InstCombine canonicalizes 'sub nuw' instructions to 'add' without the
`nuw` flag. The typical case where we see it is decrementing induction
variables. For them, IndVars fails to prove that it's legal to widen them,
and inserts unprofitable `zext`'s.
This patch adds recognition of such pattern using SCEV.
Differential Revision: https://reviews.llvm.org/D89550
Reviewed By: fhahn, skatkov
This was missing as discovered by the SystemZ multistage bot:
http://lab.llvm.org:8011/#/builders/8, where wrong code resulted when this
extension was not performed.
Thanks for review by Ulrich Weigand and Roman Lebedev.
Differential Revision: https://reviews.llvm.org/D90760
We already do not unroll loops with vector instructions under MVE, but
that does not include the remainder loops that the vectorizer produces.
These remainder loops will be rarely executed and are not worth
unrolling, as the trip count is likely to be low if they get executed at
all. Luckily they get llvm.loop.isvectorized to make recognizing them
simpler.
We have wanted to do this for a while but hit issues with low overhead
loops being reverted due to difficult registry allocation. With recent
changes that seems to be less of an issue now.
Differential Revision: https://reviews.llvm.org/D90055
From C11 and C++11 onwards, a forward-progress requirement has been
introduced for both languages. In the case of C, loops with non-constant
conditionals that do not have any observable side-effects (as defined by
6.8.5p6) can be assumed by the implementation to terminate, and in the
case of C++, this assumption extends to all functions. The clang
frontend will emit the `mustprogress` function attribute for C++
functions (D86233, D85393, D86841) and emit the loop metadata
`llvm.loop.mustprogress` for every loop in C11 or later that has a
non-constant conditional.
This patch modifies LoopDeletion so that only loops with
the `llvm.loop.mustprogress` metadata or loops contained in functions
that are required to make progress (`mustprogress` or `willreturn`) are
checked for observable side-effects. If these loops do not have an
observable side-effect, then we delete them.
Loops without observable side-effects that do not satisfy the above
conditions will not be deleted.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D86844
Currently, LoopDeletion refuses to remove dead loops with no exit blocks
because it cannot statically determine the control flow after it removes
the block. This leads to miscompiles if the loop is an infinite loop and
should've been removed.
Differential Revision: https://reviews.llvm.org/D90115
This moves WidenIV from IndVarSimplify to Utils/SimplifyIndVar so that we have
createWideIV available as a generic helper utility. I.e., this is not only
useful in IndVarSimplify, but could be useful for loop transformations. For
example, motivation for this refactoring is the loop flatten transformation: if
induction variables in a loop nest can be widened, we can avoid having to
perform certain overflow checks, enabling this transformation.
Differential Revision: https://reviews.llvm.org/D90421
There is already an API in BasicBlock that checks and returns the musttail call if it precedes the return instruction.
Use it instead of manually checking in each place.
Differential Revision: https://reviews.llvm.org/D90693
This reverts the revert commit 408c4408fa.
This version of the patch includes a fix for a crash caused by
treating ICmp/FCmp constant expressions as instructions.
Original message:
On some targets, like AArch64, vector selects can be efficiently lowered
if the vector condition is a compare with a supported predicate.
This patch adds a new argument to getCmpSelInstrCost, to indicate the
predicate of the feeding select condition. Note that it is not
sufficient to use the context instruction when querying the cost of a
vector select starting from a scalar one, because the condition of the
vector select could be composed of compares with different predicates.
This change greatly improves modeling the costs of certain
compare/select patterns on AArch64.
I am also planning on putting up patches to make use of the new argument in
SLPVectorizer & LV.
Previously, !noalias and !alias.scope metadata on the call site was
applied as part of CloneAliasScopeMetadata(), which short-circuits
if the callee does not use any noalias metadata itself. However,
these two things have no relation to each other.
Consistently apply !noalias and !alias.scope metadata by integrating
this into an existing function that handled !llvm.access.group and
!llvm.mem.parallel_loop_access metadata. The handling for all of
these metadata kinds essentially the same.
CallInst::updateProfWeight() creates branch_weights with i64 instead of i32.
To be more consistent everywhere and remove lots of casts from uint64_t
to uint32_t, use i64 for branch_weights.
Reviewed By: davidxl
Differential Revision: https://reviews.llvm.org/D88609
This patch modifies two for loops to use the range based syntax.
Since they are equivalent, this patch is tagged NFC.
Differential Revision: https://reviews.llvm.org/D90069
On some targets, like AArch64, vector selects can be efficiently lowered
if the vector condition is a compare with a supported predicate.
This patch adds a new argument to getCmpSelInstrCost, to indicate the
predicate of the feeding select condition. Note that it is not
sufficient to use the context instruction when querying the cost of a
vector select starting from a scalar one, because the condition of the
vector select could be composed of compares with different predicates.
This change greatly improves modeling the costs of certain
compare/select patterns on AArch64.
I am also planning on putting up patches to make use of the new argument in
SLPVectorizer & LV.
Reviewed By: dmgreen, RKSimon
Differential Revision: https://reviews.llvm.org/D90070
And use it to model LLVM IR's `ptrtoint` cast.
This is essentially an alternative to D88806, but with no chance for
all the problems it caused due to having the cast as implicit there.
(see rG7ee6c402474a2f5fd21c403e7529f97f6362fdb3)
As we've established by now, there are at least two reasons why we want this:
* It will allow SCEV to actually model the `ptrtoint` casts
and their operands, instead of treating them as `SCEVUnknown`
* It should help with initial problem of PR46786 - this should eventually allow us
to not loose pointer-ness of an expression in more cases
As discussed in [[ https://bugs.llvm.org/show_bug.cgi?id=46786 | PR46786 ]], in principle,
we could just extend `SCEVUnknown` with a `is ptrtoint` cast, because `ScalarEvolution::getPtrToIntExpr()`
should sink the cast as far down into the expression as possible,
so in the end we should always end up with `SCEVPtrToIntExpr` of `SCEVUnknown`.
But i think that it isn't the best solution, because it doesn't really matter
from memory consumption side - there probably won't be *that* many `SCEVPtrToIntExpr`s
for it to matter, and it allows for much better discoverability.
Reviewed By: mkazantsev
Differential Revision: https://reviews.llvm.org/D89456
Use -0.0 instead of 0.0 as the start value. The previous use of 0.0
was fine for all existing uses of this function though, as it is
always generated with fast flags right now, and thus nsz.
This patch changes MergeBlockIntoPredecessor to skip the call to
RemoveRedundantDbgInstrs, in effect partially reverting D71480 due to
some compile-time issues spotted in LoopUnroll and SimplifyCFG.
The call to RemoveRedundantDbgInstrs appears to have changed the
worst-case behavior of the merging utility. Loosely speaking, it seems
to have gone from O(#phis) to O(#insts).
It might not be possible to mitigate this by scanning a block to
determine whether there are any debug intrinsics to remove, since such a
scan costs O(#insts).
So: skip the call to RemoveRedundantDbgInstrs. There's surprisingly
little fallout from this, and most of it can be addressed by doing
RemoveRedundantDbgInstrs later. The exception is (the block-local
version of) SimplifyCFG, where it might just be too expensive to call
RemoveRedundantDbgInstrs.
Differential Revision: https://reviews.llvm.org/D88928
CallInst::updateProfWeight() creates branch_weights with i64 instead of i32.
To be more consistent everywhere and remove lots of casts from uint64_t
to uint32_t, use i64 for branch_weights.
Reviewed By: davidxl
Differential Revision: https://reviews.llvm.org/D88609
Prepend the module name hash with a fixed string ".__uniq." which helps tools
that consume sampled profiles and attribute it to functions to understand
that this symbol belongs to a unique internal linkage type symbol.
Symbols with suffixes can result from various optimizations in the compiler.
Function Multiversioning, function splitting, parameter constant propogation,
unique internal linkage names.
External tools like sampled profile aggregators combine profiles from multiple
runs of a binary. They use various heuristics with symbols that have suffixes
to try and attribute the profile to the right function instance. For instance
multi-versioned symbols like foo.avx, foo.sse4.2, etc even though different
should be attributed to the same source function if a single function is
versioned, using attribute target_clones (supported in GCC but yet to land in
LLVM). Similarly, functions that are split (split part having a .cold suffix)
could have profiles for both the original and split symbols but would be
aggregated and attributed to the original function that was split.
Unique internal linkage functions however have different source instances and
the aggregator must not put them together but attribute it to the appropriate
function instance. To be sure that we are dealing with a symbol of a unique
internal linkage function, we would like to prepend the hash with a known
string ".__uniq." which these tools can check to understand the suffix type.
Differential Revision: https://reviews.llvm.org/D89617
The exit blocks of the versioned and non-versioned loops are not dedicated and thus the two loops are not in simplify form.
Insert dummy exit blocks after loop versioning with `formDedicatedExits()` to preserve the simplify form for subsequence passes.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D89569
This change introduces a GC parseable lowering for element atomic
memcpy/memmove intrinsics. This way runtime can provide an
implementation which can take a safepoint during copy operation.
See "GC-parseable element atomic memcpy/memmove" thread on llvm-dev
for the background and details:
https://groups.google.com/g/llvm-dev/c/NnENHzmX-b8/m/3PyN8Y2pCAAJ
Differential Revision: https://reviews.llvm.org/D88861
It's currently ambiguous in IR whether the source language explicitly
did not want a stack a stack protector (in C, via function attribute
no_stack_protector) or doesn't care for any given function.
It's common for code that manipulates the stack via inline assembly or
that has to set up its own stack canary (such as the Linux kernel) would
like to avoid stack protectors in certain functions. In this case, we've
been bitten by numerous bugs where a callee with a stack protector is
inlined into an __attribute__((__no_stack_protector__)) caller, which
generally breaks the caller's assumptions about not having a stack
protector. LTO exacerbates the issue.
While developers can avoid this by putting all no_stack_protector
functions in one translation unit together and compiling those with
-fno-stack-protector, it's generally not very ergonomic or as
ergonomic as a function attribute, and still doesn't work for LTO. See also:
https://lore.kernel.org/linux-pm/20200915172658.1432732-1-rkir@google.com/https://lore.kernel.org/lkml/20200918201436.2932360-30-samitolvanen@google.com/T/#u
Typically, when inlining a callee into a caller, the caller will be
upgraded in its level of stack protection (see adjustCallerSSPLevel()).
By adding an explicit attribute in the IR when the function attribute is
used in the source language, we can now identify such cases and prevent
inlining. Block inlining when the callee and caller differ in the case that one
contains `nossp` when the other has `ssp`, `sspstrong`, or `sspreq`.
Fixes pr/47479.
Reviewed By: void
Differential Revision: https://reviews.llvm.org/D87956
This patch copies @vsk's fix to instcombine from D85555 over to mem2reg. The
motivation and rationale are exactly the same: When mem2reg removes an alloca,
it erases the dbg.{addr,declare} instructions which refer to the alloca. It
would be better to instead remove all debug intrinsics which describe the
contents of the dead alloca, namely all dbg.value(<dead alloca>, ...,
DW_OP_deref)'s.
As far as I can tell, prior to D80264 these `dbg.value+deref`s would have been
silently dropped instead of being made `undef`, so we're just returning to
previous behaviour with these patches.
Testing:
`llvm-lit llvm/test` and `ninja check-clang` gave no unexpected failures. Added
3 tests, each of which covers a dbg.value deletion path in mem2reg:
mem2reg-promote-alloca-1.ll
mem2reg-promote-alloca-2.ll
mem2reg-promote-alloca-3.ll
The first is based on the dexter test inlining.c from D89543. This patch also
improves the debugging experience for loop.c from D89543, which suffers
similarly after arg promotion instead of inlining.
Use isKnownXY comparators when one of the operands can be with
scalable vectors or getFixedSize() for all the other cases.
This patch also does bug fixes for getPrimitiveSizeInBits by using
getFixedSize() near the places with the TypeSize comparison.
Differential Revision: https://reviews.llvm.org/D89703
This reverts commit 26ee8aff2b.
It's necessary to insert bitcast the pointer operand of a lifetime
marker if it has an opaque pointer type.
rdar://70560161
This adds the LLVM IR attribute `mustprogress` as defined in LangRef through D86233. This attribute will be applied to functions with in languages like C++ where forward progress is guaranteed. Functions without this attribute are not required to make progress.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D85393
The main tricky thing here is forward-declaring the enum:
we have to specify it's underlying data type.
In particular, this avoids the danger of switching over the SCEVTypes,
but actually switching over an integer, and not being notified
when some case is not handled.
I have updated most of such switches to be exaustive and not have
a default case, where it's pretty obvious to be the intent,
however not all of them.
If we switch over an enum, compiler can easily issue a diagnostic
if some case is not handled. However with an if cascade that isn't so.
Experimental evidence suggests new behavior to be superior.
All existing SCEV cast types operate on integers.
D89456 will add SCEVPtrToIntExpr cast expression type.
I believe this is best for consistency.
Reviewed By: mkazantsev
Differential Revision: https://reviews.llvm.org/D89455
This is an initial cleanup of the way LoopVersioning interacts with LAA.
Currently LoopVersioning has 2 ways of initializing things:
1. Passing LAI and passing UseLAIChecks = true
2. Passing UseLAIChecks = false, followed by calling setSCEVChecks and
setAliasChecks.
Both ways of initializing lead to the same result and the duplication
seems more complicated than necessary.
This patch removes the UseLAIChecks flag from the constructor and the
setSCEVChecks & setAliasChecks helpers and move initialization
exclusively to the constructor.
This simplifies things, by providing a single way to initialize
LoopVersioning and reducing duplication.
Reviewed By: Meinersbur, lebedev.ri
Differential Revision: https://reviews.llvm.org/D84406
While we haven't encountered an earth-shattering problem with this yet,
by now it is pretty evident that trying to model the ptr->int cast
implicitly leads to having to update every single place that assumed
no such cast could be needed. That is of course the wrong approach.
Let's back this out, and re-attempt with some another approach,
possibly one originally suggested by Eli Friedman in
https://bugs.llvm.org/show_bug.cgi?id=46786#c20
which should hopefully spare us this pain and more.
This reverts commits 1fb6104293,
7324616660,
aaafe350bb,
e92a8e0c74.
I've kept&improved the tests though.
This relands commit 1c021c64ca which was
reverted in commit 17cec6a11a because
an assertion was being triggered, since `BuildConstantFromSCEV()`
wasn't updated to handle the case where the constant we want to truncate
is actually a pointer. I was unsuccessful in coming up with a test case
where we'd end there with constant zext/sext of a pointer,
so i didn't handle those cases there until there is a test case.
Original commit message:
While we indeed can't treat them as no-ops, i believe we can/should
do better than just modelling them as `unknown`. `inttoptr` story
is complicated, but for `ptrtoint`, it seems straight-forward
to model it just as a zext-or-trunc of unknown.
This may be important now that we track towards
making inttoptr/ptrtoint casts not no-op,
and towards preventing folding them into loads/etc
(see D88979/D88789/D88788)
Reviewed By: mkazantsev
Differential Revision: https://reviews.llvm.org/D88806
> While we indeed can't treat them as no-ops, i believe we can/should
> do better than just modelling them as `unknown`. `inttoptr` story
> is complicated, but for `ptrtoint`, it seems straight-forward
> to model it just as a zext-or-trunc of unknown.
>
> This may be important now that we track towards
> making inttoptr/ptrtoint casts not no-op,
> and towards preventing folding them into loads/etc
> (see D88979/D88789/D88788)
>
> Reviewed By: mkazantsev
>
> Differential Revision: https://reviews.llvm.org/D88806
It caused the following assert during Chromium builds:
llvm/lib/IR/Constants.cpp:1868:
static llvm::Constant *llvm::ConstantExpr::getTrunc(llvm::Constant *, llvm::Type *, bool):
Assertion `C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer"' failed.
See code review for a link to a reproducer.
This reverts commit 1c021c64ca.
60b852092c introduced SCEV verification to
deleteDeadLoop, but it appears this check is currently a bit over-eager
and some users of deleteDeadLoop appear to only patch up SE after
calling it (e.g. PR47753).
Remove the extra check for now. We can consider adding it back after we
tracked down the source of the inconsistency for PR47753.
While we indeed can't treat them as no-ops, i believe we can/should
do better than just modelling them as `unknown`. `inttoptr` story
is complicated, but for `ptrtoint`, it seems straight-forward
to model it just as a zext-or-trunc of unknown.
This may be important now that we track towards
making inttoptr/ptrtoint casts not no-op,
and towards preventing folding them into loads/etc
(see D88979/D88789/D88788)
Reviewed By: mkazantsev
Differential Revision: https://reviews.llvm.org/D88806
In the NPM, a pass cannot depend on another non-analysis pass. So pin
the test that tests that -lowerswitch is run automatically to legacy PM.
Reviewed By: sameerds
Differential Revision: https://reviews.llvm.org/D89051
Use cast<> as we immediately dereference the pointer afterwards - cast<> will assert if we fail.
Prevents clang static analyzer warning that we could deference a null pointer.
Add basic vector handling to recognizeBSwapOrBitReverseIdiom/collectBitParts - this works at the element level, all vector element operations must match (splat constants etc.) and there is no cross-element support (insert/extract/shuffle etc.).
If we're bswap'ing some bytes and zero'ing the remainder we can perform this as a bswap+mask which helps us match 'partial' bswaps as a first step towards folding into a more complex bswap pattern.
Reapplied with early-out if recognizeBSwapOrBitReverseIdiom collects a source wider than the result type.
Differential Revision: https://reviews.llvm.org/D88578
If we're bswap'ing some bytes and zero'ing the remainder we can perform this as a bswap+mask which helps us match 'partial' bswaps as a first step towards folding into a more complex bswap pattern.
Differential Revision: https://reviews.llvm.org/D88578
If we try to coerce a vector of non-integral pointers to a narrower type (either narrower vector or single pointer), we use inttoptr and violate the semantics of non-integral pointers. In theory, we can handle many of these cases, we just need to use a different code idiom to convert without going through inttoptr and back.
This shows up as wrong code bugs, and in some cases, crashes due to failed asserts. Modeled after a change which has lived downstream for a couple years, though completely rewritten to be more idiomatic.
Make sure we're using getScalarSizeInBits instead of cast<IntegerType> to get Type bit widths.
This is preliminary cleanup before we can start adding vector support to the bswap/bitreverse (element level) matching.
There doesn't seem to be any good reason for having a separate path for when we bswap/bitreverse at a smaller size than the destination size - so merge these to make the instruction generation a lot clearer.
Fix a number of WShadow warnings (I was used as the instruction and index......) and fix cases to match style.
Also, replaced the Bit APInt mask check in AND instructions with a direct APInt[] bit check.
PR39793 demonstrated an issue where we fail to recognize 'partial' bswap patterns of the lower bytes of an integer source.
In fact, most of this is already in place collectBitParts suitably tags zero bits, so we just need to correctly handle this case by finding the zero'd upper bits and reducing the bswap pattern just to the active demanded bits.
Differential Revision: https://reviews.llvm.org/D88316
This patch adds noundef to the returned pointers of allocators (malloc, calloc, ...)
and the pointer argument of free.
The returned pointer of allocators cannot be poison or (partially) undef.
Since the pointer that is given to free should precisely have zero offset,
it cannot be poison or (partially) undef too.
For the size arguments of allocators, noundef wasn't attached simply because
I wasn't sure whether attaching it is okay or not.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D87984
When removing an overflow intrinsic the Changed status in SimplifyIndvar
was not set, leading to the IndVarSimplify pass returning an incorrect
status.
This was caught using the check introduced by D80916.
As pointed out in the code review, a similar bug may exist for
eliminateTrunc().
Reviewed By: reames
Differential Revision: https://reviews.llvm.org/D85971
After D71539, we need to forget the loop before setting the incoming
values of phi nodes in exit blocks, because we are looking through those
phi nodes now and the SCEV expression could depend on the loop phi. If
we update the phi nodes before forgetting the loop, we miss those users
during invalidation.
Reviewed By: reames
Differential Revision: https://reviews.llvm.org/D88167
Require CxtI in getConstant() and getConstantRange() APIs.
Accordingly drop the BB parameter, as it is implied by
CxtI->getParent().
This makes sure we don't forget to pass the context instruction,
and makes the API contract clearer (also clean up the comments to
that effect -- the value holds at the context instruction, not
the end of the block).
Pulled from D87452, this is a fixed version of the collectBitParts fshl/fshr handling which as @nikic noticed wasn't checking for different providers or had correct bit ordering (which was hid by only testing shift amounts of bitwidth/2).
Differential Revision: https://reviews.llvm.org/D88292
This seems to fit the CGSCC updates model better than calling
addNewFunctionInto{Ref,}SCC() on newly created/outlined functions.
Now addNewFunctionInto{Ref,}SCC() are no longer necessary.
However, this doesn't work on newly outlined functions that aren't
referenced by the original function. e.g. if a() was outlined into b()
and c(), but c() is only referenced by b() and not by a(), this will
trigger an assert.
This also fixes an issue I was seeing with newly created functions not
having passes run on them.
Ran check-llvm with expensive checks.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D87798
A conversion from `pow` to `sqrt` shall not call an `errno`-setting
`sqrt` with -//infinity//: the `sqrt` will set `EDOM` where the `pow`
call need not.
This patch avoids the erroneous (pun not intended) transformation by
applying the restrictions discussed in the thread for
https://lists.llvm.org/pipermail/llvm-dev/2020-September/145051.html.
The existing tests are updated (depending on emphasis in the checks for
library calls, avoidance of overlap, and overall coverage):
- to add `ninf`, retaining the intended library call,
- to use the intrinsic, retaining the use of `select`, or
- to expect the replacement to not occur.
The following is tested:
- The pow intrinsic folds to a `select` instruction to
handle -//infinity//.
- The pow library call folds, with `ninf`, to `sqrt` without the
`select` instruction associated with handling -//infinity//.
- The pow library call does not fold to `sqrt` without `ninf`.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D87877
The current code for handling pow(x, y) where y is an integer plus 0.5
is not explicitly guarded against attempting to transform the case where
abs(y) is exactly 0.5.
The latter case is meant to be handled by `replacePowWithSqrt`. Indeed,
if the pow(x, integer+0.5) case proceeds past a certain point, it will
hit an assertion by attempting to form pow(x, 0) using `getPow`.
This patch adds an explicit check to prevent attempting the
pow(x, integer+0.5) transformation on pow(x, +/-0.5) as suggested during
the review of D87877. This has the effect of retaining the shrinking of
`pow` to `powf` when the `sqrt` libcall cannot be formed.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D88066
I want to export this function, and the current API was a bit
weird: It took an additional Alignment argument that didn't really
have anything to do with what the function does. Drop it, and
perform a max at the callsite.
Also rename it to tryEnforceAlignment().
Currently SCEVExpander creates inttoptr for non-integral pointers if the
base is a null constant for example. This results in invalid IR.
This patch changes InsertNoopCastOfTo to emit a GEP & bitcast to convert
to a non-integral pointer. First, a GEP of i8* null is generated and the
integral value is used as index. The GEP is then bitcasted to the target
type.
This was exposed by D71539.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D87827
~~D65060 uncovered that trying to use BFI in loop passes can lead to non-deterministic behavior when blocks are re-used while retaining old BFI data.~~
~~To make sure BFI is preserved through loop passes a Value Handle (VH) callback is registered on blocks themselves. When a block is freed it now also wipes out the accompanying BFI entry such that stale BFI data can no longer persist resolving the determinism issue. ~~
~~An optimistic approach would be to incrementally update BFI information throughout the loop passes rather than only invalidating them on removed blocks. The issues with that are:~~
~~1. It is not clear how BFI information should be incrementally updated: If a block is duplicated does its BFI information come with? How about if it's split/modified/moved around? ~~
~~2. Assuming we can address these problems the implementation here will be a massive undertaking. ~~
~~There's a known need of BFI in LICM analysis which requires correct but not incrementally updated BFI data. A follow-up change can register BFI in all loop passes so this preserved but potentially lossy data is available to any loop pass that wants it.~~
See: D75341 for an identical implementation of preserving BFI via VH callbacks. The previous statements do still apply but this change no longer has to be in this diff because it's already upstream 😄 .
This diff also moves BFI to be a part of LoopStandardAnalysisResults since the previous method using getCachedResults now (correctly!) statically asserts (D72893) that this data isn't static through the loop passes.
Testing
Ninja check
Reviewed By: asbirlea, nikic
Differential Revision: https://reviews.llvm.org/D86156
Call instructions with musttail tag must be optimized as a tailcall, otherwise could lead to incorrect program behavior.
When TSAN is instrumenting functions, it broke the contract by adding a call to the tsan exit function inbetween the musttail call and return instruction, and also inserted exception handling code.
This happend throguh EscapeEnumerator, which adds exception handling code and returns ret instructions as the place to insert instrumentation calls.
This becomes especially problematic for coroutines, because coroutines rely on tail calls to do symmetric transfers properly.
To fix this, this patch moves the location to insert instrumentation calls prior to the musttail call for ret instructions that are following musttail calls, and also does not handle exception for musttail calls.
Differential Revision: https://reviews.llvm.org/D87620
The FailureReason input parameter maybe null, we check this in all other cases in the method but this one was missed somehow.
Fixes clang-tidy warning.
When inlining functions containing allocas of scalable vectors we
cannot specify the size in the lifetime markers, since we don't
know this at compile time.
Added new test here:
test/Transforms/Inline/AArch64/sve-alloca-merge.ll
Differential Revision: https://reviews.llvm.org/D87139
As code size is the only thing we care about at minsize, query the
cost of materialising immediates when calculating the cost of a SCEV
expansion. We also modify the CostKind to TCK_CodeSize for minsize,
instead of RecipThroughput.
Differential Revision: https://reviews.llvm.org/D76434
If a function had at most one return block, the pass would return false
regardless if an unified unreachable block was created.
This patch fixes that by refactoring runOnFunction into two separate
helper functions for handling the unreachable blocks respectively the
return blocks, as suggested by @bjope in a review comment.
This was caught using the check introduced by D80916.
Reviewed By: serge-sans-paille
Differential Revision: https://reviews.llvm.org/D85818
This patch follows D85345 and adds more noundef attributes to return values/arguments of library functions
that are mostly about accessing the file system or processes.
A few functions like `chmod` or `times` use typedef `mode_t` and `clock_t`.
They are neither struct nor union, so they cannot contain undef even if they're lowered to iN in IR. So, it is fine to add noundef to them.
- clock_t's actual type is size_t (C17, 7.27.1.3), so it isn't struct or union.
- For mode_t, either int or long is used in practice because programmers use bit manipulation. So, I think it is okay that it's never aggregate in practice.
After this patch, the remaining library functions are those that eagerly participate in optimizations: they can be removed, reordered, or
introduced by a transformation from primitive IR operations.
For them, a few testings is needed, since it may not be valid to add noundef anymore even if C standard says it's okay.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D85894
The get{Return,Unwind,Unreachable}Block functions in
UnifyFunctionExitNodes have not been used for many years,
so just remove them.
Reviewed By: bjope
Differential Revision: https://reviews.llvm.org/D87078
To enable the cost of constants, the helper function has been
reorganised:
- A struct has been introduced to hold SCEV operand information so
that we know the user of the operand, as well as the operand index.
The Worklist now uses instead instead of a bare SCEV.
- The costing of each SCEV, and collection of its operands, is now
performed in a helper function.
Differential Revision: https://reviews.llvm.org/D86050
Modify FoldBranchToCommonDest to consider the cost of inserting
instructions when attempting to combine predicates to fold blocks.
The threshold can be controlled via a new option:
-simplifycfg-branch-fold-threshold which defaults to '2' to allow
the insertion of a not and another logical operator.
Differential Revision: https://reviews.llvm.org/D86526
When a switch case is folded into default's case, that's an IR change that
should be reported, update ConstantFoldTerminator accordingly.
