For the scalar/splat case, this fold is subsumed by
foldLogOpOfMaskedICmps(). However, the conjugated fold for "or"
also supports splats with undef. Make both code paths consistent
by using m_ZeroInt() for the "and" implementation as well.
https://alive2.llvm.org/ce/z/tN63cuhttps://alive2.llvm.org/ce/z/ufB_Ue
When folding and/or of icmps, look through add of a constant and
adjust the icmp range instead. Effectively, this decomposes
X + C1 < C2 style range checks back into a normal range. This allows
us to fold comparisons involving two range checks or one range check
and some other condition. We had a fold for a really specific case
of this (or of range check and eq, and only one one side!) while
this handles it in fully generality.
Differential Revision: https://reviews.llvm.org/D113510
InstCombine converts range tests of the form (X > C1 && X < C2) or
(X < C1 || X > C2) into checks of the form (X + C3 < C4) or
(X + C3 > C4). It is possible to express all range tests in either
of these forms (with different choices of constants), but currently
neither of them is considered canonical. We may have equivalent
range tests using either ult or ugt.
This proposes to canonicalize all range tests to use ult. An
alternative would be to canonicalize to either ult or ugt depending
on the specific constants involved -- e.g. in practice we currently
generate ult for && style ranges and ugt for || style ranges when
going through the insertRangeTest() helper. In fact, the "clamp like"
fold was relying on this, which is why I had to tweak it to not
assume whether inversion is needed based on just the predicate.
Proof: https://alive2.llvm.org/ce/z/_SP_rQ
Differential Revision: https://reviews.llvm.org/D113366
The extra uses are needed to prevent intermediate folds.
Without that, there would be no coverage currently.
The vector tests show an artificial limitation in the code.
This is NFC-intended for scalar code. There are still unnecessary
m_ConstantInt restrictions in surrounding code, so this is not a
complete fix.
This prevents regressions seen with a planned follow-on to D111410.
There's a substantial pile of scalar tests for transforms that
depend on this code, but zero vector coverage. This patch adds
a vector test next to the first scalar test in each file that
is affected by foldLogOpOfMaskedICmps.
The code that handles these transforms is artificially limited
from working with vector splat constants.
There may be some other patterns like this or a generalization,
but this is an example that I noticed would definitely regress
with a planned follow-up to D111410.
https://alive2.llvm.org/ce/z/GVpQDb
The test diffs show that we have better analysis/folds for 'add'
(although we should at least have the simplifications
independently, so we don't have the one-use restriction).
This is related to solving regressions that would appear in
transforms related to D111410, and that is part of a series
of enhancements that may eventually helpi solve PR34047.
https://alive2.llvm.org/ce/z/3tB9KG
define i1 @src(i8 %x, i8 %C, i8 %C2) {
%sub = sub nuw i8 %C2, %x
%r = icmp slt i8 %sub, %C
ret i1 %r
}
define i1 @tgt(i8 %x, i8 %C, i8 %C2) {
%Cnot = xor i8 %C, -1
%C2not = xor i8 %C2, -1
%add = add nuw i8 %x, %C2not
%r = icmp sgt i8 %add, %Cnot
ret i1 %r
}
This is a patch that disables the poison-unsafe select -> and/or i1 folding.
It has been blocking D72396 and also has been the source of a few miscompilations
described in llvm.org/pr49688 .
D99674 conditionally blocked this folding and successfully fixed the latter one.
The former one was still blocked, and this patch addresses it.
Note that a few test functions that has `_logical` suffix are now deoptimized.
These are created by @nikic to check the impact of disabling this optimization
by copying existing original functions and replacing and/or with select.
I can see that most of these are poison-unsafe; they can be revived by introducing
freeze instruction. I left comments at fcmp + select optimizations (or-fcmp.ll, and-fcmp.ll)
because I think they are good targets for freeze fix.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D101191
This replicates existing and/or tests to also test variants using
select. This should help us get a more accurate view on which
optimizations we're missing if we disable the select -> and/or
fold.
I'm not sure if the test is truly minimal, but we need to
induce a situation where a value becomes a constant but is
not immediately folded before getting to the 'or' transform.
We need to specify legal integer widths to trigger PR46712,
so add those here. This doesn't appear to affect any existing
tests, and it's not clear why a datalayout would not include
any legal integer widths.
While here, change some variable names that include 'tmp' to
avoid warnings from the auto-generating script for CHECK lines.
InstCombine operates on the basic premise that the operands of the
currently processed instruction have already been simplified. It
achieves this by pushing instructions to the worklist in reverse
program order, so that instructions are popped off in program order.
The worklist management in the main combining loop also makes sure
to uphold this invariant.
