Reworked reordering algorithm. Originally, the compiler just tried to
detect the most common order in the reordarable nodes (loads, stores,
extractelements,extractvalues) and then fully rebuilding the graph in
the best order. This was not effecient, since it required an extra
memory and time for building/rebuilding tree, double the use of the
scheduling budget, which could lead to missing vectorization due to
exausted scheduling resources.
Patch provide 2-way approach for graph reodering problem. At first, all
reordering is done in-place, it doe not required tree
deleting/rebuilding, it just rotates the scalars/orders/reuses masks in
the graph node.
The first step (top-to bottom) rotates the whole graph, similarly to the previous
implementation. Compiler counts the number of the most used orders of
the graph nodes with the same vectorization factor and then rotates the
subgraph with the given vectorization factor to the most used order, if
it is not empty. Then repeats the same procedure for the subgraphs with
the smaller vectorization factor. We can do this because we still need
to reshuffle smaller subgraph when buildiong operands for the graph
nodes with lasrger vectorization factor, we can rotate just subgraph,
not the whole graph.
The second step (bottom-to-top) scans through the leaves and tries to
detect the users of the leaves which can be reordered. If the leaves can
be reorder in the best fashion, they are reordered and their user too.
It allows to remove double shuffles to the same ordering of the operands in
many cases and just reorder the user operations instead. Plus, it moves
the final shuffles closer to the top of the graph and in many cases
allows to remove extra shuffle because the same procedure is repeated
again and we can again merge some reordering masks and reorder user nodes
instead of the operands.
Also, patch improves cost model for gathering of loads, which improves
x264 benchmark in some cases.
Gives about +2% on AVX512 + LTO (more expected for AVX/AVX2) for {625,525}x264,
+3% for 508.namd, improves most of other benchmarks.
The compile and link time are almost the same, though in some cases it
should be better (we're not doing an extra instruction scheduling
anymore) + we may vectorize more code for the large basic blocks again
because of saving scheduling budget.
Differential Revision: https://reviews.llvm.org/D105020
Reworked reordering algorithm. Originally, the compiler just tried to
detect the most common order in the reordarable nodes (loads, stores,
extractelements,extractvalues) and then fully rebuilding the graph in
the best order. This was not effecient, since it required an extra
memory and time for building/rebuilding tree, double the use of the
scheduling budget, which could lead to missing vectorization due to
exausted scheduling resources.
Patch provide 2-way approach for graph reodering problem. At first, all
reordering is done in-place, it doe not required tree
deleting/rebuilding, it just rotates the scalars/orders/reuses masks in
the graph node.
The first step (top-to bottom) rotates the whole graph, similarly to the previous
implementation. Compiler counts the number of the most used orders of
the graph nodes with the same vectorization factor and then rotates the
subgraph with the given vectorization factor to the most used order, if
it is not empty. Then repeats the same procedure for the subgraphs with
the smaller vectorization factor. We can do this because we still need
to reshuffle smaller subgraph when buildiong operands for the graph
nodes with lasrger vectorization factor, we can rotate just subgraph,
not the whole graph.
The second step (bottom-to-top) scans through the leaves and tries to
detect the users of the leaves which can be reordered. If the leaves can
be reorder in the best fashion, they are reordered and their user too.
It allows to remove double shuffles to the same ordering of the operands in
many cases and just reorder the user operations instead. Plus, it moves
the final shuffles closer to the top of the graph and in many cases
allows to remove extra shuffle because the same procedure is repeated
again and we can again merge some reordering masks and reorder user nodes
instead of the operands.
Also, patch improves cost model for gathering of loads, which improves
x264 benchmark in some cases.
Gives about +2% on AVX512 + LTO (more expected for AVX/AVX2) for {625,525}x264,
+3% for 508.namd, improves most of other benchmarks.
The compile and link time are almost the same, though in some cases it
should be better (we're not doing an extra instruction scheduling
anymore) + we may vectorize more code for the large basic blocks again
because of saving scheduling budget.