Differential Revision: https://reviews.llvm.org/D87142
EarlyCSE has a mode to verify the invariant that hash equality equals
key equality, but EliminateDuplicatePHINodes() doesn't.
I've verified that this would have caught the stage2-stage3 mismatches
5ec2b757cc revert has fixed,
that were introduced last time in 3e69871ab5.
This patch changes ElementCount so that the Min and Scalable
members are now private and can only be accessed via the get
functions getKnownMinValue() and isScalable(). In addition I've
added some other member functions for more commonly used operations.
Hopefully this makes the class more useful and will reduce the
need for calling getKnownMinValue().
Differential Revision: https://reviews.llvm.org/D86065
strspn, strncmp, strcspn, strcasecmp, strncasecmp, memcmp, memchr,
memrchr, memcpy, memmove, memcpy, mempcpy, strchr, strrchr, bcmp
should all only access memory through their arguments.
I broke out strcoll, strcasecmp, strncasecmp because the result
depends on the locale, which might get accessed through memory.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D86724
Currently we bail out early for strlen calls with a GEP operand, if none
of the GEP specific optimizations fire. But there could be later
optimizations that still apply, which we currently miss out on.
An example is that we do not apply the following optimization
strlen(x) == 0 --> *x == 0
Unless I am missing something, there seems to be no reason for bailing
out early there.
Fixes PR47149.
Reviewed By: lebedev.ri, xbolva00
Differential Revision: https://reviews.llvm.org/D85886
When trying to enable -debug-info-kind=constructor there was an assert
that occurs during debug info cloning ("mismatched subprogram between
llvm.dbg.value variable and !dbg attachment").
It appears that during llvm::CloneFunctionInto, a DISubprogram could be
duplicated when MapMetadata is called, and then added to the MD map again
when DIFinder gets a list of subprograms. This results in two different
versions of the DISubprogram.
This patch switches the order so that the DIFinder subprograms are
added before MapMetadata is called.
Fixes https://bugs.llvm.org/show_bug.cgi?id=46784
Differential Revision: https://reviews.llvm.org/D86185
Recommit the patch after fixing an issue reported caused by the fact
that re-used values are also added to InsertedValues.
Additional tests have been added in 88818491b9
This reverts the revert commit 38884641f2.
Before we speculatively execute a basic block, query the cost of
inserting the necessary select instructions against the phi folding
threshold. For non-trivial insertions, a more accurate decision can
probably be made during machine if-conversion. With minsize we query
the CodeSize cost, otherwise we use SizeAndLatency.
Differential Revision: https://reviews.llvm.org/D82438
This reverts commit 6dbf0cfcf7.
That commit caused failed assertions, e.g. like this:
$ cat sprintf-strcpy.c
char *ptr; void func(void) { ptr += sprintf(ptr, "%s", ""); }
$ clang -c sprintf-strcpy.c -O2 -target x86_64-linux-gnu
clang: ../lib/IR/Value.cpp:473: void llvm::Value::doRAUW(llvm::Value*,
llvm::Value::ReplaceMetadataUses): Assertion `New->getType() ==
getType() && "replaceAllUses of value with new value of different
type!"' failed.
Transformation creates big strings for big C values, so bail out for C > 128.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D86004
When removing instructions from unreachable blocks, and only debug info
intrinsics were removed, InstCombine could incorrectly return a false
Modified status.
This is fixed by making removeAllNonTerminatorAndEHPadInstructions()
also return how many debug info intrinsics that were removed, and take
that into account.
This was caught using the check introduced by D80916.
Reviewed By: majnemer
Differential Revision: https://reviews.llvm.org/D85839
SCEVExpander already tracks which instructions have been inserted n
InsertedValues/InsertedPostIncValues. This patch adds an additional
vector to collect the instructions in insertion order. This can then be
used to remove exactly the instructions inserted by the expander.
This replaces ExpandedValuesCleaner, which in some cases might remove
values not inserted by the expander (e.g. if a value was dead before
insertion and is then used during expansion).
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D84327
This patch adds noundef to return value and arguments of standard I/O functions.
With this patch, passing undef or poison to the functions becomes undefined
behavior in LLVM IR. Since undef/poison is lowered from operations having UB in C/C++,
passing undef to them was already UB in source.
With this patch, the functions cannot return undef or poison anymore as well.
According to C17 standard, ungetc/ungetwc/fgetpos/ftell can generate unspecified
value; 3.19.3 says unspecified value is a valid value of the relevant type,
and using unspecified value is unspecified behavior, which is not UB, so it
cannot be undef (using undef is UB when e.g. it is used at branch condition).
— The value of the file position indicator after a successful call to the ungetc function for a text stream, or the ungetwc function for any stream, until all pushed-back characters are read or discarded (7.21.7.10, 7.29.3.10).
— The details of the value stored by the fgetpos function (7.21.9.1).
— The details of the value returned by the ftell function for a text stream (7.21.9.4).
In the long run, most of the functions listed in BuildLibCalls should have noundefs; to remove redundant diffs which will anyway disappear in the future, I added noundef to a few more non-I/O functions as well.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D85345
Currently the SCEVExpander tries to re-use existing casts, even if they
are not exactly at the insertion point it was asked to create the cast.
To do so in some case, it creates a new cast at the insertion point and
updates all users to use the new cast.
This behavior is problematic, because it changes the IR outside of the
instructions created during the expansion. Therefore we cannot
completely undo all changes made during expansion.
This re-use should be only an extra optimization, so only using the new
cast in the expanded instructions should not be a correctness issue.
There are many cases equivalent instructions are created during
expansion.
This patch also adjusts findInsertPointAfter to skip instructions
inserted during expansion. This enables re-using existing casts without
the renaming any uses, by picking a better insertion point.
Reviewed By: efriedma, lebedev.ri
Differential Revision: https://reviews.llvm.org/D84399
SimplifyCFG has two main folds for resumes - one when resume is directly
using the landingpad, and the other one where resume is using a PHI node.
While for the first case, we were already correctly ignoring all the
PHI nodes, and both the debug info intrinsics and lifetime intrinsics,
in the PHI-based-one, we weren't ignoring PHI's in the resume block,
and weren't ignoring lifetime intrinsics. That is clearly a bug.
On RawSpeed library, this results in +9.34% (+81) more invoke->call folds,
-0.19% (-39) landing pads, -0.24% (-81) invoke instructions
but +51 call instructions and -132 basic blocks.
Though, the run-time performance impact appears to be within the noise.
formLCSSAForInstructions is used by SCEVExpander, which tracks all
inserted instructions including LCSSA phis using asserting value
handles. This means cleanup needs to happen in the caller.
Extend formLCSSAForInstructions to take an optional pointer to a
vector. If this argument is non-nullptr, instead of directly deleting
the phis, add them to the vector, so the caller can process them.
This should address various PPC buildbot failures, including
http://lab.llvm.org:8011/builders/clang-ppc64be-linux-lnt/builds/40567
Use IRBuilder instead PHINode::Create. This should not impact the
generated code, but IRBuilder provides a way to register callbacks for
inserted instructions, which is convenient for some users.
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D85037
querying getSCEV() for incomplete phis leads to wrong cache value in `ExprToIVMap`,
because incomplete phis may be simplified to same value before get SCEV expression.
Reviewed By: lebedev.ri, mkazantsev
Differential Revision: https://reviews.llvm.org/D77560
Summary: This patch separates the Loop Peeling Utilities from Loop Unrolling.
The reason for this change is that Loop Peeling is no longer only being used by
loop unrolling; Patch D82927 introduces loop peeling with fusion, such that
loops can be modified to have to same trip count, making them legal to be
peeled.
Reviewed By: Meinersbur
Differential Revision: https://reviews.llvm.org/D83056
This reverts the revert commit dc28675768.
It includes a fix for Polly, which uses SCEVExpander on IR that is not
in LCSSA form. Set PreserveLCSSA = false in that case, to ensure we do
not introduce LCSSA phis where there were none before.
This reverts commit 99166fd4fb, because it
breaks the polly builders.
polly/test/Isl/CodeGen/invariant_load_escaping_second_scop.ll fails
because a apparently unnecessary LCSSA phi node is introduced.
Make the bots green again, while I take a closer look.
This patch teaches SCEVExpander to directly preserve LCSSA.
As it is currently, SCEV does not look through PHI nodes in loops,
as it might break LCSSA form. Once SCEVExpander can preserve
LCSSA form, it should be safe for SCEV to look through PHIs.
To preserve LCSSA form, this patch uses formLCSSAForInstructions
on operands of newly created instructions, if the definition is inside
a different loop than the new instruction.
The final value we return from expandCodeFor may also need LCSSA
phis, depending on the insert point. As no user for it exists there yet,
create a temporary instruction at the insert point, which can be passed
to formLCSSAForInstructions. This temporary instruction is removed
after LCSSA construction.
Reviewed By: mkazantsev
Differential Revision: https://reviews.llvm.org/D71538
Currently, getCastInstrCost has limited information about the cast it's
rating, often just the opcode and types. Sometimes there is a context
instruction as well, but it isn't trustworthy: for instance, when the
vectorizer is rating a plan, it calls getCastInstrCost with the old
instructions when, in fact, it's trying to evaluate the cost of the
instruction post-vectorization. Thus, the current system can get the
cost of certain casts incorrect as the correct cost can vary greatly
based on the context in which it's used.
For example, if the vectorizer queries getCastInstrCost to evaluate the
cost of a sext(load) with tail predication enabled, getCastInstrCost
will think it's free most of the time, but it's not always free. On ARM
MVE, a VLD2 group cannot be extended like a normal VLDR can. Similar
situations can come up with how masked loads can be extended when being
split.
To fix that, this path adds a new parameter to getCastInstrCost to give
it a hint about the context of the cast. It adds a CastContextHint enum
which contains the type of the load/store being created by the
vectorizer - one for each of the types it can produce.
Original patch by Pierre van Houtryve
Differential Revision: https://reviews.llvm.org/D79162
We can happily turn function definitions into declarations,
thus obscuring their argument from being elided by this pass.
I don't believe there is a good reason to just ignore declarations.
likely even proper llvm intrinsics ones,
at worst the input becomes uninteresting.
The other question here is that all these transforms are all-or-nothing.
In some cases, should we be treating each use separately?
The main blocker here seemed to be that llvm::CloneFunctionInto()
does `&OldFunc->front()`, which inserts a nullptr into a densemap,
which is not happy about it and asserts.
This is the first of two patches to address PR46753. We basically allow
mem2reg to promote allocas that are used in doppable instructions, for
now that means `llvm.assume`. The uses of the alloca (or a bitcast or
zero offset GEP from there) are replaced by `undef` in the droppable
instructions.
Reviewed By: Tyker
Differential Revision: https://reviews.llvm.org/D83976
SROA knows that it can look through addrspacecast but
PromoteMemoryToRegister did not handle them. This caused an assertion
error for the test case, exposed while running
`Transforms/PhaseOrdering/inlining-alignment-assumptions.ll` with D83978
applied.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D84085
PassManager.h is one of the top headers in the ClangBuildAnalyzer frontend worst offenders list.
This exposes a large number of implicit dependencies on various forward declarations/includes in other headers that need addressing.
As long as RenamedOp is not guaranteed to be accurate, we cannot
assert here and should just return false. This was already done
for the other conditions in this function.
Fixes https://bugs.llvm.org/show_bug.cgi?id=46814.
Currently there are plenty of instructions that SCEVExpander creates but
does not track as created. IRBuilder allows specifying a callback
whenever an instruction is inserted. Use this to call
rememberInstruction automatically for each created instruction.
There are still a few rememberInstruction calls remaining, because in
some cases Inst::Create functions are used to construct instructions.
Suggested by @lebedev.ri in D75980.
Reviewers: mkazantsev, reames, sanjoy.google, lebedev.ri
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D84326
The revert was a misfire.
Remove the temporary flag PGSOIRPassOrTestOnly and the guard code which was used
for the staged rollout. This is a cleanup (NFC) as it's now false by default.
Differential Revision: https://reviews.llvm.org/D84057
This reverts commit e64afefdf8. It caused
a PGO bootstrapped clang to crash on many source files.
`__llvm_profile_instrument_range` seems to trigger a null pointer dereference.
Call stack:
__llvm_profile_instrument_range
llvm::APInt::udiv(llvm::APInt const&) const
getRangeForAffineARHelper
We do not thread blocks with convergent calls, but this check was missing
when we decide to insert PR Phis into it (which we only do for threading).
Differential Revision: https://reviews.llvm.org/D83936
Reviewed By: nikic
Remove the temporary flag PGSOIRPassOrTestOnly and the guard code which was used
for the staged rollout. This is a cleanup (NFC) as it's now false by default.
Differential Revision: https://reviews.llvm.org/D84057
This patch adds a TileInfo abstraction and utilities to
create a 3-level loop nest for tiling.
Reviewers: anemet
Reviewed By: anemet
Differential Revision: https://reviews.llvm.org/D77550
This allows tracking the in-memory type of a pointer argument to a
function for ABI purposes. This is essentially a stripped down version
of byval to remove some of the stack-copy implications in its
definition.
This includes the base IR changes, and some tests for places where it
should be treated similarly to byval. Codegen support will be in a
future patch.
My original attempt at solving some of these problems was to repurpose
byval with a different address space from the stack. However, it is
technically permitted for the callee to introduce a write to the
argument, although nothing does this in reality. There is also talk of
removing and replacing the byval attribute, so a new attribute would
need to take its place anyway.
This is intended avoid some optimization issues with the current
handling of aggregate arguments, as well as fixes inflexibilty in how
frontends can specify the kernel ABI. The most honest representation
of the amdgpu_kernel convention is to expose all kernel arguments as
loads from constant memory. Today, these are raw, SSA Argument values
and codegen is responsible for turning these into loads.
Background:
There currently isn't a satisfactory way to represent how arguments
for the amdgpu_kernel calling convention are passed. In reality,
arguments are passed in a single, flat, constant memory buffer
implicitly passed to the function. It is also illegal to call this
function in the IR, and this is only ever invoked by a driver of some
kind.
It does not make sense to have a stack passed parameter in this
context as is implied by byval. It is never valid to write to the
kernel arguments, as this would corrupt the inputs seen by other
dispatches of the kernel. These argumets are also not in the same
address space as the stack, so a copy is needed to an alloca. From a
source C-like language, the kernel parameters are invisible.
Semantically, a copy is always required from the constant argument
memory to a mutable variable.
The current clang calling convention lowering emits raw values,
including aggregates into the function argument list, since using
byval would not make sense. This has some unfortunate consequences for
the optimizer. In the aggregate case, we end up with an aggregate
store to alloca, which both SROA and instcombine turn into a store of
each aggregate field. The optimizer never pieces this back together to
see that this is really just a copy from constant memory, so we end up
stuck with expensive stack usage.
This also means the backend dictates the alignment of arguments, and
arbitrarily picks the LLVM IR ABI type alignment. By allowing an
explicit alignment, frontends can make better decisions. For example,
there's real no advantage to an aligment higher than 4, so a frontend
could choose to compact the argument layout. Similarly, there is a
high penalty to using an alignment lower than 4, so a frontend could
opt into more padding for small arguments.
Another design consideration is when it is appropriate to expose the
fact that these arguments are all really passed in adjacent
memory. Currently we have a late IR optimization pass in codegen to
rewrite the kernel argument values into explicit loads to enable
vectorization. In most programs, unrelated argument loads can be
merged together. However, exposing this property directly from the
frontend has some disadvantages. We still need a way to track the
original argument sizes and alignments to report to the driver. I find
using some side-channel, metadata mechanism to track this
unappealing. If the kernel arguments were exposed as a single buffer
to begin with, alias analysis would be unaware that the padding bits
betewen arguments are meaningless. Another family of problems is there
are still some gaps in replacing all of the available parameter
attributes with metadata equivalents once lowered to loads.
The immediate plan is to start using this new attribute to handle all
aggregate argumets for kernels. Long term, it makes sense to migrate
all kernel arguments, including scalars, to be passed indirectly in
the same manner.
Additional context is in D79744.
Common code sinking is already guarded with a (with default-off!) flag,
so add a flag for hoisting, too.
D84108 will hopefully make hoisting off-by-default too.
Both users of predicteinfo (NewGVN and SCCP) are interested in
getting a cmp constraint on the predicated value. They currently
implement separate logic for this. This patch adds a common method
for this in PredicateBase.
This enables a missing bit of PredicateInfo handling in SCCP: Now
the predicate on the condition itself is also used. For switches
it means we know that the switched-on value is the same as the case
value. For assumes/branches we know that the condition is true or
false.
Differential Revision: https://reviews.llvm.org/D83640
Summary:
This patch resolves an issue where the metadata of a loop is not added to the
new loop latch, and not removed from the old loop latch. This issue occurs in
the SplitBlockPredecessors function, which adds a new block in a loop, and
in the case that the block passed into this function is the header of the loop,
the loop can be modified such that the latch of the loop is replaced.
This patch applies to the Loop Simplify pass since it ensures that each loop
has exit blocks which only have predecessors that are inside of the loop. In
the case that this is not true, the pass will create a new exit block for the
loop. This guarantees that the loop preheader/header will dominate the exit blocks.
Author: sidbav (Sidharth Baveja)
Reviewers: asbirlea (Alina Sbirlea), chandlerc (Chandler Carruth), Whitney (Whitney Tsang), bmahjour (Bardia Mahjour)
Reviewed By: asbirlea (Alina Sbirlea)
Subscribers: hiraditya (Aditya Kumar), llvm-commits
Tag: LLVM
Differential Revision: https://reviews.llvm.org/D83869
SimplifyCFG was incorrectly reporting to the pass manager that it had not made
changes after folding away a PHI. This is detected in the EXPENSIVE_CHECKS
build when the function's hash changes.
Differential Revision: https://reviews.llvm.org/D83985
When the byref attribute is added, there will need to be two similar
functions for the existing cases which have an associate value copy,
and byref which does not. Most, but not all of the existing uses will
use the existing version.
The associated size function added by D82679 also needs to
contextually differ, and will help eliminate a few places still
relying on pointee element types.
Unrolling a loop with compile-time unknown trip count results in a remainder loop. The remainder loop executes the remaining iterations of the original loop when the original trip count is not a multiple of the unroll factor. For better profile counts maintenance throughout the optimization pipeline, I'm assigning an artificial weight to the latch branch of the remainder loop.
A remainder loop runs up to as many times as the unroll factor subtracted by 1. Therefore I'm assigning the maximum possible trip count as the back edge weight. This should be more accurate than the default non-profile weight, which assumes the back edge runs much more frequently than the exit edge.
Differential Revision: https://reviews.llvm.org/D83187
CodeGenPrepare keeps fairly close track of various instructions it's
seen, particularly GEPs, in maps and vectors. However, sometimes those
instructions become dead and get removed while it's still executing.
This triggers AssertingVH references to them in an asserts build and
could lead to miscompiles in a release build (I've only seen a later
segfault though).
So this patch adds a callback to
RecursivelyDeleteTriviallyDeadInstructions which can make sure the
instruction about to be deleted is removed from CodeGenPrepare's data
structures.
The actual rotation happens in processLoop, so the second removed
call to verifyMemorySSA was unnecessary.
In fact, processLoop/rotateLoop already verify MemorySSA before
and after transforming each loop. Hence, both calls can be removed.
Pointed out by @lebedev.ri post-commit D51718.
Summary:
Add debug counter and stats counter to assume queries and assume builder
here is the collected stats on a build of check-llvm + check-clang.
"assume-builder.NumAssumeBuilt": 2720879,
"assume-builder.NumAssumesMerged": 761396,
"assume-builder.NumAssumesRemoved": 1576212,
"assume-builder.NumBundlesInAssumes": 6518809,
"assume-queries.NumAssumeQueries": 85566380,
"assume-queries.NumUsefullAssumeQueries": 2727360,
the NumUsefullAssumeQueries stat is actually pessimistic because in a few places queries
ask to keep providing information to try to get better information. and this isn't counted
as a usefull query evem tho it can be usefull
Reviewers: jdoerfert
Reviewed By: jdoerfert
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D83506
This fixes warnings raised by Clang's new -Wsuggest-override, in preparation for enabling that warning in the LLVM build. This patch also removes the virtual keyword where redundant, but only in places where doing so improves consistency within a given file. It also removes a couple unnecessary virtual destructor declarations in derived classes where the destructor inherited from the base class is already virtual.
Differential Revision: https://reviews.llvm.org/D83709
Here we teach the ConstantFolding analysis pass that it is not legal to
replace a load of a bitcast constant (having a non-integral addrspace)
with a bitcast of the value of that constant (with a different
non-integral addrspace).
But also teach it that certain bit patterns are always known and
convertable (a fact it already uses elsewhere). This required us to also
fix a globalopt test, since, after this change, LLVM is able to realize
that the test actually is a valid transform (NULL is always a known
bit-pattern) and so it doesn't need to emit the failure remarks for it.
Also simplify some of the negative tests for transforms by avoiding a
type change in their bitcast, and add positive versions of the same
tests, to show that they otherwise should work.
Differential Revision: https://reviews.llvm.org/D59730
This could previously make it more complicated for ConstantFolding
later, leading to a higher likelyhood it would have to reject the
expression, even though zero seems like probably the common case here.
Differential Revision: https://reviews.llvm.org/D59730
Currently, a transformation like pow(2.0, x) -> exp2(x) copies the pow
attribute list verbatim and applies it to exp2. This works out fine
when the attribute list is empty, but when it isn't clang may error due
due to the mismatch.
The source function and destination don't necessarily have anything
to do with one another, attribute-wise. So it makes sense to remove
the attribute lists (this is similar to what IPO does in this
situation).
This was discovered after implementing the `noundef` param attribute.
Differential Revision: https://reviews.llvm.org/D82820
Place the ssa.copy instructions for assumes after the assume,
instead of before it. Both options are valid, but placing them
afterwards prevents assumes from being replaced with assume(true).
This fixes https://bugs.llvm.org/show_bug.cgi?id=37541 in NewGVN
and will avoid a similar issue in SCCP when we handle more
predicate infos.
Differential Revision: https://reviews.llvm.org/D83631
Summary:
- Skip unreachable predecessors during header detection in SCC. Those
unreachable blocks would be generated in the switch lowering pass in
the corner cases or other frontends. Even though they could be removed
through the CFG simplification, we should skip them during header
detection.
Reviewers: sameerds
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D83562
Summary:
This patch separates the peeling specific parameters from the UnrollingPreferences,
and creates a new struct called PeelingPreferences. Functions which used the
UnrollingPreferences struct for peeling have been updated to use the PeelingPreferences struct.
Author: sidbav (Sidharth Baveja)
Reviewers: Whitney (Whitney Tsang), Meinersbur (Michael Kruse), skatkov (Serguei Katkov), ashlykov (Arkady Shlykov), bogner (Justin Bogner), hfinkel (Hal Finkel), anhtuyen (Anh Tuyen Tran), nikic (Nikita Popov)
Reviewed By: Meinersbur (Michael Kruse)
Subscribers: fhahn (Florian Hahn), hiraditya (Aditya Kumar), llvm-commits, LLVM
Tag: LLVM
Differential Revision: https://reviews.llvm.org/D80580
Summary: This patch moves OrderedInstructions to CodeMoverUtils as It was
the only place where OrderedInstructions is required.
Authored By: RithikSharma
Reviewer: Whitney, bmahjour, etiotto, fhahn, nikic
Reviewed By: Whitney, nikic
Subscribers: mgorny, hiraditya, llvm-commits
Tag: LLVM
Differential Revision: https://reviews.llvm.org/D80643
The block front may be a PHI node, inserting a cast instructions like
BitCast, PtrToInt, IntToPtr among PHIs is not right.
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D80975
OriginalOp of a predicate always refers to the original IR
value that was renamed. So for nested predicates of the same value, it
will always refer to the original IR value.
For the use in SCCP however, we need to find the renamed value that is
currently used in the condition associated with the predicate. This
patch adds a new RenamedOp field to do exactly that.
NewGVN currently relies on the existing behavior to merge instruction
metadata. A test case to check for exactly that has been added in
195fa4bfae.
Reviewers: efriedma, davide, nikic
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D78133
The `noundef` attribute indicates an argument or return value which
may never have an undef value representation.
This patch allows LLVM to parse the attribute.
Differential Revision: https://reviews.llvm.org/D83412
Summary: This patch makes code motion checks optional which are dependent on
specific analysis example, dominator tree, post dominator tree and dependence
info. The aim is to make the adoption of CodeMoverUtils easier for clients that
don't use analysis which were strictly required by CodeMoverUtils. This will
also help in diversifying code motion checks using other analysis example MSSA.
Authored By: RithikSharma
Reviewer: Whitney, bmahjour, etiotto
Reviewed By: Whitney
Subscribers: Prazek, hiraditya, george.burgess.iv, asbirlea, llvm-commits
Tag: LLVM
Differential Revision: https://reviews.llvm.org/D82566
Summary:
It is reasonably common to want to clone some call with different bundles.
Let's actually provide an interface to do that.
Reviewers: chandlerc, jdoerfert, dblaikie, nickdesaulniers
Reviewed By: nickdesaulniers
Subscribers: llvm-commits, hiraditya
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D83248
Summary:
Avoid exposing details about how children are stored. This will enable
subsequent type-erasure changes.
New methods are introduced to cover common access patterns.
Change-Id: Idb5f4b1b9c84e4cc71ddb39bb52a388682f5674f
Reviewers: arsenm, RKSimon, mehdi_amini, courbet
Subscribers: qcolombet, sdardis, wdng, hiraditya, jrtc27, zzheng, atanasyan, asbirlea, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D83083
clang w/ old-pm currently would simply crash
when -mllvm -enable-knowledge-retention=true is specified.
Clearly, these two passes had no Old-PM test coverage,
which would have shown the problem - not requiring AssumptionCacheTracker,
but then trying to always get it.
Also, why try to get domtree only if it's cached,
but at the same time marking it as required?
Summary:
This patch changes call graph analysis to recognize callback call sites
and add an artificial 'reference' call record from the broker function
caller to the callback function in the call graph. A presence of such
reference enforces bottom-up traversal order for callback functions in
CG SCC pass manager because callback function logically becomes a callee
of the broker function caller.
Reviewers: jdoerfert, hfinkel, sstefan1, baziotis
Reviewed By: jdoerfert
Subscribers: hiraditya, kuter, sstefan1, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D82572
Sometimes SimplifyCFG may decide to perform jump threading. In order
to do it, it follows the following algorithm:
1. Checks if the block is small enough for threading;
2. If yes, inserts a PR Phi relying that the next iteration will remove it
by performing jump threading;
3. The next iteration checks the block again and performs the threading.
This logic has a corner case: inserting the PR Phi increases block's size
by 1. If the block size at first check was max possible, one more Phi will
exceed this size, and we will neither perform threading nor remove the
created Phi node. As result, we will end up with worse IR than before.
This patch fixes this situation by excluding Phis from block size computation.
Excluding Phis from size computation for threading also makes sense by
itself because in case of threadign all those Phis will be removed.
Differential Revision: https://reviews.llvm.org/D81835
Reviewed By: asbirlea, nikic
It's possible for the first loop trip(s) to set the `Changed` Status, and to a
later one to early exit, in which case `Changed` must be return.
Differential Revision: https://reviews.llvm.org/D82753
In https://reviews.llvm.org/D81198, we outlined a number of scenarios
where dropping debug locations is appropriate. Stop issuing an error
when this happens.
Summary:
According to HowToUpdateDebugInfo.rst:
```
Preserving the debug locations of speculated instructions can make
it seem like a condition is true when it's not (or vice versa), which
leads to a confusing single-stepping experience
```
This patch follows the recommendation to drop debug locations on
speculated instructions.
