createReplacementInstr was a trivial wrapper around
ConstantExpr::getAsInstruction, which also inserted the new instruction
into a basic block. Implement this directly in getAsInstruction by
adding an InsertBefore parameter and change all callers to use it. NFC.
A follow-up patch will remove createReplacementInstr.
Differential Revision: https://reviews.llvm.org/D112791
This patch continues unblocking optimizations that are blocked by pseudo probe instrumentation.
Not exactly like DbgIntrinsics, PseudoProbe intrinsic has other attributes (such as mayread, maywrite, mayhaveSideEffect) that can block optimizations. The issues fixed are:
- Flipped default param of getFirstNonPHIOrDbg API to skip pseudo probes
- Unblocked CSE by avoiding pseudo probe from clobbering memory SSA
- Unblocked induction variable simpliciation
- Allow empty loop deletion by treating probe intrinsic isDroppable
- Some refactoring.
Reviewed By: wenlei
Differential Revision: https://reviews.llvm.org/D110847
Do not call `TryToShrinkGlobalToBoolean` for address spaces
that don't allow initializers. It inserts an initializer value
while shrinking to bool. Used the target hook introduced with
D109337 to skip this call for the restricted address spaces.
Reviewed By: tra
Differential Revision: https://reviews.llvm.org/D109823
This reapplies commit 7dbba3376f, or, put
differently, this reverts commit d9a8d20827.
The test now requires the amdgpu and nvptx backend explicitly as it
won't work without properly.
Not all address spaces support initializers for globals and we can
therefore not set them without checking if they are allowed. This
patch adds a hook into TTI to check if an AS allows non-undef
initializers. We disable it for all but address space 0 by default,
NVPTX and AMDGPU targets allow all but address space 3.
Reviewed By: tra
Differential Revision: https://reviews.llvm.org/D109337
We try to forward a stored-once-constant-value from one global access
to another, but that's not safe if the constant value is an expression
that can trap.
The tests are reduced from the miscompile examples in:
https://llvm.org/PR47578
Differential Revision: https://reviews.llvm.org/D108771
In the provided test case, we were trying to set the global's
initializer to `i32* null` when the global's value type was `@0`.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D108232
Currently, in OptimizeGlobalAddressOfMalloc, the transformation for global loads assumes that they have the same Type. With the support of ConstantExpr (https://reviews.llvm.org/D106589), this may not be true any more (as seen in the test case), and we miss the code to handle this, This is to fix that.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D107397
I'm working on extending the OptimizeGlobalAddressOfMalloc to handle some more general cases. This is to add support of the ConstantExpr use of the global variables. The function allUsesOfLoadedValueWillTrapIfNull is now iterative with the added CE use of GV. Also, the recursive function valueIsOnlyUsedLocallyOrStoredToOneGlobal is changed to iterative using a worklist with the GEP case added.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D106589
GlobalOpt can slice structs/arrays and change GEPs in the process,
but it was not updating alignments for load/store users. This
eventually causes the crashing seen in:
https://llvm.org/PR49661https://llvm.org/PR50253
On x86, this required SLP+codegen to create an aligned vector
store on an invalid address. The bugs would be easier to
demonstrate on a target with stricter alignment requirements.
I'm not sure if this is a complete solution. The alignment
updating code is adapted from InstCombine, so I assume that
part is tested and good.
Differential Revision: https://reviews.llvm.org/D102552
GlobalOpt implements a heap SROA (SROA for an malloc allocatated struct or array
of structs) which is largely undertested (heap-sra-[1234].ll are basically the
same test with very little difference) and does not trigger at all when
bootstrapping clang (it only supports the case of one single store).
The heap SROA implementation causes PR50027 (GEP is not properly handled; crash or miscompile).
Just drop the implementation. I have deleted some obviously duplicated tests
but kept `heap-sra-[12]{,-no-nullopt}.ll`.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D102257
Both the alias and aliasee linkage are important.
PR27866 provides some background.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D99629
Previously we would use the type of the pointee to determine what to
cast the result of constant folding a load. To aid with opaque pointer
types, we should explicitly pass the type of the load rather than
looking at pointee types.
ConstantFoldLoadThroughBitcast() converts the const prop'd value to the
proper load type (e.g. [1 x i32] -> i32). Instead of calling this in
every intermediate step like bitcasts, we only call this when we
actually see the global initializer value.
In some existing uses of this API, we don't know the exact type we're
loading from immediately (e.g. first we visit a bitcast, then we visit
the load using the bitcast). In those cases we have to manually call
ConstantFoldLoadThroughBitcast() when simplifying the load to make sure
that we cast to the proper type.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D100718
This patch enhances hasAddressTaken() to ignore bitcasts as a
callee in callbase instruction. Such bitcast usage doesn't really take
the address in a useful meaningful way.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D98884
And delete the SmallPtrSetImpl overload.
While here, decrease inline element counts from 8 to 4. See D97128 for the choice.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D97257
Use isKnownXY comparators when one of the operands can be with
scalable vectors or getFixedSize() for all the other cases.
This patch also does bug fixes for getPrimitiveSizeInBits by using
getFixedSize() near the places with the TypeSize comparison.
Differential Revision: https://reviews.llvm.org/D89703
When marking a global variable constant, and simplifying users using
CleanupConstantGlobalUsers(), the pass could incorrectly return false if
there were still some uses left, and no further optimizations was done.
This was caught using the check introduced by D80916.
This fixes PR46749.
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D85837
When removing a non-constant store to a global in
CleanupPointerRootUsers(), the GlobalOpt pass could incorrectly return
false.
This was caught using the check introduced by D80916.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D86149
When turning on -debug-info-kind=constructor we ran into a "fragment covers
entire variable" error during thinlto. The fragment is currently always
emitted if there is no type size, but sometimes the variable has a
forward declared struct type which doesn't have a size.
