preheader for the original loop. This is
just a cleanup, but it exposes some fragile assumptions.
I'm not completely happy with the changes related to expandCodeFor;
RTCBB->getTerminator() is basically a random insertion point which
happens to work due to the way we generate runtime checks. I'm not
sure what the right answer looks like, though.
Differential Revision: https://reviews.llvm.org/D26053
llvm-svn: 285864
Currently Polly cannot generate code for index expressions if the base pointer
is computed within the scop. The base pointer must be generated as well, but
there is no code that triggers that.
Add an assertion to detect when this would occur and miscompile. The IR verifier
should catch it as well.
llvm-svn: 282893
This is the fourth patch to apply the BLIS matmul optimization pattern on matmul
kernels (http://www.cs.utexas.edu/users/flame/pubs/TOMS-BLIS-Analytical.pdf).
BLIS implements gemm as three nested loops around a macro-kernel, plus two
packing routines. The macro-kernel is implemented in terms of two additional
loops around a micro-kernel. The micro-kernel is a loop around a rank-1
(i.e., outer product) update. In this change we perform copying to created
arrays, which is the last step to implement the packing transformation.
Reviewed-by: Tobias Grosser <tobias@grosser.es>
Differential Revision: https://reviews.llvm.org/D23260
llvm-svn: 281441
We do not need the size of the outermost dimension in most cases, but if we
allocate memory for newly created arrays, that size is needed.
Reviewed-by: Michael Kruse <llvm@meinersbur.de>
Differential Revision: https://reviews.llvm.org/D23991
llvm-svn: 281234
LLVM's coding guideline suggests to not use @brief for one-sentence doxygen
comments to improve readability. Switch this once and for all to ensure people
do not copy @brief comments from other parts of Polly, when writing new code.
llvm-svn: 280468
... instead of adding instructions at the end of the basic block the builder
is currently at. This makes it easier to reason about where IR is generated,
as with the IRBuilder there is just a single location that specificies where
IR is generated.
llvm-svn: 278013
Pass the content of scalar array references to the alloca on the kernel side
and do not pass them additional as normal LLVM scalar value.
llvm-svn: 277699
Extend the jscop interface to allow the user to export arrays. It is required
that already existing arrays of the list of arrays correspond to arrays
of the SCoP. Each array that is appended to the list will be newly created.
Furthermore, we allow the user to modify access expressions to reference
any array in case it has the same element type.
Reviewed-by: Tobias Grosser <tobias@grosser.es>
Differential Revision: https://reviews.llvm.org/D22828
llvm-svn: 277263
Commit r275056 introduced a gcc compile failure due to us using two
types named 'Type', the first being the newly introduced member variable
'Type' the second being llvm::Type. We resolve this issue by renaming
the newly introduced member variable to AccessType.
llvm-svn: 275057
Summary:
With a struct we can use named accessors instead of generic std::get<3>()
calls. This increases readability of the source code.
Reviewers: jdoerfert
Subscribers: pollydev, llvm-commits
Differential Revision: http://reviews.llvm.org/D21955
llvm-svn: 275056
The recent expression type changes still need more discussion, which will happen
on phabricator or on the mailing list. The precise list of commits reverted are:
- "Refactor division generation code"
- "[NFC] Generate runtime checks after the SCoP"
- "[FIX] Determine insertion point during SCEV expansion"
- "Look through IntToPtr & PtrToInt instructions"
- "Use minimal types for generated expressions"
- "Temporarily promote values to i64 again"
- "[NFC] Avoid unnecessary comparison for min/max expressions"
- "[Polly] Fix -Wunused-variable warnings (NFC)"
- "[NFC] Simplify min/max expression generation"
- "Simplify the type adjustment in the IslExprBuilder"
Some of them are just reverted as we would otherwise get conflicts. I will try
to re-commit them if possible.
llvm-svn: 272483
We now use the minimal necessary bit width for the generated code. If
operations might overflow (add/sub/mul) we will try to adjust the types in
order to ensure a non-wrapping computation. If the type adjustment is not
possible, thus the necessary type is bigger than the type value of
--polly-max-expr-bit-width, we will use assumptions to verify the computation
will not wrap. However, for run-time checks we cannot build assumptions but
instead utilize overflow tracking intrinsics.
llvm-svn: 271878
We now have a simple function to adjust/unify the types of two (or three)
operands before an operation that requieres the same type for all operands.
Due to this change we will not promote parameters that are added to i64
anymore if that is not needed.
llvm-svn: 271513
We utilize assumptions on the input to model IR in polyhedral world.
