We would like to start pushing -mcpu=generic towards enabling the set of
features that improves performance for some CPUs, without hurting any
others. A blend of the performance options hopefully beneficial to all
CPUs. The largest part of that is enabling in-order scheduling using the
Cortex-A55 schedule model. This is similar to the Arm backend change
from eecb353d0e which made -mcpu=generic perform in-order scheduling
using the cortex-a8 schedule model.
The idea is that in-order cpu's require the most help in instruction
scheduling, whereas out-of-order cpus can for the most part out-of-order
schedule around different codegen. Our benchmarking suggests that
hypothesis holds. When running on an in-order core this improved
performance by 3.8% geomean on a set of DSP workloads, 2% geomean on
some other embedded benchmark and between 1% and 1.8% on a set of
singlecore and multicore workloads, all running on a Cortex-A55 cluster.
On an out-of-order cpu the results are a lot more noisy but show flat
performance or an improvement. On the set of DSP and embedded
benchmarks, run on a Cortex-A78 there was a very noisy 1% speed
improvement. Using the most detailed results I could find, SPEC2006 runs
on a Neoverse N1 show a small increase in instruction count (+0.127%),
but a decrease in cycle counts (-0.155%, on average). The instruction
count is very low noise, the cycle count is more noisy with a 0.15%
decrease not being significant. SPEC2k17 shows a small decrease (-0.2%)
in instruction count leading to a -0.296% decrease in cycle count. These
results are within noise margins but tend to show a small improvement in
general.
When specifying an Apple target, clang will set "-target-cpu apple-a7"
on the command line, so should not be affected by this change when
running from clang. This also doesn't enable more runtime unrolling like
-mcpu=cortex-a55 does, only changing the schedule used.
A lot of existing tests have updated. This is a summary of the important
differences:
- Most changes are the same instructions in a different order.
- Sometimes this leads to very minor inefficiencies, such as requiring
an extra mov to move variables into r0/v0 for the return value of a test
function.
- misched-fusion.ll was no longer fusing the pairs of instructions it
should, as per D110561. I've changed the schedule used in the test
for now.
- neon-mla-mls.ll now uses "mul; sub" as opposed to "neg; mla" due to
the different latencies. This seems fine to me.
- Some SVE tests do not always remove movprfx where they did before due
to different register allocation giving different destructive forms.
- The tests argument-blocks-array-of-struct.ll and arm64-windows-calls.ll
produce two LDR where they previously produced an LDP due to
store-pair-suppress kicking in.
- arm64-ldp.ll and arm64-neon-copy.ll are missing pre/postinc on LPD.
- Some tests such as arm64-neon-mul-div.ll and
ragreedy-local-interval-cost.ll have more, less or just different
spilling.
- In aarch64_generated_funcs.ll.generated.expected one part of the
function is no longer outlined. Interestingly if I switch this to use
any other scheduled even less is outlined.
Some of these are expected to happen, such as differences in outlining
or register spilling. There will be places where these result in worse
codegen, places where they are better, with the SPEC instruction counts
suggesting it is not a decrease overall, on average.
Differential Revision: https://reviews.llvm.org/D110830
As discussed on PR27654, this patch fixes the triples of a lot of aarch64 tests and enables lit tests on windows
This will hopefully help stop cases where windows developers break the aarch64 target
Differential Revision: https://reviews.llvm.org/D22191
llvm-svn: 275973
The benefit from converting narrow loads into a wider load (r251438) could be
micro-architecturally dependent, as it assumes that a single load with two bitfield
extracts is cheaper than two narrow loads. Currently, this conversion is
enabled only in cortex-a57 on which performance benefits were verified.
llvm-svn: 252316
This recommits r250719, which caused a failure in SPEC2000.gcc
because of the incorrect insert point for the new wider load.
Convert two halfword loads into a single 32-bit word load with bitfield extract
instructions. For example :
ldrh w0, [x2]
ldrh w1, [x2, #2]
becomes
ldr w0, [x2]
ubfx w1, w0, #16, #16
and w0, w0, #ffff
llvm-svn: 251438
Convert two halfword loads into a single 32-bit word load with bitfield extract
instructions. For example :
ldrh w0, [x2]
ldrh w1, [x2, #2]
becomes
ldr w0, [x2]
ubfx w1, w0, #16, #16
and w0, w0, #ffff
llvm-svn: 250719
Unscaled load/store combining has been enabled since the initial ARM64 port. No
need for a redundance run. Also, add CHECK-LABEL directives.
llvm-svn: 248945
Teach the load store optimizer how to sign extend a result of a load pair when
it helps creating more pairs.
The rational is that loads are more expensive than sign extensions, so if we
gather some in one instruction this is better!
<rdar://problem/20072968>
llvm-svn: 231527
Essentially the same as the GEP change in r230786.
A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)
import fileinput
import sys
import re
pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")
for line in sys.stdin:
sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7649
llvm-svn: 230794
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.
This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.
* This doesn't modify gep operators, only instructions (operators will be
handled separately)
* Textual IR changes only. Bitcode (including upgrade) and changing the
in-memory representation will be in separate changes.
* geps of vectors are transformed as:
getelementptr <4 x float*> %x, ...
->getelementptr float, <4 x float*> %x, ...
Then, once the opaque pointer type is introduced, this will ultimately look
like:
getelementptr float, <4 x ptr> %x
with the unambiguous interpretation that it is a vector of pointers to float.
* address spaces remain on the pointer, not the type:
getelementptr float addrspace(1)* %x
->getelementptr float, float addrspace(1)* %x
Then, eventually:
getelementptr float, ptr addrspace(1) %x
Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.
update.py:
import fileinput
import sys
import re
ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
def conv(match, line):
if not match:
return line
line = match.groups()[0]
if len(match.groups()[5]) == 0:
line += match.groups()[2]
line += match.groups()[3]
line += ", "
line += match.groups()[1]
line += "\n"
return line
for line in sys.stdin:
if line.find("getelementptr ") == line.find("getelementptr inbounds"):
if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
line = conv(re.match(ibrep, line), line)
elif line.find("getelementptr ") != line.find("getelementptr ("):
line = conv(re.match(normrep, line), line)
sys.stdout.write(line)
apply.sh:
for name in "$@"
do
python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
rm -f "$name.tmp"
done
The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh
After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).
The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7636
llvm-svn: 230786
This patch adds the missing LD[U]RSW variants to the load store optimizer, so
that we generate LDPSW when possible.
<rdar://problem/19583480>
llvm-svn: 226978
This commit starts with a "git mv ARM64 AArch64" and continues out
from there, renaming the C++ classes, intrinsics, and other
target-local objects for consistency.
"ARM64" test directories are also moved, and tests that began their
life in ARM64 use an arm64 triple, those from AArch64 use an aarch64
triple. Both should be equivalent though.
This finishes the AArch64 merge, and everyone should feel free to
continue committing as normal now.
llvm-svn: 209577