We no longer need a reference to RangedConstraintManager, we call top
level `State->assume` functions.
Differential Revision: https://reviews.llvm.org/D113261
D103314 introduced symbol simplification when a new constant constraint is
added. Currently, we simplify existing equivalence classes by iterating over
all existing members of them and trying to simplify each member symbol with
simplifySVal.
At the end of such a simplification round we may end up introducing a
new constant constraint. Example:
```
if (a + b + c != d)
return;
if (c + b != 0)
return;
// Simplification starts here.
if (b != 0)
return;
```
The `c == 0` constraint is the result of the first simplification iteration.
However, we could do another round of simplification to reach the conclusion
that `a == d`. Generally, we could do as many new iterations until we reach a
fixpoint.
We can reach to a fixpoint by recursively calling `State->assume` on the
newly simplified symbol. By calling `State->assume` we re-ignite the
whole assume machinery (along e.g with adjustment handling).
Why should we do this? By reaching a fixpoint in simplification we are capable
of discovering infeasible states at the moment of the introduction of the
**first** constant constraint.
Let's modify the previous example just a bit, and consider what happens without
the fixpoint iteration.
```
if (a + b + c != d)
return;
if (c + b != 0)
return;
// Adding a new constraint.
if (a == d)
return;
// This brings in a contradiction.
if (b != 0)
return;
clang_analyzer_warnIfReached(); // This produces a warning.
// The path is already infeasible...
if (c == 0) // ...but we realize that only when we evaluate `c == 0`.
return;
```
What happens currently, without the fixpoint iteration? As the inline comments
suggest, without the fixpoint iteration we are doomed to realize that we are on
an infeasible path only after we are already walking on that. With fixpoint
iteration we can detect that before stepping on that. With fixpoint iteration,
the `clang_analyzer_warnIfReached` does not warn in the above example b/c
during the evaluation of `b == 0` we realize the contradiction. The engine and
the checkers do rely on that either `assume(Cond)` or `assume(!Cond)` should be
feasible. This is in fact assured by the so called expensive checks
(LLVM_ENABLE_EXPENSIVE_CHECKS). The StdLibraryFuncionsChecker is notably one of
the checkers that has a very similar assertion.
Before this patch, we simply added the simplified symbol to the equivalence
class. In this patch, after we have added the simplified symbol, we remove the
old (more complex) symbol from the members of the equivalence class
(`ClassMembers`). Removing the old symbol is beneficial because during the next
iteration of the simplification we don't have to consider again the old symbol.
Contrary to how we handle `ClassMembers`, we don't remove the old Sym->Class
relation from the `ClassMap`. This is important for two reasons: The
constraints of the old symbol can still be found via it's equivalence class
that it used to be the member of (1). We can spare one removal and thus one
additional tree in the forest of `ClassMap` (2).
Performance and complexity: Let us assume that in a State we have N non-trivial
equivalence classes and that all constraints and disequality info is related to
non-trivial classes. In the worst case, we can simplify only one symbol of one
class in each iteration. The number of symbols in one class cannot grow b/c we
replace the old symbol with the simplified one. Also, the number of the
equivalence classes can decrease only, b/c the algorithm does a merge operation
optionally. We need N iterations in this case to reach the fixpoint. Thus, the
steps needed to be done in the worst case is proportional to `N*N`. Empirical
results (attached) show that there is some hardly noticeable run-time and peak
memory discrepancy compared to the baseline. In my opinion, these differences
could be the result of measurement error.
This worst case scenario can be extended to that cases when we have trivial
classes in the constraints and in the disequality map are transforming to such
a State where there are only non-trivial classes, b/c the algorithm does merge
operations. A merge operation on two trivial classes results in one non-trivial
class.
Differential Revision: https://reviews.llvm.org/D106823
Summary: Add support of multi-dimensional arrays in `RegionStoreManager::getBindingForElement`. Handle nested ElementRegion's getting offsets and checking for being in bounds. Get values from the nested initialization lists using obtained offsets.
Differential Revision: https://reviews.llvm.org/D111654
Previously, if accidentally multiple checkers `eval::Call`-ed the same
`CallEvent`, in debug builds the analyzer detected this and crashed
with the message stating this. Unfortunately, the message did not state
the offending checkers violating this invariant.
This revision addresses this by printing a more descriptive message
before aborting.
