This creates a new library called BinaryFormat that has all of
the headers from llvm/Support containing structure and layout
definitions for various types of binary formats like dwarf, coff,
elf, etc as well as the code for identifying a file from its
magic.
Differential Revision: https://reviews.llvm.org/D33843
llvm-svn: 304864
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
llvm-svn: 304787
My previous commit r304702 introduced a new case into a switch statement.
This case defined a variable but I forgot to add the curly brackets around the
case to limit the scope.
This change puts the curly braces back in so that the next person that adds a
case doesn't get a build failure. Thanks to avieira for the spot.
Differential Revision: https://reviews.llvm.org/D33931
llvm-svn: 304785
This change adds a new fixup fixup_t2_so_imm for the t2_so_imm_asmoperand
"T2SOImm". The fixup permits code such as:
.L1:
sub r3, r3, #.L2 - .L1
.L2:
to assemble in Thumb2 as well as in ARM state.
The operand predicate isT2SOImm() explicitly doesn't match expressions
containing :upper16: and :lower16: as expressions with these operators
must match the movt and movw instructions.
The test mov r0, foo2 in thumb2-diagnostics is moved to a new file as the
fixup delays the error message till after the assembler has quit due to
the other errors.
As the mov instruction shares the t2_so_imm_asmoperand mov instructions
with a non constant expression now match t2MOVi rather than t2MOVi16 so the
error message is slightly different.
Fixes PR28647
Differential Revision: https://reviews.llvm.org/D33492
llvm-svn: 304702
Summary:
Without using a fixup in this case, BL will be used instead of BLX to
call internal ARM functions from Thumb functions.
Reviewers: rafael, t.p.northover, peter.smith, kristof.beyls
Reviewed By: peter.smith
Subscribers: srhines, echristo, aemerson, rengolin, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D33436
llvm-svn: 304413
A number of backends (AArch64, MIPS, ARM) have been using
MCContext::reportError to report issues such as out-of-range fixup values in
their TgtAsmBackend. This is great, but because MCContext couldn't easily be
threaded through to the adjustFixupValue helper function from its usual
callsite (applyFixup), these backends ended up adding an MCContext* argument
and adding another call to applyFixup to processFixupValue. Adding an
MCContext parameter to applyFixup makes this unnecessary, and even better -
applyFixup can take a reference to MCContext rather than a potentially null
pointer.
Differential Revision: https://reviews.llvm.org/D30264
llvm-svn: 299529
A 64-bit relocation does not exist in 32-bit ARMELF. Report an error
instead of crashing.
PR23870
Patch by Sanne Wouda (sanwou01).
Differential Revision: https://reviews.llvm.org/D28851
llvm-svn: 292373
Its existence is largely historical, apparently we tried to make ARM object
files look maybe-almost-possibly runnable by putting our best guess at the
actual value into relocated locations. Of course, the real linker then comes
along and can completely change things.
But it should only be there for word-sized and movw/movt relocations. It can't
be encoded in branch relocations, and I've seen it mess up validity
calculations twice in the last couple of weeks so the default is clearly problematic.
llvm-svn: 279773
A branch-distance to a Thumb function shouldn't be forced to be odd for
CBZ/CBNZ instructions because (assuming it's within range), it's going to be a
valid, even offset.
llvm-svn: 279665
This is a mechanical change of comments in switches like fallthrough,
fall-through, or fall-thru to use the LLVM_FALLTHROUGH macro instead.
llvm-svn: 278902
Summary:
Fix for the upper bound check that was causing a build failure.
Reviewers: olista01, rengolin, t.p.northover
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D23501
llvm-svn: 278789
Summary:
The assembler currently does not check the branch target for CBZ/CBNZ
instructions, which only permit branching forwards with a positive offset. This
adds validation for the branch target to ensure negative PC-relative offsets are
not encoded into the instruction, whether specified as a literal or as an
assembler symbol.
