Commit Graph

1664 Commits

Author SHA1 Message Date
Philip Reames eede4846a9 [SCEV] Allow negative steps for LT exit count computation for unsigned comparisons
This bit of code is incredibly suspicious. It allows fully unknown (but potentially negative) steps, but not steps known to be negative. The comment about scev flag inference is worrying, but also not correct to my knowledge.

At best, this might be covering up some related miscompile. However, there's no test in tree for it, the review history doesn't include obvious motivation, and the C++ example doesn't appear to give wrong results when hand translated to IR. I think it's time to remove this and see what falls out.

During review, there were concerns raised about the correctness of the corresponding signed case.  This change was deliberately narrowed to the unsigned case which has been auditted and appears correct for negative values.  We need to get back to the known-negative signed case, but that'll be a future patch if nothing falls out from this one.

Differential Revision: https://reviews.llvm.org/D104140
2021-09-09 14:09:29 -07:00
Eli Friedman 8f792707c4 [ScalarEvolution] Fix pointer/int confusion in howManyLessThans.
In general, howManyLessThans doesn't really want to work with pointers
at all; the result is an integer, and the operands of the icmp are
effectively integers.  However, isLoopEntryGuardedByCond doesn't like
extra ptrtoint casts, so the arguments to isLoopEntryGuardedByCond need
to be computed without those casts.

Somehow, the values got mixed up with the recent howManyLessThans
improvements; fix the confused values, and add a better comment to
explain what's happening.

Differential Revision: https://reviews.llvm.org/D109465
2021-09-09 12:38:33 -07:00
Philip Reames e741fabc22 [SCEV] Move getIndexExpressionsFromGEP to delinearize [NFC] 2021-09-08 16:56:49 -07:00
Philip Reames 4b5e260b1d [SCEV] Simplify findExistingSCEVInCache interface [NFC]
We were returning a tuple when all but one caller only cared about one piece of the return value.  That one caller can inline the complexity, and we can simplify all other uses.
2021-09-08 15:26:07 -07:00
Philip Reames 585c594d74 Move delinearization logic out of SCEV [NFC]
None of this logic has anything to do with SCEV's internals, it just uses the existing public APIs.  As a result, we can move the code from ScalarEvolution.cpp/hpp to Delinearization.cpp/hpp with only minor changes.

This was discussed in advance on today's loop opt call.  It turned out to be easy as hoped.
2021-09-08 12:28:35 -07:00
Philip Reames 6cdca906c7 [SCEV] Use no-self-wrap flags infered from exit structure to compute trip count
The basic problem being solved is that we largely give up when encountering a trip count involving an IV which is not an addrec. We will fall back to the brute force constant eval, but that doesn't have the information about the fact that we can't cycle back through the same set of values.

There's a high level design question of whether this is the right place to handle this, and if not, where that place is. The major alternative here would be to return a conservative upper bound, and then rely on two invocations of indvars to add the facts to the narrow IV, and then reconstruct SCEV. (I have not implemented the alternative and am not 100% sure this would work out.) That's arguably more in line with existing code, but I find this substantially easier to reason about.  During review, no one expressed a strong opinion, so we went with this one.

Differential Revision: D108651
2021-09-07 17:00:02 -07:00
Philip Reames 9659069978 [SCEV] Further clarify comments regarding UB and zero stride
Follow on to D109029. I realized we had no mention of mustprogrress in the comment (as it prexisted mustprogress in the codebase). In the process of adding it, I tweaked the preconditions into something I think is more clear. Note that mustprogress is checked in the code.

Differential Revision: https://reviews.llvm.org/D109091
2021-09-07 13:53:56 -07:00
Kazu Hirata 5648f7170e [Analysis, Target, Transforms] Construct SmallVector with iterator ranges (NFC) 2021-09-07 09:19:33 -07:00
Nikita Popov 8d54c8a0c3 [SCEV] Fix applyLoopGuards() with range check idiom (PR51760)
Due to a typo, this replaced %x with umax(C1, umin(C2, %x + C3))
rather than umax(C1, umin(C2, %x)). This didn't make a difference
for the existing tests, because the result is only used for range
calculation, and %x will usually have an unknown starting range,
and the additional offset keeps it unknown. However, if %x already
has a known range, we may compute a result range that is too
small.
2021-09-06 22:22:41 +02:00
Philip Reames bb0fa3ea02 Revert "snapshot - do not push"
This reverts commit 91f4655d92.

This wasn't intented to be pushed, sorry.
2021-09-01 16:59:23 -07:00
Philip Reames 91f4655d92 snapshot - do not push 2021-09-01 16:59:01 -07:00
Philip Reames 73b951a7f7 [SCEV] Clarify requirements for zero-stride to be UB
There's a silent bug in our reasoning about zero strides. We assume that having a single static exit implies that if that exit is not taken, then the loop must be infinite. This ignores the potential for abnormal exits via exceptions. Consider the following example:

for (uint_8 i = 0; i < 1; i += 0) {
  throw_on_thousandth_call();
}

Our reasoning is such that we'd conclude this loop can't take the backedge as that would lead to a (presumed) infinite loop.

In practice, this is a silent bug because the loopIsFiniteByAssumption returns false strictly more often than the loopHaNoAbnormalExits property. We could reasonable want to change that in the future, so fixing the codeflow now is worthwhile.

Differential Revision: https://reviews.llvm.org/D109029
2021-09-01 14:01:13 -07:00
Philip Reames 29fa37ec9f [SCEV] If max BTC is zero, then so is the exact BTC [2 of 2]
This extends D108921 into a generic rule applied to constructing ExitLimits along all paths. The remaining paths (primarily howFarToZero) don't have the same reasoning about UB sensitivity as the howManyLessThan ones did. Instead, the remain cause for max counts being more precise than exact counts is that we apply context sensitive loop guards on the max path, and not on the exact path. That choice is mildly suspect, but out of scope of this patch.

The MVETailPredication.cpp change deserves a bit of explanation. We were previously figuring out that two SCEVs happened to be equal because the happened to be identical. When we optimized one with context sensitive information, but not the other, we lost the ability to prove them equal. So, cover this case by subtracting and then applying loop guards again. Without this, we see changes in test/CodeGen/Thumb2/mve-blockplacement.ll

Differential Revision: https://reviews.llvm.org/D109015
2021-09-01 11:51:48 -07:00
Philip Reames 6600e1759b [SCEV] If max BTC is zero, then so is the exact BTC [1 of N]
This patch is specifically the howManyLessThan case.  There will be a couple of followon patches for other codepaths.

