In SCCPSolver::markArgInFuncSpecialization, the ValueState map may be
reallocated *after* the initial ValueLatticeElement reference is grabbed, but
*before* its use in copy initialization. This causes a use-after-free. To fix
this, this commit changes the behavior to create the new ValueLatticeElement
before assigning the old one to it.
Patch by: https://github.com/duck-37/
Differential Revision: https://reviews.llvm.org/D111112
In TargetLibraryInfoImpl::isValidProtoForLibFunc we no longer
need the IsSizeTTy lambda function and the SizeTTy object. Instead
we just follow the regular structure of checking for integer types
given an exepected number of bits.
Stop using APInt constructors and methods that were soft-deprecated in
D109483. This fixes all the uses I found in llvm, except for the APInt
unit tests which should still test the deprecated methods.
Differential Revision: https://reviews.llvm.org/D110807
We expose the fact that we rely on unsigned wrapping to iterate through
all indexes. This can be confusing. Rather, keeping it as an
implementation detail through an iterator is less confusing and is less
code.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D110885
This patch adds further support for vectorisation of loops that involve
selecting an integer value based on a previous comparison. Consider the
following C++ loop:
int r = a;
for (int i = 0; i < n; i++) {
if (src[i] > 3) {
r = b;
}
src[i] += 2;
}
We should be able to vectorise this loop because all we are doing is
selecting between two states - 'a' and 'b' - both of which are loop
invariant. This just involves building a vector of values that contain
either 'a' or 'b', where the final reduced value will be 'b' if any lane
contains 'b'.
The IR generated by clang typically looks like this:
%phi = phi i32 [ %a, %entry ], [ %phi.update, %for.body ]
...
%pred = icmp ugt i32 %val, i32 3
%phi.update = select i1 %pred, i32 %b, i32 %phi
We already detect min/max patterns, which also involve a select + cmp.
However, with the min/max patterns we are selecting loaded values (and
hence loop variant) in the loop. In addition we only support certain
cmp predicates. This patch adds a new pattern matching function
(isSelectCmpPattern) and new RecurKind enums - SelectICmp & SelectFCmp.
We only support selecting values that are integer and loop invariant,
however we can support any kind of compare - integer or float.
Tests have been added here:
Transforms/LoopVectorize/AArch64/sve-select-cmp.ll
Transforms/LoopVectorize/select-cmp-predicated.ll
Transforms/LoopVectorize/select-cmp.ll
Differential Revision: https://reviews.llvm.org/D108136
This is analogous to D86156 (which preserves "lossy" BFI in loop
passes). Lossy means that the analysis preserved may not be up to date
with regards to new blocks that are added in loop passes, but BPI will
not contain stale pointers to basic blocks that are deleted by the loop
passes.
This is achieved through BasicBlockCallbackVH in BPI, which calls
eraseBlock that updates the data structures in BPI whenever a basic
block is deleted.
This patch does not have any changes in the upstream pipeline, since
none of the loop passes in the pipeline use BPI currently.
However, since BPI wasn't previously preserved in loop passes, the loop
predication pass was invoking BPI *on the entire
function* every time it ran in an LPM. This caused massive compile time
in our downstream LPM invocation which contained loop predication.
See updated test with an invocation of a loop-pipeline containing loop
predication and -debug-pass turned ON.
Reviewed-By: asbirlea, modimo
Differential Revision: https://reviews.llvm.org/D110438
This patch enables debug info salvaging for truncating/extending ptr
int conversions. The testcase uncovered a bug in adce, which is
addressed separately.
rdar://80227769
Differential Revision: https://reviews.llvm.org/D110461
With improved analysis in determining CFG equivalence that does
not require strict dominance and post-dominance conditions, we
now relax isSafeToMoveBefore() such that an instruction I can
be moved before InsertPoint even if they do not strictly dominate
each other, as long as they follow the same control flow path.
For example, we can move Instruction 0 before Instruction 1,
and vice versa.
```
if (cond1)
// Instruction 0: %add = add i32 1, 2
if (cond1)
// Instruction 1: %add2 = add i32 2, 1
```
Reviewed By: Whitney
Differential Revision: https://reviews.llvm.org/D110456
When moving an entire basic block BB before InsertPoint, currently
we check for all instructions whether the operands dominates
InsertPoint, however, this can be improved such that even an
operand does not dominate InsertPoint, as long as it appears as
a previous instruction in the same BB, it is safe to move.