Reviewers: aprantl, davide
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D82420
InjectTLIMappings fails to preserve the analysis result of GlobalsAA. Not preserving the analysis might affect benchmark performance. This change fixes this issue.
Patch by: Ryan Santhiraraja <rsanthir@quicinc.com>
Reviewers: fpetrogalli, joerg, fhahn
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D82343
Summary:
As [[ https://bugs.llvm.org/show_bug.cgi?id=45360 | PR45360 ]] reports,
with new cost-model we can sometimes end up being able to expand `udiv`/`urem` instructions.
And that exposes at least one instance of when we do that
regardless of whether or not it is safe to do.
In this particular case, it's `SimplifyIndvar::replaceIVUserWithLoopInvariant()`.
It seems to me, we simply need to check with `isSafeToExpandAt()` first.
The test isn't great. I'm not sure how to make it only run `-indvars`.
Fixes [[ https://bugs.llvm.org/show_bug.cgi?id=45360 | PR45360 ]].
Reviewers: mkazantsev, reames, helloqirun
Reviewed By: mkazantsev
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D82108
This reverts commit 29b2c1ca72.
The patch causes the DT verifier failure like:
DominatorTree is different than a freshly computed one!
Not sure the patch itself it wrong but revert to investigate the failure.
Currently we allow peeling of the loops if there is a exiting latch block
and all other exits are blocks ending with deopt.
Actually we want that exit would end up with deopt unconditionally but
it is not required that exit itself ends with deopt.
Reviewers: reames, ashlykov, fhahn, apilipenko, fedor.sergeev
Reviewed By: apilipenko
Subscribers: hiraditya, zzheng, dantrushin, llvm-commits
Differential Revision: https://reviews.llvm.org/D81140
When an invoke instruction is converted to a call its
profile metadata is dropped because it has incompatible
format (see commit 16ad6eeb94).
This patch adds an attempt to convert profile data to
format of the call instruction. This used to work well
before the commit dcfa78a4cc.
Reviewers: reames
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D82071
Summary:
this reduces significantly the number of assumes generated without aftecting too much
the information that is preserved. this improves the compile-time cost
of enable-knowledge-retention significantly.
Reviewers: jdoerfert, sstefan1
Reviewed By: jdoerfert
Subscribers: hiraditya, asbirlea, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79650
I don't know anything about debug info, but this seems like more work
should be necessary. This constructs a new IRBuilder and reconstructs
the original divides rather than moving the original.
One problem this has is if a div/rem pair are handled, both end up
with the same debugloc. I'm not sure how to fix this, since this uses
a cache when it sees the same input operands again, which will have
the first instance's location attached.
Summary:
llvm::SplitEdge was failing an assertion that the BasicBlock only had
one successor (for BasicBlocks terminated by CallBrInst, we typically
have multiple successors). It was surprising that the earlier call to
SplitCriticalEdge did not handle the critical edge (there was an early
return). Removing that triggered another assertion relating to creating
a BlockAddress for a BasicBlock that did not (yet) have a parent, which
is a simple order of operations issue in llvm::SplitCriticalEdge (a
freshly constructed BasicBlock must be inserted into a Function's basic
block list to have a parent).
Thanks to @nathanchance for the report.
Fixes: https://github.com/ClangBuiltLinux/linux/issues/1018
Reviewers: craig.topper, jyknight, void, fhahn, efriedma
Reviewed By: efriedma
Subscribers: eli.friedman, rnk, efriedma, fhahn, hiraditya, llvm-commits, nathanchance, srhines
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D81607
The invoke instruction can have profile metadata with branch_weights,
which does not make sense for a call instruction and will be
rejected by the verifier.
Differential revision: https://reviews.llvm.org/D81996
Summary:
this reduces significantly the number of assumes generated without aftecting too much
the information that is preserved. this improves the compile-time cost
of enable-knowledge-retention significantly.
Reviewers: jdoerfert, sstefan1
Reviewed By: jdoerfert
Subscribers: hiraditya, asbirlea, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79650
is not necessary one of them.
Summary: Currently LoopUnrollPass already allow loops with multiple
exiting blocks, but it is only allowed when the loop latch is one of the
exiting blocks.
When the loop latch is not an exiting block, then only single exiting
block is supported.
When possible, the single loop latch or the single exiting block
terminator is optimized to an unconditional branch in the unrolled loop.
This patch allows loops with multiple exiting blocks even if the loop
latch is not one of them. However, the optimization of exiting block
terminator to unconditional branch is not done when there exists more
than one exiting block.
Reviewer: dmgreen, Meinersbur, etiotto, fhahn, efriedma, bmahjour
Reviewed By: efriedma
Subscribers: hiraditya, zzheng, llvm-commits
Tag: LLVM
Differential Revision: https://reviews.llvm.org/D81053
This patch adds a new option to CriticalEdgeSplittingOptions to control
whether loop-simplify form must be preserved. It is them used by GVN to
indicate that loop-simplify form does not have to be preserved.
This fixes a crash exposed by 189efe295b.
If the critical edge we are splitting goes from a block inside a loop to
a block outside the loop, splitting the edge will create a new exit
block. As a result, the new block will branch to the original exit
block, which will add a non-loop predecessor, breaking loop-simplify
form. To preserve loop-simplify form, the predecessor blocks of the
original exit are split, but that does not work for blocks with
indirectbr terminators. If preserving loop-simplify form is requested,
bail out , before making any changes.
Reviewers: reames, hfinkel, davide, efriedma
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D81582
Change BasicBlock::removePredecessor to optionally return a vector of
instructions which might be dead. Use this in ConstantFoldTerminator to
delete them if they are dead.
Reapply with a bug fix: don't drop the "!KeepOneInputPHIs" argument when
removePredecessor calls PHINode::removeIncomingValue.
Differential Revision: https://reviews.llvm.org/D80206
Change BasicBlock::removePredecessor to optionally return a vector of
instructions which might be dead. Use this in ConstantFoldTerminator to
delete them if they are dead.
Differential Revision: https://reviews.llvm.org/D80206
[ v1 was reverted by c6ec352a6b due to
modpost failing; v2 fixes this. More info:
https://github.com/ClangBuiltLinux/linux/issues/1045#issuecomment-640381783 ]
This makes -fsanitize=kernel-address emit the correct globals
constructors for the kernel. We had to do the following:
* Disable generation of constructors that rely on linker features such
as dead-global elimination.
* Only instrument globals *not* in explicit sections. The kernel uses
sections for special globals, which we should not touch.
* Do not instrument globals that are prefixed with "__" nor that are
aliased by a symbol that is prefixed with "__". For example, modpost
relies on specially named aliases to find globals and checks their
contents. Unfortunately modpost relies on size stored as ELF debug info
and any padding of globals currently causes the debug info to cause size
reported to be *with* redzone which throws modpost off.
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=203493
Tested:
* With 'clang/test/CodeGen/asan-globals.cpp'.
* With test_kasan.ko, we can see:
BUG: KASAN: global-out-of-bounds in kasan_global_oob+0xb3/0xba [test_kasan]
* allyesconfig, allmodconfig (x86_64)
Reviewed By: glider
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D81390
- Now all SalvageDebugInfo() calls will mark undef if the salvage
attempt fails.
Reviewed by: vsk, Orlando
Differential Revision: https://reviews.llvm.org/D78369
Summary:
This makes -fsanitize=kernel-address emit the correct globals
constructors for the kernel. We had to do the following:
- Disable generation of constructors that rely on linker features such
as dead-global elimination.
- Only emit constructors for globals *not* in explicit sections. The
kernel uses sections for special globals, which we should not touch.
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=203493
Tested:
1. With 'clang/test/CodeGen/asan-globals.cpp'.
2. With test_kasan.ko, we can see:
BUG: KASAN: global-out-of-bounds in kasan_global_oob+0xb3/0xba [test_kasan]
Reviewers: glider, andreyknvl
Reviewed By: glider
Subscribers: cfe-commits, nickdesaulniers, hiraditya, llvm-commits
Tags: #llvm, #clang
Differential Revision: https://reviews.llvm.org/D80805
Summary:
In SCEVExpander FactorOutConstant(), when GEP indexing into/over scalable vector,
it is legal for the 'Factor' in a MulExpr to be the size of a scalable vector
instead of a compile-time constant.
Current upstream crash with the test attached.
Reviewers: efriedma, sdesmalen, sanjoy.google, mkazantsev
Reviewed By: efriedma
Subscribers: hiraditya, javed.absar, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D80973
As discussed in https://bugs.llvm.org/show_bug.cgi?id=45951 and
D80584, the name 'tmp' is almost always a bad choice, but we have
a legacy of regression tests with that name because it was baked
into utils/update_test_checks.py.
This change makes -instnamer more consistent (already using "arg"
and "bb", the common LLVM shorthand). And it avoids the conflict
in telling users of the FileCheck script to run "-instnamer" to
create a better regression test and having that cause a warn/fail
in update_test_checks.py.
Prevent `invertCondition` from creating the inversion instruction, in
case the given value is an argument which has already been inverted.
Note that this approach has already been taken in case the given value
is an instruction (and not an argument).
Differential Revision: https://reviews.llvm.org/D80399
Summary: The following code from
/llvm/lib/Transforms/Utils/LoopUnrollAndJam.cpp can be used by other
transformations:
while (!MergeBlocks.empty()) {
BasicBlock *BB = *MergeBlocks.begin();
BranchInst *Term = dyn_cast<BranchInst>(BB->getTerminator());
if (Term && Term->isUnconditional() &&
L->contains(Term->getSuccessor(0))) {
BasicBlock *Dest = Term->getSuccessor(0);
BasicBlock *Fold = Dest->getUniquePredecessor();
if (MergeBlockIntoPredecessor(Dest, &DTU, LI)) {
// Don't remove BB and add Fold as they are the same BB
assert(Fold == BB);
(void)Fold;
MergeBlocks.erase(Dest);
} else
MergeBlocks.erase(BB);
} else
MergeBlocks.erase(BB);
}
Hence it should be separated into its own utility function.
Authored By: sidbav
Reviewer: Whitney, Meinersbur, asbirlea, dmgreen, etiotto
Reviewed By: asbirlea
Subscribers: hiraditya, zzheng, llvm-commits
Tag: LLVM
Differential Revision: https://reviews.llvm.org/D80583
Now that all of the statepoint related routines have classes with isa support, let's cleanup.
I'm leaving the (dead) utitilities in tree for a few days so that I can do the same cleanup downstream without breakage.
code motion
Summary: Currently isSafeToMoveBefore uses DFS numbering for determining
the relative position of instruction and insert point which is not
always correct. This PR proposes the use of Dominator Tree depth for the
same. If a node is at a higher level than the insert point then it is
safe to say that we want to move in the forward direction.
Authored By: RithikSharma
Reviewer: Whitney, nikic, bmahjour, etiotto, fhahn
Reviewed By: Whitney
Subscribers: fhahn, hiraditya, llvm-commits
Tag: LLVM
Differential Revision: https://reviews.llvm.org/D80084
This makes sure to correctly register the loop info of the children
of unroll and jammed loops. It re-uses some code from the unroller for
registering subloops.
Differential Revision: https://reviews.llvm.org/D80619
This fixes the output of the check-debugify option.
Without the patch an example of running the option:
$ opt -check-debugify test.ll -S -o testDebugify.ll
CheckModuleDebugifySkipping module without debugify metadata
After the patch:
$ opt -check-debugify test.ll -S -o testDebugify.ll
CheckModuleDebugify: Skipping module without debugify metadata
Differential Revision: https://reviews.llvm.org/D80553
I think the current code dealing with connecting the unrolled iterations
is a bit more complicated than necessary currently. To connect the
unrolled iterations, we have to update the unrolled latch blocks to
branch to the header of the next unrolled iteration.
We need to do this regardless whether the latch is exiting or not.
Additionally, we try to turn the conditional branch in the exiting block
to an unconditional one. This is an optimization only; alternatively we
could leave the conditional branches in place and rely on other passes
to simplify the conditions.
Logically, this is a separate step from connecting the latches to the
headers, but it is convenient to fold them into the same loop, if the
latch is also exiting. For headers (or other non-latch exiting blocks,
this is done separately).
Hopefully the patch with additional comments makes things a bit clearer.
Reviewers: efriedma, dmgreen, hfinkel, Whitney
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D80544
This intrinsic implements IEEE-754 operation roundToIntegralTiesToEven,
and performs rounding to the nearest integer value, rounding halfway
cases to even. The intrinsic represents the missed case of IEEE-754
rounding operations and now llvm provides full support of the rounding
operations defined by the standard.
Differential Revision: https://reviews.llvm.org/D75670
Summary:
Added a new IRCanonicalizer pass which aims to transform LLVM modules into
a canonical form by reordering and renaming instructions while preserving the
same semantics. The canonicalizer makes it easier to spot semantic differences
when diffing two modules which have undergone different passes.
Presentation: https://www.youtube.com/watch?v=c9WMijSOEUg
Reviewed by: plotfi
Differential Revision: https://reviews.llvm.org/D66029
In case the then-path of an if-region is empty, then merging with the
else-path should be handled with the inverse of the condition (leading
to that path).
Fix PR37662
Differential Revision: https://reviews.llvm.org/D78881
Summary:
Currently, `rewriteLoopExitValues()`'s logic is roughly as following:
> Loop over each incoming value in each PHI node.
> Query whether the SCEV for that incoming value is high-cost.
> Expand the SCEV.
> Perform sanity check (`isValidRewrite()`, D51582)
> Record the info
> Afterwards, see if we can drop the loop given replacements.
> Maybe perform replacements.
The problem is that we interleave SCEV cost checking and expansion.
This is A Problem, because `isHighCostExpansion()` takes special care
to not bill for the expansions that were already expanded, and we can reuse.
While it makes sense in general - if we know that we will expand some SCEV,
all the other SCEV's costs should account for that, which might cause
some of them to become non-high-cost too, and cause chain reaction.
But that isn't what we are doing here. We expand *all* SCEV's, unconditionally.
So every next SCEV's cost will be affected by the already-performed expansions
for previous SCEV's. Even if we are not planning on keeping
some of the expansions we performed.
Worse yet, this current "bonus" depends on the exact PHI node
incoming value processing order. This is completely wrong.
As an example of an issue, see @dmajor's `pr45835.ll` - if we happen to have
a PHI node with two(!) identical high-cost incoming values for the same basic blocks,
we would decide first time around that it is high-cost, expand it,
and immediately decide that it is not high-cost because we have an expansion
that we could reuse (because we expanded it right before, temporarily),
and replace the second incoming value but not the first one;
thus resulting in a broken PHI.
What we instead should do for now, is not perform any expansions
until after we've queried all the costs.
Later, in particular after `isValidRewrite()` is an assertion (D51582)
we could improve upon that, but in a more coherent fashion.
See [[ https://bugs.llvm.org/show_bug.cgi?id=45835 | PR45835 ]]
Reviewers: dmajor, reames, mkazantsev, fhahn, efriedma
Reviewed By: dmajor, mkazantsev
Subscribers: smeenai, nikic, hiraditya, javed.absar, llvm-commits, dmajor
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79787
Hide the method that allows setting probability for particular edge
and introduce a public method that sets probabilities for all
outgoing edges at once.
Setting individual edge probability is error prone. More over it is
difficult to check that the total probability is 1.0 because there is
no easy way to know when the user finished setting all
the probabilities.
Related bug is fixed in BranchProbabilityInfo::calcMetadataWeights().
Changing unreachable branch probabilities to raw(1) and distributing
the rest (oldProbability - raw(1)) over the reachable branches could
introduce total probability inaccuracy bigger than 1/numOfBranches.
Reviewers: yamauchi, ebrevnov
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79396
Summary:
If an induction variable is frozen and used, SCEV yields imprecise result
because it doesn't say anything about frozen variables.
Due to this reason, performance degradation happened after
https://reviews.llvm.org/D76483 is merged, causing
SCEV yield imprecise result and preventing LSR to optimize a loop.
The suggested solution here is to add a pass which canonicalizes frozen variables
inside a loop. To be specific, it pushes freezes out of the loop by freezing
the initial value and step values instead & dropping nsw/nuw flags from instructions used by freeze.
This solution was also mentioned at https://reviews.llvm.org/D70623 .
Reviewers: spatel, efriedma, lebedev.ri, fhahn, jdoerfert
Reviewed By: fhahn
Subscribers: nikic, mgorny, hiraditya, javed.absar, llvm-commits, sanwou01, nlopes
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77523
SCEVExpander modifies the underlying function so it is more suitable in
Transforms/Utils, rather than Analysis. This allows using other
transform utils in SCEVExpander.
This patch was originally committed as b8a3c34eee, but broke the
modules build, as LoopAccessAnalysis was using the Expander.
The code-gen part of LAA was moved to lib/Transforms recently, so this
patch can be landed again.
Reviewers: sanjoy.google, efriedma, reames
Reviewed By: sanjoy.google
Differential Revision: https://reviews.llvm.org/D71537
After D76797 the dominator tree is no longer used in LVI, so we
can remove it as a pass dependency, and also get rid of the
dominator tree enabling/disabling logic in JumpThreading.
Apart from cleaning up the code, this also clarifies LVI
cache consistency, in that the LVI cache can no longer
depend on whether the DT was or wasn't enabled due to
pending DT updates at any given time.
Differential Revision: https://reviews.llvm.org/D76985
We already check hasNoNaNs and that x is finite and strictly positive.
That only leaves the following special cases (taken from the Linux man
page for pow):
If x is +1, the result is 1.0 (even if y is a NaN).
If the absolute value of x is less than 1, and y is negative infinity, the result is positive infinity.
If the absolute value of x is greater than 1, and y is negative infinity, the result is +0.
If the absolute value of x is less than 1, and y is positive infinity, the result is +0.
If the absolute value of x is greater than 1, and y is positive infinity, the result is positive infinity.
The first case is handled elsewhere, and this transformation preserves
all the others, so there is no need to limit it to hasNoInfs.
Differential Revision: https://reviews.llvm.org/D79409
Summary:
When a loop has multiple backedges, loop simplification attempts to
separate them out into nested loops. This results in incorrect control
flow in the presence of some functions like a GPU barrier. This change
skips the transformation when such "convergent" function calls are
present in the loop body.
Reviewed By: nhaehnle
Differential Revision: https://reviews.llvm.org/D80078
Summary:
When salvaging a dead zext instruction, append a convert operation to
the DIExpressions of the debug uses of the instruction, to prevent the
salvaged value from being sign-extended.
I confirmed that lldb prints out the correct unsigned result for "f" in
the example from PR45923 with this changed applied.
rdar://63246143
Reviewers: aprantl, jmorse, chrisjackson, davide
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D80034
Along the lines of D77454 and D79968. Unlike loads and stores, the
default alignment is getPrefTypeAlign, to match the existing handling in
various places, including SelectionDAG and InstCombine.
Differential Revision: https://reviews.llvm.org/D80044
This reverts commit 454de99a6f.
The problem was that one of the ctor arguments of CallAnalyzer was left
to be const std::function<>&. A function_ref was passed for it, and then
the ctor stored the value in a function_ref field. So a std::function<>
would be created as a temporary, and not survive past the ctor
invocation, while the field would.
Tested locally by following https://github.com/google/sanitizers/wiki/SanitizerBotReproduceBuild
Original Differential Revision: https://reviews.llvm.org/D79917
This is D77454, except for stores. All the infrastructure work was done
for loads, so the remaining changes necessary are relatively small.
Differential Revision: https://reviews.llvm.org/D79968
This has been duplicated since before
2372a193ba, but that commit has it
appearing twice in the space of 10 lines of the same function body. It
could also be hoisted up to the point just after where the last
special-case is considered, but I want to keep the intent of the
original authors.
Committed as obvious without a review.
The "null-pointer-is-valid" attribute needs to be checked by many
pointer-related combines. To make the check more efficient, convert
it from a string into an enum attribute.
In the future, this attribute may be replaced with data layout
properties.
Differential Revision: https://reviews.llvm.org/D78862
Summary:
This change exposes the vector name mangling with LLVM ISA (used as part
of vector-function-abi-variant) as a utility.
This can then be used by front-ends that add this attribute.
Note that all parameters passed in to the function will be mangled with
the "v" token to identify that they are of of vector type. So, it is the
responsibility of the caller to confirm that all parameters in the
vectorized variant is of vector type.
Added unit test to show vector name mangling.
Reviewed-By: fpetrogalli, simoll
Differential Revision: https://reviews.llvm.org/D79867
Summary:
Replacing uses of std::function pointers or refs, or Optional, to
function_ref, since the usage pattern allows that. If the function is
optional, using a default parameter value (nullptr). This led to a few
parameter reshufles, to push all optionals to the end of the parameter
list.
Reviewers: davidxl, dblaikie
Subscribers: arsenm, jvesely, nhaehnle, eraman, hiraditya, haicheng, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79917
Summary:
Analyses that are statefull should not be retrieved through a proxy from
an outer IR unit, as these analyses are only invalidated at the end of
the inner IR unit manager.
This patch disallows getting the outer manager and provides an API to
get a cached analysis through the proxy. If the analysis is not
stateless, the call to getCachedResult will assert.
Reviewers: chandlerc
Subscribers: mehdi_amini, eraman, hiraditya, zzheng, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72893
Hide the method that allows setting probability for particular
edge and introduce a public method that sets probabilities for
all outgoing edges at once.
Setting individual edge probability is error prone. More over
it is difficult to check that the total probability is 1.0
because there is no easy way to know when the user finished
setting all the probabilities.
Reviewers: yamauchi, ebrevnov
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79396
We want to add a way to avoid merging identical calls so as to keep the
separate debug-information for those calls. There is also an asan
usecase where having this attribute would be beneficial to avoid
alternative work-arounds.
Here is the link to the feature request:
https://bugs.llvm.org/show_bug.cgi?id=42783.
`nomerge` is different from `noline`. `noinline` prevents function from
inlining at callsites, but `nomerge` prevents multiple identical calls
from being merged into one.
This patch adds `nomerge` to disable the optimization in IR level. A
followup patch will be needed to let backend understands `nomerge` and
avoid tail merge at backend.
Reviewed By: asbirlea, rnk
Differential Revision: https://reviews.llvm.org/D78659
Summary:
this patch fixe crash/asserts found in the test-suite.
the AssumeptionCache cannot be assumed to have all assumes contrary to what i tought.
prevent generation of information for terminators, because this can create broken IR in transfromation where we insert the new terminator before removing the old one.
Reviewers: jdoerfert
Reviewed By: jdoerfert
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79458
don't span their entire scope.
The previous commit (6d1c40c171) is an older version of the test.
Reviewed By: aprantl, vsk
Differential Revision: https://reviews.llvm.org/D79573
Summary:
The assume builder was non-deterministic when working on unamed values.
this patch fixes this.
Reviewers: jdoerfert
Reviewed By: jdoerfert
Subscribers: hiraditya, mgrang, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78616
Summary: with this patch the assume salvageKnowledge will not generate assume if all knowledge is already available in an assume with valid context. assume bulider can also in some cases update an existing assume with better information.
Reviewers: jdoerfert
Reviewed By: jdoerfert
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78014
Currently LAA's uses of ScalarEvolutionExpander blocks moving the
expander from Analysis to Transforms. Conceptually the expander does not
fit into Analysis (it is only used for code generation) and
runtime-check generation also seems to be better suited as a
transformation utility.
Reviewers: Ayal, anemet
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D78460
Summary:
If the only use of a value is a start or end lifetime intrinsic then mark the intrinsic as trivially dead. This should allow for that value to then be removed as well.
Currently, this only works for allocas, globals, and arguments.
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79355
FoldBranchToCommonDest clones instructions to a different basic block,
but handles debug intrinsics in a separate path. Previously, when
cloning debug intrinsics, their operands were not updated to reference
the correct cloned values. As a result, we would emit debug.value
intrinsics with broken operand references which are discarded in later
passes. This leads to incorrect debuginfo that reports incorrect values
for variables.
Fix this by remapping debug intrinsic operands when cloning them.
Fixes https://bugs.llvm.org/show_bug.cgi?id=45667.
Differential Revision: https://reviews.llvm.org/D79602
Splitting critical edges for indirect branches
the SplitIndirectBrCriticalEdges() function may break branch
probabilities if target basic block happens to have unset
a probability for any of its successors. That is because in
such cases the getEdgeProbability(Target) function returns
probability 1/NumOfSuccessors and it is called after Target
was split (thus Target has a single successor). As the result
the correspondent successor of the split block gets
probability 100% but 1/NumOfSuccessors is expected (or better
be left unset).
Reviewers: yamauchi
Differential Revision: https://reviews.llvm.org/D78806
loop nest.
Summary: As discussed in https://reviews.llvm.org/D73129.
Example
Before unroll and jam:
for
A
for
B
for
C
D
E
After unroll and jam (currently):
for
A
A'
for
B
for
C
D
B'
for
C'
D'
E
E'
After unroll and jam (Ideal):
for
A
A'
for
B
B'
for
C
C'
D
D'
E
E'
This is the first patch to change unroll and jam to work in the ideal
way.
This patch change the safety checks needed to make sure is safe to
unroll and jam in the ideal way.
Reviewer: dmgreen, jdoerfert, Meinersbur, kbarton, bmahjour, etiotto
Reviewed By: Meinersbur
Subscribers: fhahn, hiraditya, zzheng, llvm-commits, anhtuyen, prithayan
Tag: LLVM
Differential Revision: https://reviews.llvm.org/D76132
Summary:
If the only use of a value is a start or end lifetime intrinsic then mark the intrinsic as trivially dead. This should allow for that value to then be removed as well.
Currently, this only works for allocas, globals, and arguments.
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79355
We check that C is finite and strictly positive, but there's no need to
check that it's normal too. exp2 should be just as accurate on denormals
as pow is.
Differential Revision: https://reviews.llvm.org/D79413
I don't think there's any good reason not to do this transformation when
the pow has multiple uses.
Differential Revision: https://reviews.llvm.org/D79407
optimizePow does not create any new calls to pow, so it should work
regardless of whether the pow library function is available. This allows
it to optimize the llvm.pow intrinsic on targets with no math library.
Based on a patch by Tim Renouf.
Differential Revision: https://reviews.llvm.org/D68231
When the shufflevector mask operand was converted into special
instruction data, the FunctionComparator was not updated to
account for this. As such, MergeFuncs will happily merge
shufflevectors with different masks.
This fixes https://bugs.llvm.org/show_bug.cgi?id=45773.
Differential Revision: https://reviews.llvm.org/D79261
In D74183 clang started emitting alignment for sret parameters
unconditionally. This caused a 1.5% compile-time regression on
tramp3d-v4. The reason is that we now generate many instance of IR like
%ptrint = ptrtoint %class.GuardLayers* %guards_m to i64
%maskedptr = and i64 %ptrint, 3
%maskcond = icmp eq i64 %maskedptr, 0
tail call void @llvm.assume(i1 %maskcond)
to preserve the alignment information during inlining. Based on IR
analysis, these assumptions also regress optimization. The attached
phase ordering test case illustrates two issues: One are instruction
count based optimization heuristics, which are affected by the four
additional instructions of the assumption. The other is blocking of
SROA due to ptrtoint casts (PR45763).
We already encountered the same problem in Rust, where we (unlike
Clang) generally prefer to emit alignment information absolutely
everywhere it is available. We were only able to do this after
hardcoding -preserve-alignment-assumptions-during-inlining=false,
because we were seeing significant optimization and compile-time
regressions otherwise.
This patch disables -preserve-alignment-assumptions-during-inlining
by default, because we should not be punishing people for adding
more alignment annotations.
Once the assume bundle work shakes out and we can represent (and use)
alignment assumptions using assume bundles, it should be possible to
re-enable this with reduced overhead.
Differential Revision: https://reviews.llvm.org/D76886
This allows forward declarations of PointerCheck, which in turn reduce
the number of times LoopAccessAnalysis needs to be included.
