Teach LLDB to understand INLINE and INLINE_ORIGIN records in breakpad.
They have the following formats:
```
INLINE inline_nest_level call_site_line call_site_file_num origin_num [address size]+
INLINE_ORIGIN origin_num name
```
`INLNIE_ORIGIN` is simply a string pool for INLINE so that we won't have
duplicated names for inlined functions and can show up anywhere in the symbol
file.
`INLINE` follows immediately after `FUNC` represents the ranges of momery
address that has functions inlined inside the function.
Differential Revision: https://reviews.llvm.org/D113330
Since every FUNC record (in breakpad) is a compilation unit, creating the
function for the CU allows `ResolveSymbolContext` to resolve
`eSymbolContextFunction`.
Differential Revision: https://reviews.llvm.org/D113163
`DWARFASTParserClang::ParseSingleMember` turns DWARF DIEs that describe
struct/class members into their respective Clang representation (e.g.,
clang::FieldDecl). It also updates a record of where the last field
started/ended so that we can speculatively fill any holes between a field and a
bitfield with unnamed bitfield padding.
Right now we are completely ignoring 'artificial' members when parsing the DWARF
of a struct/class. The only artificial member that seems to be emitted in
practice for C/C++ seems to be the vtable pointer.
By completely skipping both the Clang AST node creation and the updating of the
last-field record, we essentially leave a hole in our layout with the size of
our artificial member. If the next member is a bitfield we then speculatively
fill the hole with an unnamed bitfield. During CodeGen Clang inserts an
artificial vtable pointer into the layout again which now occupies the same
offset as the unnamed bitfield. This later brings down Clang's
`CGRecordLowering::insertPadding` when it checks that none of the fields of the
generated record layout overlap.
Note that this is not a Clang bug. We explicitly set the offset of our fields in
LLDB and overwrite whatever Clang makes up.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D112697
The new key/value pairs that are added to each module's stats are:
"debugInfoByteSize": The size in bytes of debug info for each module.
"debugInfoIndexTime": The time in seconds that it took to index the debug info.
"debugInfoParseTime": The time in seconds that debug info had to be parsed.
At the top level we add up all of the debug info size, parse time and index time with the following keys:
"totalDebugInfoByteSize": The size in bytes of all debug info in all modules.
"totalDebugInfoIndexTime": The time in seconds that it took to index all debug info if it was indexed for all modules.
"totalDebugInfoParseTime": The time in seconds that debug info was parsed for all modules.
Differential Revision: https://reviews.llvm.org/D112501
Front-load the first_valid_code_address check, so that we avoid creating
the function object (instead of simply refusing to use it in queries).
Differential Revision: https://reviews.llvm.org/D112310
lldb/source/Plugins/SymbolFile/DWARF/SymbolFileDWARF.cpp:3635:10: error: moving a local object in a return statement prevents copy elision [-Werror,-Wpessimizing-move]
return std::move(merged);
^
This patch fixes a problem introduced by clang change
https://reviews.llvm.org/D95617 and described by
https://bugs.llvm.org/show_bug.cgi?id=50076#c6, where inlined functions
omit unused parameters both in the stack trace and in `frame var`
command. With this patch, the parameters are listed correctly in the
stack trace and in `frame var` command.
Specifically, we parse formal parameters from the abstract version of
inlined functions and use those formal parameters if they are missing
from the concrete version.
Differential Revision: https://reviews.llvm.org/D110571
specifically, ignore addresses that point before the first code section.
This resurrects D87172 with several notable changes:
- it fixes a bug where the early exits in InitializeObject left
m_first_code_address "initialized" to LLDB_INVALID_ADDRESS (0xfff..f),
which caused _everything_ to be ignored.
- it extends the line table fix to function parsing as well, where it
replaces a similar check which was checking the executable permissions
of the section. This was insufficient because some
position-independent elf executables can have an executable segment
mapped at file address zero. (What makes this fix different is that it
checks for the executable-ness of the sections contained within that
segment, and those will not be at address zero.)
- It uses a different test case, with an elf file with near-zero
addresses, and checks for both line table and function parsing.
Differential Revision: https://reviews.llvm.org/D112058
This adds the `target dump typesystem'`command which dumps the TypeSystem of the
target itself (aka the 'scratch TypeSystem'). This is similar to `target modules
dump ast` which dumps the AST of lldb::Modules associated with a selected
target.
