After D80369, the retainedTypes in CU's should not have any subprograms
so we should not handle that case when emitting debug info.
Differential Revision: https://reviews.llvm.org/D111593
This patch is a revert of e08f205f5c. In that patch, DW_TAG_subprograms
were permitted to be referenced across CU boundaries, to improve stack
trace construction using call site information. Unfortunately, as
documented in PR48790, the way that subprograms are "owned" by dwarf units
is sufficiently complicated that subprograms end up in unexpected units,
invalidating cross-unit references.
There's no obvious way to easily fix this, and several attempts have
failed. Revert this to ensure correct DWARF is always emitted.
Three tests change in addition to the reversion, but they're all very
light alterations.
Differential Revision: https://reviews.llvm.org/D107076
It's entirely possible (because it actually happened) for a bool
variable to end up with a 256-bit DW_AT_const_value. This came about
when a local bool variable was initialized from a bitfield in a
32-byte struct of bitfields, and after inlining and constant
propagation, the variable did have a constant value. The sequence of
optimizations had it carrying "i256" values around, but once the
constant made it into the llvm.dbg.value, no further IR changes could
affect it.
Technically the llvm.dbg.value did have a DIExpression to reduce it
back down to 8 bits, but the compiler is in no way ready to emit an
oversized constant *and* a DWARF expression to manipulate it.
Depending on the circumstances, we had either just the very fat bool
value, or an expression with no starting value.
The sequence of optimizations that led to this state did seem pretty
reasonable, so the solution I came up with was to invent a DWARF
constant expression folder. Currently it only does convert ops, but
there's no reason it couldn't do other ops if that became useful.
This broke three tests that depended on having convert ops survive
into the DWARF, so I added an operator that would abort the folder to
each of those tests.
Differential Revision: https://reviews.llvm.org/D106915
Testing reveals that lldb and gdb have some problems with supporting
DW_OP_convert - gdb with Split DWARF tries to resolve the CU-relative
DIE offset relative to the skeleton DIE. lldb tries to treat the offset
as absolute, which judging by the llvm-dsymutil support for
DW_OP_convert, I guess works OK in MachO? (though probably llvm-dsymutil
is producing invalid DWARF by resolving the relative reference to an
absolute one?).
Specifically this disables DW_OP_convert usage in DWARFv5 if:
* Tuning for GDB and using Split DWARF
* Tuning for LLDB and not targeting MachO
Originally committed in: 1ced28cbe7
Reverted in: f75301d16d
(reverted due to tests failing on non-linux/x86 targets, tests have since been
generalized and specialized... since Split DWARF isn't supported on non-elf
targets anyway and we have no way to run on "whatever elf target is available"
so they fail on MacOS without an explicit target triple)
This code was incorrectly emitting extra bytes into arbitrary parts of
the object file when it was meant to be hashing them to compute the DWO
ID.
Follow-up patch(es) will refactor this API somewhat to make such bugs
harder to introduce, hopefully.
Since we don't support Split DWARF emission on non-ELF formats, hardcode
an elfine triple (we don't have a way to ask for "any ELF triple" it
seems, so hardcoded will have to do)
Originally committed in: 552a8fe12b
Reverted in: f75301d16d
Reverted because it was running llc directly (rather than %llc_dwarf)
which uses COFF files on Windows which LLVM doesn't support all DWARF
features in.
This functionality isn't fully working, but sets up the testing for a
follow-on patch that demonstrates and fixes the brokenness related to
DWO ID hashing this construct.
Originally committed in: 5327b917e3
and follow on fix: 4f281f0474
Reverted in: 191a9a78b3
and: f75301d16d
Reverted because it wasn't portable between the targets it was running
on. Using %llc_dwarf ensures the target triple is always elfine and thus
DWARF compatible.
This code was incorrectly emitting extra bytes into arbitrary parts of
the object file when it was meant to be hashing them to compute the DWO
ID.
Follow-up patch(es) will refactor this API somewhat to make such bugs
harder to introduce, hopefully.