Ultimately this helps with moving runtime check generation to
Transforms/Utils/LoopUtils.h, without having to include it there.
Reviewers: anemet, Ayal
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D78458
There are several different types of cost that TTI tries to provide
explicit information for: throughput, latency, code size along with
a vague 'intersection of code-size cost and execution cost'.
The vectorizer is a keen user of RecipThroughput and there's at least
'getInstructionThroughput' and 'getArithmeticInstrCost' designed to
help with this cost. The latency cost has a single use and a single
implementation. The intersection cost appears to cover most of the
rest of the API.
getUserCost is explicitly called from within TTI when the user has
been explicit in wanting the code size (also only one use) as well
as a few passes which are concerned with a mixture of size and/or
a relative cost. In many cases these costs are closely related, such
as when multiple instructions are required, but one evident diverging
cost in this function is for div/rem.
This patch adds an argument so that the cost required is explicit,
so that we can make the important distinction when necessary.
Differential Revision: https://reviews.llvm.org/D78635
This method has been commented as deprecated for a while. Remove
it and replace all uses with the equivalent getCalledOperand().
I also made a few cleanups in here. For example, to removes use
of getElementType on a pointer when we could just use getFunctionType
from the call.
Differential Revision: https://reviews.llvm.org/D78882
Add llvm.call.preallocated.{setup,arg} instrinsics.
Add "preallocated" operand bundle which takes a token produced by llvm.call.preallocated.setup.
Add "preallocated" parameter attribute, which is like byval but without the copy.
Verifier changes for these IR constructs.
See https://github.com/rnk/llvm-project/blob/call-setup-docs/llvm/docs/CallSetup.md
Subscribers: hiraditya, jdoerfert, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74651
Summary:
refactor assume bulider for the next patch.
the assume builder now generate only one assume per attribute kind and per value they are on. to do this it takes the highest. this is desirable because currently, for all attributes the higest value is the most valuable.
Reviewers: jdoerfert
Reviewed By: jdoerfert
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78013
We should only skip `lifetime` and `dbg` intrinsics when searching for users.
Other intrinsics are legit users that can't be ignored.
Without this fix, the testcase would result in an invalid IR. `memcpy`
will have a reference to the, now, external value (local to the
extracted loop function).
Fix PR42194
Differential Revision: https://reviews.llvm.org/D78749
Summary:
Teach MachineDebugify how to insert DBG_VALUE instructions. This can
help find bugs causing CodeGen differences when debug info is present.
DBG_VALUE instructions are only emitted when -debugify-level is set to
locations+variables.
There is essentially no attempt made to match up DBG_VALUE register
operands with the local variables they ought to correspond to. I'm not
sure how to improve the situation. In some cases (MachineMemOperand?)
it's possible to find the IR instruction a MachineInstr corresponds to,
but in general this seems to call for "undoing" the work done by ISel.
Reviewers: dsanders, aprantl
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78135
Summary:
When an irreducible SCC is converted into a new natural loop, existing
loops included in that SCC now become children of the new loop. The
logic that moves these loops from the parent loop to the new loop
invoked undefined behaviour when it modified the container that it was
iterating over. Fixed this by first extracting all the loops that are
to be removed from the parent.
Fixes bug 45623.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D78544
With clang option -funique-internal-linkage-symbols, symbols with
internal linkage get names with the module hash appended.
Differential Revision: https://reviews.llvm.org/D78243
The recently added Instruction::comesBefore can be used instead of
OrderedInstructions.
Reviewers: rnk, nikic, efriedma
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D78452
Most of the includes in LoopUtils.h are not required in the header and
they can be replaced by forward declarations.
Unfortunately includes of TargetTransformInfo.h and IVDescriptors.h pull
in a bunch of additional things, but there is no easy way to get rid of
them at the moment I think.
When running IPSCCP on a module with many small functions, memory
usage is dominated by PredicateInfo, which is a huge structure
(partially due to some unfortunate nested SmallVector use). However,
most of it is actually only temporary state needed to build
predicate info, and does not need to be retained after initial
construction.
This patch factors out the predicate building logic and state
into a separate PrediceInfoBuilder, with the extra bonus that
it does not need to live in the header anymore.
Differential Revision: https://reviews.llvm.org/D78326
We previously clamped the trailing zero count to 31 bits. And
then clamped the final alignment to MaximumAlignment which is
1 << 29.
This patch simplifies this to just clamp the trailing zero to
29 using MaxAlignmentExponent.
I was looking into changing this function to use Align/MaybeAlign
and noticed this.
Differential Revision: https://reviews.llvm.org/D78418
I uploaded the old version accidentally instead of the one with these
minor adjustments requested by the reviewers.
Differential Revision: https://reviews.llvm.org/D77855
Summary:
We can and should remove deleted nodes from their respective SCCs. We
did not do this before and this was a potential problem even though I
couldn't locally trigger an issue. Since the `DeleteNode` would assert
if the node was not in the SCC, we know we only remove nodes from their
SCC and only once (when run on all the Attributor tests).
Reviewers: lebedev.ri, hfinkel, fhahn, probinson, wristow, loladiro, sstefan1, uenoku
Subscribers: hiraditya, bollu, uenoku, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77855
Summary:
While it is uncommon that the ExternalCallingNode needs to be updated,
it can happen. It is uncommon because most functions listed as callees
have external linkage, modifying them is usually not allowed. That said,
there are also internal functions that have, or better had, their
"address taken" at construction time. We conservatively assume various
uses cause the address "to be taken". Furthermore, the user might have
become dead at some point. As a consequence, transformations, e.g., the
Attributor, might be able to replace a function that is listed
as callee of the ExternalCallingNode.
Since there is no function corresponding to the ExternalCallingNode, we
did just remove the node from the callee list if we replaced it (so
far). Now it would be preferable to replace it if needed and remove it
otherwise. However, removing the node has implications on the CGSCC
iteration. Locally, that caused some other nodes to be never visited
but it is for sure possible other (bad) side effects can occur. As it
seems conservatively safe to keep the new node in the callee list we
will do that for now.
Reviewers: lebedev.ri, hfinkel, fhahn, probinson, wristow, loladiro, sstefan1, uenoku
Subscribers: hiraditya, bollu, uenoku, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77854
Summary:
The old code did eliminate references from and to functions that were
about to be deleted only just before we deleted them. This can cause
references from other functions that are supposed to be deleted to still
exist, depending on the order. If the functions form a strongly
connected component the problem manifests regardless of the order in
which we try to actually delete the functions.
This patch introduces a two step deletion. First we remove all
references and then we delete the function. Note that this only affects
the old call graph. There should not be any functional changes if no old
style call graph was given.
To test this we delete two strongly connected functions instead of one
in an existing test.
Reviewers: hfinkel
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77975
This is related to commit 8c11bc0cd0
which introduces the FixIrreducible pass. The warning seems hard to
reproduce locally. The latest attempt ought to work.
An irreducible SCC is one which has multiple "header" blocks, i.e., blocks
with control-flow edges incident from outside the SCC. This pass converts an
irreducible SCC into a natural loop by introducing a single new header
block and redirecting all the edges on the original headers to this
new block.
This is a useful workaround for a limitation in the structurizer
which, which produces incorrect control flow in the presence of
irreducible regions. The AMDGPU backend provides an option to
enable this pass before the structurizer, which may eventually be
enabled by default.
Reviewed By: nhaehnle
Differential Revision: https://reviews.llvm.org/D77198
This restores commit 2ada8e2525.
Originally reverted with commit 44e09b59b8.
This reverts commit 2ada8e2525.
Buildbots produced compilation errors which I was not able to quickly
reproduce locally. Need more time to investigate.
An irreducible SCC is one which has multiple "header" blocks, i.e., blocks
with control-flow edges incident from outside the SCC. This pass converts an
irreducible SCC into a natural loop by introducing a single new header
block and redirecting all the edges on the original headers to this
new block.
This is a useful workaround for a limitation in the structurizer
which, which produces incorrect control flow in the presence of
irreducible regions. The AMDGPU backend provides an option to
enable this pass before the structurizer, which may eventually be
enabled by default.
Reviewed By: nhaehnle
Differential Revision: https://reviews.llvm.org/D77198
Summary:
Share logic to strip debugify metadata between the IR and MIR level
debugify passes. This makes it simpler to hunt for bugs by diffing IR
with vs. without -debugify-each turned on.
As a drive-by, fix an issue causing CallGraphNodes to become invalid
when a dead llvm.dbg.value prototype is deleted.
Reviewers: dsanders, aprantl
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77915
Summary: change assumption cache to store an assume along with an index to the operand bundle containing the knowledge.
Reviewers: jdoerfert, hfinkel
Reviewed By: jdoerfert
Subscribers: hiraditya, mgrang, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77402
Summary:
Updated CallPromotionUtils and impacted sites. Parameters that are
expected to be non-null, and return values that are guranteed non-null,
were replaced with CallBase references rather than pointers.
Left FIXME in places where more changes are facilitated by CallBase, but
aren't CallSites: Instruction* parameters or return values, for example,
where the contract that they are actually CallBase values.
Reviewers: davidxl, dblaikie, wmi
Reviewed By: dblaikie
Subscribers: arsenm, jvesely, nhaehnle, eraman, hiraditya, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77930
Summary:
Remove usages of asserting vector getters in Type in preparation for the
VectorType refactor. The existence of these functions complicates the
refactor while adding little value.
Reviewers: rriddle, sdesmalen, efriedma
Reviewed By: sdesmalen
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77260
Dead constants might be left when a function is replaced, we can
gracefully handle this case and avoid complexity for the users who would
see an assertion otherwise.
Summary:
Re-used the IR-level debugify for the most part. The MIR-level code then
adds locations to the MachineInstrs afterwards based on the LLVM-IR debug
info.
It's worth mentioning that the resulting locations make little sense as
the range of line numbers used in a Function at the MIR level exceeds that
of the equivelent IR level function. As such, MachineInstrs can appear to
originate from outside the subprogram scope (and from other subprogram
scopes). However, it doesn't seem worth worrying about as the source is
imaginary anyway.
There's a few high level goals this pass works towards:
* We should be able to debugify our .ll/.mir in the lit tests without
changing the checks and still pass them. I.e. Debug info should not change
codegen. Combining this with a strip-debug pass should enable this. The
main issue I ran into without the strip-debug pass was instructions with MMO's and
checks on both the instruction and the MMO as the debug-location is
between them. I currently have a simple hack in the MIRPrinter to
resolve that but the more general solution is a proper strip-debug pass.
* We should be able to test that GlobalISel does not lose debug info. I
recently found that the legalizer can be unexpectedly lossy in seemingly
simple cases (e.g. expanding one instr into many). I have a verifier
(will be posted separately) that can be integrated with passes that use
the observer interface and will catch location loss (it does not verify
correctness, just that there's zero lossage). It is a little conservative
as the line-0 locations that arise from conflicts do not track the
conflicting locations but it can still catch a fair bit.
Depends on D77439, D77438
Reviewers: aprantl, bogner, vsk
Subscribers: mgorny, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77446
dso_local leads to direct access even if the definition is not within this compilation unit (it is
still in the same linkage unit). On ELF, such a relocation (e.g. R_X86_64_PC32) referencing a
STB_GLOBAL STV_DEFAULT object can cause a linker error in a -shared link.
If the linkage is changed to available_externally, the dso_local flag should be dropped, so that no
direct access will be generated.
The current behavior is benign, because -fpic does not assume dso_local
(clang/lib/CodeGen/CodeGenModule.cpp:shouldAssumeDSOLocal).
If we do that for -fno-semantic-interposition (D73865), there will be an
R_X86_64_PC32 linker error without this patch.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D74751
Now that we have scalable vectors, there's a distinction that isn't
getting captured in the original SequentialType: some vectors don't have
a known element count, so counting the number of elements doesn't make
sense.
In some cases, there's a better way to express the commonality using
other methods. If we're dealing with GEPs, there's GEP methods; if we're
dealing with a ConstantDataSequential, we can query its element type
directly.
In the relatively few remaining cases, I just decided to write out
the type checks. We're talking about relatively few places, and I think
the abstraction doesn't really carry its weight. (See thread "[RFC]
Refactor class hierarchy of VectorType in the IR" on llvmdev.)
Differential Revision: https://reviews.llvm.org/D75661
Summary:
It can be helpful to test behaviour w.r.t locations without having DEBUG_VALUE
around. In particular, because DEBUG_VALUE has the potential to change CodeGen
behaviour (e.g. hasOneUse() vs hasOneNonDbgUse()) while locations generally
don't.
Reviewers: aprantl, bogner
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77438
This patch builds upon D76140 by updating metadata on pointer typed
loads in inlined functions, when the load is the return value, and the
callsite contains return attributes which can be updated as metadata on
the load.
Added test cases show this for nonnull, dereferenceable,
dereferenceable_or_null
Reviewed-By: jdoerfert
Differential Revision: https://reviews.llvm.org/D76792
As discussed in post-commit review in https://reviews.llvm.org/D73501
if the goal of this is to help vectorizer, then we should actually
be teaching vectorizer to do this, because right now this rewrite
is still budget-limited, which isn't what we'd want.
Additionally, while the rest of the patch series was universally profitable,
this particular patch is reportedly (https://reviews.llvm.org/D73501#1905171)
exposing cost-modeling issues on ARM.
So let's just back this particular patch out. Once there's an undo transform,
this could be considered for reintegration.
This reverts commit 44edc6fd2c.
Consider a callee function that has a call (C) within it which feeds
into the return. When we inline that callee into a callsite that has
return attributes, we can backward propagate valid attributes to the
call (C) within that inlined callee body.
This is safe to do so only if we can guarantee transfer of execution to
successor in the window of instructions between return value (i.e. the
call C) and the return instruction.
Also, this is valid only for attributes which are a property of a
callsite and not those that are not dependent on the ABI, or a property
of the call itself.
Reviewed-By: reames, jdoerfert
Differential Revision: https://reviews.llvm.org/D76140
Summary:
Splitting Knowledge retention into Queries in Analysis and Builder into Transform/Utils
allows Queries and Transform/Utils to use Analysis.
Reviewers: jdoerfert, sstefan1
Reviewed By: jdoerfert
Subscribers: mgorny, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77171
This reverts commit 28518d9ae3.
There is a failure in MsgPackReader.cpp when built with clang. It
complains about "signext and zeroext" are incompatible. Investigating
offline if it is infact a UB in the MsgPackReader code.
Consider a callee function that has a call (C) within it which feeds
into the return. When we inline that callee into a callsite that has
return attributes, we can backward propagate those attributes to the
call (C) within that inlined callee body.
This is safe to do so only if we can guarantee transfer of execution to
successor in the window of instructions between return value (i.e. the
call C) and the return instruction.
See added test cases.
Reviewed-By: reames, jdoerfert
Differential Revision: https://reviews.llvm.org/D76140
For each natural loop with multiple exit blocks, this pass creates a
new block N such that all exiting blocks now branch to N, and then
control flow is redistributed to all the original exit blocks.
The bulk of the tranformation is a new function introduced in
BasicBlockUtils that an redirect control flow from a set of incoming
blocks to a set of outgoing blocks via a common "hub".
This is a useful workaround for a limitation in the structurizer which
incorrectly orders blocks when processing a nest of loops. This pass
bypasses that issue by ensuring that each natural loop is recognized
as a separate region. Since the structurizer is a region pass, it no
longer sees a nest of loops in a single region, and instead processes
each "level" in the nesting as a separate region.
The AMDGPU backend provides a new option to enable this pass before
the structurizer, which may eventually be enabled by default.
Reviewers: madhur13490, arsenm, nhaehnle
Reviewed By: nhaehnle
Differential Revision: https://reviews.llvm.org/D75865
Aligned_alloc is a standard lib function and has been in glibc since
2.16 and in the C11 standard. It has semantics similar to malloc/calloc
for several analyses/transforms. This patch introduces aligned_alloc
in target library info and memory builtins. Subsequent ones will
make other passes aware and fix https://bugs.llvm.org/show_bug.cgi?id=44062
This change will also be useful to LLVM generators that need to allocate
buffers of vector elements larger than 16 bytes (for eg. 256-bit ones),
element boundary alignment for which is not typically provided by glibc malloc.
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
Differential Revision: https://reviews.llvm.org/D76970
Since intrinsics can now specify when an argument is required to be
constant, it is now OK to replace arguments with variables if they
aren't. This means intrinsics must now be accurately marked with
immarg.
Summary: Prevent InstCombine from removing llvm.assume for which the arguement is true when they have operand bundles with usefull information.
Reviewers: jdoerfert, nikic, lebedev.ri
Reviewed By: jdoerfert
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76147
Summary:
during inling Create and insert an llvm.assume with attributes to preserve them.
to prevent any changes for now generation of llvm.assume is under a flag disabled by default.
Reviewers: jdoerfert
Reviewed By: jdoerfert
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D75825
Summary:
This patch replaces incorrectt assert with a check. Previously it asserts that
if SCEV cannot prove `isKnownPredicate(A != B)`, then it should be able to prove
`isKnownPredicate(A == B)`.
Both these fact may be not provable. It is shown in the provided test:
Could not prove: `{-294,+,-2}<%bb1> != 0`
Asserting: `{-294,+,-2}<%bb1> == 0`
Obviously, this SCEV is not equal to zero, but 0 is in its range so we cannot
also prove that it is not zero.
Instead of assert, we should be checking the required conditions explicitly.
Reviewers: lebedev.ri, fhahn, sanjoy, fedor.sergeev
Reviewed By: lebedev.ri
Subscribers: hiraditya, zzheng, javed.absar, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76050
This essentially reverts some of the SimplifyLibcalls part changes of D45736 [SimplifyLibcalls] Replace locked IO with unlocked IO.
C11 7.21.5.2 The fflush function
> If stream is a null pointer, the fflush function performs this flushing action on all streams for which the behavior is defined above.
i.e. fopen'ed FILE* is inherently captured.
POSIX.1-2017 getc_unlocked, getchar_unlocked, putc_unlocked, putchar_unlocked - stdio with explicit client locking
> These functions can safely be used in a multi-threaded program if and only if they are called while the invoking thread owns the ( FILE *) object, as is the case after a successful call to the flockfile() or ftrylockfile() functions.
After a thread fopen'ed a FILE*, when it is calling foobar() which is now replaced by foobar_unlocked(),
if another thread is concurrently calling fflush(0), the behavior is undefined.
C11 7.22.4.4 The exit function
> Next, all open streams with unwritten buffered data are flushed, all open streams are closed, and all files created by the tmpfile function are removed.
The replacement is only feasible if the program is single threaded, or exit or fflush(0) is never called.
See also http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20180528/556615.html
for how the replacement makes libc interceptors difficult to implement.
dalias: in a worst case, it's unbounded data corruption because of concurrent access to pointers
without synchronization. f->wpos or rpos could get outside of the buffer, thread A could do
f->wpos += j after knowing j is in bounds, while thread B also changes it concurrently.
This can produce exploitable conditions depending on libc internals.
Revert the SimplifyLibcalls part change because the cons obviously
overweigh the pros. Even when the replacement is feasible, the benefit
is indemonstrable, more so in an application instead of an artificial
glibc benchmark. Theoretically the replacement could be beneficial when
calling getc_unlocked/putc_unlocked in a loop, but then it is better
using a blocked IO operation and the user is likely aware of that.
The function attribute inference is still useful and thus kept.
Reviewed By: xbolva00
Differential Revision: https://reviews.llvm.org/D75933
Summary:
Assume bundles need to be usable by Analysis and Transforms/Utils isn't.
so this commit moves utilities to deal with asusme bundles to IR.
Reviewers: jdoerfert
Reviewed By: jdoerfert
Subscribers: mgorny, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D75618
Summary: Finding what information is know about a value from a use is generally useful and can be done quickly.
Reviewers: jdoerfert
Reviewed By: jdoerfert
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D75616
Summary:
This performs better for sample PGO.
NFC as PGSOColdCodeOnlyForSamplePGO is still true.
Reviewers: davidxl
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D75550
As the test case shows if there is an ExtractValueInst in the Ret block, function dupRetToEnableTailCallOpts can't duplicate it into the block containing call. So later no tail call is generated in CodeGen.
This patch adds the ExtractValueInst handling code in function dupRetToEnableTailCallOpts and FoldReturnIntoUncondBranch, and later tail call can be generated for this case.
Differential Revision: https://reviews.llvm.org/D74242
Spin-off from D75407. As described there, ConstantFoldConstant()
currently returns null for non-ConstantExpr/ConstantVector inputs,
but otherwise always returns non-null, independently of whether
any folding has happened or not.
This is confusing and makes consumer code more complicated.
I would expect either that ConstantFoldConstant() returns only if
it actually folded something, or that it always returns non-null.
I'm going to the latter possibility here, which appears to be more
useful considering existing usage.
Differential Revision: https://reviews.llvm.org/D75543
Summary:
https://gist.github.com/modocache/ed7c62f6e570766c0f39b35dad675c2f
is an example of a small C++ program that uses C++20 coroutines that
is difficult to debug, due to the loss of debug info for variables that
"spill" across coroutine suspension boundaries. This patch addresses
that issue by inserting 'llvm.dbg.declare' intrinsics that point the
debugger to the variables' location at an offset to the coroutine frame.
With this patch, I confirmed that running the 'frame variable' commands in
https://gist.github.com/modocache/ed7c62f6e570766c0f39b35dad675c2f at
the specified breakpoints results in the correct values being printed
for coroutine frame variables 'i' and 'j' when using an lldb built from
trunk, as well as with gdb 8.3 (lldb 9.0.1, however, could not print the
values). The added test case also verifies this improved behavior.
The existing coro-debug.ll test case is also modified to reflect the
locations at which Clang actually places calls to 'dbg.declare', and
additional checks are added to ensure this patch works as intended in that
example as well.
Reviewers: vsk, jmorse, GorNishanov, lewissbaker, wenlei
Subscribers: EricWF, aprantl, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D75338
Summary: This patch adds a new way to query operand bundles of an llvm.assume that is much better suited to some users like the Attributor that need to do many queries on the operand bundles of llvm.assume. Some modifications of the IR like replaceAllUsesWith can cause information in the map to be outdated, so this API is more suited to analysis passes and passes that don't make modification that could invalidate the map.
Reviewers: jdoerfert, sstefan1, uenoku
Reviewed By: jdoerfert
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D75020
Also adds a force-reduction-intrinsics option for testing, for forcing
the generation of reduction intrinsics even when the backend is not
requesting them.
Summary:
This is to avoid generating duplicate llvm.dbg.value instrinsic if it already exists after the Instruction.
Before inserting llvm.dbg.value instruction, LLVM checks if the same instruction is already present before the instruction to avoid duplicates.
Currently it misses to check if it already exists after the instruction.
flang generates IR like this.
%4 = load i32, i32* %i1_311, align 4, !dbg !42
call void @llvm.dbg.value(metadata i32 %4, metadata !35, metadata !DIExpression()), !dbg !33
When this IR is processed in llvm, it ends up inserting duplicates.
%4 = load i32, i32* %i1_311, align 4, !dbg !42
call void @llvm.dbg.value(metadata i32 %4, metadata !35, metadata !DIExpression()), !dbg !33
call void @llvm.dbg.value(metadata i32 %4, metadata !35, metadata !DIExpression()), !dbg !33
We have now updated LdStHasDebugValue to include the cases when instruction is already
followed by same dbg.value instruction we intend to insert.
Now,
Definition and usage of function LdStHasDebugValue are deleted.
RemoveRedundantDbgInstrs is called for the cleanup of duplicate dbg.value's
Testing:
Added unit test for validation
check-llvm
check-debuginfo (the debug info integration tests)
Reviewers: aprantl, probinson, dblaikie, jmorse, jini.susan.george
SouraVX, awpandey, dstenb, vsk
Reviewed By: aprantl, jmorse, dstenb, vsk
Differential Revision: https://reviews.llvm.org/D74030
Summary:
Current peeling implementation bails out in case of loop nests.
The patch introduces a field in TargetTransformInfo structure that
certain targets can use to relax the constraints if it's
profitable (disabled by default).
Also additional option is added to enable peeling manually for
experimenting and testing purposes.
Reviewers: fhahn, lebedev.ri, xbolva00
Reviewed By: xbolva00
Subscribers: RKSimon, xbolva00, hiraditya, zzheng, llvm-commits
Differential Revision: https://reviews.llvm.org/D70304
Summary: This fixes the crash that led to the revert of D69591.
Reviewers: davidxl
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D75307
Summary:
Replacing uses of IV outside of the loop is likely generally useful,
but `rewriteLoopExitValues()` is cautious, and if it isn't told to always
perform the replacement, and there are hard uses of IV in loop,
it doesn't replace.
In [[ https://bugs.llvm.org/show_bug.cgi?id=44668 | PR44668 ]],
that prevents `-indvars` from replacing uses of induction variable
after the loop, which might be one of the optimization failures
preventing that code from being vectorized.
Instead, now that the cost model is fixed, i believe we should be
a little bit more optimistic, and also perform replacement
if we believe it is within our budget.
Fixes [[ https://bugs.llvm.org/show_bug.cgi?id=44668 | PR44668 ]].
Reviewers: reames, mkazantsev, asbirlea, fhahn, skatkov
Reviewed By: mkazantsev
Subscribers: nikic, hiraditya, zzheng, javed.absar, dmgreen, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73501
Summary:
In future patches`SCEVExpander::isHighCostExpansionHelper()` will respect the budget allocated by performing TTI cost modelling.
This is a fully NFC patch to make things reviewable.
Reviewers: reames, mkazantsev, wmi, sanjoy
Reviewed By: mkazantsev
Subscribers: hiraditya, zzheng, javed.absar, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73705
Summary:
Future patches will make use of TTI to perform cost-model-driven `SCEVExpander::isHighCostExpansionHelper()`
This is a fully NFC patch to make things reviewable.
Reviewers: reames, mkazantsev, wmi, sanjoy
Reviewed By: mkazantsev
Subscribers: hiraditya, zzheng, javed.absar, dmgreen, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73704
Summary:
Blocks in a loop can be in any order as long as the loop header is the
first block in Blocks.
With some order of Blocks, cloneLoopWithPreheader would trigger the
assertion in addBasicBlockToLoop.
Example:
define void @test(i64 %N) {
preheader.i:
br label %header.i
header.i:
%i = phi i64 [ 0, %preheader.i ], [ %inc.i, %latch.i ]
br label %header.j
header.j:
%j = phi i64 [ 0, %header.i ], [ %inc.j, %latch.j ]
br label %header.k
header.k:
%k = phi i64 [ 0, %header.j ], [ %inc.k, %latch.k ]
call void @baz(i64 %i, i64 %j, i64 %k)
br label %latch.k
latch.k:
%inc.k = add nsw i64 %k, 1
%cmp.k = icmp slt i64 %inc.k, %N
br i1 %cmp.k, label %header.k, label %latch.j
latch.j:
%inc.j = add nsw i64 %j, 1
%cmp.j = icmp slt i64 %inc.j, %N
br i1 %cmp.j, label %header.j, label %latch.i
latch.i:
%inc.i = add nsw i64 %i, 1
%cmp.i = icmp slt i64 %inc.i, %N
br i1 %cmp.i, label %header.i, label %exit.i
exit.i:
ret void
}
declare void @baz(i64, i64, i64)
If the blocks of loop-i is in the order: header.i, latch.k, header.k,
header.j, latch.j, latch.i,
then cloneLoopWithPreheader would trigger the assertion in
addBasicBlockToLoop
assert(contains(SameHeader) && getHeader() == SameHeader->getHeader() &&
"Incorrect LI specified for this loop!");
As latch.k is in both loop-j and loop-k, it would be set as the header
of both loops after adding latch.k.
If we update loop headers during cloning blocks, then after adding
header.k,
the header of loop-k would be updated with header.k,
while the header of loop-j stays as latch.k.