Reviewed By: martong
Differential Revision: https://reviews.llvm.org/D112889
Replace variable and functions names, as well as comments that contain whitelist with
more inclusive terms.
Reviewed By: aaron.ballman, martong
Differential Revision: https://reviews.llvm.org/D112642
Summary: Assuming that values of constant arrays never change, we can retrieve values for specific position(index) right from the initializer, if presented. Retrieve a character code by index from StringLiteral which is an initializer of constant arrays in global scope.
This patch has a known issue of getting access to characters past the end of the literal. The declaration, in which the literal is used, is an implicit cast of kind `array-to-pointer`. The offset should be in literal length's bounds. This should be distinguished from the states in the Standard C++20 [dcl.init.string] 9.4.2.3. Example:
const char arr[42] = "123";
char c = arr[41]; // OK
const char * const str = "123";
char c = str[41]; // NOK
Differential Revision: https://reviews.llvm.org/D107339
We can reuse the "adjustment" handling logic in the higher level
of the solver by calling `State->assume`.
Differential Revision: https://reviews.llvm.org/D112296
Initiate the reorganization of the equality information during symbol
simplification. E.g., if we bump into `c + 1 == 0` during simplification
then we'd like to express that `c == -1`. It makes sense to do this only
with `SymIntExpr`s.
Reviewed By: steakhal
Differential Revision: https://reviews.llvm.org/D111642
Summary: Fix a case when the extent can not be retrieved correctly from incomplete array declaration. Use redeclaration to get the array extent.
Differential Revision: https://reviews.llvm.org/D111542
Summary:
1. Improve readability by moving deeply nested block of code from RegionStoreManager::getBindingForElement to new separate functions:
- getConstantValFromConstArrayInitializer;
- getSValFromInitListExpr.
2. Handle the case when index is a symbolic value. Write specific test cases.
3. Add test cases when there is no initialization expression presented.
This patch implies to make next patches clearer and easier for review process.
Differential Revision: https://reviews.llvm.org/D106681
Prior to this, the solver was only able to verify whether two symbols
are equal/unequal, only when constants were involved. This patch allows
the solver to work over ranges as well.
Reviewed By: steakhal, martong
Differential Revision: https://reviews.llvm.org/D106102
Patch by: @manas (Manas Gupta)
Summary:
`a % b != 0` implies that `a != 0` for any `a` and `b`. This patch
extends the ConstraintAssignor to do just that. In fact, we could do
something similar with division and in case of multiplications we could
have some other inferences, but I'd like to keep these for future
patches.
Fixes https://bugs.llvm.org/show_bug.cgi?id=51940
Reviewers: noq, vsavchenko, steakhal, szelethus, asdenyspetrov
Subscribers:
Differential Revision: https://reviews.llvm.org/D110357
In this patch we store a reference to `RangedConstraintManager` in the
`ConstraintAssignor`. This way it is possible to call back and reuse some
functions of it. This patch is exclusively needed for its child patches,
it is not intended to be a standalone patch.
Differential Revision: https://reviews.llvm.org/D111640
In this patch we simply move the definition of RangeConstraintManager before
the definition of ConstraintAssignor. This patch is exclusively needed for it's
child patch, so in the child the diff would be clean and the review would be
easier.
Differential Revision: https://reviews.llvm.org/D110387
It turns out llvm::isa<> is variadic, and we could have used this at a
lot of places.
The following patterns:
x && isa<T1>(x) || isa<T2>(x) ...
Will be replaced by:
isa_and_non_null<T1, T2, ...>(x)
Sometimes it caused further simplifications, when it would cause even
more code smell.
Aside from this, keep in mind that within `assert()` or any macro
functions, we need to wrap the isa<> expression within a parenthesis,
due to the parsing of the comma.
Reviewed By: martong
Differential Revision: https://reviews.llvm.org/D111982
Fallback to stringification and string comparison if we cannot compare
the `IdentifierInfo`s, which is the case for C++ overloaded operators,
constructors, destructors, etc.
Examples:
{ "std", "basic_string", "basic_string", 2} // match the 2 param std::string constructor
{ "std", "basic_string", "~basic_string" } // match the std::string destructor
{ "aaa", "bbb", "operator int" } // matches the struct bbb conversion operator to int
Reviewed By: martong
Differential Revision: https://reviews.llvm.org/D111535
Refactor the code to make it more readable.
It will set up further changes, and improvements to this code in
subsequent patches.