Unlike `target modules dump ast`, the new command is not a subcommand of `target
modules dump` as it's not touching the modules of a target at all. Also unlike
`target modules dump ast` I tried to keep the implementation language-neutral,
so this patch moves our Clang `Dump` to the `TypeSystem` interface so it will
also dump the state of any future/downstream scratch TypeSystems (e.g., Swift).
That's also why the command just refers to a 'typesystem' instead of an 'ast'
(which is only how Clang is necessarily modelling the internal TypeSystem
state).
The main motivation for this patch is that I need to write some tests that check
for duplicates in the ScratchTypeSystemClang of a target. There is currently no
way to check for this at the moment (beside measuring memory consumption of
course). It's probably also useful for debugging LLDB itself.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D111936
There is no reason why this function should be returning a ConstString.
While modifying these files, I also fixed several instances where
GetPluginName and GetPluginNameStatic were returning different strings.
I am not changing the return type of GetPluginNameStatic in this patch, as that
would necessitate additional changes, and this patch is big enough as it is.
Differential Revision: https://reviews.llvm.org/D111877
Right now DWARFASTParserClang::ParseSingleMember has two parts: One part parses
Objective-C properties and the other part parses C/C++ members/Objective-C
ivars. These parts are pretty much independent of each other (with one
historical exception, see below) and in practice they parse DIEs with different
tags/attributes: `DW_TAG_APPLE_property` and `DW_TAG_member`.
I don't see a good reason for keeping the different parsing code intertwined in
a single function, so instead split out the Objective-C property parser into its
own function.
Note that 90% of this commit is just unindenting nearly all of
`ParseSingleMember` which was inside a `if (tag == DW_TAG_member)` block. I.e.,
think of the old `ParseSingleMember` function as: The rest is just moving the
property parsing code into its own function and I added the ReportError
implementation in case we fail to resolve the property type (which before was
just a silent failure).
```
lang=c++
void DWARFASTParserClang::ParseSingleMember(...) {
[...]
if (tag == DW_TAG_member) {
[...] // This huge block got unindented in this patch as the `if` above is gone.
}
if (property) {
[...] // This is the property parsing code that is now its own function.
}
}
```
There is one exception to the rule that the parsers are independent. Before 2012
Objective-C properties were encoded as `DW_TAG_member` with
`DW_AT_APPLE_property*` attributes describing the property. In 2012 this has
changed in a series of commits (see for example
c0449635b3 which updates the docs) so that
`DW_TAG_APPLE_property` is now used for properties. With the old format we first
created an ivar and afterwards used the `DW_AT_APPLE_property*` attributes to
create the respective property, but there doesn't seem to be any way to create
such debug info with any clang from the last 9 years. So this is technically not
NFC in case some finds debug info from that time and tries to use properties.
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D111632
Just moving that block inside DWARFASTParserClang::ParseChildMembers into
its own function. Also early-exiting instead of a large if when
num_attributes is 0.
This reverts commits f9aba9a5af and
035217ff51.
As explained in the original commit message, this didn't have the
intended effect of improving the common LLDB use case, but still
provided a marginal improvement for the places where LLDB creates a
scoped time with a string literal.
The reason for the revert is that this change pulls in the os/signpost.h
header in Signposts.h. The former transitively includes loader.h, which
contains a series of macro defines that conflict with MachO.h. There are
ways to work around that, but Adrian and I concluded that none of them
are worth the trade-off in complicating Signposts.h even further.
D68422 introduced `ParsedDWARFTypeAttributes` which encapsulated attribute
parsing and storage into its own small struct. This patch is doing the same for
the member type attribute parsing. One utility class is parsing normal member
attributes and the other is parsing the dedicated Objective-C property
attributes.
Right now the patch just makes the `ParseSingleMember` function a bit shorter,
but the bigger benefit is that we can now split up the function into Objective-C
property parsing and parsing of normal members (struct/class members and
Objective-C ivars). The only shared code between those two parsing logic is the
normal member attribute parsing.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D111494
This adds support for parsing DW_AT_calling_convention in the DWARF parser.
The generic DWARF parsing code already support extracting this attribute from A
DIE and TypeSystemClang already offers a parameter to add a calling convention
to a function type (as the PDB parser supports calling convention parsing), so
this patch just converts the DWARF enum value to the Clang enum value and adds a
few tests.
There are two tests in this patch.:
* A unit test for the added DWARF parsing code that should run on all platforms.
* An API tests that covers the whole expression evaluation machinery by trying
to call functions with non-standard calling conventions. The specific subtests
are target specific as some calling conventions only work on e.g. win32 (or, if
they work on other platforms they only really have observable differences on a
specific target). The tests are also highly compiler-specific, so if GCC or
Clang tell us that they don't support a specific calling convention then we just
skip the test.