Reviewed By: Whitney
Differential Revision: https://reviews.llvm.org/D110378
While both GlobalAlias and GlobalIFunc are GlobalIndirectSymbol, their
`getIndirectSymbol()` usage is quite different (GlobalIFunc's resolver
is an entity different from GlobalIFunc itself).
As discussed on https://lists.llvm.org/pipermail/llvm-dev/2020-September/144904.html
("[IR] Modelling of GlobalIFunc"), the name `getBaseObject` is confusing when
used with GlobalIFunc.
To resolve the confusion:
* Move GloalIndirectSymol::getBaseObject to GlobalAlias:: (GlobalIFunc should use `getResolver` instead)
* Change GlobalValue::getBaseObject not to inspect GlobalIFunc. Note: the function has 7 references.
* Add GlobalIFunc::getResolverFunction to peel off potential ConstantExpr indirection
(`strlen` in `test/LTO/Resolution/X86/ifunc.ll`)
Note: GlobalIFunc::getResolver (like GlobalAlias::getAliasee which does not peel
off ConstantExpr indirection) is kept to be used by ValueEnumerator.
Reviewed By: ibookstein
Differential Revision: https://reviews.llvm.org/D109792
The NFC commit e5692a564a changed the logic for
DomTreeUpdates to use the range [succ_begin, succ_begin) when
looking for SuccsOfPredBB rather than using [succ_begin, succ_end).
As the commit was NFC this is identified as a typo (it has been
discussed briefly in phabricator).
The typo was found when inspecting the code, so I've got no idea if
changing back to the old range has any significant impact (such as
solving any PR:s or causing some new problems). But at least this
restores the code to the originally indented behavior.
When determining whether to fold branches to a common destination by
merging two blocks, SimplifyCFG will count the number of instructions to
be moved into the first basic block. However, there's no reason to count
free instructions like bitcasts and other similar instructions.
This resolves missed branch foldings with -fstrict-vtable-pointers in
llvm-test-suite's lambda benchmark.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D108837
When following a case of a switch instruction is guaranteed to lead to
UB, we can safely break these edges and redirect those cases into a newly
created unreachable block. As result, CFG will become simpler and we can
remove some of Phi inputs to make further analyzes easier.
Patch by Dmitry Bakunevich!
Differential Revision: https://reviews.llvm.org/D109428
Reviewed By: lebedev.ri
getMetadata() currently uses a weird API where it populates a
structure passed to it, and optionally merges into it. Instead,
we can return the AAMDNodes and provide a separate merge() API.
This makes usages more compact.
Differential Revision: https://reviews.llvm.org/D109852
This makes some tests in vector-reductions-logical.ll more stable when
applying D108837.
The cost of branching is higher when vector ops are involved due to
potential SLP transformations.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D108935
In particular, it couldn't handle cases where lookup table constant
expressions involved bitcasts. This does not seem to come up
frequently in C++, but comes up reasonably often in Rust via
`#[derive(Debug)]`.
Originally reported by pcwalton.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D109565
Fix build bot failure in rG4ac4e521 caused due to assumeBundleBuilder
using new API (getUniqueUndroppableUser).
We now continue using the existing API for AssumeBundleBuilder
(getSingleUndroppableUser).
Sorry for the noise here.
Tests-Run: failing testcase passes.
This patch allows sinking an instruction which can have multiple uses in a
single user. We were previously over-restrictive by looking for exactly one use,
rather than one user.
Also, the API for retrieving undroppable user has been updated accordingly since
in both usecases (Attributor and InstCombine), we seem to care about the user,
rather than the use.
Reviewed-By: nikic
Differential Revision: https://reviews.llvm.org/D109700
Added '-print-pipeline-passes' printing of parameters for those passes
declared with *_WITH_PARAMS macro in PassRegistry.def.
Note that it only prints the parameters declared inside *_WITH_PARAMS as
in a few cases there appear to be additional parameters not parsable.
The following passes are now covered (i.e. all of those with *_WITH_PARAMS in
PassRegistry.def).
LoopExtractorPass - loop-extract
HWAddressSanitizerPass - hwsan
EarlyCSEPass - early-cse
EntryExitInstrumenterPass - ee-instrument
LowerMatrixIntrinsicsPass - lower-matrix-intrinsics
LoopUnrollPass - loop-unroll
AddressSanitizerPass - asan
MemorySanitizerPass - msan
SimplifyCFGPass - simplifycfg
LoopVectorizePass - loop-vectorize
MergedLoadStoreMotionPass - mldst-motion
GVN - gvn
StackLifetimePrinterPass - print<stack-lifetime>
SimpleLoopUnswitchPass - simple-loop-unswitch
Differential Revision: https://reviews.llvm.org/D109310
This reapplies commit 7dbba3376f, or, put
differently, this reverts commit d9a8d20827.