When adding header.j, SameHeader is loop-k, SameHeader->getHeader() is
header.k, but getHeader() is latch.k, which trigger the assertion.
Reviewer: jdoerfert, Meinersbur, fhahn, kbarton, hfinkel, bmahjour,
etiotto
Reviewed By: Meinersbur
Subscribers: hiraditya, llvm-commits
Tag: LLVM
Differential Revision: https://reviews.llvm.org/D74382
ToVectorTy is defined and used in multiple places. Hoist it to
VectorUtils.h to avoid duplication and improve re-usability.
Reviewers: rengolin, hsaito, Ayal, gilr, fpetrogalli
Reviewed By: fpetrogalli
Differential Revision: https://reviews.llvm.org/D74959
This changes the SimplifyLibCalls utility to accept an IRBuilderBase,
which allows us to pass through the IRBuilder used by InstCombine.
This will ensure that new instructions get added to the worklist.
The annotated test-case drops from 4 to 2 InstCombine iterations thanks
to this.
To achieve this, I'm adding an IRBuilderBase::OperandBundlesGuard,
which is basically the same as the existing InsertPointGuard and
FastMathFlagsGuard, but for operand bundles. Also add a
setDefaultOperandBundles() method so these can be set outside the
constructor.
Differential Revision: https://reviews.llvm.org/D74792
In addition to memory behavior attributes (readonly/writeonly) we now
derive memory location attributes (argmemonly/inaccessiblememonly/...).
The former is part of AAMemoryBehavior and the latter part of
AAMemoryLocation. While they are similar in nature it got messy when
they were put in a single AA. Location attributes for arguments and
floating values will follow later.
Note that both memory attributes kinds can derive readnone. If there are
no accesses AAMemoryBehavior will derive readnone. If there are accesses
but only to stack (=local) locations AAMemoryLocation will derive
readnone.
Reviewed By: uenoku
Differential Revision: https://reviews.llvm.org/D73426
replaceDbgDeclare is used to update the descriptions of stack variables
when they are moved (e.g. by ASan or SafeStack). A side effect of
replaceDbgDeclare is that it moves dbg.declares around in the
instruction stream (typically by hoisting them into the entry block).
This behavior was introduced in llvm/r227544 to fix an assertion failure
(llvm.org/PR22386), but no longer appears to be necessary.
Hoisting a dbg.declare generally does not create problems. Usually,
dbg.declare either describes an argument or an alloca in the entry
block, and backends have special handling to emit locations for these.
In optimized builds, LowerDbgDeclare places dbg.values in the right
spots regardless of where the dbg.declare is. And no one uses
replaceDbgDeclare to handle things like VLAs.
However, there doesn't seem to be a positive case for moving
dbg.declares around anymore, and this reordering can get in the way of
understanding other bugs. I propose getting rid of it.
Testing: stage2 RelWithDebInfo sanitized build, check-llvm
rdar://59397340
Differential Revision: https://reviews.llvm.org/D74517
This reverts commit 61b35e4111.
This commit causes a timeout in chromium builds; likely to have a
similar cause to the previous timeout issue caused by this commit (see
6ded69f294 for more details). It is possible that there is no way to
fix this bug that will not cause this issue; further investigations as
to the efficiency of handling large amounts of debug info will be
necessary.
Reapply 8a56d64d76 with minor fixes.
The problem was that cancellation can cause new edges to the parallel
region exit block which is not outlined. The CodeExtractor will encode
the information which "exit" was taken as a return value. The fix is to
ensure we do not return any value from the outlined function, to prevent
control to value conversion we ensure a single exit block for the
outlined region.
This reverts commit 3aac953afa.
In order to fix PR44560 and to prepare for loop transformations we now
finalize a function late, which will also do the outlining late. The
logic is as before but the actual outlining step happens now after the
function was fully constructed. Once we have loop transformations we
can apply them in the finalize step before the outlining.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D74372
This reverts commit 636c93ed11.
The original patch caused build failures on TSan buildbots. Commit 6ded69f294
fixes this issue by reducing the rate at which empty debug intrinsics
propagate, reducing the memory footprint and preventing a fatal spike.
Summary: It attempts to devirtualize a call on alloca through vtable loads.
Reviewers: davidxl
Subscribers: mgorny, Prazek, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71308
The CallGraphUpdater is a helper that simplifies the process of updating
the call graph, both old and new style, while running an CGSCC pass.
The uses are contained in different commits, e.g. D70767.
More functionality is added as we need it.
Reviewed By: modocache, hfinkel
Differential Revision: https://reviews.llvm.org/D70927
Bionic has had `__strlen_chk` for a while. Optimizing that into a
constant is quite profitable, when possible.
Differential Revision: https://reviews.llvm.org/D74079
Summary:
This enables it for large working set size cases only.
This does not enable it under sample PGO.
Reviewers: davidxl
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74073
Summary:
Tune the profile threshold flag value for instrumentation PGO based on internal
benchmarks.
Also, add flags to allow profile guided size optimizations for non-cold code
to be enabled separately for instrumentation and sample PGSO.
Neither changes the default behavior (yet) as it's disabled for non-cold code.
Reviewers: davidxl
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72937
Summary:
Method appendLoopsToWorklist is duplicate in LoopUnroll and in the
LoopPassManager as an internal method. Make it an utility.
Reviewers: dmgreen, chandlerc, fedor.sergeev, yamauchi
Subscribers: mehdi_amini, hiraditya, zzheng, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73569
If we had `noalias` on an argument the inliner created alias scope
metadata already. However, the call site `noalias` annotation was not
considered. Since the Attributor can derive such call site `noalias`
annotation we should treat them the same as argument annotations.
Reviewed By: hfinkel
Differential Revision: https://reviews.llvm.org/D73528
Fix attempt
this is part of the implementation of http://lists.llvm.org/pipermail/llvm-dev/2019-December/137632.html
this patch gives the basis of building an assume to preserve all information from an instruction and add support for building an assume that preserve the information from a call.
Summary:
this is part of the implementation of http://lists.llvm.org/pipermail/llvm-dev/2019-December/137632.html
this patch gives the basis of building an assume to preserve all information from an instruction and add support for building an assume that preserve the information from a call.
Reviewers: jdoerfert
Reviewed By: jdoerfert
Subscribers: mgrang, fhahn, mgorny, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72475
Summary:
this is part of the implementation of http://lists.llvm.org/pipermail/llvm-dev/2019-December/137632.html
this patch gives the basis of building an assume to preserve all information from an instruction and add support for building an assume that preserve the information from a call.
Reviewers: jdoerfert
Reviewed By: jdoerfert
Subscribers: mgrang, fhahn, mgorny, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72475
Summary:
this is part of the implementation of http://lists.llvm.org/pipermail/llvm-dev/2019-December/137632.html
this patch gives the basis of building an assume to preserve all information from an instruction and add support for building an assume that preserve the information from a call.
Reviewers: jdoerfert
Reviewed By: jdoerfert
Subscribers: mgrang, fhahn, mgorny, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72475
Summary:
this is part of the implementation of http://lists.llvm.org/pipermail/llvm-dev/2019-December/137632.html
this patch gives the basis of building an assume to preserve all information from an instruction and add support for building an assume that preserve the information from a call.
Reviewers: jdoerfert
Reviewed By: jdoerfert
Subscribers: mgrang, fhahn, mgorny, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72475
Some code gen passes use MBFIWrapper to keep track of the frequency of new
blocks. This was not taken into account and could lead to incorrect frequencies
as MBFI silently returns zero frequency for unknown/new blocks.
Add a variant for MBFIWrapper in the PGSO query interface.
Depends on D73494.
We may calculate reassociable math ops in arbitrary order when creating a shuffle reduction,
so there's no guarantee that things like 'nsw' hold on those intermediate values. Drop all
poison-generating flags for safety.
This change is limited to shuffle reductions because I don't think we have a problem in the
general case (where we intersect flags of each scalar op that goes into a vector op), but if
there's evidence of other cases being wrong, we can extend this fix to cover those cases.
https://bugs.llvm.org/show_bug.cgi?id=44536
Differential Revision: https://reviews.llvm.org/D73727
Summary:
This patch makes sure that the field VFShape.VF is greater than zero
when demangling the vector function name of scalable vector functions
encoded in the "vector-function-abi-variant" attribute.
This change is required to be able to provide instances of VFShape
that can be used to query the VFDatabase for the vectorization passes,
as such passes always require a positive value for the Vectorization Factor (VF)
needed by the vectorization process.
It is not possible to extract the value of VFShape.VF from the mangled
name of scalable vector functions, because it is encoded as
`x`. Therefore, the VFABI demangling function has been modified to
extract such information from the IR declaration of the vector
function, under the assumption that _all_ vectors in the signature of
the vector function have the same number of lanes. Such assumption is
valid because it is also assumed by the Vector Function ABI
specifications supported by the demangling function (x86, AArch64, and
LLVM internal one).
The unit tests that demangle scalable names have been modified by
adding the IR module that carries the declaration of the vector
function name being demangled.
In particular, the demangling function fails in the following cases:
1. When the declaration of the scalable vector function is not
present in the module.
2. When the value of VFSHape.VF is not greater than 0.
Reviewers: jdoerfert, sdesmalen, andwar
Reviewed By: jdoerfert
Subscribers: mgorny, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73286
proven safe.
Summary:
Currently LoopFusion give up when the second loop nest preheader is
not empty. For example:
for (int i = 0; i < 100; ++i) {}
x+=1;
for (int i = 0; i < 100; ++i) {}
The above example should be safe to fuse.
This PR moves instructions in FC1 preheader (e.g. x+=1; ) to
FC0 preheader, which then LoopFusion is able to fuse them.
Reviewer: kbarton, Meinersbur, jdoerfert, dmgreen, fhahn, hfinkel,
bmahjour, etiotto
Reviewed By: jdoerfert
Subscribers: hiraditya, llvm-commits
Tag: LLVM
Differential Revision: https://reviews.llvm.org/D71821
During extraction, stale llvm.assume handles may be retained in the
original function. The setup is:
1) CodeExtractor unregisters assumptions in the blocks that are to be
extracted.
2) Extraction happens. There are now two functions: f1 and f1.extracted.
3) Leftover assumptions in f1 (/not/ removed as they were not in the set of
blocks to be extracted) now have affected-value llvm.assume handles in
f1.extracted.
When assumptions for a value used in f1 are looked up, ValueTracking can assert
as some of the handles are in the wrong function. To fix this, simply erase the
llvm.assume calls in the extracted function.
Alternatives include flushing the assumption cache in the original function, or
walking all values used in the original function to prune stale affected-value
handles. Both seem more expensive.
Testing: check-llvm, LNT run with -mllvm -hot-cold-split enabled
rdar://58460728
Previously, the enums didn't account for all the possible cases, which
could cause misleading results (particularly for a "switch" on
FunctionModRefBehavior).
Fixes regression in polly from recent patch to add writeonly to memset.
While I'm here, also fix a few dubious uses of the FMRB_* enum values.
Differential Revision: https://reviews.llvm.org/D73154
This is how it should've been and brings it more in line with
std::string_view. There should be no functional change here.
This is mostly mechanical from a custom clang-tidy check, with a lot of
manual fixups. It uncovers a lot of minor inefficiencies.
This doesn't actually modify StringRef yet, I'll do that in a follow-up.
Summary:
Currently IsControlFlowEquivalent determine if two blocks are control
flow equivalent by checking if A dominates B and B post dominates A.
There exists blocks that are control flow equivalent even if they don't
satisfy the A dominates B and B post dominates A condition.
For example,
if (cond)
A
if (cond)
B
In the PR, we determine if two blocks are control flow equivalent by
also checking if the two sets of conditions A and B depends on are
equivalent.
Reviewer: jdoerfert, Meinersbur, dmgreen, etiotto, bmahjour, fhahn,
hfinkel, kbarton
Reviewed By: fhahn
Subscribers: hiraditya, llvm-commits
Tag: LLVM
Differential Revision: https://reviews.llvm.org/D71578
Summary:
LoopUnroll can reuse the RemapInstruction() in ValueMapper, or
remapInstructionsInBlocks() in CloneFunction, depending on the needs.
There is no need to have its own version in LoopUnroll.
By calling RemapInstruction() without TypeMapper or Materializer and
with Flags (RF_NoModuleLevelChanges | RF_IgnoreMissingLocals), it does
the same as remapInstruction(). remapInstructionsInBlocks() calls
RemapInstruction() exactly as described.
Looking at the history, I cannot find any obvious reason to have its own
version.
Reviewer: dmgreen, jdoerfert, Meinersbur, kbarton, bmahjour, etiotto,
foad, aprantl
Reviewed By: jdoerfert
Subscribers: hiraditya, zzheng, llvm-commits, prithayan, anhtuyen
Tag: LLVM
Differential Revision: https://reviews.llvm.org/D73277
Summary:
This is a follow up on https://reviews.llvm.org/D71473#inline-647262.
There's a caveat here that `Align(1)` relies on the compiler understanding of `Log2_64` implementation to produce good code. One could use `Align()` as a replacement but I believe it is less clear that the alignment is one in that case.
Reviewers: xbolva00, courbet, bollu
Subscribers: arsenm, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, hiraditya, kbarton, jrtc27, atanasyan, jsji, Jim, kerbowa, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D73099
This fixes a bug where a PHI node that is only referenced by a lifetime.end intrinsic in an otherwise empty cleanuppad can cause SimplyCFG to create an SSA violation while removing the empty cleanuppad. Theoretically the same problem can occur with debug intrinsics.
Differential Revision: https://reviews.llvm.org/D72540
Create a utility wrapper for the RecursivelyDeleteTriviallyDeadInstructions utility
method, which sets to nullptr the instructions that are not trivially
dead. Use the new method in LoopStrengthReduce.
Alternative: add a bool to the same method; this option adds a marginal
amount of overhead to the other callers, and the method needs to be
updated to return a bool status when it removes/doesn't remove
instructions.
The utility method RecursivelyDeleteTriviallyDeadInstructions receives
as input a vector of Instructions, where all inputs are valid
instructions. This same vector is used as a scratch storage (per the
header comment) to recursively delete instructions. If an instruction is
added as an operand of multiple other instructions, it may be added twice,
then deleted once, then the second reference in the vector is invalid.
Switch to using a Vector<WeakTrackingVH>.
This change facilitates a clean-up in LoopStrengthReduction.
Calling `operator*` on a WeakVH with a null value yields a null
reference, which is UB. Avoid this by implicitly converting the WeakVH
to a `Value *` rather than dereferencing and then taking the address
for the type conversion.
Differential Revision: https://reviews.llvm.org/D73280
In case of loops with multiple exit where all-but-one exit are deoptimizing
it might happen that the first rotation will end up with latch having a deoptimizing
exit. This makes the loop unsuitable for trip-count analysis (say, getLoopEstimatedTripCount)
as well as for loop transformations that know how to handle multple deoptimizing exits.
It pretty much means that canonical form in multple-deoptimizing-exits case should be
with non-deoptimizing exit at latch.
Teach loop-rotation to reach this canonical form by repeating rotation.
-loop-rotate-multi option introduced to control this behavior, currently disabled by default.
Reviewers: skatkov, asbirlea, reames, fhahn
Reviewed By: skatkov
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73058
It is incorrect to call ValueHandleBase::ValueIsRAUWd when only one use
is replaced since it simply violates semantics of the callback and leads
to bugs like PR44320.
Previously this call was used specifically to keep LICM's cache of
AliasSetTrackers up to date across passes (as PR36801 showed, even for
that purpose it didn't work properly), but since LICM doesn't have that
cache anymore, we can safely remove this incorrect call with no
repercussions.
This patch fixes https://bugs.llvm.org/show_bug.cgi?id=44320
Reviewers: asbirlea, fhahn, efriedma, reames
Reviewed-By: asbirlea
Differential Revision: https://reviews.llvm.org/D73089
Summary: Vectorized loop processes VFxUF number of elements in one iteration thus total number of iterations decreases proportionally. In addition epilog loop may not have more than VFxUF - 1 iterations. This patch updates profile information accordingly.
Reviewers: hsaito, Ayal, fhahn, reames, silvas, dcaballe, SjoerdMeijer, mkuper, DaniilSuchkov
Reviewed By: Ayal, DaniilSuchkov
Subscribers: fedor.sergeev, hiraditya, rkruppe, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67905
Summary: Current implementation of getLoopEstimatedTripCount returns 1 iteration less than it should. The reason is that in bottom tested loop first iteration is executed before first back branch is taken. For example for loop with !{!"branch_weights", i32 1 // taken, i32 1 // exit} metadata getLoopEstimatedTripCount gives 1 while actual number of iterations is 2.
Reviewers: Ayal, fhahn
Reviewed By: Ayal
Subscribers: mgorny, hiraditya, zzheng, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71990
This moves `rewriteLoopExitValues()` from IndVarSimplify to LoopUtils thus
making it a generic loop utility function. This allows to rewrite loop exit
values by just calling this function without running the whole IndVarSimplify
pass.
We use this in D72714 to rematerialise the iteration count in exit blocks, so
that we can clean-up loop update expressions inside the hardware-loops later.
Differential Revision: https://reviews.llvm.org/D72602
Static method MemoryDependenceResults::getLoadLoadClobberFullWidthSize
does not have or use any info specific to MemoryDependenceResults.
Move it to its only user: VNCoercion.
This reverts commit 3f3017e because there's a failure on peel-loop-nests.ll
with LLVM_ENABLE_EXPENSIVE_CHECKS on.
Differential Revision: https://reviews.llvm.org/D70304
Summary:
This commits is a rework of the patch in
https://reviews.llvm.org/D67572.
The rework was requested to prevent out-of-tree performance regression
when vectorizing out-of-tree IR intrinsics. The vectorization of such
intrinsics is enquired via the static function `isTLIScalarize`. For
detail see the discussion in https://reviews.llvm.org/D67572.
Reviewers: uabelho, fhahn, sdesmalen
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72734
Summary:
This change implements the expansion in two parts:
- Add a utility function emitAMDGPUPrintfCall() in LLVM.
- Invoke the above function from Clang CodeGen, when processing a HIP
program for the AMDGPU target.
The printf expansion has undefined behaviour if the format string is
not a compile-time constant. As a sufficient condition, the HIP
ToolChain now emits -Werror=format-nonliteral.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D71365
After extracting, fix up debug info in both the old and new functions by
1) Pointing line locations and debug intrinsics to the new subprogram
scope, and
2) Deleting intrinsics which point to values outside of the new
function.
Depends on https://reviews.llvm.org/D72795.
Testing: check-llvm, check-clang, a build of LNT in the `-Os -g` config
with "-mllvm -hot-cold-split=1" set, and end-to-end debugging of a toy
program which undergoes splitting to verify that lldb can find
variables, single step, etc. in extracted code.
rdar://45507940
Differential Revision: https://reviews.llvm.org/D72801
Summary:
InlineResult is used both in APIs assessing whether a call site is
inlinable (e.g. llvm::isInlineViable) as well as in the function
inlining utility (llvm::InlineFunction). It means slightly different
things (can/should inlining happen, vs did it happen), and the
implicit casting may introduce ambiguity (casting from 'false' in
InlineFunction will default a message about hight costs,
which is incorrect here).
The change renames the type to a more generic name, and disables
implicit constructors.
Reviewers: eraman, davidxl
Reviewed By: davidxl
Subscribers: kerbowa, arsenm, jvesely, nhaehnle, eraman, hiraditya, haicheng, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72744
Factor out the logic needed to update debug locations contained within
MD_loop metadata.
This refactor is preparation for a future change that also needs to
rewrite MD_loop metadata.
rdar://45507940
Summary:
Current peeling implementation bails out in case of loop nests.
The patch introduces a field in TargetTransformInfo structure that
certain targets can use to relax the constraints if it's
profitable (disabled by default).
Also additional option is added to enable peeling manually for
experimenting and testing purposes.
Reviewers: fhahn, lebedev.ri, xbolva00
Reviewed By: xbolva00
Subscribers: xbolva00, hiraditya, zzheng, llvm-commits
Differential Revision: https://reviews.llvm.org/D70304
SCEVExpander modifies the underlying function so it is more suitable in
Transforms/Utils, rather than Analysis. This allows using other
transform utils in SCEVExpander.
Reviewers: sanjoy.google, efriedma, reames
Reviewed By: sanjoy.google
Differential Revision: https://reviews.llvm.org/D71537
As discussed in PR44330:
https://bugs.llvm.org/show_bug.cgi?id=44330
...the transform from pow(X, -0.5) libcall/intrinsic to
reciprocal square root can result in small deviations from
the expected result due to differences in the pow()
implementation and/or the extra rounding step from the division.
This patch proposes to allow that difference with either the
'approximate functions' or 'reassociate' FMF:
http://llvm.org/docs/LangRef.html#fast-math-flags
In practice, this likely means that the code is compiled with
all of 'fast' (-ffast-math), but I have preserved the existing
specializations for -0.0/-INF that enable generating safe code
if those special values are allowed simultaneously with
allowing approximation/reassociation.
The question about whether a similar restriction is needed for
the non-reciprocal case -- pow(X, 0.5) -- is deferred. That
transform is allowed without FMF currently, and this patch does
not change that behavior.
Differential Revision: https://reviews.llvm.org/D71706
This reverts commit 1f3dd83cc1, reapplying
commit bb1b0bc4e5.
The original commit failed on some builds seemingly due to the use of a
bracketed constructor with an std::array, i.e. `std::array<> arr({...})`.
Previously, LLVM had no functional way of performing casts inside of a
DIExpression(), which made salvaging cast instructions other than Noop
casts impossible. This patch enables the salvaging of casts by using the
DW_OP_LLVM_convert operator for SExt and Trunc instructions.
There is another issue which is exposed by this fix, in which fragment
DIExpressions (which are preserved more readily by this patch) for
values that must be split across registers in ISel trigger an assertion,
as the 'split' fragments extend beyond the bounds of the fragment
DIExpression causing an error. This patch also fixes this issue by
checking the fragment status of DIExpressions which are to be split, and
dropping fragments that are invalid.
Summary:This PR move instructions from FC0.Latch bottom up to the
beginning of FC1.Latch as long as they are proven safe.
To illustrate why this is beneficial, let's consider the following
example:
Before Fusion:
header1:
br header2
header2:
br header2, latch1
latch1:
br header1, preheader3
preheader3:
br header3
header3:
br header4
header4:
br header4, latch3
latch3:
br header3, exit3
After Fusion (before this PR):
header1:
br header2
header2:
br header2, latch1
latch1:
br header3
header3:
br header4
header4:
br header4, latch3
latch3:
br header1, exit3
Note that preheader3 is removed during fusion before this PR.
Notice that we cannot fuse loop2 with loop4 as there exists block latch1
in between.
This PR move instructions from latch1 to beginning of latch3, and remove
block latch1. LoopFusion is now able to fuse loop nest recursively.
After Fusion (after this PR):
header1:
br header2
header2:
br header3
header3:
br header4
header4:
br header2, latch3
latch3:
br header1, exit3
Reviewer: kbarton, jdoerfert, Meinersbur, dmgreen, fhahn, hfinkel,
bmahjour, etiotto
Reviewed By: kbarton, Meinersbur
Subscribers: hiraditya, llvm-commits
Tag: LLVM
Differential Revision: https://reviews.llvm.org/D71165
Summary:
This is a resubmit of D71473.
This patch introduces a set of functions to enable deprecation of IRBuilder functions without breaking out of tree clients.
Functions will be deprecated one by one and as in tree code is cleaned up.
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: aaron.ballman, courbet
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71547
Summary:
This patch introduces a set of functions to enable deprecation of IRBuilder functions without breaking out of tree clients.
Functions will be deprecated one by one and as in tree code is cleaned up.
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: arsenm, jvesely, nhaehnle, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71473
Summary:
In commit d60f34c20a (llvm-svn 317128,
PR35113) MergeBlockIntoPredecessor was changed into
discarding some dbg.value intrinsics referring to
PHI values, post-splice due to loop rotation.
That elimination of dbg.value intrinsics did not
consider which dbg.value to keep depending on the
context (e.g. if the variable is changing its value
several times inside the basic block).
In the past that hasn't been such a big problem since
CodeGenPrepare::placeDbgValues has moved the dbg.value
to be next to the PHI node anyway. But after commit
00e238896c CodeGenPrepare isn't doing that
any longer, so we need to be more careful when avoiding
duplicate dbg.value intrinsics in MergeBlockIntoPredecessor.
This patch replaces the code that tried to avoid duplicate
dbg.values by using the RemoveRedundantDbgInstrs helper.
Reviewers: aprantl, jmorse, vsk
Reviewed By: aprantl, vsk
Subscribers: jholewinski, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71480
Summary:
Add a RemoveRedundantDbgInstrs to BasicBlockUtils with the
goal to remove redundant dbg intrinsics from a basic block.
This can be useful after various transforms, as it might
be simpler to do a filtering of dbg intrinsics after the
transform than during the transform.
One primary use case would be to replace a too aggressive
removal done by MergeBlockIntoPredecessor, seen at loop
rotate (not done in this patch).
The elimination algorithm currently focuses on dbg.value
intrinsics and is doing two iterations over the BB.
First we iterate backward starting at the last instruction
in the BB. Whenever a consecutive sequence of dbg.value
instructions are found we keep the last dbg.value for
each variable found (variable fragments are identified
using the {DILocalVariable, FragmentInfo, inlinedAt}
triple as given by the DebugVariable helper class).
Next we iterate forward starting at the first instruction
in the BB. Whenever we find a dbg.value describing a
DebugVariable (identified by {DILocalVariable, inlinedAt})
we save the {DIValue, DIExpression} that describes that
variables value. But if the variable already was mapped
to the same {DIValue, DIExpression} pair we instead drop
the second dbg.value.
To ease the process of making lit tests for this utility a
new pass is introduced called RedundantDbgInstElimination.
It can be executed by opt using -redundant-dbg-inst-elim.
Reviewers: aprantl, jmorse, vsk
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71478
This reverts commit 0be81968a2.
The VFDatabase needs some rework to be able to handle vectorization
and subsequent scalarization of intrinsics in out-of-tree versions of
the compiler. For more details, see the discussion in
https://reviews.llvm.org/D67572.
GEP index size can be specified in the DataLayout, introduced in D42123. However, there were still places
in which getIndexSizeInBits was used interchangeably with getPointerSizeInBits. This notably caused issues
with Instcombine's visitPtrToInt; but the unit tests was incorrect, so this remained undiscovered.
This fixes the buildbot failures.
Differential Revision: https://reviews.llvm.org/D68328
Patch by Joseph Faulls!
GEP index size can be specified in the DataLayout, introduced in D42123. However, there were still places
in which getIndexSizeInBits was used interchangeably with getPointerSizeInBits. This notably caused issues
with Instcombine's visitPtrToInt; but the unit tests was incorrect, so this remained undiscovered.
Differential Revision: https://reviews.llvm.org/D68328
Patch by Joseph Faulls!
This patch introduced the VFDatabase, the framework proposed in
http://lists.llvm.org/pipermail/llvm-dev/2019-June/133484.html. [*]
In this patch the VFDatabase is used to bridge the TargetLibraryInfo
(TLI) calls that were previously used to query for the availability of
vector counterparts of scalar functions.
The VFISAKind field `ISA` of VFShape have been moved into into VFInfo,
under the assumption that different vector ISAs may provide the same
vector signature. At the moment, the vectorizer accepts any of the
available ISAs as long as the signature provided by the VFDatabase
matches the one expected in the vectorization process. For example,
when targeting AVX or AVX2, which both have 256-bit registers, the IR
signature of the two vector functions associated to the two ISAs is
the same. The `getVectorizedFunction` method at the moment returns the
first available match. We will need to add more heuristics to the
search system to decide which of the available version (TLI, AVX,
AVX2, ...) the system should prefer, when multiple versions with the
same VFShape are present.