However, the same is not true for all the code that is performing
manual worklist management. The largest problem (addressed in this
patch) are instructions inserted by InstCombine's IRBuilder. These
will be pushed onto the worklist in order of insertion (generally
matching program order), which means that a) the users of the
original instruction will be visited first, as they are pushed later
in the main loop and b) the newly inserted instructions will be
visited in reverse program order.
This causes a number of problems: First, folds operate on instructions
that have not had their operands simplified, which may result in
optimizations being missed (ran into this in
https://reviews.llvm.org/D72048#1800424, which was the original
motivation for this patch). Additionally, this increases the amount
of folds InstCombine has to perform, both within one iteration, and
by increasing the number of total iterations.
This patch addresses the issue by adding a Worklist.AddDeferred()
method, which is used for instructions inserted by IRBuilder. These
will only be added to the real worklist after the combine finished,
and in reverse order, so they will end up processed in program order.
I should note that the same should also be done to nearly all other
uses of Worklist.Add(), but I'm starting with just this occurrence,
which has by far the largest test fallout.
Most of the test changes are due to
https://bugs.llvm.org/show_bug.cgi?id=44521 or other cases where
we don't canonicalize something. These are neutral. One regression
has been addressed in D73575 and D73647. The remaining regression
in an shl+sdiv fold can't really be fixed without dropping another
transform, but does not seem particularly problematic in the first
place.
Differential Revision: https://reviews.llvm.org/D73411
As it's causing some bot failures (and per request from kbarton).
This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda.
llvm-svn: 358546
This also corrects the description to match what was actually implemented. The old comment said X^(C1|C2), but it implemented X^((C1|C2)&~(C1&C2)). I believe ((C1|C2)&~(C1&C2)) is equivalent to (C1^C2).
Differential Revision: https://reviews.llvm.org/D36505
llvm-svn: 310658
We used to try to truncate the constant vector to vXi1, but if it's already i1 this would fail. Instead we now use IRBuilder::getZExtOrTrunc which should check the type and only create a trunc if needed. I believe this should trigger constant folding in the IRBuilder and ultimately do the same thing just with the additional type check.
llvm-svn: 310639
Note the original code I deleted incorrectly listed this as (X | C1) & C2 --> (X & C2^(C1&C2)) | C1 Which is only valid if C1 is a subset of C2. This relied on SimplifyDemandedBits to remove any extra bits from C1 before we got to that code.
My new implementation avoids relying on that behavior so that it can be naively verified with alive.
Differential Revision: https://reviews.llvm.org/D36384
llvm-svn: 310272
Summary:
If one side simplifies to the identity value for inner opcode, we can replace the value with just the operation that can't be simplified.
I've removed a couple now unneeded special cases in visitAnd and visitOr. There are probably other cases I missed.
Reviewers: spatel, majnemer, hfinkel, dberlin
Reviewed By: spatel
Subscribers: grandinj, llvm-commits, spatel
Differential Revision: https://reviews.llvm.org/D35451
llvm-svn: 308111
We can simplify (or (icmp X, C1), (icmp X, C2)) to 'true' or one of the icmps in many cases.
I had to check some of these with Alive to prove to myself it's right, but everything seems
to check out. Eg, the deleted code in instcombine was completely ignoring predicates with
mismatched signedness.
This is a follow-up to:
https://reviews.llvm.org/rL301260https://reviews.llvm.org/D32143
llvm-svn: 302370
This is a straight cut and paste, but there's a bigger problem: if this
fold exists for simplifyOr, there should be a DeMorganized version for
simplifyAnd. But more than that, we have a patchwork of ad hoc logic
optimizations in InstCombine. There should be some structure to ensure
that we're not missing sibling folds across and/or/xor.
llvm-svn: 301213
This is effectively a retry of:
https://reviews.llvm.org/rL299851
but now we have tests and an assert to make sure the bug
that was exposed with that attempt will not happen again.
I'll fix the code duplication and missing sibling fold next,
but I want to make this change as small as possible to reduce
risk since I messed it up last time.
This should fix:
https://bugs.llvm.org/show_bug.cgi?id=32524
llvm-svn: 300236
If we had these tests, the bug caused by https://reviews.llvm.org/rL299851 would have been caught sooner.
There's also an assert in the code that should have caught that bug, but the assert line itself has a bug.
llvm-svn: 300201
Also, make the same change in and-of-icmps and remove a hack for detecting that case.
Finally, add some FIXME comments because the code duplication here is awful.
This should fix the remaining IR problem noted in:
https://bugs.llvm.org/show_bug.cgi?id=32524
llvm-svn: 299851