Reviewers: rengolin, t.p.northover
Subscribers: llvm-commits, rengolin
Differential Revision: https://reviews.llvm.org/D23312
llvm-svn: 278788
This currently breaks the greendragon clang-stage1-configure-RA/ and
brotli. It is probably just uncovering a pre-existing problem. Reverting
temporarily to get the buildbots green again. A reduced testcase will
follow shortly.
This reverts commit r278659.
llvm-svn: 278711
Summary:
The assembler currently does not check the branch target for CBZ/CBNZ
instructions, which only permit branching forwards with a positive offset. This
adds validation for the branch target to ensure negative PC-relative offsets are
not encoded into the instruction, whether specified as a literal or as an
assembler symbol.
Reviewers: rengolin, t.p.northover
Subscribers: llvm-commits, rengolin
Differential Revision: https://reviews.llvm.org/D23312
llvm-svn: 278659
Some targets, notably AArch64 for ILP32, have different relocation encodings
based upon the ABI. This is an enabling change, so a future patch can use the
ABIName from MCTargetOptions to chose which relocations to use. Tested using
check-llvm.
The corresponding change to clang is in: http://reviews.llvm.org/D16538
Patch by: Joel Jones
Differential Revision: https://reviews.llvm.org/D16213
llvm-svn: 276654
Some ARM instructions encode 32-bit immediates as a 8-bit integer (0-255)
and a 4-bit rotation (0-30, even) in its least significant 12 bits. The
original fixup, FK_Data_4, patches the instruction by the value bit-to-bit,
regardless of the encoding. For example, assuming the label L1 and L2 are
0x0 and 0x104 respectively, the following instruction:
add r0, r0, #(L2 - L1) ; expects 0x104, i.e., 260
would be assembled to the following, which adds 1 to r0, instead of 260:
e2800104 add r0, r0, #4, 2 ; equivalently 1
The new fixup kind fixup_arm_mod_imm takes care of the encoding:
e2800f41 add r0, r0, #260
Patch by Ting-Yuan Huang!
llvm-svn: 265122
`MCSymbolRefExpr` variant kind for TLSCALL is prefixed with
_ARM_ since this is how it was originally implemented.
The X86_64 version is exactly the same so there's no reason
to create a new variant, we can just rename the existing
one to be machine-independent.
This generalization is the first step to implement support
for GNU2 TLS dialect in MC.
Differential Revision: http://reviews.llvm.org/D18160
llvm-svn: 263515
This was originally committed as r255762, but reverted as it broke windows
bots. Re-commitiing the exact same patch, as the underlying cause was fixed by
r258677.
ARMv8.2-A adds 16-bit floating point versions of all existing VFP
floating-point instructions. This is an optional extension, so all of
these instructions require the FeatureFullFP16 subtarget feature.
The assembly for these instructions uses S registers (AArch32 does not
have H registers), but the instructions have ".f16" type specifiers
rather than ".f32" or ".f64". The top 16 bits of each source register
are ignored, and the top 16 bits of the destination register are set to
zero.
These instructions are mostly the same as the 32- and 64-bit versions,
but they use coprocessor 9 rather than 10 and 11.
Two new instructions, VMOVX and VINS, have been added to allow packing
and extracting two 16-bit floats stored in the top and bottom halves of
an S register.
New fixup kinds have been added for the PC-relative load and store
instructions, but no ELF relocations have been added as they have a
range of 512 bytes.
Differential Revision: http://reviews.llvm.org/D15038
llvm-svn: 258678
ARMv8.2-A adds 16-bit floating point versions of all existing VFP
floating-point instructions. This is an optional extension, so all of
these instructions require the FeatureFullFP16 subtarget feature.
The assembly for these instructions uses S registers (AArch32 does not
have H registers), but the instructions have ".f16" type specifiers
rather than ".f32" or ".f64". The top 16 bits of each source register
are ignored, and the top 16 bits of the destination register are set to
zero.
These instructions are mostly the same as the 32- and 64-bit versions,
but they use coprocessor 9 rather than 10 and 11.