Some of the code in this patch is based on the work done by Sumedh
Arani in https://reviews.llvm.org/D66025.
[*] Notice that in the proposal the VFDatabase was called SVFS. The
name VFDatabase is more in line with LLVM recommendations for
naming classes and variables.
Differential Revision: https://reviews.llvm.org/D67572
basic blocks
Originally applied in 72ce759928.
Fixed a build failure caused by incorrect use of cast instead of
dyn_cast.
This reverts commit 8b0780f795.
AssumptionCache can be null in SimplifyCFGOptions. However, FoldCondBranchOnPHI() was not properly handling that when passing a null AssumptionCache to simplifyCFG.
Patch by Rodrigo Caetano Rocha <rcor.cs@gmail.com>
Reviewers: fhahn, lebedev.ri, spatel
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D69963
In general ValueHandleBase::ValueIsRAUWd shouldn't be called when not
all uses of the value were actually replaced, though, currently
formLCSSAForInstructions calls it when it inserts LCSSA-phis.
Calls of ValueHandleBase::ValueIsRAUWd were added to LCSSA specifically
to update/invalidate SCEV. In the best case these calls duplicate some
of the work already done by SE->forgetValue, though in case when SCEV of
the value is SCEVUnknown, SCEV replaces the underlying value of
SCEVUnknown with the new value (i.e. acts like LCSSA-phi actually fully
replaces the value it is created for), which leads to SCEV being
corrupted because LCSSA-phi rarely dominates all uses of its inputs.
Fixes bug https://bugs.llvm.org/show_bug.cgi?id=44058.
Reviewers: fhahn, efriedma, reames, sanjoy.google
Reviewed By: fhahn
Subscribers: hiraditya, javed.absar, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70593
Summary:
Emit a value debug intrinsic (with OP_deref) when an alloca address is
passed to a function call after going through a bitcast.
This generates an FP or SP-relative location for the local variable in
the following case:
int x;
use((void *)&x;
Reviewers: aprantl, vsk, pcc
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70752
Summary:
D69561/dde5893 enabled importing of readonly variables with references,
however, it introduced a bug relating to importing/internalization of
writeonly variables with references.
A fix for this was added in D70006/7f92d66. But this didn't work in
distributed ThinLTO mode. The reason is that the fix (importing the
writeonly var with a zeroinitializer) was only applied when there were
references on the writeonly var summary. In distributed ThinLTO mode,
where we only have a small slice of the index, we will not have the
references on the importing side if we are not importing those
referenced values. Rather than changing this handshaking (which will
require a lot of other changes, since that's how we know what to import
in the distributed backend clang invocation), we can simply always give
the writeonly variable a zero initializer.
Reviewers: evgeny777, steven_wu
Subscribers: mehdi_amini, inglorion, hiraditya, dexonsmith, arphaman, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70977
Summary:
This is one more prep step necessary before the code gen pass instrumentation
code could go in.
Reviewers: davidxl
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70988
When basic blocks are killed, either due to being empty or to being an if.then
or if.else block whose complement contains identical instructions, some of the
debug intrinsics in that block are lost. This patch sinks those intrinsics
into the single successor block, setting them Undef if necessary to
prevent debug info from falling out-of-date.
Differential Revision: https://reviews.llvm.org/D70318
Constructor invocations such as `APFloat(APFloat::IEEEdouble(), 0.0)`
may seem like they accept a FP (floating point) value, but the overload
they reach is actually the `integerPart` one, not a `float` or `double`
overload (which only exists when `fltSemantics` isn't passed).
This may lead to possible loss of data, by the conversion from `float`
or `double` to `integerPart`.
To prevent future mistakes, a new constructor overload, which accepts
any FP value and marked with `delete`, to prevent its usage.
Fixes PR34095.
Differential Revision: https://reviews.llvm.org/D70425
Summary:
In case of a need to distinguish different query sites for gradual commit or
debugging of PGSO. NFC.
Reviewers: davidxl
Subscribers: hiraditya, zzheng, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70510
Summary:
Related bug: https://bugs.llvm.org/show_bug.cgi?id=40648
Static helper function rewriteDebugUsers in Local.cpp deletes dbg.value
intrinsics when it cannot move or rewrite them, or salvage the deleted
instruction's value. It should instead undef them in this case.
This patch fixes that and I've added a test which covers the failing test
case in bz40648. I've updated the unit test Local.ReplaceAllDbgUsesWith
to check for this behaviour (and fixed a typo in the test which would
cause the old test to always pass).
Reviewers: aprantl, vsk, djtodoro, probinson
Reviewed By: vsk
Subscribers: hiraditya, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D70604
moved before another instruction.
Summary:Added an API to check if an instruction can be safely moved
before another instruction. In future PRs, we will like to add support
of moving instructions between blocks that are not control flow
equivalent, and add other APIs to enhance usability, e.g. moving basic
blocks, moving list of instructions...
Loop Fusion will be its first user. When there is intervening code in
between two loops, fusion is currently unable to fuse them. Loop Fusion
can use this utility to check if the intervening code can be safely
moved before or after the two loops, and move them, then it can
successfully fuse them.
Reviewer:kbarton,jdoerfert,Meinersbur,bmahjour,etiotto
Reviewed By:bmahjour
Subscribers:mgorny,hiraditya,llvm-commits
Tag:LLVM
Differential Revision:https://reviews.llvm.org/D70049
Summary:
Most libraries are defined in the lib/ directory but there are also a
few libraries defined in tools/ e.g. libLLVM, libLTO. I'm defining
"Component Libraries" as libraries defined in lib/ that may be included in
libLLVM.so. Explicitly marking the libraries in lib/ as component
libraries allows us to remove some fragile checks that attempt to
differentiate between lib/ libraries and tools/ libraires:
1. In tools/llvm-shlib, because
llvm_map_components_to_libnames(LIB_NAMES "all") returned a list of
all libraries defined in the whole project, there was custom code
needed to filter out libraries defined in tools/, none of which should
be included in libLLVM.so. This code assumed that any library
defined as static was from lib/ and everything else should be
excluded.
With this change, llvm_map_components_to_libnames(LIB_NAMES, "all")
only returns libraries that have been added to the LLVM_COMPONENT_LIBS
global cmake property, so this custom filtering logic can be removed.
Doing this also fixes the build with BUILD_SHARED_LIBS=ON
and LLVM_BUILD_LLVM_DYLIB=ON.
2. There was some code in llvm_add_library that assumed that
libraries defined in lib/ would not have LLVM_LINK_COMPONENTS or
ARG_LINK_COMPONENTS set. This is only true because libraries
defined lib lib/ use LLVMBuild.txt and don't set these values.
This code has been fixed now to check if the library has been
explicitly marked as a component library, which should now make it
easier to remove LLVMBuild at some point in the future.
I have tested this patch on Windows, MacOS and Linux with release builds
and the following combinations of CMake options:
- "" (No options)
- -DLLVM_BUILD_LLVM_DYLIB=ON
- -DLLVM_LINK_LLVM_DYLIB=ON
- -DBUILD_SHARED_LIBS=ON
- -DBUILD_SHARED_LIBS=ON -DLLVM_BUILD_LLVM_DYLIB=ON
- -DBUILD_SHARED_LIBS=ON -DLLVM_LINK_LLVM_DYLIB=ON
Reviewers: beanz, smeenai, compnerd, phosek
Reviewed By: beanz
Subscribers: wuzish, jholewinski, arsenm, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, mgorny, mehdi_amini, sbc100, jgravelle-google, hiraditya, aheejin, fedor.sergeev, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, steven_wu, rogfer01, MartinMosbeck, brucehoult, the_o, dexonsmith, PkmX, jocewei, jsji, dang, Jim, lenary, s.egerton, pzheng, sameer.abuasal, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70179
As a reminder, a "widenable branch" is the pattern "br i1 (and i1 X, WC()), label %taken, label %untaken" where "WC" is the widenable condition intrinsics. The semantics of such a branch (derived from the semantics of WC) is that a new condition can be added into the condition arbitrarily without violating legality.
Broaden the definition in two ways:
Allow swapped operands to the br (and X, WC()) form
Allow widenable branch w/trivial condition (i.e. true) which takes form of br i1 WC()
The former is just general robustness (e.g. for X = non-instruction this is what instcombine produces). The later is specifically important as partial unswitching of a widenable range check produces exactly this form above the loop.
Differential Revision: https://reviews.llvm.org/D70502
Summary:
Also, replace the SmallVector with a normal C array.
Reviewers: vsk
Reviewed By: vsk
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70498
This is mostly NFC, but I removed the setting of the guard's calling convention onto the WC call. Why? Because it was untested, and was producing an ill defined output as the declaration's convention wasn't been changed leaving a mismatch which is UB.
With the widenable condition construct, we have the ability to reason about branches which can be 'widened' (i.e. made to fail more often). We've got a couple o transforms which leverage this. This patch just cleans up the API a bit.
This is prep work for generalizing our definition of a widenable branch slightly. At the moment "br i1 (and A, wc()), ..." is considered widenable, but oddly, neither "br i1 (and wc(), B), ..." or "br i1 wc(), ..." is. That clearly needs addressed, so first, let's centralize the code in one place.
Summary:
Pass down the already accessed ValueInfo to shouldPromoteLocalToGlobal,
to avoid an unnecessary extra index lookup.
Add some assertion checking to confirm we have a non-empty VI when
expected.
Also some misc cleanup, merging the two versions of
doImportAsDefinition, since one was only called by the other, and
unnecessarily passed in a member variable.
Reviewers: steven_wu, pcc, evgeny777
Reviewed By: evgeny777
Subscribers: mehdi_amini, inglorion, hiraditya, dexonsmith, arphaman, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70337
Summary:
Clean up the code that does GV promotion in the ThinLTO backends.
Specifically, we don't need to check whether we are importing since that
is already checked and handled correctly in shouldPromoteLocalToGlobal.
Simply call shouldPromoteLocalToGlobal, and if it returns true we are
guaranteed that we are promoting, whether or not we are importing (or in
the exporting module). This also makes the handling in getName()
consistent with that in getLinkage(), which checks the DoPromote parameter
regardless of whether we are importing or exporting.
Reviewers: steven_wu, pcc, evgeny777
Subscribers: mehdi_amini, inglorion, hiraditya, dexonsmith, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70327
Similar to/extension of D70208 (rGee0882bdf866), but this one
may finally allow closing motivating bugs.
This is another step towards having FMF apply only to FP values
rather than those + fcmp. See PR38086 for one of the original
discussions/motivations:
https://bugs.llvm.org/show_bug.cgi?id=38086
And the test here is derived from PR39535:
https://bugs.llvm.org/show_bug.cgi?id=39535
Currently, we lose FMF when converting any phi to select in
SimplifyCFG. There are a small number of similar changes needed
to correct within SimplifyCFG, so it should be quick to patch
this pass up.
FMF was extended to select and phi with:
D61917
D67564
This is another step towards having FMF apply only to FP values
rather than those + fcmp. See PR38086 for one of the original
discussions/motivations:
https://bugs.llvm.org/show_bug.cgi?id=38086
And the test here is derived from PR39535:
https://bugs.llvm.org/show_bug.cgi?id=39535
Currently, we lose FMF when converting any phi to select in
SimplifyCFG. There are a small number of similar changes needed
to correct within SimplifyCFG, so it should be quick to patch
this pass up.
FMF was extended to select and phi with:
D61917
D67564
Differential Revision: https://reviews.llvm.org/D70208
This patch introduces a function pass to inject the scalar-to-vector
mappings stored in the TargetLIbraryInfo (TLI) into the Vector
Function ABI (VFABI) variants attribute.
The test is testing the injection for three vector libraries supported
by the TLI (Accelerate, SVML, MASSV).
The pass does not change any of the analysis associated to the
function.
Differential Revision: https://reviews.llvm.org/D70107
ValueInfo has user-defined 'operator bool' which allows incorrect implicit conversion
to GlobalValue::GUID (which is unsigned long). This causes bugs which are hard to
track and should be removed in future.
This patch adds an assertion check for exported read/write-only
variables to be also in import list for module. If they aren't
we may face linker errors, because read/write-only variables are
internalized in their source modules. The patch also changes
export lists to store ValueInfo instead of GUID for performance
considerations.
Differential revision: https://reviews.llvm.org/D70128
Summary:
This fixes PR43081, where the transformation of `strchr(p, 0) -> p +
strlen(p)` can cause a segfault, if `-fno-builtin-strlen` is used. In
that case, `emitStrLen` returns nullptr, which CreateGEP is not designed
to handle. Also add the minimized code from the PR as a test case.
Reviewers: xbolva00, spatel, jdoerfert, efriedma
Reviewed By: efriedma
Subscribers: lebedev.ri, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D70143
This file lists every pass in LLVM, and is included by Pass.h, which is
very popular. Every time we add, remove, or rename a pass in LLVM, it
caused lots of recompilation.
I found this fact by looking at this table, which is sorted by the
number of times a file was changed over the last 100,000 git commits
multiplied by the number of object files that depend on it in the
current checkout:
recompiles touches affected_files header
342380 95 3604 llvm/include/llvm/ADT/STLExtras.h
314730 234 1345 llvm/include/llvm/InitializePasses.h
307036 118 2602 llvm/include/llvm/ADT/APInt.h
213049 59 3611 llvm/include/llvm/Support/MathExtras.h
170422 47 3626 llvm/include/llvm/Support/Compiler.h
162225 45 3605 llvm/include/llvm/ADT/Optional.h
158319 63 2513 llvm/include/llvm/ADT/Triple.h
140322 39 3598 llvm/include/llvm/ADT/StringRef.h
137647 59 2333 llvm/include/llvm/Support/Error.h
131619 73 1803 llvm/include/llvm/Support/FileSystem.h
Before this change, touching InitializePasses.h would cause 1345 files
to recompile. After this change, touching it only causes 550 compiles in
an incremental rebuild.
Reviewers: bkramer, asbirlea, bollu, jdoerfert
Differential Revision: https://reviews.llvm.org/D70211
Summary:
This temporarily disables the large working set size behavior in profile guided
size optimization due to internal benchmark regressions.
Reviewers: davidxl
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70207
The attribute is stored at the `FunctionIndex` attribute set, with the
name "vector-function-abi-variant".
The get/set methods of the attribute have assertion to verify that:
1. Each name in the attribute is a valid VFABI mangled name.
2. Each name in the attribute correspond to a function declared in the
module.
Differential Revision: https://reviews.llvm.org/D69976
Patch enables import of write-only variables with non-trivial initializers
to fix linker errors. Initializers of imported variables are converted to
'zeroinitializer' to avoid promotion of referenced objects.
Differential revision: https://reviews.llvm.org/D70006
Summary:
I need to make use of this pass from a driver program that isn't opt.
Therefore this patch moves this pass into the LLVM library so that it is
available for use elsewhere.
There was one function I kept in tools/opt which is exportDebugifyStats()
this is because it's serializing the statistics into a human readable
format and this seemed more in keeping with opt than a library function
Reviewers: vsk, aprantl
Subscribers: mgorny, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69926
Instcombiner pass was erasing trivially dead instruction without updating dependent llvm.dbg.value.
which was not showing programmer current state of variables while debugging.
As a part of this fix I did following,
Iterate throught all the users (llvm.dbg) of a instruction which is trivially dead and set each if them undef, Before deleting the instruction.
Now user will see optimized out, when try to print those variables.
This fixes
https://bugs.llvm.org/show_bug.cgi?id=43893
This is my first fix to llvm.
Patch by kamlesh kumar!
Differential Revision: https://reviews.llvm.org/D69809
Patch allows importing declarations of functions and variables, referenced
by the initializer of some other readonly variable.
Differential revision: https://reviews.llvm.org/D69561
Summary:
When adjusting function entry counts after inlining, Funciton::setEntryCount is called without providing an import function list. The side effect of that is the previously set import function list will be dropped. The import function list is used by ThinLTO to help import hot cross module callee for LTO inlining, so dropping that during ThinLTO pre-link may adversely affect LTO inlining. The fix is to keep the list while updating entry counts for inlining.
Reviewers: wmi, davidxl, tejohnson
Subscribers: mehdi_amini, hiraditya, dexonsmith, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69736
Summary:
I believe this bisects to https://reviews.llvm.org/D44983
(`[LoopUnroll] Only peel if a predicate becomes known in the loop body.`)
While that revision did contain tests that showed arguably-subpar peeling
for [in]equality predicates that [not] happen in the middle of the loop,
it also disabled peeling for the *first* loop iteration,
because latch would be canonicalized to [in]equality comparison..
That was intentional as per https://reviews.llvm.org/D44983#1059583.
I'm not 100% sure that i'm using correct checks here,
but this fix appears to be going in the right direction..
Let me know if i'm missing some checks here..
Fixes [[ https://bugs.llvm.org/show_bug.cgi?id=43840 | PR43840 ]].
Reviewers: fhahn, mkazantsev, efriedma
Reviewed By: fhahn
Subscribers: xbolva00, hiraditya, zzheng, llvm-commits, fhahn
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69617
This transformation is a variation on the GuardWidening transformation we have checked in as it's own pass. Instead of focusing on merge (i.e. hoisting and simplifying) two widenable branches, this transform makes the observation that simply removing a second slowpath block (by reusing an existing one) is often a very useful canonicalization. This may lead to later merging, or may not. This is a useful generalization when the intermediate block has loads whose dereferenceability is hard to establish.
As noted in the patch, this can be generalized further, and will be.
Differential Revision: https://reviews.llvm.org/D69689
This reverts commit 004ed2b0d1.
Original commit hash 6d03890384
Summary:
This adds a clang option to disable inline line tables. When it is used,
the inliner uses the call site as the location of the inlined function instead of
marking it as an inline location with the function location.
https://reviews.llvm.org/D67723
This recommits cc0b9647b7 which was
reverted in d39d1a2f87.
I added a fix for an issue found when testing via distributed ThinLTO,
and added a test case for that failure.
Summary:
This adds a clang option to disable inline line tables. When it is used,
the inliner uses the call site as the location of the inlined function instead of
marking it as an inline location with the function location.
See https://bugs.llvm.org/show_bug.cgi?id=42344
Reviewers: rnk
Subscribers: hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D67723
Summary:
Currently we only forget the loop we added LCSSA phis for. But SCEV
expressions in other loops could also depend on the instruction we added
a PHI for and currently we do not invalidate those expressions. This can
happen when we use ScalarEvolution before converting a function to LCSSA
form. The SCEV expressions will refer to the non-LCSSA value. If this
SCEV expression is then used with the expander, we do not preserve LCSSA
form.
This patch properly forgets the values we created PHIs for. Those need
to be recomputed again. This patch fixes PR43458.
Currently SCEV::verify does not catch this mismatch and any test would
need to run multiple passes to trigger the error (e.g. -loop-reduce
-loop-unroll). I will also look into catching this kind of mismatch in
the verifier. Also, we currently forget the whole loop in LCSSA and I'll
check if we can be more surgical.
Reviewers: efriedma, sanjoy.google, reames
Reviewed By: efriedma
Subscribers: zzheng, hiraditya, javed.absar, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68194
Summary:
(Split of off D67120)
SizeOpts/MachineSizeOpts changes for profile guided size optimization.
(A second try after previously committed as r375254 and reverted as r375375.)
Subscribers: mgorny, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69409
Summary:
Debug info affects output from "opt -inline", InlineFunction could
not handle the llvm.dbg.value when it exist between alloca
instructions.
Problem was that the first alloca in a sequence of allocas was
handled differently from the subsequence alloca instructions. Now
all static alloca instructions are treated the same (being removed
if the have no uses). So it does not matter if there are dbg
instructions (or any other instructions) in between.
Fix the issue: https://bugs.llvm.org/show_bug.cgi?id=43291k
Patch by: yechunliang (Chris Ye)
Reviewers: bjope, jmorse, vsk, probinson, jdoerfert, mtrofin, aprantl, fhahn
Reviewed By: bjope
Subscribers: uabelho, ormris, aprantl, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68633
Summary:
If there are a GUID collision between two globals checking the
summarylist from the import index to make assumption can be dangerous.
Do not assume that a GlobalValue that has a GlobalVarSummary
actually is a GlobalVariable as it can be another GlobalValue with
the same GUID that the summary is connected to.
Patch by Joel Klinghed (the_jk@opera.com)
Reviewers: evgeny777, tejohnson
Reviewed By: tejohnson
Subscribers: tejohnson, dblaikie, MaskRay, mehdi_amini, inglorion, hiraditya, steven_wu, dexonsmith, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67322
Summary:
Reduce include dependencies by no longer including Pass.h from
DataLayout.h. That include seemed irrelevant to DataLayout, as
well as being irrelevant to several users of DataLayout.
Reviewers: rnk
Reviewed By: rnk
Subscribers: mehdi_amini, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D69261
llvm-svn: 375436
Summary:
There are two cases where a block is merged into its predecessor and the
MergeBlockIntoPredecessor API is not used. Update the API so it can be
reused in the other cases, in order to avoid code duplication.
Cleanup motivated by D68659.
Reviewers: chandlerc, sanjoy.google, george.burgess.iv
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68670
llvm-svn: 375050
Add own version of the mathematical constants from the upcoming C++20 `std::numbers`.
Differential revision: https://reviews.llvm.org/D68257
llvm-svn: 374207
Summary:
The rule for the moveAllAfterMergeBlocks API si for all instructions
from `From` to have been moved to `To`, while keeping the CFG edges (and
block terminators) unchanged.
Update all the callsites for moveAllAfterMergeBlocks to follow this.
Pending follow-up: since the same behavior is needed everytime, merge
all callsites into one. The common denominator may be the call to
`MergeBlockIntoPredecessor`.
Resolves PR43569.
Reviewers: george.burgess.iv
Subscribers: Prazek, sanjoy.google, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68659
llvm-svn: 374177
Factor out CodeExtractor's analysis of allocas (for shrinkwrapping
purposes), and allow the analysis to be reused.
This resolves a quadratic compile-time bug observed when compiling
AMDGPUDisassembler.cpp.o.
Pre-patch (Release + LTO clang):
```
---User Time--- --System Time-- --User+System-- ---Wall Time--- --- Name ---
176.5278 ( 57.8%) 0.4915 ( 18.5%) 177.0192 ( 57.4%) 177.4112 ( 57.3%) Hot Cold Splitting
```
Post-patch (ReleaseAsserts clang):
```
---User Time--- --System Time-- --User+System-- ---Wall Time--- --- Name ---
1.4051 ( 3.3%) 0.0079 ( 0.3%) 1.4129 ( 3.2%) 1.4129 ( 3.2%) Hot Cold Splitting
```
Testing: check-llvm, and comparing the AMDGPUDisassembler.cpp.o binary
pre- vs. post-patch.
An alternate approach is to hide CodeExtractorAnalysisCache from clients
of CodeExtractor, and to recompute the analysis from scratch inside of
CodeExtractor::extractCodeRegion(). This eliminates some redundant work
in the shrinkwrapping legality check. However, some clients continue to
exhibit O(n^2) compile time behavior as computing the analysis is O(n).
rdar://55912966
Differential Revision: https://reviews.llvm.org/D68616
llvm-svn: 374089
Doing this makes MSVC complain that `empty(someRange)` could refer to
either C++17's std::empty or LLVM's llvm::empty, which previously we
avoided via SFINAE because std::empty is defined in terms of an empty
member rather than begin and end. So, switch callers over to the new
method as it is added.
https://reviews.llvm.org/D68439
llvm-svn: 373935
bcopy is still widely used mainly for network apps. Sadly, LLVM has no optimizations for bcopy, but there are some for memmove.
Since bcopy == memmove, it is profitable to transform bcopy to memmove and use current optimizations for memmove for free here.
llvm-svn: 373537
Terminators like invoke can have users outside the current basic block.
We have to replace those users with undef, before replacing the
terminator.
This fixes a crash exposed by rL373430.
Reviewers: brzycki, asbirlea, davide, spatel
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D68327
llvm-svn: 373513
There are no users that pass in LazyValueInfo, so we can simplify the
function a bit.
Reviewers: brzycki, asbirlea, davide
Reviewed By: davide
Differential Revision: https://reviews.llvm.org/D68297
llvm-svn: 373488
Two small changes in llvm::removeUnreachableBlocks() to avoid unnecessary (re-)computation.
First, replace the use of count() with find(), which has better time complexity.
Second, because we have already computed the set of dead blocks, replace the second loop over all basic blocks to a loop only over the already computed dead blocks. This simplifies the loop and avoids recomputation.
Patch by Rodrigo Caetano Rocha <rcor.cs@gmail.com>
Reviewers: efriedma, spatel, fhahn, xbolva00
Reviewed By: fhahn, xbolva00
Differential Revision: https://reviews.llvm.org/D68191
llvm-svn: 373429
Expand the simplification of special cases of `log()` to include `log2()`
and `log10()` as well as intrinsics and more types.
Differential revision: https://reviews.llvm.org/D67199
llvm-svn: 373261
The static analyzer is warning about a potential null dereference, but we should be able to use cast<> directly and if not assert will fire for us.
llvm-svn: 373099
The static analyzer is warning about a potential null dereference, but we should be able to use cast<FunctionSummary> directly and if not assert will fire for us.
llvm-svn: 373097
Summary:
FlattenCFG merges two 'if' basicblocks by inserting one basicblock
to another basicblock. The inserted basicblock can have a successor
that contains a PHI node whoes incoming basicblock is the inserted
basicblock. Since the existing code does not handle it, it becomes
a badref.
if (cond1)
statement
if (cond2)
statement
successor - contains PHI node whose predecessor is cond2
-->
if (cond1 || cond2)
statement
(BB for cond2 was deleted)
successor - contains PHI node whose predecessor is cond2 --> bad ref!
Author: Jaebaek Seo
Reviewers: asbirlea, kuhar, tstellar, chandlerc, davide, dexonsmith
Reviewed By: kuhar
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68032
llvm-svn: 372989
The static analyzer is warning about a potential null dereferences, but we should be able to use cast<BranchInst> directly and if not assert will fire for us.
llvm-svn: 372977
The static analyzer is warning about a potential null dereference, but we should be able to use cast<LandingPadInst> directly and if not assert will fire for us.
llvm-svn: 372727
The static analyzer is warning about a potential null dereference, but we should be able to use cast<Instruction> directly and if not assert will fire for us.
llvm-svn: 372726
Summary:
Motivation:
- If we can fold it to strdup, we should (strndup does more things than strdup).
- Annotation mechanism. (Works for strdup well).
strdup and strndup are part of C 20 (currently posix fns), so we should optimize them.
Reviewers: efriedma, jdoerfert
Reviewed By: jdoerfert
Subscribers: lebedev.ri, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67679
llvm-svn: 372636
MSAN bot complains that there is use-of-uninitialized-value
of this FreeStores later in IsWorthwhile().
Perhaps FreeStores needs to be stored in a vector?
llvm-svn: 372262
Summary:
As it can be see in the changed test, while `div` is really costly,
we were speculating it. This does not seem correct.
Also, the old code would run for every single insturuction in BB,
instead of eagerly bailing out as soon as there are too many instructions.
This function still has a problem that `PHINodeFoldingThreshold` is
per-basic-block, while it should be for all the basic blocks.
Reviewers: efriedma, craig.topper, dmgreen, jmolloy
Reviewed By: jmolloy
Subscribers: xbolva00, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67315
llvm-svn: 372255
Summary:
Previously, if the threshold was 2, we were willing to speculatively
execute 2 cheap instructions in both basic blocks (thus we were willing
to speculatively execute cost = 4), but weren't willing to speculate
when one BB had 3 instructions and other one had no instructions,
even thought that would have total cost of 3.
This looks inconsistent to me.
I don't think `cmov`-like instructions will start executing
until both of it's inputs are available: https://godbolt.org/z/zgHePf
So i don't see why the existing behavior is the correct one.