The subtle bit is explaining why the two codepaths have a difference while both are correct. The test case with modifications is a good example, so let's discuss in terms of it.
* The previous exact bounds for this example of (-126 + (126 smax %n))<nsw> can evaluate to either 0 or 1. Both are "correct" results, but only one of them results in a well defined loop. If %n were 127 (the only possible value producing a trip count of 1), then the loop must execute undefined behavior. As a result, we can ignore the TC computed when %n is 127. All other values produce 0.
* The max taken count computation uses the limit (i.e. the maximum value END can be without resulting in UB) to restrict the bound computation. As a result, it returns 0 which is also correct.

WARNING: The logic above only holds for a single exit loop. The current logic for max trip count would be incorrect for multiple exit loops, except that we never call computeMaxBECountForLT except when we can prove either a) no overflow occurs in this IV before exit, or b) this is the sole exit.

An alternate approach here would be to add the limit logic to the symbolic path. I haven't played with this extensively, but I'm hesitant because a) the term is optional and b) I'm not sure it'll reliably simplify away. As such, the resulting code quality from expansion might actually get worse.

This was noticed while trying to figure out why D108848 wasn't NFC, but is otherwise standalone.

Differential Revision: https://reviews.llvm.org/D108921
2021-08-31 08:50:11 -07:00
Nikita Popov 9f7873784d [SCEVExpander] Reuse removePointerBase() for canonical addrecs
ExposePointerBase() in SCEVExpander implements basically the same
functionality as removePointerBase() in SCEV, so reuse it.

The SCEVExpander code assumes that the pointer operand on adds is
the last one -- I'm not sure that always holds. As such this might
not be strictly NFC.
2021-08-29 21:12:35 +02:00
Nikita Popov e6a5dd60ff [SCEV] Assert unique pointer base (NFC)
Add expressions can contain at most one pointer operand nowadays,
assert that in getPointerBase() and removePointerBase().
2021-08-29 20:06:24 +02:00
Philip Reames ec8d87e9f5 [SCEV] Infer nuw from nw for addrecs
This was previously committed in 914836b, and reverted due to confusion on the status of the review.

Differential Revision: https://reviews.llvm.org/D108601
2021-08-24 14:24:05 -07:00
Philip Reames 58582bae63 Revert "[SCEV] Infer nsw/nuw from nw for addrecs"
This reverts commit 914836b1c8.  Further comments on review came up after initial approval.  Reverting while addressing.
2021-08-24 09:28:37 -07:00
Philip Reames 914836b1c8 [SCEV] Infer nsw/nuw from nw for addrecs
If we no an addrec doesn't self-wrap, the increment is strictly positive, and the start value is the smallest representable value, then we know that the corresponding wrap type can not occur.

Differential Revision: https://reviews.llvm.org/D108601
2021-08-24 08:53:21 -07:00
Philip Reames 96ef794fd0 [SCEV] Add a hasFlags utility to improve readability [NFC] 2021-08-23 17:36:52 -07:00
Roman Lebedev 0dc6b597db
Revert "[SCEV] Remove premature assert. PR46786"
Since then, the SCEV pointer handling as been improved,
so the assertion should now hold.

This reverts commit b96114c1e1,
relanding the assertion from commit 141e845da5.
2021-08-13 17:50:22 +03:00
Philip Reames f82f39b9cf [SCEV] Add a comment about invariant in howManyLessThans 2021-07-26 16:39:26 -07:00
Nikita Popov 33146857e9 [IR] Consider non-willreturn as side effect (PR50511)
This adjusts mayHaveSideEffect() to return true for !willReturn()
instructions. Just like other side-effects, non-willreturn calls
(aka "divergence") cannot be removed and cannot be reordered relative
to other side effects. This fixes a number of bugs where
non-willreturn calls are either incorrectly dropped or moved. In
particular, it also fixes the last open problem in
https://bugs.llvm.org/show_bug.cgi?id=50511.

I performed a cursory review of all current mayHaveSideEffect()
uses, which convinced me that these are indeed the desired default
semantics. Places that do not want to consider non-willreturn as a
sideeffect generally do not want mayHaveSideEffect() semantics at
all. I identified two such cases, which are addressed by D106591
and D106742. Finally, there is a use in SCEV for which we don't
really have an appropriate API right now -- what it wants is
basically "would this be considered forward progress". I've just
spelled out the previous semantics there.

Differential Revision: https://reviews.llvm.org/D106749
2021-07-26 16:35:14 +02:00
Philip Reames ec43def700 Style tweaks for SCEV's computeMaxBECountForLT [NFC] 2021-07-23 17:19:45 -07:00
Philip Reames 4a3dc7dc9a [SCEV] Fix bug involving zero step and non-invariant RHS in trip count logic
Eli pointed out the issue when reviewing D104140. The max trip count logic makes an assumption that the value of IV changes. When the step is zero, the nowrap fact becomes trivial, and thus there's nothing preventing the loop from being nearly infinite. (The "nearly" part is because mustprogress may disallow an infinite loop while still allowing 999999999 iterations before RHS happens to allow an exit.)

This is very difficult to see in practice. You need a means to produce a loop varying RHS in a mustprogress loop which doesn't allow the loop to be infinite. In most cases, LICM or SCEV are smart enough to remove the loop varying expressions.

Differential Revision: https://reviews.llvm.org/D106327
2021-07-23 15:19:23 -07:00
Eli Friedman de3ea51be4 [ScalarEvolution] Refine computeMaxBECountForLT to be accurate in more cases.
Allow arbitrary strides, and make sure we return the correct result when
the backedge-taken count is zero.