This changes the code to get the type size from the GlobalVariable instead.
Differential Revision: https://reviews.llvm.org/D85572
Summary:
It is reasonably common to want to clone some call with different bundles.
Let's actually provide an interface to do that.
Reviewers: chandlerc, jdoerfert, dblaikie, nickdesaulniers
Reviewed By: nickdesaulniers
Subscribers: llvm-commits, hiraditya
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D83248
When possible (e.g. internal linkage), strip preallocated attribute off
parameters/arguments.
This requires removing the "preallocated" operand bundle from the call
site, replacing @llvm.call.preallocated.arg() with an alloca and a
bitcast to i8*, and removing the @llvm.call.preallocated.setup(). Since
@llvm.call.preallocated.arg() can be called multiple times with the same
arg index, we create an alloca per arg index.
We add a @llvm.stacksave() where the @llvm.call.preallocated.setup() was
and a @llvm.stackrestore() after the preallocated call to prevent the
stack from blowing up. This is valid because the argument would normally
not exist on the stack after the call before the transformation.
This does not currently handle all possible preallocated calls. We will
need to figure out where to put @llvm.stackrestore() in the cases where
there is no obvious place to put it, for example conditional
preallocated calls, invokes.
This sort of transformation may need to be moved to somewhere more
accessible to accomodate similar transformations (like inlining) in the
future.
Reviewers: efriedma, hans
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D80951
See https://reviews.llvm.org/D74651 for the preallocated IR constructs
and LangRef changes.
In X86TargetLowering::LowerCall(), if a call is preallocated, record
each argument's offset from the stack pointer and the total stack
adjustment. Associate the call Value with an integer index. Store the
info in X86MachineFunctionInfo with the integer index as the key.
This adds two new target independent ISDOpcodes and two new target
dependent Opcodes corresponding to @llvm.call.preallocated.{setup,arg}.
The setup ISelDAG node takes in a chain and outputs a chain and a
SrcValue of the preallocated call Value. It is lowered to a target
dependent node with the SrcValue replaced with the integer index key by
looking in X86MachineFunctionInfo. In
X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to an
%esp adjustment, the exact amount determined by looking in
X86MachineFunctionInfo with the integer index key.
The arg ISelDAG node takes in a chain, a SrcValue of the preallocated
call Value, and the arg index int constant. It produces a chain and the
pointer fo the arg. It is lowered to a target dependent node with the
SrcValue replaced with the integer index key by looking in
X86MachineFunctionInfo. In
X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to a
lea of the stack pointer plus an offset determined by looking in
X86MachineFunctionInfo with the integer index key.
Force any function containing a preallocated call to use the frame
pointer.
Does not yet handle a setup without a call, or a conditional call.
Does not yet handle musttail. That requires a LangRef change first.
Tried to look at all references to inalloca and see if they apply to
preallocated. I've made preallocated versions of tests testing inalloca
whenever possible and when they make sense (e.g. not alloca related,
inalloca edge cases).
Aside from the tests added here, I checked that this codegen produces
correct code for something like
```
struct A {
A();
A(A&&);
~A();
};
void bar() {
foo(foo(foo(foo(foo(A(), 4), 5), 6), 7), 8);
}
```
by replacing the inalloca version of the .ll file with the appropriate
preallocated code. Running the executable produces the same results as
using the current inalloca implementation.
Reverted due to unexpectedly passing tests, added REQUIRES: asserts for reland.
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77689
See https://reviews.llvm.org/D74651 for the preallocated IR constructs
and LangRef changes.
In X86TargetLowering::LowerCall(), if a call is preallocated, record
each argument's offset from the stack pointer and the total stack
adjustment. Associate the call Value with an integer index. Store the
info in X86MachineFunctionInfo with the integer index as the key.
This adds two new target independent ISDOpcodes and two new target
dependent Opcodes corresponding to @llvm.call.preallocated.{setup,arg}.
The setup ISelDAG node takes in a chain and outputs a chain and a
SrcValue of the preallocated call Value. It is lowered to a target
dependent node with the SrcValue replaced with the integer index key by
looking in X86MachineFunctionInfo. In
X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to an
%esp adjustment, the exact amount determined by looking in
X86MachineFunctionInfo with the integer index key.
The arg ISelDAG node takes in a chain, a SrcValue of the preallocated
call Value, and the arg index int constant. It produces a chain and the
pointer fo the arg. It is lowered to a target dependent node with the
SrcValue replaced with the integer index key by looking in
X86MachineFunctionInfo. In
X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to a
lea of the stack pointer plus an offset determined by looking in
X86MachineFunctionInfo with the integer index key.
Force any function containing a preallocated call to use the frame
pointer.
Does not yet handle a setup without a call, or a conditional call.
Does not yet handle musttail. That requires a LangRef change first.
Tried to look at all references to inalloca and see if they apply to
preallocated. I've made preallocated versions of tests testing inalloca
whenever possible and when they make sense (e.g. not alloca related,
inalloca edge cases).
Aside from the tests added here, I checked that this codegen produces
correct code for something like
```
struct A {
A();
A(A&&);
~A();
};
void bar() {
foo(foo(foo(foo(foo(A(), 4), 5), 6), 7), 8);
}
```
by replacing the inalloca version of the .ll file with the appropriate
preallocated code. Running the executable produces the same results as
using the current inalloca implementation.
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77689
This method has been commented as deprecated for a while. Remove
it and replace all uses with the equivalent getCalledOperand().
I also made a few cleanups in here. For example, to removes use
of getElementType on a pointer when we could just use getFunctionType
from the call.
Differential Revision: https://reviews.llvm.org/D78882