The test now requires the amdgpu and nvptx backend explicitly as it
won't work without properly.
Not all address spaces support initializers for globals and we can
therefore not set them without checking if they are allowed. This
patch adds a hook into TTI to check if an AS allows non-undef
initializers. We disable it for all but address space 0 by default,
NVPTX and AMDGPU targets allow all but address space 3.
Reviewed By: tra
Differential Revision: https://reviews.llvm.org/D109337
This renames the primary methods for creating a zero value to `getZero`
instead of `getNullValue` and renames predicates like `isAllOnesValue`
to simply `isAllOnes`. This achieves two things:
1) This starts standardizing predicates across the LLVM codebase,
following (in this case) ConstantInt. The word "Value" doesn't
convey anything of merit, and is missing in some of the other things.
2) Calling an integer "null" doesn't make any sense. The original sin
here is mine and I've regretted it for years. This moves us to calling
it "zero" instead, which is correct!
APInt is widely used and I don't think anyone is keen to take massive source
breakage on anything so core, at least not all in one go. As such, this
doesn't actually delete any entrypoints, it "soft deprecates" them with a
comment.
Included in this patch are changes to a bunch of the codebase, but there are
more. We should normalize SelectionDAG and other APIs as well, which would
make the API change more mechanical.
Differential Revision: https://reviews.llvm.org/D109483
I can't seem to wrap my head around the proper fix here,
we should be fine without this requirement, iff we can form this form,
but the naive attempt (https://reviews.llvm.org/D106317) has failed.
So just to unblock the release, put up a restriction.
Fixes https://bugs.llvm.org/show_bug.cgi?id=51125
Previously the CodeExtractor created exit stubs, and the subsequent return value of the outlined function based on the order of out-of-region blocks after splitting any phi nodes, and collecting the blocks to be outlined. This could cause differences in order if there was a difference of exit block phi nodes between the two regions. This patch moves the collection of the output target blocks to be before this occurs, so that the assignment of target block to output value will be the same, regardless of the contents of the output block.
Reviewers: paquette, roelofs
Differential Revision: https://reviews.llvm.org/D108657
Make the following changes in order to support opaque pointers in SROA:
* Generate i8 GEPs for opaque pointers.
* Explicitly enforce that promotable allocas only have stores of
the alloca type -- previously this was implicitly enforced.
* Replace a check for pointer element type with load/store type.
Differential Revision: https://reviews.llvm.org/D109259
integer 0/1 for the operand of bundle "clang.arc.attachedcall"
https://reviews.llvm.org/D102996 changes the operand of bundle
"clang.arc.attachedcall". This patch makes changes to llvm that are
needed to handle the new IR.
This should make it easier to understand what the IR is doing and also
simplify some of the passes as they no longer have to translate the
integer values to the runtime functions.
Differential Revision: https://reviews.llvm.org/D103000
This improvement adds "assume" after removal of branch basing on UB in successor block.
Consider the following example:
```
pred:
x = ...
cond = x > 10
br cond, bb, other.succ
bb:
phi [nullptr, pred], ... // other possible preds
load(phi) // UB if we came from pred
other.succ:
// here we know that x <= 10, but this knowledge is lost
// after the branch is turned to unconditional unless we
// preserve it with assume.
```
If we remove the branch basing on knowledge about UB in a successor block,
then the fact that x <= 10 is other.succ might be lost if this condition is
not inferrable from any dominating condition. To preserve this knowledge, we
can add assume intrinsic with (possibly inverted) branch condition.
Patch by Dmitry Bakunevich!
Differential Revision: https://reviews.llvm.org/D109054
Reviewed By: lebedev.ri
Copying IR during linking causes a type mismatch due to the field being missing in IRMover/Valuemapper. Adds the full range of typed attributes including elementtype attribute in the copy functions.
Patch by Chenyang Liu
Differential Revision: https://reviews.llvm.org/D108796
This patch adds support for unrolling inner loops using epilogue unrolling. The basic issue is that the original latch exit block of the inner loop could be outside the outer loop. When we clone the inner loop and split the latch exit, the cloned blocks need to be in the outer loop.