Differential Revision: https://reviews.llvm.org/D106197
2021-07-19 15:43:30 -07:00
Philip Reames 4402d0d4fb [SCEV] Add a clarifying comment in howManyLessThans
Wrap semantics are subtle when combined with multiple exits.  This has caused several rounds of confusion during recent reviews, so try to document the subtly distinction between when wrap flags provide <u and <=u facts.
2021-07-19 15:13:48 -07:00
Nikita Popov 2b17c24a03 [SCEV] Fix unused variable warning (NFC) 2021-07-18 23:12:22 +02:00
Eli Friedman 28a3ad3f86 [ScalarEvolution] Remove uses of PointerType::getElementType. 2021-07-18 13:14:33 -07:00
Eli Friedman cbba71bfb5 [ScalarEvolution] Fix overflow in computeBECount.
The current implementation of computeBECount doesn't account for the
possibility that adding "Stride - 1" to Delta might overflow. For almost
all loops, it doesn't, but it's not actually proven anywhere.

To deal with this, use a variety of tricks to try to prove that the
addition doesn't overflow.  If the proof is impossible, use an alternate
sequence which never overflows.

Differential Revision: https://reviews.llvm.org/D105216
2021-07-16 16:15:18 -07:00
Philip Reames a99d420a93 [SCEV] Fix unsound reasoning in howManyLessThans
This is split from D105216, it handles only a subset of the cases in that patch.

Specifically, the issue being fixed is that the code incorrectly assumed that (Start-Stide) < End implied that the backedge was taken at least once. This is not true when e.g. Start = 4, Stride = 2, and End = 3. Note that we often do produce the right backedge taken count despite the flawed reasoning.

The fix chosen here is to use an alternate form of uceil (ceiling of unsigned divide) lowering which is safe when max(RHS,Start) > Start - Stride.  (Note that signedness of both max expression and comparison depend on the signedness of the comparison being analyzed, and that overflow in the Start - Stride expression is allowed.)  Note that this is weaker than proving the backedge is taken because it allows start - stride < end < start.  Some cases which can't be proven safe are sent down the generic path, and we do end up generating less optimal expressions in a few cases.

Credit for coming up with the approach goes entirely to Eli.  I just split it off, tweaked the comments a bit, and did some additional testing.

Differential Revision: https://reviews.llvm.org/D105942
2021-07-15 10:32:47 -07:00
Philip Reames 205ed009a4 [SCEV] Handle zero stride correctly in howManyLessThans
This is split from D105216, but the code is hoisted much earlier into
the path where we can actually get a zero stride flowing through. Some
fairly simple proofs handle the cases which show up in practice. The
only test changes are the cases where we really do need a non-zero
divider to produce the right result.

Recommitting with isLoopInvariant() check.

Differential Revision: https://reviews.llvm.org/D105921
2021-07-13 19:14:01 -07:00
Arthur Eubanks 5738819679 Revert "[SCEV] Handle zero stride correctly in howManyLessThans"
This reverts commit 4df591b5c9.

Causes crashes, see comments on D105921.
2021-07-13 17:53:48 -07:00
Eli Friedman bb8c7a980f [ScalarEvolution] Make isKnownNonZero handle more cases.
Using an unsigned range instead of signed ranges is a bit more precise.

Differential Revision: https://reviews.llvm.org/D105941
2021-07-13 15:36:45 -07:00
Philip Reames 4df591b5c9 [SCEV] Handle zero stride correctly in howManyLessThans
This is split from D105216, but the code is hoisted much earlier into the path where we can actually get a zero stride flowing through. Some fairly simple proofs handle the cases which show up in practice. The only test changes are the cases where we really do need a non-zero divider to produce the right result.

Differential Revision: https://reviews.llvm.org/D105921
2021-07-13 13:31:40 -07:00
Philip Reames 087310c71e [SCEV] Strengthen inference of RHS > Start in howManyLessThans
Split off from D105216 to simplify review.  Rewritten with a lambda to be easier to follow.  Comments clarified.

Sorry for no test case, this is tricky to exercise with the current structure of the code.  It's about to be hit more frequently in a follow up patch, and the change itself is simple.
2021-07-13 11:54:07 -07:00
Philip Reames e4b43973fb [ScalarEvolution] Fix overflow when computing max trip counts
This is split from D105216 to reduce patch complexity.  Original code by Eli with very minor modification by me.

The primary point of this patch is to add the getUDivCeilSCEV routine.  I included the two callers with constant arguments as we know those must constant fold even without any of the fancy inference logic.
2021-07-13 10:01:10 -07:00
Eli Friedman 882ee7fbd6 Fix buildbot regression from 9c4baf5.
Apparently ScalarEvolution::isImpliedCond tries to truncate a pointer in
some obscure cases. Guard the code with a check for pointers.
2021-07-09 17:54:09 -07:00
Eli Friedman 9c4baf5101 [ScalarEvolution] Strictly enforce pointer/int type rules.
Rules:

1. SCEVUnknown is a pointer if and only if the LLVM IR value is a
   pointer.
2. SCEVPtrToInt is never a pointer.
3. If any other SCEV expression has no pointer operands, the result is
   an integer.
4. If a SCEVAddExpr has exactly one pointer operand, the result is a
   pointer.
5. If a SCEVAddRecExpr's first operand is a pointer, and it has no other
   pointer operands, the result is a pointer.
6. If every operand of a SCEVMinMaxExpr is a pointer, the result is a
   pointer.
7. Otherwise, the SCEV expression is invalid.

I'm not sure how useful rule 6 is in practice.  If we exclude it, we can
guarantee that ScalarEvolution::getPointerBase always returns a
SCEVUnknown, which might be a helpful property. Anyway, I'll leave that
for a followup.

This is basically mop-up at this point; all the changes with significant
functional effects have landed.  Some of the remaining changes could be
split off, but I don't see much point.

Differential Revision: https://reviews.llvm.org/D105510
2021-07-09 17:29:26 -07:00
Nikita Popov 2e3f4694d6 [IR] Add GEPOperator::indices() (NFC)
In order to mirror the GetElementPtrInst::indices() API.

Wanted to use this in the IRForTarget code, and was surprised to
find that it didn't exist yet.
2021-07-09 21:41:20 +02:00
Martin Storsjö e479777d3c Revert "[ScalarEvolution] Fix overflow in computeBECount."
This reverts commit 5b350183cd (and
also "[NFC][ScalarEvolution] Cleanup howManyLessThans.",
009436e9c1, to make it apply).