This is a non-functional change.
Reviewed By: martong
Differential Revision: https://reviews.llvm.org/D111534
'(self.prop)' produces a surprising AST where ParenExpr
resides inside `PseudoObjectExpr.
This breaks ObjCMethodCall::getMessageKind() which in turn causes us
to perform unnecessary dynamic dispatch bifurcation when evaluating
body-farmed property accessors, which in turn causes us
to explore infeasible paths.
The solver's symbol simplification mechanism was not able to handle cases
when a symbol is simplified to a concrete integer. This patch adds the
capability.
E.g., in the attached lit test case, the original symbol is `c + 1` and
it has a `[0, 0]` range associated with it. Then, a new condition `c == 0`
is assumed, so a new range constraint `[0, 0]` comes in for `c` and
simplification kicks in. `c + 1` becomes `0 + 1`, but the associated
range is `[0, 0]`, so now we are able to realize the contradiction.
Differential Revision: https://reviews.llvm.org/D110913
There is an error in the implementation of the logic of reaching the `Unknonw` tristate in CmpOpTable.
```
void cmp_op_table_unknownX2(int x, int y, int z) {
if (x >= y) {
// x >= y [1, 1]
if (x + z < y)
return;
// x + z < y [0, 0]
if (z != 0)
return;
// x < y [0, 0]
clang_analyzer_eval(x > y); // expected-warning{{TRUE}} expected-warning{{FALSE}}
}
}
```
We miss the `FALSE` warning because the false branch is infeasible.
We have to exploit simplification to discover the bug. If we had `x < y`
as the second condition then the analyzer would return the parent state
on the false path and the new constraint would not be part of the State.
But adding `z` to the condition makes both paths feasible.
The root cause of the bug is that we reach the `Unknown` tristate
twice, but in both occasions we reach the same `Op` that is `>=` in the
test case. So, we reached `>=` twice, but we never reached `!=`, thus
querying the `Unknonw2x` column with `getCmpOpStateForUnknownX2` is
wrong.
The solution is to ensure that we reached both **different** `Op`s once.
Differential Revision: https://reviews.llvm.org/D110910
This simple change addresses a special case of structure/pointer
aliasing that produced different symbolvals, leading to false positives
during analysis.
The reproducer is as simple as this.
```lang=C++
struct s {
int v;
};
void foo(struct s *ps) {
struct s ss = *ps;
clang_analyzer_dump(ss.v); // reg_$1<int Element{SymRegion{reg_$0<struct s *ps>},0 S64b,struct s}.v>
clang_analyzer_dump(ps->v); //reg_$3<int SymRegion{reg_$0<struct s *ps>}.v>
clang_analyzer_eval(ss.v == ps->v); // UNKNOWN
}
```
Acks: Many thanks to @steakhal and @martong for the group debug session.
Reviewed By: steakhal, martong
Differential Revision: https://reviews.llvm.org/D110625
Stop using APInt constructors and methods that were soft-deprecated in
D109483. This fixes all the uses I found in clang.
Differential Revision: https://reviews.llvm.org/D110808
This patch supports OpenMP 5.0 metadirective features.
It is implemented keeping the OpenMP 5.1 features like dynamic user condition in mind.
A new function, getBestWhenMatchForContext, is defined in llvm/Frontend/OpenMP/OMPContext.h
Currently this function return the index of the when clause with the highest score from the ones applicable in the Context.
But this function is declared with an array which can be used in OpenMP 5.1 implementation to select all the valid when clauses which can be resolved in runtime. Currently this array is set to null by default and its implementation is left for future.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D91944
This patch supports OpenMP 5.0 metadirective features.
It is implemented keeping the OpenMP 5.1 features like dynamic user condition in mind.
A new function, getBestWhenMatchForContext, is defined in llvm/Frontend/OpenMP/OMPContext.h
Currently this function return the index of the when clause with the highest score from the ones applicable in the Context.
But this function is declared with an array which can be used in OpenMP 5.1 implementation to select all the valid when clauses which can be resolved in runtime. Currently this array is set to null by default and its implementation is left for future.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D91944
This patch supports OpenMP 5.0 metadirective features.
It is implemented keeping the OpenMP 5.1 features like dynamic user condition in mind.
A new function, getBestWhenMatchForContext, is defined in llvm/Frontend/OpenMP/OMPContext.h
Currently this function return the index of the when clause with the highest score from the ones applicable in the Context.