Differential Revision: https://reviews.llvm.org/D108476
This is a followup to D104662 to generate slightly nicer code for
pointer overflow checks. Bypass expandAddToGEP and instead
explicitly generate i8 GEPs. This saves some bitcasts and negates
the value in a more obvious way. In particular, this prevents SCEV
from looking through the umul.with.overflow, same as in the integer
case.
The wrapping-pointer-ni.ll test deserves a comment: Previously,
this generated a typed GEP which used the umulo argument rather
than the multiplication result. This results in more compact IR in
that case, but effectively does the multiplication twice, the
second one is just hidden in the GEP. Reusing the umulo result
seems pretty reasonable to me.
Differential Revision: https://reviews.llvm.org/D109093
This is a case I'd missed in 6a8237. The odd bit here is that missing the edge removal update seems to produce MemorySSA which verifies, but is still corrupt in a way which bothers following passes. I wasn't able to reduce a single pass test case, which is why the reported test case is taken as is.
Differential Revision: https://reviews.llvm.org/D109068
We'd special cased this logic to use pointer types for non-integral pointers, but there's no reason we can't do that for all pointer types. Doing it this was has a few advantages:
a) The code itself becomes more straight forward, and easier to test.
b) We avoid introducing ptrtoint into programs which didn't have them in the source.
c) The resulting codegen is easier to analyze and simplify (mostly due to lack of ptrtoint).
Note that there are some test diffs, but a) running them through instcombine helps a ton, and b) there's enough missing obvious transforms on both before and after IR that it's clear this isn't performance sensitive.
This is mostly motivated by cleaning up mentions of non-integrals to have a clearer idea of what we actually need to support.
Differential Revision: https://reviews.llvm.org/D104662
The runtime unroller will try to produce a non-loop if the unroll count is 2 and thus the prolog/epilog loop would only run at most one iteration. The old implementation did this by avoiding loop construction entirely. This patches instead constructs the trivial loop and then explicitly breaks the backedge and simplifies. This does result in some additional code churn when triggered, but a) results in better quality code and b) removes a codepath which didn't work properly for multiple exit epilogs.
One oddity that I want to draw to reviewer attention is that this somehow changes revisit order. The new order looks equivalent to me, but I don't understand how creating and erasing an extra loop here creates this effect.
Differential Revision: https://reviews.llvm.org/D108521
Previously, we'd expand *ALL* the SCEV's eagerly, because we needed to
check with `isValidRewrite()`, and discard bad rewrite candidates,
but now that we do not do that, we also don't need to always expand.
In particular, this avoids expanding potentially-huge SCEV's that we
would discard anyways because they are high-cost and we aren't
rewriting aggressively.
`isValidRewrite()` checks that the both the original SCEV,
and the rewrite SCEV have the same base pointer.
I //believe//, after all the recent SCEV improvements,
this invariant is already enforced by SCEV itself.
I originally tried changing it into an assert in D108043,
but that showed that it triggers on e.g. https://reviews.llvm.org/D108043#2946621,
where SCEV manages to forward the store to load,
test added.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D108655
ExposePointerBase() in SCEVExpander implements basically the same
functionality as removePointerBase() in SCEV, so reuse it.
The SCEVExpander code assumes that the pointer operand on adds is
the last one -- I'm not sure that always holds. As such this might
not be strictly NFC.
There can only be one pointer operand in an add expression, and
we have sorted operands to guarantee that it is the first. As
such, the pointer check for other operands is dead code.
Changes since aec08e:
* Adjust placement of a closing brace so that the general case actually runs. Turns out we had *no* coverage of the switch case. I added one in eae90fd.
* Drop .llvm.loop.* metadata from the new branch as there is no longer a loop to annotate.
Original commit message:
This special cases an unconditional latch and a conditional branch latch exit to improve codegen and test readability. I am hoping to reuse this function in the runtime unroll code, but without this change, the test diffs are far too complex to assess.
The Code Extractor does not provide an easy mechanism for determining the
inputs and outputs after extraction has occurred, this patch gives the
ability to pass in empty SetVectors to be filled with the inputs and
outputs if they need to be analyzed.
Added Tests:
- InputOutputMonitoring in unittests/Transforms/Utils/CodeExtractorTests.cpp
Reviewers: paquette
Differential Revision: https://reviews.llvm.org/D106991
Support for peeling with multiple exit blocks was added in D63921/77bb3a486fa6.