See https://reviews.llvm.org/D105216 for discussion on various
miscompilations caused by that commit.
2021-07-09 14:26:48 +03:00
Eli Friedman 009436e9c1 [NFC][ScalarEvolution] Cleanup howManyLessThans.
In preparation for D104075. Some NFC cleanup, and some test coverage for
planned changes.
2021-07-08 17:56:26 -07:00
Eli Friedman 5b350183cd [ScalarEvolution] Fix overflow in computeBECount.
There are two issues with the current implementation of computeBECount:

1. It doesn't account for the possibility that adding "Stride - 1" to
Delta might overflow. For almost all loops, it doesn't, but it's not
actually proven anywhere.
2. It doesn't account for the possibility that Stride is zero. If Delta
is zero, the backedge is never taken; the value of Stride isn't
relevant. To handle this, we have to make sure that the expression
returned by computeBECount evaluates to zero.

To deal with this, add two new checks:

1. Use a variety of tricks to try to prove that the addition doesn't
overflow.  If the proof is impossible, use an alternate sequence which
never overflows.
2. Use umax(Stride, 1) to handle the possibility that Stride is zero.

Differential Revision: https://reviews.llvm.org/D105216
2021-07-08 10:09:55 -07:00
Eli Friedman f5603aa050 [ScalarEvolution] Make sure getMinusSCEV doesn't negate pointers.
Add a function removePointerBase that returns, essentially, S -
getPointerBase(S).  Use it in getMinusSCEV instead of actually
subtracting pointers.

Differential Revision: https://reviews.llvm.org/D105503
2021-07-07 10:27:10 -07:00
Eli Friedman 7ac1c7bead Recommit [ScalarEvolution] Make getMinusSCEV() fail for unrelated pointers.
As part of making ScalarEvolution's handling of pointers consistent, we
want to forbid multiplying a pointer by -1 (or any other value). This
means we can't blindly subtract pointers.

There are a few ways we could deal with this:
1. We could completely forbid subtracting pointers in getMinusSCEV()
2. We could forbid subracting pointers with different pointer bases
(this patch).
3. We could try to ptrtoint pointer operands.

The option in this patch is more friendly to non-integral pointers: code
that works with normal pointers will also work with non-integral
pointers. And it seems like there are very few places that actually
benefit from the third option.

As a minimal patch, the ScalarEvolution implementation of getMinusSCEV
still ends up subtracting pointers if they have the same base.  This
should eliminate the shared pointer base, but eventually we'll need to
rewrite it to avoid negating the pointer base. I plan to do this as a
separate step to allow measuring the compile-time impact.

This doesn't cause obvious functional changes in most cases; the one
case that is significantly affected is ICmpZero handling in LSR (which
is the source of almost all the test changes).  The resulting changes
seem okay to me, but suggestions welcome.  As an alternative, I tried
explicitly ptrtoint'ing the operands, but the result doesn't seem
obviously better.

I deleted the test lsr-undef-in-binop.ll becuase I couldn't figure out
how to repair it to test what it was actually trying to test.

Recommitting with fix to MemoryDepChecker::isDependent.

Differential Revision: https://reviews.llvm.org/D104806
2021-07-06 12:16:05 -07:00
Eli Friedman a6d081b2cb Revert "[ScalarEvolution] Make getMinusSCEV() fail for unrelated pointers."
This reverts commit 74d6ce5d5f.

Seeing crashes on buildbots in MemoryDepChecker::isDependent.
2021-07-06 11:17:13 -07:00
Eli Friedman 74d6ce5d5f [ScalarEvolution] Make getMinusSCEV() fail for unrelated pointers.
As part of making ScalarEvolution's handling of pointers consistent, we
want to forbid multiplying a pointer by -1 (or any other value). This
means we can't blindly subtract pointers.

There are a few ways we could deal with this:
1. We could completely forbid subtracting pointers in getMinusSCEV()
2. We could forbid subracting pointers with different pointer bases
(this patch).
3. We could try to ptrtoint pointer operands.

The option in this patch is more friendly to non-integral pointers: code
that works with normal pointers will also work with non-integral
pointers. And it seems like there are very few places that actually
benefit from the third option.

As a minimal patch, the ScalarEvolution implementation of getMinusSCEV
still ends up subtracting pointers if they have the same base.  This
should eliminate the shared pointer base, but eventually we'll need to
rewrite it to avoid negating the pointer base. I plan to do this as a
separate step to allow measuring the compile-time impact.

This doesn't cause obvious functional changes in most cases; the one
case that is significantly affected is ICmpZero handling in LSR (which
is the source of almost all the test changes).  The resulting changes
seem okay to me, but suggestions welcome.  As an alternative, I tried
explicitly ptrtoint'ing the operands, but the result doesn't seem
obviously better.

I deleted the test lsr-undef-in-binop.ll becuase I couldn't figure out
how to repair it to test what it was actually trying to test.

Differential Revision: https://reviews.llvm.org/D104806
2021-07-06 10:54:41 -07:00
Philip Reames 14d8f1546a [SCEV] Fold (0 udiv %x) to 0
We have analogous rules in instsimplify, etc.., but were missing the same in SCEV.  The fold is near trivial, but came up in the context of a larger change.
2021-06-30 08:31:13 -07:00
Eli Friedman 8d5bf0709d [NFC] Prefer ConstantRange::makeExactICmpRegion over makeAllowedICmpRegion
The implementation is identical, but it makes the semantics a bit more
obvious.
2021-06-25 14:43:13 -07:00
Florian Hahn 6478f3fb78
[SCEV] Support single-cond range check idiom in applyLoopGuards.
This patch extends applyLoopGuards to detect a single-cond range check
idiom that InstCombine generates.

It extends applyLoopGuards to detect conditions of the form
(-C1 + X < C2). InstCombine will create this form when combining two
checks of the form (X u< C2 + C1) and (X >=u C1).

In practice, this enables us to correctly compute a tight trip count
bounds for code as in the function below. InstCombine will fold the
minimum iteration check created by LoopRotate with the user check (< 8).

    void unsigned_check(short *pred, unsigned width) {
        if (width < 8) {
            for (int x = 0; x < width; x++)
                pred[x] = pred[x] * pred[x];
        }
    }

As a consequence, LLVM creates dead vector loops for the code above,
e.g. see https://godbolt.org/z/cb8eTcqET

https://alive2.llvm.org/ce/z/SHHW4d

Reviewed By: nikic

Differential Revision: https://reviews.llvm.org/D104741
2021-06-25 10:24:40 +01:00
Florian Hahn 121ecb05e7
[SCEV] Generalize MatchBinaryAddToConst to support non-add expressions.
This patch generalizes MatchBinaryAddToConst to support matching
(A + C1), (A + C2), instead of just matching (A + C1), A.