Also, let's add it's own `cl::opt` for this threshold,
with default=4, so it is not stricter than the previous threshold:
will allow to fold when there are 2 BB's each with cost=2.
And since the logic has changed, it will also allow to fold when
one BB has cost=3 and other cost=1, or there is only one BB with cost=4.
This is an alternative solution to D65148:
This fix is mainly motivated by `signbit-like-value-extension.ll` test.
That pattern comes up in JPEG decoding, see e.g.
`Figure F.12 – Extending the sign bit of a decoded value in V`
of `ITU T.81` (JPEG specification).
That branch is not predictable, and it is within the innermost loop,
so the fact that that pattern ends up being stuck with a branch
instead of `select` (i.e. `CMOV` for x86) is unlikely to be beneficial.
This has great results on the final assembly (vanilla test-suite + RawSpeed): (metric pass - D67240)
| metric | old | new | delta | % |
| x86-mi-counting.NumMachineFunctions | 37720 | 37721 | 1 | 0.00% |
| x86-mi-counting.NumMachineBasicBlocks | 773545 | 771181 | -2364 | -0.31% |
| x86-mi-counting.NumMachineInstructions | 7488843 | 7486442 | -2401 | -0.03% |
| x86-mi-counting.NumUncondBR | 135770 | 135543 | -227 | -0.17% |
| x86-mi-counting.NumCondBR | 423753 | 422187 | -1566 | -0.37% |
| x86-mi-counting.NumCMOV | 24815 | 25731 | 916 | 3.69% |
| x86-mi-counting.NumVecBlend | 17 | 17 | 0 | 0.00% |
We significantly decrease basic block count, notably decrease instruction count,
significantly decrease branch count and very significantly increase `cmov` count.
Performance-wise, unsurprisingly, this has great effect on
target RawSpeed benchmark. I'm seeing 5 **major** improvements:
```
Benchmark Time CPU Time Old Time New CPU Old CPU New
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Samsung/NX3000/_3184416.SRW/threads:8/process_time/real_time_pvalue 0.0000 0.0000 U Test, Repetitions: 49 vs 49
Samsung/NX3000/_3184416.SRW/threads:8/process_time/real_time_mean -0.3064 -0.3064 226.9913 157.4452 226.9800 157.4384
Samsung/NX3000/_3184416.SRW/threads:8/process_time/real_time_median -0.3057 -0.3057 226.8407 157.4926 226.8282 157.4828
Samsung/NX3000/_3184416.SRW/threads:8/process_time/real_time_stddev -0.4985 -0.4954 0.3051 0.1530 0.3040 0.1534
Kodak/DCS760C/86L57188.DCR/threads:8/process_time/real_time_pvalue 0.0000 0.0000 U Test, Repetitions: 49 vs 49
Kodak/DCS760C/86L57188.DCR/threads:8/process_time/real_time_mean -0.1747 -0.1747 80.4787 66.4227 80.4771 66.4146
Kodak/DCS760C/86L57188.DCR/threads:8/process_time/real_time_median -0.1742 -0.1743 80.4686 66.4542 80.4690 66.4436
Kodak/DCS760C/86L57188.DCR/threads:8/process_time/real_time_stddev +0.6089 +0.5797 0.0670 0.1078 0.0673 0.1062
Sony/DSLR-A230/DSC08026.ARW/threads:8/process_time/real_time_pvalue 0.0000 0.0000 U Test, Repetitions: 49 vs 49
Sony/DSLR-A230/DSC08026.ARW/threads:8/process_time/real_time_mean -0.1598 -0.1598 171.6996 144.2575 171.6915 144.2538
Sony/DSLR-A230/DSC08026.ARW/threads:8/process_time/real_time_median -0.1598 -0.1597 171.7109 144.2755 171.7018 144.2766
Sony/DSLR-A230/DSC08026.ARW/threads:8/process_time/real_time_stddev +0.4024 +0.3850 0.0847 0.1187 0.0848 0.1175
Canon/EOS 77D/IMG_4049.CR2/threads:8/process_time/real_time_pvalue 0.0000 0.0000 U Test, Repetitions: 49 vs 49
Canon/EOS 77D/IMG_4049.CR2/threads:8/process_time/real_time_mean -0.0550 -0.0551 280.3046 264.8800 280.3017 264.8559
Canon/EOS 77D/IMG_4049.CR2/threads:8/process_time/real_time_median -0.0554 -0.0554 280.2628 264.7360 280.2574 264.7297
Canon/EOS 77D/IMG_4049.CR2/threads:8/process_time/real_time_stddev +0.7005 +0.7041 0.2779 0.4725 0.2775 0.4729
Canon/EOS 5DS/2K4A9929.CR2/threads:8/process_time/real_time_pvalue 0.0000 0.0000 U Test, Repetitions: 49 vs 49
Canon/EOS 5DS/2K4A9929.CR2/threads:8/process_time/real_time_mean -0.0354 -0.0355 316.7396 305.5208 316.7342 305.4890
Canon/EOS 5DS/2K4A9929.CR2/threads:8/process_time/real_time_median -0.0354 -0.0356 316.6969 305.4798 316.6917 305.4324
Canon/EOS 5DS/2K4A9929.CR2/threads:8/process_time/real_time_stddev +0.0493 +0.0330 0.3562 0.3737 0.3563 0.3681
```
That being said, it's always best-effort, so there will likely
be cases where this worsens things.
Reviewers: efriedma, craig.topper, dmgreen, jmolloy, fhahn, Carrot, hfinkel, chandlerc
Reviewed By: jmolloy
Subscribers: xbolva00, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67318
llvm-svn: 372009
This patch contains the basic functionality for reporting potentially
incorrect usage of __builtin_expect() by comparing the developer's
annotation against a collected PGO profile. A more detailed proposal and
discussion appears on the CFE-dev mailing list
(http://lists.llvm.org/pipermail/cfe-dev/2019-July/062971.html) and a
prototype of the initial frontend changes appear here in D65300
We revised the work in D65300 by moving the misexpect check into the
LLVM backend, and adding support for IR and sampling based profiles, in
addition to frontend instrumentation.
We add new misexpect metadata tags to those instructions directly
influenced by the llvm.expect intrinsic (branch, switch, and select)
when lowering the intrinsics. The misexpect metadata contains
information about the expected target of the intrinsic so that we can
check against the correct PGO counter when emitting diagnostics, and the
compiler's values for the LikelyBranchWeight and UnlikelyBranchWeight.
We use these branch weight values to determine when to emit the
diagnostic to the user.
A future patch should address the comment at the top of
LowerExpectIntrisic.cpp to hoist the LikelyBranchWeight and
UnlikelyBranchWeight values into a shared space that can be accessed
outside of the LowerExpectIntrinsic pass. Once that is done, the
misexpect metadata can be updated to be smaller.
In the long term, it is possible to reconstruct portions of the
misexpect metadata from the existing profile data. However, we have
avoided this to keep the code simple, and because some kind of metadata
tag will be required to identify which branch/switch/select instructions
are influenced by the use of llvm.expect
Patch By: paulkirth
Differential Revision: https://reviews.llvm.org/D66324
llvm-svn: 371635
This reverts commit r371584. It introduced a dependency from compiler-rt
to llvm/include/ADT, which is problematic for multiple reasons.
One is that it is a novel dependency edge, which needs cross-compliation
machinery for llvm/include/ADT (yes, it is true that right now
compiler-rt included only header-only libraries, however, if we allow
compiler-rt to depend on anything from ADT, other libraries will
eventually get used).
Secondly, depending on ADT from compiler-rt exposes ADT symbols from
compiler-rt, which would cause ODR violations when Clang is built with
the profile library.
llvm-svn: 371598
This patch contains the basic functionality for reporting potentially
incorrect usage of __builtin_expect() by comparing the developer's
annotation against a collected PGO profile. A more detailed proposal and
discussion appears on the CFE-dev mailing list
(http://lists.llvm.org/pipermail/cfe-dev/2019-July/062971.html) and a
prototype of the initial frontend changes appear here in D65300
We revised the work in D65300 by moving the misexpect check into the
LLVM backend, and adding support for IR and sampling based profiles, in
addition to frontend instrumentation.
We add new misexpect metadata tags to those instructions directly
influenced by the llvm.expect intrinsic (branch, switch, and select)
when lowering the intrinsics. The misexpect metadata contains
information about the expected target of the intrinsic so that we can
check against the correct PGO counter when emitting diagnostics, and the
compiler's values for the LikelyBranchWeight and UnlikelyBranchWeight.
We use these branch weight values to determine when to emit the
diagnostic to the user.
A future patch should address the comment at the top of
LowerExpectIntrisic.cpp to hoist the LikelyBranchWeight and
UnlikelyBranchWeight values into a shared space that can be accessed
outside of the LowerExpectIntrinsic pass. Once that is done, the
misexpect metadata can be updated to be smaller.
In the long term, it is possible to reconstruct portions of the
misexpect metadata from the existing profile data. However, we have
avoided this to keep the code simple, and because some kind of metadata
tag will be required to identify which branch/switch/select instructions
are influenced by the use of llvm.expect
Patch By: paulkirth
Differential Revision: https://reviews.llvm.org/D66324
llvm-svn: 371584
Reverts the change in r371084, but keeps the test.
After r371565, debuginfo cannot be modelled in MemorySSA, even with a
non-standard AA pipeline.
llvm-svn: 371573
This patch contains the basic functionality for reporting potentially
incorrect usage of __builtin_expect() by comparing the developer's
annotation against a collected PGO profile. A more detailed proposal and
discussion appears on the CFE-dev mailing list
(http://lists.llvm.org/pipermail/cfe-dev/2019-July/062971.html) and a
prototype of the initial frontend changes appear here in D65300
We revised the work in D65300 by moving the misexpect check into the
LLVM backend, and adding support for IR and sampling based profiles, in
addition to frontend instrumentation.
We add new misexpect metadata tags to those instructions directly
influenced by the llvm.expect intrinsic (branch, switch, and select)
when lowering the intrinsics. The misexpect metadata contains
information about the expected target of the intrinsic so that we can
check against the correct PGO counter when emitting diagnostics, and the
compiler's values for the LikelyBranchWeight and UnlikelyBranchWeight.
We use these branch weight values to determine when to emit the
diagnostic to the user.
A future patch should address the comment at the top of
LowerExpectIntrisic.cpp to hoist the LikelyBranchWeight and
UnlikelyBranchWeight values into a shared space that can be accessed
outside of the LowerExpectIntrinsic pass. Once that is done, the
misexpect metadata can be updated to be smaller.
In the long term, it is possible to reconstruct portions of the
misexpect metadata from the existing profile data. However, we have
avoided this to keep the code simple, and because some kind of metadata
tag will be required to identify which branch/switch/select instructions
are influenced by the use of llvm.expect
Patch By: paulkirth
Differential Revision: https://reviews.llvm.org/D66324
llvm-svn: 371484
Summary:
This is the first change to enable the TLI to be built per-function so
that -fno-builtin* handling can be migrated to use function attributes.
See discussion on D61634 for background. This is an enabler for fixing
handling of these options for LTO, for example.
This change should not affect behavior, as the provided function is not
yet used to build a specifically per-function TLI, but rather enables
that migration.
Most of the changes were very mechanical, e.g. passing a Function to the
legacy analysis pass's getTLI interface, or in Module level cases,
adding a callback. This is similar to the way the per-function TTI
analysis works.
There was one place where we were looking for builtins but not in the
context of a specific function. See FindCXAAtExit in
lib/Transforms/IPO/GlobalOpt.cpp. I'm somewhat concerned my workaround
could provide the wrong behavior in some corner cases. Suggestions
welcome.
Reviewers: chandlerc, hfinkel
Subscribers: arsenm, dschuff, jvesely, nhaehnle, mehdi_amini, javed.absar, sbc100, jgravelle-google, eraman, aheejin, steven_wu, george.burgess.iv, dexonsmith, jfb, asbirlea, gchatelet, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66428
llvm-svn: 371284
Add the new method `LibCallSimplifier::substituteInParent()` that calls
`LibCallSimplifier::replaceAllUsesWith()' and
`LibCallSimplifier::eraseFromParent()` back to back, simplifying the
resulting code.
llvm-svn: 371264
Summary:
Here we try to avoid issues with "explicit branch" with SimplifyBranchOnICmpChain
which can check on undef. Msan by design reports branches on uninitialized
memory and undefs, so we have false report here.
In general msan does not like when we convert
```
// If at least one of them is true we can MSAN is ok if another is undefs
if (a || b)
return;
```
into
```
// If 'a' is undef MSAN will complain even if 'b' is true
if (a)
return;
if (b)
return;
```
Example
Before optimization we had something like this:
```
while (true) {
bool maybe_undef = doStuff();
while (true) {
char c = getChar();
if (c != 10 && c != 13)
continue
break;
}
// we know that c == 10 || c == 13 if we get here,
// so msan know that branch is not affected by maybe_undef
if (maybe_undef || c == 10 || c == 13)
continue;
return;
}
```
SimplifyBranchOnICmpChain will convert that into
```
while (true) {
bool maybe_undef = doStuff();
while (true) {
char c = getChar();
if (c != 10 && c != 13)
continue;
break;
}
// however msan will complain here:
if (maybe_undef)
continue;
// we know that c == 10 || c == 13, so either way we will get continue
switch(c) {
case 10: continue;
case 13: continue;
}
return;
}
```
Reviewers: eugenis, efriedma
Reviewed By: eugenis, efriedma
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67205
llvm-svn: 371138
SROA pass processes debug info incorrecly if applied twice.
Specifically, after SROA works first time, instcombine converts dbg.declare
intrinsics into dbg.value. Inlining creates new opportunities for SROA,
so it is called again. This time it does not handle correctly previously
inserted dbg.value intrinsics.
Differential Revision: https://reviews.llvm.org/D64595
llvm-svn: 370906
Summary:
Back-end currently expands mempcpy, but middle-end should work with memcpy instead of mempcpy to enable more memcpy-optimization.
GCC backend emits mempcpy, so LLVM backend could form it too, if we know mempcpy libcall is better than memcpy + n.
https://godbolt.org/z/dOCG96
Reviewers: efriedma, spatel, craig.topper, RKSimon, jdoerfert
Reviewed By: efriedma
Subscribers: hjl.tools, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65737
llvm-svn: 370593
We can also apply the earlier updates to the lazy DTU, instead of
applying them directly.
Reviewers: kuhar, brzycki, asbirlea, SjoerdMeijer
Reviewed By: brzycki, asbirlea, SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D66918
llvm-svn: 370391
Summary:
I'm not planning to check this in at the moment, but feedback is very welcome, in particular how this affects performance.
The feedback obtains here will guide the next steps towards enabling this.
This patch enables the use of MemorySSA in the loop pass manager.
Passes that currently use MemorySSA:
- EarlyCSE
Passes that use MemorySSA after this patch:
- EarlyCSE
- LICM
- SimpleLoopUnswitch
Loop passes that update MemorySSA (and do not use it yet, but could use it after this patch):
- LoopInstSimplify
- LoopSimplifyCFG
- LoopUnswitch
- LoopRotate
- LoopSimplify
- LCSSA
Loop passes that do *not* update MemorySSA:
- IndVarSimplify
- LoopDelete
- LoopIdiom
- LoopSink
- LoopUnroll
- LoopInterchange
- LoopUnrollAndJam
- LoopVectorize
- LoopReroll
- IRCE
Reviewers: chandlerc, george.burgess.iv, davide, sanjoy, gberry
Subscribers: jlebar, Prazek, dmgreen, jdoerfert, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58311
llvm-svn: 370384
Summary:
- Similar to the workaround in fix of PR30188, skip sinking common
lifetime markers of `alloca`. They are mostly left there after
inlining functions in branches.
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66950
llvm-svn: 370376
Summary:
As it can be seen in the tests in D65143/D65144, even though we have formed an '@llvm.umul.with.overflow'
and got rid of potential for division-by-zero, the control flow remains, we still have that branch.
We have this condition:
```
// Don't fold i1 branches on PHIs which contain binary operators
// These can often be turned into switches and other things.
if (PN->getType()->isIntegerTy(1) &&
(isa<BinaryOperator>(PN->getIncomingValue(0)) ||
isa<BinaryOperator>(PN->getIncomingValue(1)) ||
isa<BinaryOperator>(IfCond)))
return false;
```
which was added back in rL121764 to help with `select` formation i think?
That check prevents us to flatten the CFG here, even though we know
we no longer need that guard and will be able to drop everything
but the '@llvm.umul.with.overflow' + `not`.
As it can be seen from tests, we end here because the `not` is being
sinked into the PHI's incoming values by InstCombine,
so we can't workaround this by hoisting it to after PHI.
Thus i suggest that we relax that check to not bailout if we'd get to hoist the `not`.
Reviewers: craig.topper, spatel, fhahn, nikic
Reviewed By: spatel
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65147
llvm-svn: 370349
We do not access the DT in the loop, so we do not have to apply updates
eagerly. We can apply them lazyly and flush them after we are done
merging blocks.
As follow-up work, we might be able to use the DTU above as well,
instead of manually updating the DT.
This brings the example from PR43134 from ~100s to ~4s for a relase +
assertions build on my machine.
Reviewers: efriedma, kuhar, asbirlea, brzycki
Reviewed By: kuhar, brzycki
Differential Revision: https://reviews.llvm.org/D66911
llvm-svn: 370292
...cloning a function from a different module
Currently when a function with debug info is cloned from a different module, the
cloned function may have hanging DICompileUnits, so that the module with the
cloned function fails debug info verification.
The proposed fix inserts all DICompileUnits reachable from the cloned function
to "llvm.dbg.cu" metadata operands of the cloned function module.
Reviewed By: aprantl, efriedma
Differential Revision: https://reviews.llvm.org/D66510
Patch by Oleg Pliss (Oleg.Pliss@azul.com)
llvm-svn: 370265
Summary:
This functionality was added when Mapper::mapMetadata was recursive. It
is no longer needed after r265456, which switched it to be iterative.
Reviewers: dexonsmith, srhines
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66860
llvm-svn: 370236
Summary:
When reconstructing the CFG of the loop after unrolling,
LoopUnroll could in some cases remove the phi operands of
loop-carried values instead of preserving them, resulting
in undef phi values after loop unrolling.
When doing this reconstruction, avoid removing incoming
phi values for phis in the successor blocks if the successor
is the block we are jumping to anyway.
Patch-by: ebevhan
Reviewers: fhahn, efriedma
Reviewed By: fhahn
Subscribers: bjope, lebedev.ri, zzheng, dmgreen, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66334
llvm-svn: 369886
Push LR register before calling __gnu_mcount_nc as it expects the value of LR register to be the top value of
the stack on ARM32.
Differential Revision: https://reviews.llvm.org/D65019
llvm-svn: 369147
Now that we've moved to C++14, we no longer need the llvm::make_unique
implementation from STLExtras.h. This patch is a mechanical replacement
of (hopefully) all the llvm::make_unique instances across the monorepo.
llvm-svn: 369013
Refactor `LibCallSimplifier::optimizeExp2()` to use the new
`emitBinaryFloatFnCall()` version that fetches the function name from TLI.
llvm-svn: 368457
GlobalAlias and GlobalIFunc ought to be treated the same by the IR
linker, so we can generalize the code to be in terms of their common
base class GlobalIndirectSymbol.
Differential Revision: https://reviews.llvm.org/D55046
llvm-svn: 368357
For some targets the LICM pass can result in sub-optimal code in some
cases where it would be better not to run the pass, but it isn't
always possible to suppress the transformations heuristically.
Where the front-end has insight into such cases it is beneficial
to attach loop metadata to disable the pass - this change adds the
llvm.licm.disable metadata to enable that.
Differential Revision: https://reviews.llvm.org/D64557
llvm-svn: 368296
When we remove instructions cached references could still be live. This
patch avoids removing invoke instructions that are replaced by calls and
instead keeps them around but in a dead block.
llvm-svn: 367933
Currently, when a GVN or CSE optimization happens,
the llvm.preserve.access.index metadata is dropped.
This caused a problem for BPF AbstructMemberOffset phase
as it relies on the metadata (debuginfo types).
This patch added proper hooks in lib/Transforms to
preserve !preserve.access.index metadata. A test
case is added to ensure metadata is preserved under CSE.
Differential Revision: https://reviews.llvm.org/D65700
llvm-svn: 367769
Summary:
Since the for loop iterates over BB's predecessors, the branch conditions found must have BB as one of the successors.
For an unconditional branch the successor must be BB, added `assert`.
For a conditional branch, one of the two successors must be BB, simplify `else if` to `else` and `assert`.
Sink common instructions outside the if/else block.
Reviewers: sanjoy.google
Subscribers: jlebar, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65596
llvm-svn: 367699
Current peeling cost model can decide to peel off not all iterations
but only some of them to eliminate conditions on phi. At the same time
if any peeling happens the door for further unroll/peel optimizations on that
loop closes because the part of the code thinks that if peeling happened
it is profile based peeling and all iterations are peeled off.
To resolve this inconsistency the patch provides the flag which states whether
the full peeling basing on profile is enabled or not and peeling cost model
is able to modify this field like it does not PeelCount.
In a separate patch I will introduce an option to allow/disallow peeling basing
on profile.
To avoid infinite loop peeling the patch tracks the total number of peeled iteration
through llvm.loop.peeled.count loop metadata.
Reviewers: reames, fhahn
Reviewed By: reames
Subscribers: hiraditya, zzheng, dmgreen, llvm-commits
Differential Revision: https://reviews.llvm.org/D64972
llvm-svn: 367647
Summary:
DominatorTree is invalid after SimplifyCFG because of a missed `Changed = true` when simplifying a branch condition and removing an edge.
Resolves PR42272.
Reviewers: zhizhouy, manojgupta
Subscribers: jlebar, sanjoy.google, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65490
llvm-svn: 367596
Summary:
LoopSimplify is preserved in the legacy pass manager, but not in the new pass manager.
Update LoopSimplify to preserve MemorySSA conditionally when the analysis is available (same behavior as the legacy pass manager).
Reviewers: chandlerc
Subscribers: mehdi_amini, jlebar, Prazek, george.burgess.iv, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65418
llvm-svn: 367594
To avoid duplicates in loop metadata, if the string to add is
already there, just update the value.
Reviewers: reames, Ashutosh
Reviewed By: reames
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D65265
llvm-svn: 367087
Just move the utility function to LoopUtils.cpp to re-use it in loop peeling.
Reviewers: reames, Ashutosh
Reviewed By: reames
Subscribers: hiraditya, asbirlea, llvm-commits
Differential Revision: https://reviews.llvm.org/D65264
llvm-svn: 367085
Currently there are a few pointer comparisons in ValueDFS_Compare, which
can cause non-deterministic ordering when materializing values. There
are 2 cases this patch fixes:
1. Order defs before uses used to compare pointers, which guarantees
defs before uses, but causes non-deterministic ordering between 2
uses or 2 defs, depending on the allocation order. By converting the
pointers to booleans, we can circumvent that problem.
2. comparePHIRelated was comparing the basic block pointers of edges,
which also results in a non-deterministic order and is also not
really meaningful for ordering. By ordering by their destination DFS
numbers we guarantee a deterministic order.
For the example below, we can end up with 2 different uselist orderings,
when running `opt -mem2reg -ipsccp` hundreds of times. Because the
non-determinism is caused by allocation ordering, we cannot reproduce it
with ipsccp alone.
declare i32 @hoge() local_unnamed_addr #0
define dso_local i32 @ham(i8* %arg, i8* %arg1) #0 {
bb:
%tmp = alloca i32
%tmp2 = alloca i32, align 4
br label %bb19
bb4: ; preds = %bb20
br label %bb6
bb6: ; preds = %bb4
%tmp7 = call i32 @hoge()
store i32 %tmp7, i32* %tmp
%tmp8 = load i32, i32* %tmp
%tmp9 = icmp eq i32 %tmp8, 912730082
%tmp10 = load i32, i32* %tmp
br i1 %tmp9, label %bb11, label %bb16
bb11: ; preds = %bb6
unreachable
bb13: ; preds = %bb20
br label %bb14
bb14: ; preds = %bb13
%tmp15 = load i32, i32* %tmp
br label %bb16
bb16: ; preds = %bb14, %bb6
%tmp17 = phi i32 [ %tmp10, %bb6 ], [ 0, %bb14 ]
br label %bb19
bb18: ; preds = %bb20
unreachable
bb19: ; preds = %bb16, %bb
br label %bb20
bb20: ; preds = %bb19
indirectbr i8* null, [label %bb4, label %bb13, label %bb18]
}
Reviewers: davide, efriedma
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D64866
llvm-svn: 367049
We'd like to determine the idom of exit block after peeling one iteration.
Let Exit is exit block.
Let ExitingSet - is a set of predecessors of Exit block. They are exiting blocks.
Let Latch' and ExitingSet' are copies after a peeling.
We'd like to find an idom'(Exit) - idom of Exit after peeling.
It is an evident that idom'(Exit) will be the nearest common dominator of ExitingSet and ExitingSet'.
idom(Exit) is a nearest common dominator of ExitingSet.
idom(Exit)' is a nearest common dominator of ExitingSet'.
Taking into account that we have a single Latch, Latch' will dominate Header and idom(Exit).
So the idom'(Exit) is nearest common dominator of idom(Exit)' and Latch'.
All these basic blocks are in the same loop, so what we find is
(nearest common dominator of idom(Exit) and Latch)'.
Reviewers: reames, fhahn
Reviewed By: reames
Subscribers: hiraditya, zzheng, llvm-commits
Differential Revision: https://reviews.llvm.org/D65292
llvm-svn: 367044
Later code in TryToSimplifyUncondBranchFromEmptyBlock() assumes that
we have cleaned up unreachable blocks, but that was not happening
with this switch transform.
llvm-svn: 367037
We do not need the SmallPtrSet to avoid adding duplicates to
OpsToRename, because we already keep a ValueInfo mapping. If we see an
op for the first time, Infos will be empty and we can also add it to
OpsToRename.
We process operands by visiting BBs depth-first and then iterate over
all instructions & users, so the order should be deterministic.
Therefore we can skip one round of sorting, which we purely needed for
guaranteeing a deterministic order when iterating over the SmallPtrSet.
Reviewers: efriedma, davide
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D64816
llvm-svn: 367028
This is a follow up to D64971. While we need to insert the deref after
the offset, it needs to come before the remaining elements in the
original expression since the deref needs to happen before the LLVM
fragment if present.
Differential Revision: https://reviews.llvm.org/D65172
llvm-svn: 366865
[Attributor] Liveness analysis.
Liveness analysis abstract attribute used to indicate which BasicBlocks are dead and can therefore be ignored.
Right now we are only looking at noreturn calls.
Reviewers: jdoerfert, uenoku
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D64162
llvm-svn: 366769
[Attributor] Liveness analysis.
Liveness analysis abstract attribute used to indicate which BasicBlocks are dead and can therefore be ignored.
Right now we are only looking at noreturn calls.
Reviewers: jdoerfert, uenoku
Subscribers: hiraditya, llvm-commits
Differential revision: https://reviews.llvm.org/D64162
llvm-svn: 366753
Liveness analysis abstract attribute used to indicate which BasicBlocks are dead and can therefore be ignored.
Right now we are only looking at noreturn calls.
Reviewers: jdoerfert, uenoku
Subscribers: hiraditya, llvm-commits
Differential revision: https://reviews.llvm.org/D64162
llvm-svn: 366736
While debugging code that uses SafeStack, we've noticed that LLVM
produces an invalid DWARF. Concretely, in the following example:
int main(int argc, char* argv[]) {
std::string value = "";
printf("%s\n", value.c_str());
return 0;
}
DWARF would describe the value variable as being located at:
DW_OP_breg14 R14+0, DW_OP_deref, DW_OP_constu 0x20, DW_OP_minus
The assembly to get this variable is:
leaq -32(%r14), %rbx
The order of operations in the DWARF symbols is incorrect in this case.