Two new instructions, VMOVX and VINS, have been added to allow packing
and extracting two 16-bit floats stored in the top and bottom halves of
an S register.
New fixup kinds have been added for the PC-relative load and store
instructions, but no ELF relocations have been added as they have a
range of 512 bytes.
Differential Revision: http://reviews.llvm.org/D15038
llvm-svn: 255762
Currently, if the assembler encounters an error after parsing (such as an
out-of-range fixup), it reports this as a fatal error, and so stops after the
first error. However, for most of these there is an obvious way to recover
after emitting the error, such as emitting the fixup with a value of zero. This
means that we can report on all of the errors in a file, not just the first
one. MCContext::reportError records the fact that an error was encountered, so
we won't actually emit an object file with the incorrect contents.
Differential Revision: http://reviews.llvm.org/D14717
llvm-svn: 253328
Summary:
This patch changes ARMV5, ARMV5E, ARMV6SM, ARMV6HL, ARMV7, ARMV7L,
ARMV7HL, ARMV7EM to be treated as aliases for the corresponding
standard architectures, instead of as actual architectures.
Reviewers: rengolin
Subscribers: aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D14577
llvm-svn: 252903
The generic infrastructure already did a lot of work to decide if the
fixup value is know or not. It doesn't make sense to reimplement a very
basic case: same fragment.
llvm-svn: 252090
We previously stopped producing Thumb2 relaxations when they weren't supported,
but only diagnosed the case where an actual relocation was produced. We should
also tell people if local symbols aren't going to work rather than silently
overflowing.
llvm-svn: 249164
Summary:
This is the first patch in the series to migrate Triple's (which are ambiguous)
to TargetTuple's (which aren't).
For the moment, TargetTuple simply passes all requests to the Triple object it
holds. Once it has replaced Triple, it will start to implement the interface in
a more suitable way.
This change makes some changes to the public C++ API. In particular,
InitMCSubtargetInfo(), createMCRelocationInfo(), and createMCSymbolizer()
now take TargetTuples instead of Triples. The other public C++ API's have
been left as-is for the moment to reduce patch size.
This commit also contains a trivial patch to clang to account for the C++ API
change. Thanks go to Pavel Labath for fixing LLDB for me.
Reviewers: rengolin
Subscribers: jyknight, dschuff, arsenm, rampitec, danalbert, srhines, javed.absar, dsanders, echristo, emaste, jholewinski, tberghammer, ted, jfb, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D10969
llvm-svn: 247692
Summary:
This is the first patch in the series to migrate Triple's (which are ambiguous)
to TargetTuple's (which aren't).
For the moment, TargetTuple simply passes all requests to the Triple object it
holds. Once it has replaced Triple, it will start to implement the interface in
a more suitable way.
This change makes some changes to the public C++ API. In particular,
InitMCSubtargetInfo(), createMCRelocationInfo(), and createMCSymbolizer()
now take TargetTuples instead of Triples. The other public C++ API's have
been left as-is for the moment to reduce patch size.
This commit also contains a trivial patch to clang to account for the C++ API
change.
Reviewers: rengolin
Subscribers: jyknight, dschuff, arsenm, rampitec, danalbert, srhines, javed.absar, dsanders, echristo, emaste, jholewinski, tberghammer, ted, jfb, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D10969
llvm-svn: 247683
This patch makes the Darwin ARM backend take advantage of TargetParser. It
also teaches TargetParser about ARMV7K for the first time. This makes target
triple parsing more consistent across llvm.
Differential Revision: http://reviews.llvm.org/D11996
llvm-svn: 245081
Summary:
This continues the patch series to eliminate StringRef forms of GNU triples
from the internals of LLVM that began in r239036.
Reviewers: echristo, rafael
Reviewed By: rafael
Subscribers: rafael, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D10243
llvm-svn: 239464
Previously, subtarget features were a bitfield with the underlying type being uint64_t.