The existing cases can be handled by treating non-add expressions A as
A + 0.

Reviewed By: mkazantsev

Differential Revision: https://reviews.llvm.org/D104634
2021-06-24 12:16:15 +01:00
Eli Friedman b12192f7cd [ScalarEvolution] Clarify implementation of getPointerBase().
getPointerBase should only be looking through Add and AddRec
expressions; other expressions either aren't pointers, or can't be
looked through.

Technically, this is a functional change. For a multiply or min/max
expression, if they have exactly one pointer operand, and that operand
is the first operand, the behavior here changes. Similarly, if an AddRec
has a pointer-type step, the behavior changes. But that shouldn't be
happening in practice, and we plan to make such expressions illegal.
2021-06-23 12:55:59 -07:00
Eli Friedman fdaf304e0d [NFC][ScalarEvolution] Fix SCEVNAryExpr::getType().
SCEVNAryExpr::getType() could return the wrong type for a SCEVAddExpr.
Remove it, and add getType() methods to the relevant subclasses.

NFC because nothing uses it directly, as far as I know; this is just
future-proofing.
2021-06-23 12:55:59 -07:00
Florian Hahn adee485adf
[SCEV] Support signed predicates in applyLoopGuards.
This adds handling for signed predicates, similar to how unsigned
predicates are already handled.

Reviewed By: nikic

Differential Revision: https://reviews.llvm.org/D104732
2021-06-23 10:21:05 +01:00
Florian Hahn 6c782e6eb0
[SCEV] Reduce code to handle predicates in applyLoopGuards (NFC).
Hoist out common recurrence check and sink updating the map, to reduce
the code required to support additional predicates.
2021-06-22 15:56:45 +01:00
Florian Hahn d17798823c
[SCEV] Retain AddExpr flags when subtracting a foldable constant.
Currently we drop wrapping flags for expressions like (A + C1)<flags> - C2.

But we can retain flags under certain conditions:

* Adding a smaller constant is NUW if the original AddExpr was NUW.

* Adding a constant with the same sign and small magnitude is NSW, if the
  original AddExpr was NSW.

This can improve results after using `SimplifyICmpOperands`, which may
subtract one in order to use stricter predicates, as is the case for
`isKnownPredicate`.

Reviewed By: efriedma

Differential Revision: https://reviews.llvm.org/D104319
2021-06-22 11:27:51 +01:00
Eli Friedman 8f3d16905d [ScalarEvolution] Ensure backedge-taken counts are not pointers.
A backedge-taken count doesn't refer to memory; returning a pointer type
is nonsense. So make sure we always return an integer.

The obvious way to do this would be to just convert the operands of the
icmp to integers, but that doesn't quite work out at the moment:
isLoopEntryGuardedByCond currently gets confused by ptrtoint operations.
So we perform the ptrtoint conversion late for lt/gt operations.

The test changes are mostly innocuous. The most interesting changes are
more complex SCEV expressions of the form "(-1 * (ptrtoint i8* %ptr to
i64)) + %ptr)". This is expected: we can't fold this to zero because we
need to preserve the pointer base.

The call to isLoopEntryGuardedByCond in howFarToZero is less precise
because of ptrtoint operations; this shows up in the function
pr46786_c26_char in ptrtoint.ll. Fixing it here would require more
complex refactoring.  It should eventually be fixed by future
improvements to isImpliedCond.

See https://bugs.llvm.org/show_bug.cgi?id=46786 for context.

Differential Revision: https://reviews.llvm.org/D103656
2021-06-21 16:24:16 -07:00
Eli Friedman 62ed024c74 [NFC][ScalarEvolution] Clean up ExitLimit constructors.
Make all the constructors forward to one constructor.  Remove redundant
assertions.
2021-06-20 17:40:30 -07:00
Eli Friedman 8a567e5f22 [ScalarEvolution] Fix pointer/int type handling converting select/phi to min/max.
The old version of this code would blindly perform arithmetic without
paying attention to whether the types involved were pointers or
integers.  This could lead to weird expressions like negating a pointer.

Explicitly handle simple cases involving pointers, like "x < y ? x : y".
In all other cases, coerce the operands of the comparison to integer
types.  This avoids the weird cases, while handling most of the
interesting cases.

Differential Revision: https://reviews.llvm.org/D103660
2021-06-17 14:05:12 -07:00
Eli Friedman 27963ccf07 [NFC][ScalarEvolution] Refactor createNodeForSelectOrPHI
In preparation for D103660.
2021-06-16 12:32:32 -07:00
Roman Lebedev a3113df219
[SCEV] PtrToInt on non-integral pointers is allowed
As per (committed without review) @reames's rGac81cb7e6dde9b0890ee1780eae94ab96743569b change,
we are now allowed to produce `ptrtoint` for non-integral pointers.
This will unblock further unbreaking of SCEV regarding int-vs-pointer type confusion.

Reviewed By: mkazantsev

Differential Revision: https://reviews.llvm.org/D104322
2021-06-16 10:24:25 +03:00
Philip Reames 7629b2a09c [LI] Add a cover function for checking if a loop is mustprogress [nfc]
Essentially, the cover function simply combines the loop level check and the function level scope into one call.  This simplifies several callers and is (subjectively) less error prone.
2021-06-10 13:37:32 -07:00
Philip Reames aaaeb4b160 [SCEV] Use mustprogress flag on loops (in addition to function attribute)
This addresses a performance regression reported against 3c6e4191.  That change (correctly) limited a transform based on assumed finiteness to mustprogress loops, but the previous change (38540d7) which introduced the mustprogress check utility only handled function attributes, not the loop metadata form.

It turns out that clang uses the function attribute form for C++, and the loop metadata form for C.  As a result, 3c6e4191 ended up being a large regression in practice for C code as loops weren't being considered mustprogress despite the language semantics.
2021-06-10 13:20:28 -07:00
Philip Reames b65f30d6fb [SCEV] Minor code motion to simplify a later patch [nfc] 2021-06-09 14:17:06 -07:00
Florian Hahn b76f1f1202
[SCEV] Keep common NUW flags when inlining Add operands.
Currently, NoWrapFlags are dropped if we inline operands of SCEVAddExpr
operands. As a consequence, we always drop flags when building
expressions like `getAddExpr(A, getAddExpr(B, C, NUW), NUW)`.