Specifically, the deref is incorrect; this appears to be incorrectly
re-inserted in repalceOneDbgValueForAlloca.
With this change which inserts the deref after the offset instead of
before it, LLVM produces correct DWARF:
DW_OP_breg14 R14-32
Differential Revision: https://reviews.llvm.org/D64971
llvm-svn: 366726
Current algorithm to update branch weights of latch block and its copies is
based on the assumption that number of peeling iterations is approximately equal
to trip count.
However it is not correct. According to profitability check in one case we can decide to peel
in case it helps to reduce the number of phi nodes. In this case the number of peeled iteration
can be less then estimated trip count.
This patch introduces another way to set the branch weights to peeled of branches.
Let F is a weight of the edge from latch to header.
Let E is a weight of the edge from latch to exit.
F/(F+E) is a probability to go to loop and E/(F+E) is a probability to go to exit.
Then, Estimated TripCount = F / E.
For I-th (counting from 0) peeled off iteration we set the the weights for
the peeled latch as (TC - I, 1). It gives us reasonable distribution,
The probability to go to exit 1/(TC-I) increases. At the same time
the estimated trip count of remaining loop reduces by I.
As a result after peeling off N iteration the weights will be
(F - N * E, E) and trip count of loop becomes
F / E - N or TC - N.
The idea is taken from the review of the patch D63918 proposed by Philip.
Reviewers: reames, mkuper, iajbar, fhahn
Reviewed By: reames
Subscribers: hiraditya, zzheng, llvm-commits
Differential Revision: https://reviews.llvm.org/D64235
llvm-svn: 366665
If the blockaddress is not destoryed, the destination block will still
be marked as having its address taken, limiting further transformations.
I think there are other places where the dead blockaddress constants are kept
around, I'll look into that as follow up.
Reviewers: craig.topper, brzycki, davide
Reviewed By: brzycki, davide
Differential Revision: https://reviews.llvm.org/D64936
llvm-svn: 366633
Add "memtag" sanitizer that detects and mitigates stack memory issues
using armv8.5 Memory Tagging Extension.
It is similar in principle to HWASan, which is a software implementation
of the same idea, but there are enough differencies to warrant a new
sanitizer type IMHO. It is also expected to have very different
performance properties.
The new sanitizer does not have a runtime library (it may grow one
later, along with a "debugging" mode). Similar to SafeStack and
StackProtector, the instrumentation pass (in a follow up change) will be
inserted in all cases, but will only affect functions marked with the
new sanitize_memtag attribute.
Reviewers: pcc, hctim, vitalybuka, ostannard
Subscribers: srhines, mehdi_amini, javed.absar, kristof.beyls, hiraditya, cryptoad, steven_wu, dexonsmith, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D64169
llvm-svn: 366123
It is possible that loop exit has two predecessors in a loop body.
In this case after the peeling the iDom of the exit should be a clone of
iDom of original exit but no a clone of a block coming to this exit.
Reviewers: reames, fhahn
Reviewed By: reames
Subscribers: hiraditya, zzheng, llvm-commits
Differential Revision: https://reviews.llvm.org/D64618
llvm-svn: 366050
This CL enables peeling of the loop with multiple exits where
one exit should be from latch and others are basic blocks with
call to deopt.
The peeling is enabled under the flag which is false by default.
Reviewers: reames, mkuper, iajbar, fhahn
Reviewed By: reames
Subscribers: xbolva00, hiraditya, zzheng, llvm-commits
Differential Revision: https://reviews.llvm.org/D63923
llvm-svn: 366048
With this patch the getLoopEstimatedTripCount function will
accept also the loops where there are more than one exit but
all exits except latch block should ends up with a call to deopt.
This side exits should not impact the estimated trip count.
Reviewers: reames, mkuper, danielcdh
Reviewed By: reames
Subscribers: fhahn, lebedev.ri, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D64553
llvm-svn: 366042
Extract the code from LoopUnrollRuntime into utility function to
re-use it in D63923.
Reviewers: reames, mkuper
Reviewed By: reames
Subscribers: fhahn, hiraditya, zzheng, dmgreen, llvm-commits
Differential Revision: https://reviews.llvm.org/D64548
llvm-svn: 366040
Introduce and deduce "nosync" function attribute to indicate that a function
does not synchronize with another thread in a way that other thread might free memory.
Reviewers: jdoerfert, jfb, nhaehnle, arsenm
Subscribers: wdng, hfinkel, nhaenhle, mehdi_amini, steven_wu,
dexonsmith, arsenm, uenoku, hiraditya, jfb, llvm-commits
Differential Revision: https://reviews.llvm.org/D62766
llvm-svn: 365830
Summary:
The map kept in loop rotate is used for instruction remapping, in order
to simplify the clones of instructions. Thus, if an instruction can be
simplified, its simplified value is placed in the map, even when the
clone is added to the IR. MemorySSA in contrast needs to know about that
clone, so it can add an access for it.
To resolve this: keep a different map for MemorySSA.
Reviewers: george.burgess.iv
Subscribers: jlebar, Prazek, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63680
llvm-svn: 365672
An alloca which can be sunk into the extraction region may have more
than one bitcast use. Move these uses along with the alloca to prevent
use-before-def.
Testing: check-llvm, stage2 build of clang
Fixes llvm.org/PR42451.
Differential Revision: https://reviews.llvm.org/D64463
llvm-svn: 365660
Summary:
Transform
pow(C,x)
To
exp2(log2(C)*x)
if C > 0, C != inf, C != NaN (and C is not power of 2, since we have some fold for such case already).
log(C) is folded by the compiler and exp2 is much faster to compute than pow.
Reviewers: spatel, efriedma, evandro
Reviewed By: evandro
Subscribers: lebedev.ri, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64099
llvm-svn: 365637
This patch modifies the loop peeling transformation so that
it does not expect that there is only one loop exit from latch.
It modifies only transformation. Update of branch weights remains
only for exit from latch.
The motivation is that in follow-up patch I plan to enable loop peeling for
loops with multiple exits but only if other exits then from latch one goes to
block with call to deopt.
For now this patch is NFC.
Reviewers: reames, mkuper, iajbar, fhahn
Reviewed By: reames, fhahn
Subscribers: zzheng, llvm-commits
Differential Revision: https://reviews.llvm.org/D63921
llvm-svn: 365441
loop
Summary:
Do the cloning in two steps, first allocate all the new loops, then
clone the basic blocks in the same order as the original loop.
Reviewer: Meinersbur, fhahn, kbarton, hfinkel
Reviewed By: hfinkel
Subscribers: hfinkel, hiraditya, llvm-commits
Tag: https://reviews.llvm.org/D64224
Differential Revision:
llvm-svn: 365366
This patch adds a function attribute, nofree, to indicate that a function does
not, directly or indirectly, call a memory-deallocation function (e.g., free,
C++'s operator delete).
Reviewers: jdoerfert
Differential Revision: https://reviews.llvm.org/D49165
llvm-svn: 365336
It's possible that some function can load and store the same
variable using the same constant expression:
store %Derived* @foo, %Derived** bitcast (%Base** @bar to %Derived**)
%42 = load %Derived*, %Derived** bitcast (%Base** @bar to %Derived**)
The bitcast expression was mistakenly cached while processing loads,
and never examined later when processing store. This caused @bar to
be mistakenly treated as read-only variable. See load-store-caching.ll.
llvm-svn: 365188
This reverts r365040 (git commit 5cacb91475)
Speculatively reverting, since this appears to have broken check-lld on
Linux. Partial analysis in https://crbug.com/981168.
llvm-svn: 365097
This transform came up in D62414, but we should deal with it first.
We have LLVM intrinsics that correspond exactly to libm calls (unlike
most libm calls, these libm calls never set errno).
This holds without any fast-math-flags, so we should always canonicalize
to those intrinsics directly for better optimization.
Currently, we convert to fcmp+select only when we have FMF (nnan) because
fcmp+select does not preserve the semantics of the call in the general case.
Differential Revision: https://reviews.llvm.org/D63214
llvm-svn: 364714
This patch introduces a new function attribute, willreturn, to indicate
that a call of this function will either exhibit undefined behavior or
comes back and continues execution at a point in the existing call stack
that includes the current invocation.
This attribute guarantees that the function does not have any endless
loops, endless recursion, or terminating functions like abort or exit.
Patch by Hideto Ueno (@uenoku)
Reviewers: jdoerfert
Subscribers: mehdi_amini, hiraditya, steven_wu, dexonsmith, lebedev.ri, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62801
llvm-svn: 364555
FunctionComparator attempts to produce a stable comparison of two Function
instances by looking at all available properties. Since ByVal attributes now
contain a Type pointer, they are not trivially ordered and FunctionComparator
should use its own Type comparison logic to sort them.
llvm-svn: 364523
This patch generalizes the UnrollLoop utility to support loops that exit
from the header instead of the latch. Usually, LoopRotate would take care
of must of those cases, but in some cases (e.g. -Oz), LoopRotate does
not kick in.
Codesize impact looks relatively neutral on ARM64 with -Oz + LTO.
Program master patch diff
External/S.../CFP2006/447.dealII/447.dealII 629060.00 627676.00 -0.2%
External/SPEC/CINT2000/176.gcc/176.gcc 1245916.00 1244932.00 -0.1%
MultiSourc...Prolangs-C/simulator/simulator 86100.00 86156.00 0.1%
MultiSourc...arks/Rodinia/backprop/backprop 66212.00 66252.00 0.1%
MultiSourc...chmarks/Prolangs-C++/life/life 67276.00 67312.00 0.1%
MultiSourc...s/Prolangs-C/compiler/compiler 69824.00 69788.00 -0.1%
MultiSourc...Prolangs-C/assembler/assembler 86672.00 86696.00 0.0%
Reviewers: efriedma, vsk, paquette
Reviewed By: paquette
Differential Revision: https://reviews.llvm.org/D61962
llvm-svn: 364398
Summary:
Bug: https://bugs.llvm.org/show_bug.cgi?id=39024
The bug reports that a vectorized loop is stepped through 4 times and each step through the loop seemed to show a different path. I found two problems here:
A) An incorrect line number on a preheader block (for.body.preheader) instruction causes a step into the loop before it begins.
B) Instructions in the middle block have different line numbers which give the impression of another iteration.
In this patch I give all of the middle block instructions the line number of the scalar loop latch terminator branch. This seems to provide the smoothest debugging experience because the vectorized loops will always end on this line before dropping into the scalar loop. To solve problem A I have altered llvm::SplitBlockPredecessors to accommodate loop header blocks.
I have set up a separate review D61933 for a fix which is required for this patch.
Reviewers: samsonov, vsk, aprantl, probinson, anemet, hfinkel, jmorse
Reviewed By: hfinkel, jmorse
Subscribers: jmorse, javed.absar, eraman, kcc, bjope, jmellorcrummey, hfinkel, gbedwell, hiraditya, zzheng, llvm-commits
Tags: #llvm, #debug-info
Differential Revision: https://reviews.llvm.org/D60831
> llvm-svn: 363046
llvm-svn: 363786
Using the new SwitchInstProfUpdateWrapper this patch
simplifies 3 places of prof branch_weights handling.
Differential Revision: https://reviews.llvm.org/D62123
llvm-svn: 363652
Summary:
There is PHINode::getBasicBlockIndex() and PHINode::setIncomingValue()
but no function to replace incoming value for a specified BasicBlock*
predecessor.
Clearly, there are a lot of places that could use that functionality.
Reviewer: craig.topper, lebedev.ri, Meinersbur, kbarton, fhahn
Reviewed By: Meinersbur, fhahn
Subscribers: fhahn, hiraditya, zzheng, jsji, llvm-commits
Tag: LLVM
Differential Revision: https://reviews.llvm.org/D63338
llvm-svn: 363566
Third time's the charm.
This was reverted in r363220 due to being suspected of an internal benchmark
regression and a test failure, none of which turned out to be caused by this.
llvm-svn: 363529
SimplifyCFG has a bug that results in inconsistent prof branch_weights metadata
if unreachable switch cases are removed. This patch fixes this bug by making use
of the newly introduced SwitchInstProfUpdateWrapper class (see patch D62122).
A new test is created.
Differential Revision: https://reviews.llvm.org/D62186
llvm-svn: 363527
If we can detect that saturating math that depends on an IV cannot
overflow, replace it with simple math. This is similar to the CVP
optimization from D62703, just based on a different underlying
analysis (SCEV vs LVI) that catches different cases.
Differential Revision: https://reviews.llvm.org/D62792
llvm-svn: 363489
and replace with an equilivent countTrailingZeros.
GCD is much more expensive than this, with repeated division.
This depends on D60823
Differential Revision: https://reviews.llvm.org/D61151
llvm-svn: 363422
This reverts 363226 and 363227, both NFC intended
I swear I fixed the test case that is failing, and ran
the tests, but I will look into it again.
llvm-svn: 363229
and replace with an equilivent countTrailingZeros.
GCD is much more expensive than this, with repeated division.
This depends on D60823
Differential Revision: https://reviews.llvm.org/D61151
llvm-svn: 363227
We have observed some failures with internal builds with this revision.
- Performance regressions:
- llvm's SingleSource/Misc evalloop shows performance regressions (although these may be red herrings).
- Benchmarks for Abseil's SwissTable.
- Correctness:
- Failures for particular libicu tests when building the Google AppEngine SDK (for PHP).
hwennborg has already been notified, and is aware of reproducer failures.
llvm-svn: 363220
This changes the standalone pass only. Arguably the utility class
itself should assert there are no convergent calls. However, a target
pass with additional context may still be able to version a loop if
all of the dynamic conditions are sufficiently uniform.
llvm-svn: 363165
We were only matching RHS being a loop invariant value, not the inverse. Since there's nothing which appears to canonicalize loop invariant values to RHS, this means we missed cases.
Differential Revision: https://reviews.llvm.org/D63112
llvm-svn: 363108
Summary:
Bug: https://bugs.llvm.org/show_bug.cgi?id=39024
The bug reports that a vectorized loop is stepped through 4 times and each step through the loop seemed to show a different path. I found two problems here:
A) An incorrect line number on a preheader block (for.body.preheader) instruction causes a step into the loop before it begins.
B) Instructions in the middle block have different line numbers which give the impression of another iteration.
In this patch I give all of the middle block instructions the line number of the scalar loop latch terminator branch. This seems to provide the smoothest debugging experience because the vectorized loops will always end on this line before dropping into the scalar loop. To solve problem A I have altered llvm::SplitBlockPredecessors to accommodate loop header blocks.
I have set up a separate review D61933 for a fix which is required for this patch.
Reviewers: samsonov, vsk, aprantl, probinson, anemet, hfinkel, jmorse
Reviewed By: hfinkel, jmorse
Subscribers: jmorse, javed.absar, eraman, kcc, bjope, jmellorcrummey, hfinkel, gbedwell, hiraditya, zzheng, llvm-commits
Tags: #llvm, #debug-info
Differential Revision: https://reviews.llvm.org/D60831
llvm-svn: 363046
This patch changes how LLVM handles the accumulator/start value
in the reduction, by never ignoring it regardless of the presence of
fast-math flags on callsites. This change introduces the following
new intrinsics to replace the existing ones:
llvm.experimental.vector.reduce.fadd -> llvm.experimental.vector.reduce.v2.fadd
llvm.experimental.vector.reduce.fmul -> llvm.experimental.vector.reduce.v2.fmul
and adds functionality to auto-upgrade existing LLVM IR and bitcode.
Reviewers: RKSimon, greened, dmgreen, nikic, simoll, aemerson
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D60261
llvm-svn: 363035
Summary: Move some code around, in preparation for later fixes
to the non-integral addrspace handling (D59661)
Patch By Jameson Nash <jameson@juliacomputing.com>
Reviewed By: reames, loladiro
Differential Revision: https://reviews.llvm.org/D59729
llvm-svn: 362853
Summary:
The cleanup in D62751 introduced a compile-time regression due to the way DT updates are performed.
Add all insert edges then all delete edges in DTU to match the previous compile time.
Compile time on the test provided by @mstorsjo before and after this patch on my machine:
113.046s vs 35.649s
Repro: clang -target x86_64-w64-mingw32 -c -O3 glew-preproc.c; on https://martin.st/temp/glew-preproc.c.
Reviewers: kuhar, NutshellySima, mstorsjo
Subscribers: jlebar, mstorsjo, dmgreen, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62981
llvm-svn: 362839
Summary:
This change only unifies the API previous API pair accepting
CallInst and InvokeInst, thus making it easier to refactor
inliner pass ode to CallBase. The implementation of the unified
API still relies on the CallSite implementation.
Reviewers: eraman, chandlerc, jdoerfert
Reviewed By: jdoerfert
Subscribers: jdoerfert, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62283
llvm-svn: 362656
Instead of passing around fast-math-flags as a parameter, we can set those
using an IRBuilder guard object. This is no-functional-change-intended.
The motivation is to eventually fix the vectorizers to use and set the
correct fast-math-flags for reductions. Examples of that not behaving as
expected are:
https://bugs.llvm.org/show_bug.cgi?id=23116 (should be able to reduce with less than 'fast')
https://bugs.llvm.org/show_bug.cgi?id=35538 (possible miscompile for -0.0)
D61802 (should be able to reduce with IR-level FMF)
Differential Revision: https://reviews.llvm.org/D62272
llvm-svn: 362612
Summary:
Following the cleanup in D48202, method foldBlockIntoPredecessor has the
same behavior. Replace its uses with MergeBlockIntoPredecessor.
Remove foldBlockIntoPredecessor.
Reviewers: chandlerc, dmgreen
Subscribers: jlebar, javed.absar, zzheng, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62751
llvm-svn: 362538
This patch fixes a problem that occurs in LowerSwitch when a switch statement has a PHI node as its condition, and the PHI node only has two incoming blocks, and one of those incoming blocks is through an unreachable default in the switch statement. When this condition occurs, LowerSwitch holds a pointer to the condition value, but removes the switch block as a predecessor of the PHI block, causing the PHI node to be replaced. LowerSwitch then tries to use its stale pointer to the original condition value, causing a crash.
Differential Revision: https://reviews.llvm.org/D62560
llvm-svn: 362427
Extract a willNotOverflow() helper function that is shared between
eliminateOverflowIntrinsic() and strengthenOverflowingOperation().
Use WithOverflowInst for the former.
We'll be able to reuse the same code for saturating intrinsics as
well.
llvm-svn: 362305
When the object size argument is -1, no checking can be done, so calling the
_chk variant is unnecessary. We already did this for a bunch of these
functions.
rdar://50797197
Differential revision: https://reviews.llvm.org/D62358
llvm-svn: 362272
When we switch to opaque pointer types we will need some way to describe
how many bytes a 'byval' parameter should occupy on the stack. This adds
a (for now) optional extra type parameter.
If present, the type must match the pointee type of the argument.
The original commit did not remap byval types when linking modules, which broke
LTO. This version fixes that.
Note to front-end maintainers: if this causes test failures, it's probably
because the "byval" attribute is printed after attributes without any parameter
after this change.
llvm-svn: 362128
This was reverted in r360086 as it was supected of causing mysterious test
failures internally. However, it was never concluded that this patch was the
root cause.
> The code was previously checking that candidates for sinking had exactly
> one use or were a store instruction (which can't have uses). This meant
> we could sink call instructions only if they had a use.
>
> That limitation seemed a bit arbitrary, so this patch changes it to
> "instruction has zero or one use" which seems more natural and removes
> the need to special-case stores.
>
> Differential revision: https://reviews.llvm.org/D59936
llvm-svn: 361811
Rather than gating on "isSwitchDense" (resulting in necessesarily
sparse lookup tables even when they were generated), always run
this quite cheap transform.
This transform is useful not just for generating tables.
LowerSwitch also wants this: read LowerSwitch.cpp:257.
Be careful to not generate worse code, by introducing a
SubThreshold heuristic.
Instead of just sorting by signed, generalize the finding of the
best base.
And now that it is run unconditionally, do not replicate its
functionality in SwitchToLookupTable (which could use a Sub
when having a hole is smaller, hence the SubThreshold
heuristic located in a single place).
This simplifies SwitchToLookupTable, and fixes
some ugly corner cases due to the use of signed numbers,
such as a table containing i16 32768 and 32769, of which
32769 would be interpreted as -32768, and now the code thinks
the table is size 65536.
(We still use unconditional subtraction when building a single-register mask,
but I think this whole block should go when the more general sparse
map is added, which doesn't leave empty holes in the table.)
And the reason test4 and test5 did not trigger was documented wrong:
it was because they were not considered sufficiently "dense".
Also, fix generation of invalid LLVM-IR: shl by bit-width.
llvm-svn: 361727
and replace with an equilivent countTrailingZeros.
GCD is much more expensive than this, with repeated division.
This depends on D60823
llvm-svn: 361726
This matches countLeadingOnes() and countTrailingOnes(), and
APInt's countLeadingZeros() and countTrailingZeros().
(as well as __builtin_clzll())
llvm-svn: 361724
This reverts commit rr360902. It caused an assertion failure in
lib/IR/DebugInfoMetadata.cpp: Assertion `(OffsetInBits + SizeInBits <=
FragmentSizeInBits) && "new fragment outside of original fragment"'
failed.
PR41931.
llvm-svn: 361246
This reverts commit 95805bc425.
I've squashed the test fix into this commit.
[DebugInfo] Update loop metadata for inlined loops
Currently, when a loop is cloned while inlining function (A) into function (B)
the loop metadata is copied and then not modified at all. The loop metadata can
encode the loop's start and end DILocations. Therefore, the new inlined loop in
function (B) may have loop metadata which shows start and end locations residing
in function (A).
This patch ensures loop metadata is updated while inlining so that the start and
end DILocations are given the "inlinedAt" operand. I've also added a regression
test for this.
This fix is required for D60831 because that patch uses loop metadata to
determine the DILocation for the branches of new loop preheaders.
Reviewers: aprantl, dblaikie, anemet
Reviewed By: aprantl
Subscribers: eraman, hiraditya, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D61933
llvm-svn: 361149
Refactor DIExpression::With* into a flag enum in order to be less
error-prone to use (as discussed on D60866).
Patch by Djordje Todorovic.
Differential Revision: https://reviews.llvm.org/D61943
llvm-svn: 361137
Summary:
Currently, when a loop is cloned while inlining function (A) into function (B) the loop metadata is copied and then not modified at all. The loop metadata can encode the loop's start and end DILocations. Therefore, the new inlined loop in function (B) may have loop metadata which shows start and end locations residing in function (A).
This patch ensures loop metadata is updated while inlining so that the start and end DILocations are given the "inlinedAt" operand. I've also added a regression test for this.
This fix is required for D60831 because that patch uses loop metadata to determine the DILocation for the branches of new loop preheaders.
Reviewers: aprantl, dblaikie, anemet
Reviewed By: aprantl
Subscribers: eraman, hiraditya, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D61933
llvm-svn: 361132
Fixes issue: https://bugs.llvm.org/show_bug.cgi?id=40645
Previously, LLVM had no functional way of performing casts inside of a
DIExpression(), which made salvaging cast instructions other than Noop casts
impossible. With the recent addition of DW_OP_LLVM_convert this salvaging is
now possible, and so can be used to fix the attached bug as well as any cases
where SExt instruction results are lost in the debugging metadata. This patch
introduces this fix by expanding the salvage debug info method to cover these
cases using the new operator.
Differential revision: https://reviews.llvm.org/D61184
llvm-svn: 360902
Summary: We should excluded unreachable operands from processing as their DFS visitation order is undefined. When `renameUses` function sorts `OpsToRename` (https://fburl.com/d2wubn60), the comparator assumes that the parent block of the operand has a corresponding dominator tree node. This is not the case for unreachable operands and crashes the compiler.
Reviewers: dberlin, mgrang, davide
Subscribers: efriedma, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61154
llvm-svn: 360796
Fixes issue: https://bugs.llvm.org/show_bug.cgi?id=40645
Previously, LLVM had no functional way of performing casts inside of a
DIExpression(), which made salvaging cast instructions other than Noop
casts impossible. With the recent addition of DW_OP_LLVM_convert this
salvaging is now possible, and so can be used to fix the attached bug as
well as any cases where SExt instruction results are lost in the
debugging metadata. This patch introduces this fix by expanding the
salvage debug info method to cover these cases using the new operator.
Differential revision: https://reviews.llvm.org/D61184
llvm-svn: 360772
The 3-field form was introduced by D3499 in 2014 and the legacy 2-field
form was planned to be removed in LLVM 4.0
For the textual format, this patch migrates the existing 2-field form to
use the 3-field form and deletes the compatibility code.
test/Verifier/global-ctors-2.ll checks we have a friendly error message.
For bitcode, lib/IR/AutoUpgrade UpgradeGlobalVariables will upgrade the
2-field form (add i8* null as the third field).
Reviewed By: rnk, dexonsmith
Differential Revision: https://reviews.llvm.org/D61547
llvm-svn: 360742
LoopSimplify can preserve MemorySSA after r360270.
But the MemorySSA analysis is retrieved and preserved only when the
EnableMSSALoopDependency is set to true. Use the same conditional to
mark the pass as preserved, otherwise subsequent passes will get an
invalid analysis.
Resolves PR41853.
llvm-svn: 360697
In certain circumstances, optimizations pick line numbers from debug
intrinsic instructions as the new location for altered instructions. This
is problematic because the line number of a debugging intrinsic is
meaningless (it doesn't produce any machine instruction), only the scope
information is valid. The result can be the line number of a variable
declaration "leaking" into real code from debugging intrinsics, making the
line table un-necessarily jumpy, and potentially different with / without
variable locations.
Fix this by using zero line numbers when promoting dbg.declare intrinsics
into dbg.values: this is safe for debug intrinsics as their line numbers
are meaningless, and reduces the scope for damage / misleading stepping
when optimizations pick locations from the wrong place.
Differential Revision: https://reviews.llvm.org/D59272
llvm-svn: 360415
Summary:
Seeing some issues for windows debug pathological cases with collectBitParts
recursion (1525 levels of recursion!)
Setting the limit to 64 as this should be sufficient - passes all lit cases
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61728
Change-Id: I7f44cdc6c1badf1c2ccbf1b0c4b6afe27ecb39a1
llvm-svn: 360347
Summary:
Preserve MemorySSA in LoopSimplify, in the old pass manager, if the analysis is available.
Do not preserve it in the new pass manager.
Update tests.
Subscribers: nemanjai, jlebar, javed.absar, Prazek, kbarton, zzheng, jsji, llvm-commits, george.burgess.iv, chandlerc
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60833
llvm-svn: 360270
Summary:
Bug: https://bugs.llvm.org/show_bug.cgi?id=39024
The bug reports that a vectorized loop is stepped through 4 times and each step through the loop seemed to show a different path. I found two problems here:
A) An incorrect line number on a preheader block (for.body.preheader) instruction causes a step into the loop before it begins.
B) Instructions in the middle block have different line numbers which give the impression of another iteration.
In this patch I give all of the middle block instructions the line number of the scalar loop latch terminator branch. This seems to provide the smoothest debugging experience because the vectorized loops will always end on this line before dropping into the scalar loop. To solve problem A I have altered llvm::SplitBlockPredecessors to accommodate loop header blocks.
Reviewers: samsonov, vsk, aprantl, probinson, anemet, hfinkel
Reviewed By: hfinkel
Subscribers: bjope, jmellorcrummey, hfinkel, gbedwell, hiraditya, zzheng, llvm-commits
Tags: #llvm, #debug-info
Differential Revision: https://reviews.llvm.org/D60831
llvm-svn: 360162
This reverts r357452 (git commit 21eb771dcb).
This was causing strange optimization-related test failures on an internal test. Will followup with more details offline.
llvm-svn: 360086