But this function is declared with an array which can be used in OpenMP 5.1 implementation to select all the valid when clauses which can be resolved in runtime. Currently this array is set to null by default and its implementation is left for future.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D91944
This renames the primary methods for creating a zero value to `getZero`
instead of `getNullValue` and renames predicates like `isAllOnesValue`
to simply `isAllOnes`. This achieves two things:
1) This starts standardizing predicates across the LLVM codebase,
following (in this case) ConstantInt. The word "Value" doesn't
convey anything of merit, and is missing in some of the other things.
2) Calling an integer "null" doesn't make any sense. The original sin
here is mine and I've regretted it for years. This moves us to calling
it "zero" instead, which is correct!
APInt is widely used and I don't think anyone is keen to take massive source
breakage on anything so core, at least not all in one go. As such, this
doesn't actually delete any entrypoints, it "soft deprecates" them with a
comment.
Included in this patch are changes to a bunch of the codebase, but there are
more. We should normalize SelectionDAG and other APIs as well, which would
make the API change more mechanical.
Differential Revision: https://reviews.llvm.org/D109483
`SVB.getStateManager().getOwningEngine().getAnalysisManager().getAnalyzerOptions()`
is quite a mouthful and might involve a few pointer indirections to get
such a simple thing like an analyzer option.
This patch introduces an `AnalyzerOptions` reference to the `SValBuilder`
abstract class, while refactors a few cases to use this /simpler/ accessor.
Reviewed By: martong, Szelethus
Differential Revision: https://reviews.llvm.org/D108824
Quoting https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html:
> In the absence of the zero-length array extension, in ISO C90 the contents
> array in the example above would typically be declared to have a single
> element.
We should not assume that the size of the //flexible array member// field has
a single element, because in some cases they use it as a fallback for not
having the //zero-length array// language extension.
In this case, the analyzer should return `Unknown` as the extent of the field
instead.
Reviewed By: martong
Differential Revision: https://reviews.llvm.org/D108230
D105553 added NoStateChangeFuncVisitor, an abstract class to aid in creating
notes such as "Returning without writing to 'x'", or "Returning without changing
the ownership status of allocated memory". Its clients need to define, among
other things, what a change of state is.
For code like this:
f() {
g();
}
foo() {
f();
h();
}
We'd have a path in the ExplodedGraph that looks like this:
-- <g> -->
/ \
--- <f> --------> --- <h> --->
/ \ / \
-------- <foo> ------ <foo> -->
When we're interested in whether f neglected to change some property,
NoStateChangeFuncVisitor asks these questions:
÷×~
-- <g> -->
ß / \$ @&#*
--- <f> --------> --- <h> --->
/ \ / \
-------- <foo> ------ <foo> -->
Has anything changed in between # and *?
Has anything changed in between & and *?
Has anything changed in between @ and *?
...
Has anything changed in between $ and *?
Has anything changed in between × and ~?
Has anything changed in between ÷ and ~?
...
Has anything changed in between ß and *?
...
This is a rather thorough line of questioning, which is why in D105819, I was
only interested in whether state *right before* and *right after* a function
call changed, and early returned to the CallEnter location:
if (!CurrN->getLocationAs<CallEnter>())
return;
Except that I made a typo, and forgot to negate the condition. So, in this
patch, I'm fixing that, and under the same hood allow all clients to decide to
do this whole-function check instead of the thorough one.
Differential Revision: https://reviews.llvm.org/D108695
D105553 added NoStateChangeFuncVisitor, an abstract class to aid in creating
notes such as "Returning without writing to 'x'", or "Returning without changing
the ownership status of allocated memory". Its clients need to define, among
other things, what a change of state is.
For code like this:
f() {
g();
}
foo() {
f();
h();
}
We'd have a path in the ExplodedGraph that looks like this:
-- <g> -->
/ \
--- <f> --------> --- <h> --->
/ \ / \
-------- <foo> ------ <foo> -->
When we're interested in whether f neglected to change some property,
NoStateChangeFuncVisitor asks these questions:
÷×~
-- <g> -->
ß / \$ @&#*
--- <f> --------> --- <h> --->
/ \ / \
-------- <foo> ------ <foo> -->
Has anything changed in between # and *?
Has anything changed in between & and *?
Has anything changed in between @ and *?
...
Has anything changed in between $ and *?
Has anything changed in between × and ~?