We should be able to retain NUW flags common among all inlined
SCEVAddExpr and the original flags.

Reviewed By: nikic, mkazantsev

Differential Revision: https://reviews.llvm.org/D103877
2021-06-09 17:13:21 +01:00
Philip Reames 3c6e419198 [SCEV] Properly guard reasoning about infinite loops being UB on mustprogress
Noticed via code inspection. We changed the semantics of the IR when we added mustprogress, and we appear to have not updated this location.

Differential Revision: https://reviews.llvm.org/D103834
2021-06-07 14:47:36 -07:00
Philip Reames 38540d71c7 [SCEV] Compute exit counts for unsigned IVs using mustprogress semantics
The motivation here is simple loops with unsigned induction variables w/non-one steps. A toy example would be:
for (unsigned i = 0; i < N; i += 2) { body; }

Given C/C++ semantics, we do not get the nuw flag on the induction variable. Given that lack, we currently can't compute a bound for this loop. We can do better for many cases, depending on the contents of "body".

The basic intuition behind this patch is as follows:
* A step which evenly divides the iteration space must wrap through the same numbers repeatedly. And thus, we can ignore potential cornercases where we exit after the n-th wrap through uint32_max.
* Per C++ rules, infinite loops without side effects are UB. We already have code in SCEV which relies on this.  In LLVM, this is tied to the mustprogress attribute.

Together, these let us conclude that the trip count of this loop must come before unsigned overflow unless the body would form a well defined infinite loop.

A couple notes for those reading along:
* I reused the loop properties code which is overly conservative for this case. I may follow up in another patch to generalize it for the actual UB rules.
* We could cache the n(s/u)w facts. I left that out because doing a pre-patch which cached existing inference showed a lot of diffs I had trouble fully explaining. I plan to get back to this, but I don't want it on the critical path.

Differential Revision: https://reviews.llvm.org/D103118
2021-06-07 11:24:00 -07:00
Roman Lebedev e350494fb0
[NFC] Promote willNotOverflow() / getStrengthenedNoWrapFlagsFromBinOp() from IndVars into SCEV proper
We might want to use it when creating SCEV proper in createSCEV(),
now that we don't `forgetValue()` in `SimplifyIndvar::strengthenOverflowingOperation()`,
which might have caused us to loose some optimization potential.
2021-06-05 12:17:51 +03:00
Eli Friedman fd229caa01 [polly] Fix SCEVLoopAddRecRewriter to avoid invalid AddRecs.
When we're remapping an AddRec, the AddRec constructed by a partial
rewrite might not make sense.  This triggers an assertion complaining
it's not loop-invariant.

Instead of constructing the partially rewritten AddRec, just skip
straight to calling evaluateAtIteration.

Testcase was automatically reduced using llvm-reduce, so it's a little
messy, but hopefully makes sense.

Differential Revision: https://reviews.llvm.org/D102959
2021-06-01 09:51:05 -07:00
Roman Lebedev f7c95c3322
[NFC] ScalarEvolution: apply SSO to the ExprValueMap value
ExprValueMap is a map from SCEV * to a set-vector of (Value *, ConstantInt *) pair,
and while the map itself will likely be big-ish (have many keys),
it is a reasonable assumption that each key will refer to a small-ish
number of pairs.

In particular looking at n=512 case from
https://bugs.llvm.org/show_bug.cgi?id=50384,
the small-size of 4 appears to be the sweet spot,
it results in the least allocations while minimizing memory footprint.
```
$ for i in $(ls heaptrack.opt.*.gz); do echo $i; heaptrack_print $i | tail -n 6; echo ""; done
heaptrack.opt.0-orig.gz
total runtime: 14.32s.
calls to allocation functions: 8222442 (574192/s)
temporary memory allocations: 2419000 (168924/s)
peak heap memory consumption: 190.98MB
peak RSS (including heaptrack overhead): 239.65MB
total memory leaked: 67.58KB

heaptrack.opt.1-n1.gz
total runtime: 13.72s.
calls to allocation functions: 7184188 (523705/s)
temporary memory allocations: 2419017 (176338/s)
peak heap memory consumption: 191.38MB
peak RSS (including heaptrack overhead): 239.64MB
total memory leaked: 67.58KB

heaptrack.opt.2-n2.gz
total runtime: 12.24s.
calls to allocation functions: 6146827 (502355/s)
temporary memory allocations: 2418997 (197695/s)
peak heap memory consumption: 163.31MB
peak RSS (including heaptrack overhead): 211.01MB
total memory leaked: 67.58KB

heaptrack.opt.3-n4.gz
total runtime: 12.28s.
calls to allocation functions: 6068532 (494260/s)
temporary memory allocations: 2418985 (197017/s)
peak heap memory consumption: 155.43MB
peak RSS (including heaptrack overhead): 201.77MB
total memory leaked: 67.58KB

heaptrack.opt.4-n8.gz
total runtime: 12.06s.
calls to allocation functions: 6068042 (503321/s)
temporary memory allocations: 2418992 (200646/s)
peak heap memory consumption: 166.03MB
peak RSS (including heaptrack overhead): 213.55MB
total memory leaked: 67.58KB

heaptrack.opt.5-n16.gz
total runtime: 12.14s.
calls to allocation functions: 6067993 (499958/s)
temporary memory allocations: 2418999 (199307/s)
peak heap memory consumption: 187.24MB
peak RSS (including heaptrack overhead): 233.69MB
total memory leaked: 67.58KB
```

While that test may be an edge worst-case scenario,
https://llvm-compile-time-tracker.com/compare.php?from=dee85d47d9f15fc268f7b18f279dac2774836615&to=98a57e31b1947d5bcdf4a5605ac2ab32b4bd5f63&stat=instructions
agrees that this also results in improvements in the usual situations.
2021-05-31 15:34:03 +03:00
Philip Reames ff08c3468f [SCEV] Compute trip multiple for multiple exit loops
This patch implements getSmallConstantTripMultiple(L) correctly for multiple exit loops. The previous implementation was both imprecise, and violated the specified behavior of the method. This was fine in practice, because it turns out the function was both dead in real code, and not tested for the multiple exit case.