Since several targets (X86 and ARM, in particular) have hit or were very close to hitting this bound, switching the features to use a bitset.
No functional change.
The first several times this was committed (e.g. r229831, r233055), it caused several buildbot failures.
Apparently the reason for most failures was both clang and gcc's inability to deal with large numbers (> 10K) of bitset constructor calls in tablegen-generated initializers of instruction info tables.
This should now be fixed.
llvm-svn: 238192
Previously, subtarget features were a bitfield with the underlying type being uint64_t.
Since several targets (X86 and ARM, in particular) have hit or were very close to hitting this bound, switching the features to use a bitset.
No functional change.
The first two times this was committed (r229831, r233055), it caused several buildbot failures.
At least some of the ARM and MIPS ones were due to gcc/binutils issues, and should now be fixed.
llvm-svn: 237234
After recognising that a certain narrow instruction might need a relocation to
be represented, we used to unconditionally relax it to a Thumb2 instruction to
permit this. Unfortunately, some CPUs (e.g. v6m) don't even have most Thumb2
instructions, so we end up emitting a completely invalid instruction.
Theoretically, ELF does have relocations for these situations; but they are
fairly unusable with such short ranges and the ABI document even says they're
documented "for completeness". So an error is probably better there too.
rdar://20391953
llvm-svn: 234195
As pr19627 points out, every use of AliasedSymbol is likely a bug.
The main use was to avoid the oddity of a variable showing up as undefined. That
was fixed in r233995, which made these calls nops.
llvm-svn: 234169
objects. There were a few FIXMEs in ARMAsmBackend.cpp suggesting the class
definitions should be in a separate file. Starting with ARMAsmBackend, the
class definition has been put in a header file, and #includes reduced. Each
sub-type of ARMAsmBackend is now in its own header file.
Derived types have been painted with a different color of bike-shed:
s/DarwinARMAsmBackend/ARMAsmBackendDarwin/g
s/ARMWinCOFFAsmBackend/ARMAsmBackendWinCOFF/g
s/ELFARMAsmBackend/ARMAsmBackendELF/g
Finally, clang-format has been run across ARMAsmBackend.cpp
llvm-svn: 217866
This adds FK_SecRel_2 relocation support to ARM. This enables the building of
object files for armv7-windows-msvc which enables CodeView line tables for
debugging as opposed to armv7-windows-itanium which currently uses DWARF.
llvm-svn: 208273
Add handling for FK_SecRel_4 (4-byte section relative relocations). These are
used by the generation of DWARF debug information (the abbrevations use section
relative relocations). This will also be used in generation of CodeView line
tables.
llvm-svn: 207941
Introduce support for WoA PE/COFF object file emission from LLVM. Add the new
target specific PE/COFF Streamer (ARMWinCOFFStreamer) that handles the ARM
specific behaviour of PE/COFF object emission. ARM exception information is not
yet emitted and is a TODO item.
The ARM specific object writer (ARMWinCOFFObjectWriter) handles the ARM specific
relocation handling in conjunction with the WinCOFFObjectWriter in the MC layer.
The MC layer needs to be updated to deal with the relocation adjustments.
Branch relocations are adjusted by 4 bytes (unlikely their ELF counterparts).
Minor tweaks to switch multiple conditional checks into equivalent switch
statements. The ObjectFileInfo is updated to relax the object file setup for
Windows COFF. Move the architecture checks into an assertion. Windows COFF is
currently only supported on x86, x86_64, and ARM (thumb). Rather than
defaulting to ELF, we will refuse to generate an object file. This is better
though as you do not get an (arbitrary) object file which is different from the
request.
llvm-svn: 207345
I discovered this const-hole while attempting to coalesnce the Symbol
and SymbolMap data structures. There's some pending issues with that,
but I figured this change was easy to flush early.
llvm-svn: 207124
I started trying to fix a small issue, but this code has seen a small fix too
many.
The old code was fairly convoluted. Some of the issues it had:
* It failed to check if a symbol difference was in the some section when
converting a relocation to pcrel.