To verify these assumptions we version the code and guard it with a
runtime-check (RTC). However, since the RTCs are themselves generated
from the polyhedral representation we generate them under the same
assumptions that they should verify. In other words, the guarantees
that we try to provide with the RTCs do not hold for the RTCs
themselves. To this end it is necessary to employ a different check
for the RTCs that will verify the assumptions did hold for them too.
Differential Revision: http://reviews.llvm.org/D20165
llvm-svn: 269299
Previously we checked the number of pieces to decide whether or not a
invariant load was to complex to be generated. However, there are
cases when e.g., divisions cause the complexity to spike regardless of
the number of pieces. To this end we now check the number of totally
involved dimensions which will increase with the number of pieces but
also the number of divisions.
llvm-svn: 269045
The check for complexity compares the number of polyhedra in a set,
which are combined by disjunctions (union, "OR"),
not conjunctions (intersection, "AND").
llvm-svn: 268223
If the base pointer of an invariant load is is loaded conditionally, that
condition needs to hold for the invariant load too. The structure of the
program will imply this for domain constraints but not for imprecisions in
the modeling. To this end we will propagate the execution context of base
pointers during code generation and thus ensure the derived pointer does
not access an invalid base pointer.
llvm-svn: 267707
We verify the optimized function now for a long time and it helped to track
down bugs early. This will now also happen for all parallel subfunctions we
generate.
llvm-svn: 265823
The findValues() function did not look through div & srem instructions
that were part of the argument SCEV. However, in different other
places we already look through it. This mismatch caused us to preload
values in the wrong order.
llvm-svn: 265775
Polly recognizes affine loops that ScalarEvolution does not, in
particular those with loop conditions that depend on hoisted invariant
loads. Check for SCEVAddRec dependencies on such loops and do not
consider their exit values as synthesizable because SCEVExpander would
generate them as expressions that depend on the original induction
variables. These are not available in generated code.
llvm-svn: 262404
Replace Scop::getStmtForBasicBlock and Scop::getStmtForRegionNode, and
add overloads for llvm::Instruction and llvm::RegionNode.
getStmtFor and overloads become the common interface to get the Stmt
that contains something. Named after LoopInfo::getLoopFor and
RegionInfo::getRegionFor.
llvm-svn: 261791
We now distinguish invariant loads to the same memory location if they
have different types. This will cause us to pre-load an invariant
location once for each type that is used to access it. However, we can
thereby avoid invalid casting, especially if an array is accessed
though different typed/sized invariant loads.
This basically reverts the changes in r260023 but keeps the test
cases.
llvm-svn: 260045
Always use access-instruction pointer type to load the invariant values.
Otherwise mismatches between ScopArrayInfo element type and memory access
element type will result in invalid casts. These type mismatches are after
r259784 a lot more common and also arise with types of different size, which
have not been handled before.
Interestingly, this change actually simplifies the code, as we now have only
one code path that is always taken, rather then a standard code path for the
common case and a "fixup" code path that replaces the standard code path in
case of mismatching types.
llvm-svn: 260009
This allows code such as:
void multiple_types(char *Short, char *Float, char *Double) {
for (long i = 0; i < 100; i++) {
Short[i] = *(short *)&Short[2 * i];
Float[i] = *(float *)&Float[4 * i];
Double[i] = *(double *)&Double[8 * i];
}
}
To model such code we use as canonical element type of the modeled array the
smallest element type of all original array accesses, if type allocation sizes
are multiples of each other. Otherwise, we use a newly created iN type, where N
is the gcd of the allocation size of the types used in the accesses to this
array. Accesses with types larger as the canonical element type are modeled as
multiple accesses with the smaller type.
For example the second load access is modeled as:
{ Stmt_bb2[i0] -> MemRef_Float[o0] : 4i0 <= o0 <= 3 + 4i0 }
To support code-generating these memory accesses, we introduce a new method
getAccessAddressFunction that assigns each statement instance a single memory
location, the address we load from/store to. Currently we obtain this address by
taking the lexmin of the access function. We may consider keeping track of the
memory location more explicitly in the future.
We currently do _not_ handle multi-dimensional arrays and also keep the
restriction of not supporting accesses where the offset expression is not a
multiple of the access element type size. This patch adds tests that ensure
we correctly invalidate a scop in case these accesses are found. Both types of
accesses can be handled using the very same model, but are left to be added in
the future.
We also move the initialization of the scop-context into the constructor to
ensure it is already available when invalidating the scop.