Has anything changed in between ÷ and ~?
...
Has anything changed in between ß and *?
...
This is a rather thorough line of questioning, which is why in D105819, I was
only interested in whether state *right before* and *right after* a function
call changed, and early returned to the CallEnter location:
if (!CurrN->getLocationAs<CallEnter>())
return;
Except that I made a typo, and forgot to negate the condition. So, in this
patch, I'm fixing that, and under the same hood allow all clients to decide to
do this whole-function check instead of the thorough one.
Differential Revision: https://reviews.llvm.org/D108695
The previous behavior was to deduplicate reports based on md5 of the
html file. This algorithm might have worked originally but right now
HTML reports contain information rich enough to make them virtually
always distinct which breaks deduplication entirely.
The new strategy is to (finally) take advantage of IssueHash - the
stable report identifier provided by clang that is the same if and only if
the reports are duplicates of each other.
Additionally, scan-build no longer performs deduplication on its own.
Instead, the report file name is now based on the issue hash,
and clang instances will silently refuse to produce a new html file
when a duplicate already exists. This eliminates the problem entirely.
The '-analyzer-config stable-report-filename' option is deprecated
because report filenames are no longer unstable. A new option is
introduced, '-analyzer-config verbose-report-filename', to produce
verbose file names that look similar to the old "stable" file names.
The old option acts as an alias to the new option.
Differential Revision: https://reviews.llvm.org/D105167
This reverts commit df1f4e0cc6.
Now the test case explicitly specifies the target triple.
I decided to use x86_64 for that matter, to have a fixed
bitwidth for `size_t`.
Aside from that, relanding the original changes of:
https://reviews.llvm.org/D105184
Currently only `ConstantArrayType` is considered for flexible array
members (FAMs) in `getStaticSize()`.
However, `IncompleteArrayType` also shows up in practice as FAMs.
This patch will ignore the `IncompleteArrayType` and return Unknown
for that case as well. This way it will be at least consistent with
the current behavior until we start modeling them accurately.
I'm expecting that this will resolve a bunch of false-positives
internally, caused by the `ArrayBoundV2`.
Reviewed By: ASDenysPetrov
Differential Revision: https://reviews.llvm.org/D105184
Summary: Change and replace some functions which IE does not support. This patch is made as a continuation of D92928 revision. Also improve hot keys behavior.
Differential Revision: https://reviews.llvm.org/D107366
Preceding discussion on cfe-dev: https://lists.llvm.org/pipermail/cfe-dev/2021-June/068450.html
NoStoreFuncVisitor is a rather unique visitor. As VisitNode is invoked on most
other visitors, they are looking for the point where something changed -- change
on a value, some checker-specific GDM trait, a new constraint.
NoStoreFuncVisitor, however, looks specifically for functions that *didn't*
write to a MemRegion of interesting. Quoting from its comments:
/// Put a diagnostic on return statement of all inlined functions
/// for which the region of interest \p RegionOfInterest was passed into,
/// but not written inside, and it has caused an undefined read or a null
/// pointer dereference outside.
It so happens that there are a number of other similar properties that are
worth checking. For instance, if some memory leaks, it might be interesting why
a function didn't take ownership of said memory:
void sink(int *P) {} // no notes
void f() {
sink(new int(5)); // note: Memory is allocated
// Well hold on, sink() was supposed to deal with
// that, this must be a false positive...
} // warning: Potential memory leak [cplusplus.NewDeleteLeaks]
In here, the entity of interest isn't a MemRegion, but a symbol. The property
that changed here isn't a change of value, but rather liveness and GDM traits
managed by MalloChecker.
This patch moves some of the logic of NoStoreFuncVisitor to a new abstract
class, NoStateChangeFuncVisitor. This is mostly calculating and caching the
stack frames in which the entity of interest wasn't changed.
Descendants of this interface have to define 3 things:
* What constitutes as a change to an entity (this is done by overriding
wasModifiedBeforeCallExit)
* What the diagnostic message should be (this is done by overriding
maybeEmitNoteFor.*)
* What constitutes as the entity of interest being passed into the function (this
is also done by overriding maybeEmitNoteFor.*)
Differential Revision: https://reviews.llvm.org/D105553
Some files still contained the old University of Illinois Open Source
Licence header. This patch replaces that with the Apache 2 with LLVM
Exception licence.
Differential Revision: https://reviews.llvm.org/D107528