So far it has only been enabled for loops where all non-latch exits are
'de-optimizing' exits (D63923). But peeling of multi-exit loops can be
highly beneficial in other cases too, like if all non-latch exiting
blocks are unreachable.
The motivating case are loops with runtime checks, like the C++ example
below. The main issue preventing vectorization is that the invariant
accesses to load the bounds of B is conditionally executed in the loop
and cannot be hoisted out. If we peel off the first iteration, they
become dereferenceable in the loop, because they must execute before the
loop is executed, as all non-latch exits are terminated with
unreachable. This subsequently allows hoisting the loads and runtime
checks out of the loop, allowing vectorization of the loop.
int sum(std::vector<int> *A, std::vector<int> *B, int N) {
int cost = 0;
for (int i = 0; i < N; ++i)
cost += A->at(i) + B->at(i);
return cost;
}
This gives a ~20-30% increase of score for Geekbench5/HDR on AArch64.
Note that this requires a follow-up improvement to the peeling cost
model to actually peel iterations off loops as above. I will share that
shortly.
Also, peeling of multi-exits might be beneficial for exit blocks with
other terminators, but I would like to keep the scope limited to known
high-reward cases for now.
I removed the option to disable peeling for multi-deopt exits because
the code is more general now. Alternatively, the option could also be
generalized, but I am not sure if there's much value in the option?
Reviewed By: reames
Differential Revision: https://reviews.llvm.org/D108108
This special cases an unconditional latch and a conditional branch latch exit to improve codegen and test readability. I am hoping to reuse this function in the runtime unroll code, but without this change, the test diffs are far too complex to assess.
The purpose of __attribute__((disable_sanitizer_instrumentation)) is to
prevent all kinds of sanitizer instrumentation applied to a certain
function, Objective-C method, or global variable.
The no_sanitize(...) attribute drops instrumentation checks, but may
still insert code preventing false positive reports. In some cases
though (e.g. when building Linux kernel with -fsanitize=kernel-memory
or -fsanitize=thread) the users may want to avoid any kind of
instrumentation.
Differential Revision: https://reviews.llvm.org/D108029
The only thing that function should do as per it's semantic,
is to ensure that the switch's default is a block consisting only of
an `unreachable` terminator.
So let's just create such a block and update switch's default
to point to it. There should be no need for all this weird dance
around predecessors/successors.
This patch extends the runtime unrolling infrastructure to support unrolling a loop with multiple exiting blocks branching to the same exit block used by the latch. It intentionally does not include a cost model change to enable this functionality unless appropriate force flags are used.
This is the prolog companion to D107381. Since this was LGTMed, a problem with DT updating was reported against that patch. I roled in the analogous fix here as it seemed obvious, and not worth re-review.
As an aside, our prolog form leaves a lot of potential value on the floor when there is an invariant load or invariant condition in the loop being runtime unrolled. We should probably consider a "required prolog" heuristic. (Alternatively, maybe we should be peeling these cases more aggressively?)
Differential Revision: https://reviews.llvm.org/D108262
In 94d0914, I added support for unrolling of multiple exit loops which have multiple exits reaching the latch. Per reports on the review post commit, I'd missed updating the domtree for one case. This fix addresses that ommission.
There's no new test as this is covered by existing tests with expensive verification turned on.
This reverts commit 9934a5b2ed.
This patch may cause miscompiles because it missed a constraint
as shown in the examples from:
https://llvm.org/PR51531
This patch extends the runtime unrolling infrastructure to support unrolling a loop with multiple exiting blocks branching to the same exit block used by the latch. It intentionally does not include a cost model change to enable this functionality unless appropriate force flags are used.
I decided to restrict this to the epilogue case. Given the changes ended up being pretty generic, we may be able to unblock the prolog case too, but I want to do that in a separate change to reduce the amount of code we all have to understand at one time.
Differential Revision: https://reviews.llvm.org/D107381
his is a fix for PR43678, and is an alternate patch to D105723.
The basic issue we're running into is that LSR + SCEVExpander are moving the very instruction whose operand we're in the process of expanding. This breaks the subtle and ill-documented invariant which let LSR work. (Full story can be found here: https://reviews.llvm.org/D105723#2878473)
Rather than attempting a fix, this change just removes the optimization entirely. The code is entirely untested, and removing it appears to have no impact I can find. This code was added back in 2014 by 1e12f8563d with a single test which does not seem to actually test the hoisting logic.