Finally, we add this as a new item to the 2.9 release notes
Reviewers: jdoerfert, Meinersbur
Differential Revision: http://reviews.llvm.org/D16878
llvm-svn: 259784
MemAccInst wraps the common members of LoadInst and StoreInst. Also use
of this class in:
- ScopInfo::buildMemoryAccess
- BlockGenerator::generateLocationAccessed
- ScopInfo::addArrayAccess
- Scop::buildAliasGroups
- Replace every use of polly::getPointerOperand
Reviewers: jdoerfert, grosser
Differential Revision: http://reviews.llvm.org/D16530
llvm-svn: 258947
In Polly, after hoisting loop invariant loads outside loop, the alignment
information for hoisted loads are missing, this patch restore them.
Contributed-by: Lawrence Hu <lawrence@codeaurora.org>
Differential Revision: http://reviews.llvm.org/D16160
llvm-svn: 258105
Over time different vocabulary has been introduced to describe the different
memory objects in Polly, resulting in different - often inconsistent - naming
schemes in different parts of Polly. We now standartize this to the following
scheme:
KindArray, KindValue, KindPHI, KindExitPHI
| ------- isScalar -----------|
In most cases this naming scheme has already been used previously (this
minimizes changes and ensures we remain consistent with previous publications).
The main change is that we remove KindScalar to clearify the difference between
a scalar as a memory object of kind Value, PHI or ExitPHI and a value (former
KindScalar) which is a memory object modeling a llvm::Value.
We also move all documentation to the Kind* enum in the ScopArrayInfo class,
remove the second enum in the MemoryAccess class and update documentation to be
formulated from the perspective of the memory object, rather than the memory
access. The terms "Implicit"/"Explicit", formerly used to describe memory
accesses, have been dropped. From the perspective of memory accesses they
described the different memory kinds well - especially from the perspective of
code generation - but just from the perspective of a memory object it seems more
straightforward to talk about scalars and arrays, rather than explicit and
implicit arrays. The last comment is clearly subjective, though. A less
subjective reason to go for these terms is the historic use both in mailing list
discussions and publications.
llvm-svn: 255467
Especially for structs, the SAI object of a base pointer does not
describe all the types that the user might expect when he loads from
that base pointer. While we will still cast integers and pointers we
will now reload the value with the correct type if floating point and
non-floating point values are involved. However, there are now TODOs
where we use bitcasts instead of a proper conversion or reloading.
This fixes bug 25479.
llvm-svn: 252706
We now create all invariant equivalence classes for required invariant loads
instead of creating them on-demand. This way we can check if a parameter
references an invariant load that is actually not executed and was therefor
not materialized. If that happens the parameter is not materialized either.
This fixes bug 25469.
llvm-svn: 252701
Since 252422 we do not only distinguish two ScopArrayInfo kinds, PHI nodes
and others, but work with three kind of ScopArrayInfo objects. SCALAR, PHI and
ARRAY objects. Instead of keeping two boolean flags isPHI and isScalar and
wonder what an ScopArrayInfo object of kind (!isScalar && isPHI) is, we
list now explicitly the three different possible types of memory objects.
This change also allows us to remove the confusing nested pairs that have
been used in ArrayInfoMapTy.
llvm-svn: 252620
Even if a scalar and memory access have the same base pointer, we cannot use
one SAI object as the type but also the number of dimensions are wrong. For
the attached test case this caused a crash in the invariant load hoisting,
though it could cause various other problems too.
This fixes bug 25428 and a execution time bug in MallocBench/cfrac.
Reported-by: Jeremy Huddleston Sequoia <jeremyhu@apple.com>
llvm-svn: 252422
While the program cannot cause a dependence cycle between invariant
loads, additional constraints (e.g., to ensure finite loops) can
introduce them. It is hard to detect them in the SCoP description,
thus we will only check for them at code generation time. If such a
recursion is detected we will bail out the code generation and place a
"false" runtime check to guarantee the original code is used.
This fixes bug 25443.
llvm-svn: 252412
Remove all the implicit ilist iterator conversions from polly, in
preparation for making them illegal in ADT. There was one oddity I came
across: at line 95 of lib/CodeGen/LoopGenerators.cpp, there was a
post-increment `Builder.GetInsertPoint()++`.