Note that some calling conventions are supported by Clang but aren't implemented
in LLVM (e.g. `pascal`), so there we just test that if this ever gets
implemented in LLVM that LLDB works too. There are also some more tricky/obscure
conventions that are left out such as the different swift* conventions, some
planned Obj-C conventions (`Preserve*`), AAPCS* conventions (as the DWARF->Clang
conversion is ambiguous for AAPCS and APPCS-VFP) and conventions only used for
OpenCL etc.
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D108629
ParseSingleMember has two large ifs around the back of it's body:
`if (!is_artificial)` and `if (member_type)`. This patch just converts those
to early-exits. The patch is NFC. It even retains the curious fact that
Objective-C properties that fail to parse are silently ignored, but now there
is at least a FIXME that points this out.
This has the nice side-effect that it can actually store the quadruple version numbers that Apple's tools are using nowadays.
rdar://82982162
Differential Revision: https://reviews.llvm.org/D111200
This commit has introduced test failures in internal google tests.
Working theory is they are caused by a genuine problem in the patch
which gets tripped by some debug info from system libraries.
Reverting while we try to reproduce the problem in a self-contained
fashion.
This reverts commit 601168e420.
Separates the methods for recursive variable parsing in function
context and non-recursive parsing of global variables.
Differential Revision: https://reviews.llvm.org/D110570
Replace misc. StringConvert uses with llvm::to_integer()
and llvm::to_float(), except for cases where further refactoring is
planned. The purpose of this change is to eliminate the StringConvert
API that is duplicate to LLVM, and less correct in behavior at the same
time.
Differential Revision: https://reviews.llvm.org/D110447
Trying to use the DIA SDK reader only to fail with "DIA SDK wasn't enabled"
isn't very useful. The native PDB reader is missing some stuff, but it's still
better than nothing.
Reduces number of lldb-check-shell test failures with LLVM_ENABLE_DIA_SDK=NO
from 27 to 15.
Differential Revision: https://reviews.llvm.org/D110172
In all these years, we haven't found a use for this function (it has
zero callers). Lets just remove the boilerplate.
Differential Revision: https://reviews.llvm.org/D109600
This patch considers the CU index entry
when reading the .debug_rnglists.dwo section.
Reviewed By: jankratochvil
Differential Revision: https://reviews.llvm.org/D107456
Fix D98289 so that it works even for 2nd..nth compilation unit
(.debug_rnglists).
Reviewed By: dblaikie, ikudrin
Differential Revision: https://reviews.llvm.org/D106466
Skeleton vs. DWO units mismatch has been fixed in D106270. As they both
have type DWARFUnit it is a bit difficult to debug. So it is better to
make it safe against future changes.
Reviewed By: kimanh, clayborg
Differential Revision: https://reviews.llvm.org/D107659
When going through the CU entries in the name index,
make sure to compare the name entry's CU
offset against the skeleton CU's offset.
Previously there would be a mismatch, since the
wrong offset was compared, and thus no suitable
entry was found.
Reviewed By: jankratochvil
Differential Revision: https://reviews.llvm.org/D106270
Summary:
In the spirit of https://reviews.llvm.org/D70846, we only return functions with
matching mangled name from Apple/DebugNamesDWARFIndex::GetFunction if
eFunctionNameTypeFull is requested.
This speeds up lookup in the presence of large amount of class methods of the
same name (a typical examples would be constructors of templates with many
instantiations or overloaded operators).
Reviewers: labath, teemperor
Reviewed By: labath, teemperor
Subscribers: aprantl, arphaman, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D73191
This patch fixes the lookup of locations in
.debug_loclists, if they are split in a .dwp file.
Mainly, we need to consider the cu index offsets.
Reviewed By: jankratochvil
Differential Revision: https://reviews.llvm.org/D107161
As pointed out in D107434 by Walter, D103172 also changed two for loops that
were actually not just iterating over some DIEs but also using the iteration
variable later on for some other things. This patch reverts the respective
faulty parts of D103172.
This change makes sure that DwarfUnit does not load a .dwo file until
necessary. I also take advantage of DWARF 5's guarantee that the first
support file is also the primary file to make it possible to create
a compile unit without loading the .dwo file.
Testcases now require Linux as it is needed for -gsplit-dwarf.
Review By: jankratochvil, dblaikie
Differential Revision: https://reviews.llvm.org/D100299