From a philosophical standpoint, it also seems very strange to have the expander implementing optimizations which should live in a dedicated transform pass.
Differential Revision: https://reviews.llvm.org/D106178
This option has been enabled by default for quite a while now.
The practical impact of removing the option is that MSSA use
cannot be disabled in default pipelines (both LPM and NPM) and
in manual LPM invocations. NPM can still choose to enable/disable
MSSA using loop vs loop-mssa.
The next step will be to require MSSA for LICM and drop the
AST-based implementation entirely.
Differential Revision: https://reviews.llvm.org/D108075
LoopLoadElimination, LoopVersioning and LoopVectorize currently
fetch MemorySSA when construction LoopAccessAnalysis. However,
LoopAccessAnalysis does not actually use MemorySSA and we can pass
nullptr instead.
This saves one MemorySSA calculation in the default pipeline, and
thus improves compile-time.
Differential Revision: https://reviews.llvm.org/D108074
Currently/previously, while SCEV guaranteed that it produces the same value,
the way it was produced may be illegal IR, so we have an ugly check that
the replacement is valid.
But now that the SCEV strictness wrt the pointer/integer types has been improved,
i believe this invariant is already upheld by the SCEV itself, natively.
I think we should add an assertion, wait for a week, and then, if all is good,
rip out all this checking.
Or we could just do the latter directly i guess.
This reverts commit rL127839.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D108043
Previously we would allow promotion even if the byval/inalloca
attributes on the call and the callee didn't match.
It's ok if the byval/inalloca types aren't the same. For example, LTO
importing may rename types.
Fixes PR51397.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D107998
It might changed the condition of a branch into a constant,
so we should restart and constant-fold terminator,
instead of continuing with the tautological "conditional" branch.
This fixes the issue reported at https://reviews.llvm.org/rGf30a7dff8a5b32919951dcbf92e4a9d56c4679ff
We really shouldn't deal with a conditional branch that can be trivially
constant-folded into an unconditional branch.
Indeed, barring failure to trigger BB reprocessing, that should be true,
so let's assert as much, and hope the assertion never fires.
If it does, we have a bug to fix.
Mainly, i want to add an assertion that `SimplifyCFGOpt::simplifyCondBranch()`
doesn't get asked to deal with non-unconditional branches,
and if i do that, then said assertion fires on existing tests,
and this is what prevents it from firing.
This patch refactors / simplifies salvageDebugInfoImpl(). The goal
here is to simplify the implementation of coro::salvageDebugInfo() in
a followup patch.
1. Change the return value to I.getOperand(0). Currently users of
salvageDebugInfoImpl() assume that the first operand is
I.getOperand(0). This patch makes this information explicit. A
nice side-effect of this change is that it allows us to salvage
expressions such as add i8 1, %a in the future.
2. Factor out the creation of a DIExpression and return an array of
DIExpression operations instead. This change allows users that
call salvageDebugInfoImpl() in a loop to avoid the costly
creation of temporary DIExpressions and to defer the creation of
a DIExpression until the end.
This patch does not change any functionality.
rdar://80227769
Differential Revision: https://reviews.llvm.org/D107383
Avoid stack overflow errors on systems with small stack sizes
by removing recursion in FoldCondBranchOnPHI.
This is a simple change as the recursion was only iteratively
calling the function again on the same arguments.
Ideally this would be compiled to a tail call, but there is
no guarantee.
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D107803
In SimplifyCFG we may simplify the CFG by speculatively executing
certain stores, when they are preceded by a store to the same
location. This patch allows such speculation also when the stores are
similarly preceded by a load.
In order for this transformation to be correct we need to ensure that
the memory location is writable and the store in the new location does
not introduce a data race.
Local objects (created by an `alloca` instruction) are always
writable, so once we are past a read from a location it is valid to
also write to that same location.
Seeing just a load does not guarantee absence of a data race (unlike
if we see a store) - the load may still be part of a race, just not
causing undefined behaviour
(cf. https://llvm.org/docs/Atomics.html#optimization-outside-atomic).
In the original program, a data race might have been prevented by the
condition, but once we move the store outside the condition, we must
be sure a data race wasn't possible anyway, no matter what the
condition evaluates to.
One way to be sure that a local object is never concurrently
read/written is check that its address never escapes the function.
Hence this transformation is restricted to local, non-escaping
objects.
Reviewed By: nikic, lebedev.ri
Differential Revision: https://reviews.llvm.org/D107281