* It failed to check if the relocation was already pcrel.
* The pcrel value computation was wrong in some cases (relocation-pc.s)
* It was missing quiet a few cases where it should not convert symbol
relocations to section relocations, leaving the backends to patch it up.
* It would not propagate the fact that it had changed a relocation to pcrel,
requiring a quiet nasty work around in ARM.
* It was missing comments.
llvm-svn: 205076
In Thumb1 mode, bl instruction might be selected for branches between
basic blocks in the function if the offset is greater than 2KB.
However, this might cause SEGV because the destination symbol
is not marked as thumb function and the execution mode will be reset
to ARM mode.
Since we are sure that these symbols are in the same data fragment, we
can simply resolve these local symbols, and don't emit any relocation
information for this bl instruction.
llvm-svn: 200842
This adds support for TLS CALL relocations. TLS CALL relocations are used to
indicate to the linker to generate appropriate entries to resolve TLS references
via an appropriate function invocation (e.g. __tls_get_addr(PLT)).
In order to accomodate the linker relaxation of the TLS access model for the
references (GD/LD -> IE, IE -> LE), the relocation addend must be incomplete.
This requires that the partial inplace value is also incomplete (i.e. 0). We
simply avoid the offset value calculation at the time of the fixup adjustment in
the ARM assembler backend.
llvm-svn: 200446
The ARM backend has been using most of the MachO related subtarget
checks almost interchangeably, and since the only target it's had to
run on has been IOS (which is all three of MachO, Darwin and IOS) it's
worked out OK so far.
But we'd like to support embedded targets under the "*-*-none-macho"
triple, which means everything starts falling apart and inconsistent
behaviours emerge.
This patch should pick a reasonably sensible set of behaviours for the
new triple (and any others that come along, with luck). Some choices
were debatable (notably FP == r7 or r11), but we can revisit those
later when deficiencies become apparent.
llvm-svn: 198617
We used to generate the compact unwind encoding from the machine
instructions. However, this had the problem that if the user used `-save-temps'
or compiled their hand-written `.s' file (with CFI directives), we wouldn't
generate the compact unwind encoding.
Move the algorithm that generates the compact unwind encoding into the
MCAsmBackend. This way we can generate the encoding whether the code is from a
`.ll' or `.s' file.
<rdar://problem/13623355>
llvm-svn: 190290
instructions. With this patch:
1. ldr.n is recognized as mnemonic for the short encoding
2. ldr.w is recognized as menmonic for the long encoding
3. ldr will map to either short or long encodings depending on the size of the offset
llvm-svn: 186831
- Don't use assert(0), or tests may pass or fail according to assertions.
- For now, The tests are marked as XFAIL for win32 hosts.
FIXME: Could we avoid XFAIL to specify triple in the RUN lines?
llvm-svn: 183728
The encoding of NOP in ARMAsmBackend.cpp is missing a trailing zero, which
causes the emission of a coprocessor instruction rather than "mov r0, r0"
as indicated in the comment. The test also checks for the wrong encoding.
http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20121203/157919.html
llvm-svn: 169420
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
llvm-svn: 169131
The target backend can support data-in-code load commands even when
the assembler doesn't, or vice-versa. Allow targets to opt-in for
direct-to-object.
PR13973.
llvm-svn: 164974
for the assembler and disassembler. Which were not being set/read correctly
for offsets greater than 22 bits in some cases.
Changes to lib/Target/ARM/ARMAsmBackend.cpp from Gideon Myles!
llvm-svn: 156118
Replace some assert() calls w/ actual diagnostics. In a perfect world,
there'd be range checks on these values long before things ever reached
this code. For now, though, issuing a better-late-than-never diagnostic
is still a big improvement over assert().
rdar://11347287
llvm-svn: 155851
The base address for the PC-relative load is Align(PC,4), so it's the
address of the word containing the 16-bit instruction, not the address
of the instruction itself. Ugh.
rdar://11314619
llvm-svn: 155659