Since it was a no-op, I removed it, but I admit I wonder if it might be
a bug (both before and after this change)? Perhaps it should be a
pre-increment?
llvm-svn: 252357
To simplify and correct the preloading of a base pointer origin, e.g.,
the base pointer for the current indirect invariant load, we now just
check if there is an invariant access class that involves the base
pointer of the current class.
llvm-svn: 251962
If a base pointer of a preloaded value has a base pointer origin, thus it is
an indirect invariant load, we have to make sure the base pointer origin is
preloaded first.
llvm-svn: 251946
If a base pointer load is preloaded, we have change the base pointer of
the derived SAI. However, as the derived SAI relationship is is
coarse grained, we need to check if we actually preloaded the base
pointer or a different element of the base pointer SAI array.
llvm-svn: 251881
Sorting is replaced by a demand driven code generation that will pre-load a
value when it is needed or, if it was not needed before, at some point
determined by the order of invariant accesses in the program. Only in very
little cases this demand driven pre-loading will kick in, though it will
prevent us from generating faulty code. An example where it is needed is
shown in:
test/ScopInfo/invariant_loads_complicated_dependences.ll
Invariant loads that appear in parameters but are not on the top-level (e.g.,
the parameter is not a SCEVUnknown) will now be treated correctly.
Differential Revision: http://reviews.llvm.org/D13831
llvm-svn: 250655
If a (assumed) invariant location is loaded multiple times we
generated a parameter for each location. However, this caused compile
time problems for several benchmarks (e.g., 445_gobmk in SPEC2006 and
BT in the NAS benchmarks). Additionally, the code we generate is
suboptimal as we preload the same location multiple times and perform
the same checks on all the parameters that refere to the same value.
With this patch we consolidate the invariant loads in three steps:
1) During SCoP initialization required invariant loads are put in
equivalence classes based on their pointer operand. One
representing load is used to generate a parameter for the whole
class, thus we never generate multiple parameters for the same
location.
2) During the SCoP simplification we remove invariant memory
accesses that are in the same equivalence class. While doing so
we build the union of all execution domains as it is only
important that the location is at least accessed once.
3) During code generation we only preload one element of each
equivalence class with the unified execution domain. All others
are mapped to that preloaded value.
Differential Revision: http://reviews.llvm.org/D13338
llvm-svn: 249853
This patch allows invariant loads to be used in the SCoP description,
e.g., as loop bounds, conditions or in memory access functions.
First we collect "required invariant loads" during SCoP detection that
would otherwise make an expression we care about non-affine. To this
end a new level of abstraction was introduced before
SCEVValidator::isAffineExpr() namely ScopDetection::isAffine() and
ScopDetection::onlyValidRequiredInvariantLoads(). Here we can decide
if we want a load inside the region to be optimistically assumed
invariant or not. If we do, it will be marked as required and in the
SCoP generation we bail if it is actually not invariant. If we don't
it will be a non-affine expression as before. At the moment we
optimistically assume all "hoistable" (namely non-loop-carried) loads
to be invariant. This causes us to expand some SCoPs and dismiss them
later but it also allows us to detect a lot we would dismiss directly
if we would ask e.g., AliasAnalysis::canBasicBlockModify(). We also
allow potential aliases between optimistically assumed invariant loads
and other pointers as our runtime alias checks are sound in case the
loads are actually invariant. Together with the invariant checks this
combination allows to handle a lot more than LICM can.
The code generation of the invariant loads had to be extended as we
can now have dependences between parameters and invariant (hoisted)
loads as well as the other way around, e.g.,
test/Isl/CodeGen/invariant_load_parameters_cyclic_dependence.ll
First, it is important to note that we cannot have real cycles but
only dependences from a hoisted load to a parameter and from another
parameter to that hoisted load (and so on). To handle such cases we
materialize llvm::Values for parameters that are referred by a hoisted
load on demand and then materialize the remaining parameters. Second,
there are new kinds of dependences between hoisted loads caused by the
constraints on their execution. If a hoisted load is conditionally
executed it might depend on the value of another hoisted load. To deal
with such situations we sort them already in the ScopInfo such that
they can be generated in the order they are listed in the
Scop::InvariantAccesses list (see compareInvariantAccesses). The
dependences between hoisted loads caused by indirect accesses are
handled the same way as before.
llvm-svn: 249607
Value maps are created and used in many places and it is not always
possible to include CodeGen/Blockgenerators.h. To this end, ValueMapT
now lives in the ScopHelper.h which does not have any dependences itself.
This patch also replaces uses of different other value map types with
the ValueMapT.
llvm-svn: 249606
There have been various places where llvm::DenseMap<const llvm::Value *,
llvm::Value *> types have been defined, but all types have been expected to be
identical. We make this more clear by consolidating the different types and use
BlockGenerator::ValueMapT wherever there is a need for types to match
BlockGenerator::ValueMapT.
llvm-svn: 249264