Differential Revision: https://reviews.llvm.org/D103189
2021-05-26 11:52:25 -07:00
Philip Reames 9306bb638f [SCEV] Generalize getSmallConstantTripCount(L) for multiple exit loops
This came up in review for another patch, see https://reviews.llvm.org/D102982#2782407 for full context.

I've reviewed the callers to make sure they can handle multiple exit loops w/non-zero returns.  There's two cases in target cost models where results might change (Hexagon and PowerPC), but the results looked legal and reasonable.  If a target maintainer wishes to back out the effect of the costing change, they should explicitly check for multiple exit loops and handle them as desired.

Differential Revision: https://reviews.llvm.org/D103182
2021-05-26 11:18:25 -07:00
Philip Reames 921d3f7af0 [SCEV] Add a utility for converting from "exit count" to "trip count"
(Mostly as a logical place to put a comment since this is a reoccuring confusion.)
2021-05-26 10:41:49 -07:00
Philip Reames fb14577d0c [SCEV] Extract out a helper for computing trip multiples 2021-05-26 10:15:03 -07:00
Vitaly Buka f44f2e0afc [NFC] Fix 'unused' warning 2021-05-25 12:23:57 -07:00
Nikita Popov 6300c37a46 [SCEV] Cache operands used in BEInfo (NFC)
When memoized values for a SCEV expressions are dropped, we also
drop all BECounts that make use of the SCEV expression. This is done
by iterating over all the ExitNotTaken counts and (recursively)
checking whether they use the SCEV expression. If there are many
exits, this will take a lot of time.

This patch improves the situation by pre-computing a set of all
used operands, so that we can determine whether a certain BEInfo
needs to be invalidated using a simple set lookup. Will still need
to loop over all BEInfos though.

This makes for a mild improvement on non-degenerate cases:
https://llvm-compile-time-tracker.com/compare.php?from=b661a55a253f4a1cf5a0fbcb86e5ba7b9fb1387b&to=be1393f450e594c53f0ad7e62339a6bc831b16f6&stat=instructions

For the degenerate case from https://bugs.llvm.org/show_bug.cgi?id=50384,
for n=128 I'm seeing run time drop from 1.6s to 1.1s.

Differential Revision: https://reviews.llvm.org/D102796
2021-05-25 21:03:33 +02:00
Philip Reames aabca2d1da [SCEV] Cleanup doesIVOverflowOnX checks [NFC]
Stylistic changes only.
1) Don't pass a parameter just to do an early exit.
2) Use a name which matches actual behavior.
2021-05-25 10:12:24 -07:00
Philip Reames a47b2d4567 [SCEV] Remove unused parameter from computeBECount [NFC]
All callers pass "false" for the Equality parameter.  Kill the dead code, and update the function block comment.
2021-05-25 09:58:56 -07:00
Nikita Popov b661a55a25 [ScalarEvolution] Remove unused ExitLimit::hasOperand() method (NFC)
We only use BackedgeTakenInfo::hasOperand().
2021-05-19 18:42:14 +02:00
Florian Hahn e2759f110b
[SCEV] Apply guards to max with non-unitary steps.
We already apply loop-guards when computing the maximum with unitary
steps. This extends the code to also do so when dealing with non-unitary
steps.

This allows us to infer a tighter maximum in some cases.

Reviewed By: nikic

Differential Revision: https://reviews.llvm.org/D102267
2021-05-13 09:47:29 +01:00
Nikita Popov d26ca78c18 [SCEV] Handle and/or in applyLoopGuards()
applyLoopGuards() already combines conditions from multiple nested
guards. However, it cannot use multiple conditions on the same guard,
combined using and/or. Add support for this by recursing into either
`and` or `or`, depending on the direction of the branch.

Differential Revision: https://reviews.llvm.org/D101692
2021-05-09 21:34:28 +02:00
Florian Hahn 6c99e63120 [SCEV] By more careful when traversing phis in isImpliedViaMerge.
I think currently isImpliedViaMerge can incorrectly return true for phis
in a loop/cycle, if the found condition involves the previous value of

Consider the case in exit_cond_depends_on_inner_loop.

At some point, we call (modulo simplifications)
isImpliedViaMerge(<=, %x.lcssa, -1, %call, -1).

The existing code tries to prove IncV <= -1 for all incoming values
InvV using the found condition (%call <= -1). At the moment this succeeds,
but only because it does not compare the same runtime value. The found
condition checks the value of the last iteration, but the incoming value
is from the *previous* iteration.

Hence we incorrectly determine that the *previous* value was <= -1,
which may not be true.

I think we need to be more careful when looking at the incoming values
here. In particular, we need to rule out that a found condition refers to
any value that may refer to one of the previous iterations. I'm not sure
there's a reliable way to do so (that also works of irreducible control
flow).

So for now this patch adds an additional requirement that the incoming
value must properly dominate the phi block. This should ensure the
values do not change in a cycle. I am not entirely sure if will catch
all cases and I appreciate a through second look in that regard.

Alternatively we could also unconditionally bail out in this case,
instead of checking the incoming values

Reviewed By: nikic

Differential Revision: https://reviews.llvm.org/D101829
2021-05-07 19:52:29 +01:00
Nikita Popov cc58e8918b [SCEV] Simplify backedge count clearing (NFC)
This seems to be a leftover from when the BackedgeTakenInfo
stored multiple exit counts with manual memory management. At
some point this was switchted to a simple vector, and there should
be no need to micro-manage the clearing anymore. We can simply
drop the loop from the map and the the destructor do its job.
2021-05-01 17:50:01 +02:00
Philip Reames 0cc3e10f5e [SCEV] Avoid range intersection idiom in getRangeForUnkownRecurrence [NFC]
Addresses a review comment from D101181
2021-04-28 12:48:17 -07:00
Philip Reames a836de0bde [SCEV] Compute ranges for ashr recurrences
Straight forward extension to the recently added infrastructure which was pioneered with shl. This was originally posted as part of D99687, but split off for ease of review.

(I also decided to exclude the unknown start sign case explicitly for simplicity of understanding.)

Differential Revision: https://reviews.llvm.org/D101181
2021-04-28 12:36:20 -07:00
Nikita Popov e45168c4fa [SCEV] Handle uge/ugt predicates in applyLoopGuards()
These can be handled the same way as ule/ult, just using umax
instead of umin. This is useful in cases where the umax prevents
the upper bound from overflowing.

Differential Revision: https://reviews.llvm.org/D101196
2021-04-27 22:41:05 +02:00
Nikita Popov a5051f2fa2 [SCEV] Fix applyLoopGuards() chaining for ne predicates
ICMP_NE predicates directly overwrote the rewritten result,
instead of chaining it with previous rewrites, as was done for
ICMP_ULT and ICMP_ULE. This means that some guards were effectively
discarded, depending on their order.
2021-04-24 21:43:46 +02:00
Philip Reames 424d6cb902 [SCEV] Compute ranges for lshr recurrences
Straight forward extension to the recently added infrastructure which was pioneered with shl.

Differential Revision: https://reviews.llvm.org/D99687
2021-04-22 11:06:31 -07:00
Yang Fan 4307446e9f
[SCEV] Fix -Wunused-variable warning (NFC)
GCC warning:
```
/llvm-project/llvm/lib/Analysis/ScalarEvolution.cpp: In member function ‘const llvm::SCEV* llvm::ScalarEvolution::getLosslessPtrToIntExpr(const llvm::SCEV*, unsigned int)::SCEVPtrToIntSinkingRewriter::visitUnknown(const llvm::SCEVUnknown*)’:
/llvm-project/llvm/lib/Analysis/ScalarEvolution.cpp:1152:13: warning: unused variable ‘ExprPtrTy’ [-Wunused-variable]
 1152 |       Type *ExprPtrTy = Expr->getType();
      |             ^~~~~~~~~
```
2021-04-21 16:01:46 +08:00
Philip Reames 9c1a145aeb Rearrange code to reduce diff for D99687 [nfc]
Adding the switches to reduce diffs.  I'm about to split that into an lshr part and an ashr part, doing the NFC part first makes it easier to maintain both diffs.
2021-04-20 11:40:15 -07:00
Roman Lebedev 7186764884
[NFC][SCEV] Split getLosslessPtrToIntExpr out of getPtrToIntExpr() 2021-04-20 21:29:21 +03:00
Roman Lebedev 41c22acc22
[NFC][SCEV] Assert that we don't try to create SCEVPtrToIntExpr of a non-integral pointer
ptr<->int casts are only valid for integral pointes,
defensively assert that we don't try to break that here.
2021-04-19 18:38:38 +03:00
Roman Lebedev d480f968ad
Revert "[SCEV] Model `ashr exact x, C` as `(abs(x) EXACT/u (1<<C)) * signum(x)`"
As being discussed in https://reviews.llvm.org/D100721,
this modelling is lossy, we can't reconstruct `ash`/`ashr exact`
from it, which means that whenever we actually expand the IR,
we've just pessimized the code..

It would be good to model this pattern, after all it comes up every time
you want to compute a distance between two pointers, but not at this cost.

This reverts commit ec54867df5.
2021-04-18 16:26:45 +03:00
Nikita Popov a1ed025d0e Revert "[SCEV] Don't walk uses of phis without SCEV expression when forgetting"
This reverts commit faf9f11589.

Issues with this patch have been reported in
https://reviews.llvm.org/D100264#2689917 and
https://bugs.llvm.org/show_bug.cgi?id=49967.
2021-04-15 09:43:52 +02:00
Nikita Popov faf9f11589 [SCEV] Don't walk uses of phis without SCEV expression when forgetting
I've run into some cases where a large fraction of compile-time is
spent invalidating SCEV. One of the causes is forgetLoop(), which
walks all values that are def-use reachable from the loop header
phis. When invalidating a topmost loop, that might be close to all
values in a function. Additionally, it's fairly common for there to
not actually be anything to invalidate, but we'll still be performing
this walk again and again.

My first thought was that we don't need to continue walking the uses
if the current value doesn't have a SCEV expression. However, this
isn't quite right, because SCEV construction can skip over values
(e.g. for a chain of adds, we might only create a SCEV expression
for the final value).

What this patch does instead is to only walk the (full) def-use chain
of loop phis that have a SCEV expression. If there's no expression
for a phi, then we also don't have any dependent expressions to
invalidate.

Differential Revision: https://reviews.llvm.org/D100264
2021-04-13 20:28:17 +02:00
Roman Lebedev e8c7f43e2c
[NFC][ConstantRange] Add 'icmp' helper method
"Does the predicate hold between two ranges?"

Not very surprisingly, some places were already doing this check,
without explicitly naming the algorithm, cleanup them all.
2021-04-10 19:38:55 +03:00
Roman Lebedev 7b12c8c59d
Revert "[NFC][ConstantRange] Add 'icmp' helper method"
This reverts commit 17cf2c9423.
2021-04-10 19:37:53 +03:00
Roman Lebedev 17cf2c9423
[NFC][ConstantRange] Add 'icmp' helper method
"Does the predicate hold between two ranges?"

Not very surprisingly, some places were already doing this check,
without explicitly naming the algorithm, cleanup them all.
2021-04-10 19:09:52 +03:00
Max Kazantsev fee330824a [SCEV] Fix false-positive recognition of simple recurrences. PR49856
A value from reachable block may come to a Phi node as its input from
unreachable block. This may confuse matchSimpleRecurrence  which
has no access to DomTree and can falsely recognize something as a recurrency
because of this effect, as the attached test shows.

Patch `ae7b1e` deals with half of this problem, but it only accounts from
the case when an unreachable instruction comes to Phi as an input.

This patch provides a generalization by checking that no Phi block's
predecessor is unreachable (no matter what the input is).

Differential Revision: https://reviews.llvm.org/D99929
Reviewed By: reames
2021-04-07 13:55:17 +07:00
Philip Reames ae7b1e8823 [SCEV] Handle unreachable binop when matching shift recurrence
This fixes an issue introduced with my change d4648e, and reported in pr49768.

The root problem is that dominance collapses in unreachable code, and that LoopInfo explicitly only models reachable code.  Since the recurrence matcher doesn't filter by reachability (and can't easily because not all consumers have domtree), we need to bailout before assuming that finding a recurrence implies we found a loop.
2021-03-31 10:33:34 -07:00