Differential Revision: https://reviews.llvm.org/D105020
Reworked reordering algorithm. Originally, the compiler just tried to
detect the most common order in the reordarable nodes (loads, stores,
extractelements,extractvalues) and then fully rebuilding the graph in
the best order. This was not effecient, since it required an extra
memory and time for building/rebuilding tree, double the use of the
scheduling budget, which could lead to missing vectorization due to
exausted scheduling resources.
Patch provide 2-way approach for graph reodering problem. At first, all
reordering is done in-place, it doe not required tree
deleting/rebuilding, it just rotates the scalars/orders/reuses masks in
the graph node.
The first step (top-to bottom) rotates the whole graph, similarly to the previous
implementation. Compiler counts the number of the most used orders of
the graph nodes with the same vectorization factor and then rotates the
subgraph with the given vectorization factor to the most used order, if
it is not empty. Then repeats the same procedure for the subgraphs with
the smaller vectorization factor. We can do this because we still need
to reshuffle smaller subgraph when buildiong operands for the graph
nodes with lasrger vectorization factor, we can rotate just subgraph,
not the whole graph.
The second step (bottom-to-top) scans through the leaves and tries to
detect the users of the leaves which can be reordered. If the leaves can
be reorder in the best fashion, they are reordered and their user too.
It allows to remove double shuffles to the same ordering of the operands in
many cases and just reorder the user operations instead. Plus, it moves
the final shuffles closer to the top of the graph and in many cases
allows to remove extra shuffle because the same procedure is repeated
again and we can again merge some reordering masks and reorder user nodes
instead of the operands.
Also, patch improves cost model for gathering of loads, which improves
x264 benchmark in some cases.
Gives about +2% on AVX512 + LTO (more expected for AVX/AVX2) for {625,525}x264,
+3% for 508.namd, improves most of other benchmarks.
The compile and link time are almost the same, though in some cases it
should be better (we're not doing an extra instruction scheduling
anymore) + we may vectorize more code for the large basic blocks again
because of saving scheduling budget.
Differential Revision: https://reviews.llvm.org/D105020
Reworked reordering algorithm. Originally, the compiler just tried to
detect the most common order in the reordarable nodes (loads, stores,
extractelements,extractvalues) and then fully rebuilding the graph in
the best order. This was not effecient, since it required an extra
memory and time for building/rebuilding tree, double the use of the
scheduling budget, which could lead to missing vectorization due to
exausted scheduling resources.
Patch provide 2-way approach for graph reodering problem. At first, all
reordering is done in-place, it doe not required tree
deleting/rebuilding, it just rotates the scalars/orders/reuses masks in
the graph node.
The first step (top-to bottom) rotates the whole graph, similarly to the previous
implementation. Compiler counts the number of the most used orders of
the graph nodes with the same vectorization factor and then rotates the
subgraph with the given vectorization factor to the most used order, if
it is not empty. Then repeats the same procedure for the subgraphs with
the smaller vectorization factor. We can do this because we still need
to reshuffle smaller subgraph when buildiong operands for the graph
nodes with lasrger vectorization factor, we can rotate just subgraph,
not the whole graph.
The second step (bottom-to-top) scans through the leaves and tries to
detect the users of the leaves which can be reordered. If the leaves can
be reorder in the best fashion, they are reordered and their user too.
It allows to remove double shuffles to the same ordering of the operands in
many cases and just reorder the user operations instead. Plus, it moves
the final shuffles closer to the top of the graph and in many cases
allows to remove extra shuffle because the same procedure is repeated
again and we can again merge some reordering masks and reorder user nodes
instead of the operands.
Also, patch improves cost model for gathering of loads, which improves
x264 benchmark in some cases.
Gives about +2% on AVX512 + LTO (more expected for AVX/AVX2) for {625,525}x264,
+3% for 508.namd, improves most of other benchmarks.
The compile and link time are almost the same, though in some cases it
should be better (we're not doing an extra instruction scheduling
anymore) + we may vectorize more code for the large basic blocks again
because of saving scheduling budget.
Differential Revision: https://reviews.llvm.org/D105020
This patch makes SLP and LV emit operations with initial vectors set to poison constant instead of undef.
This is a part of efforts for using poison vector instead of undef to represent "doesn't care" vector.
The goal is to make nice shufflevector optimizations valid that is currently incorrect due to the tricky interaction between undef and poison (see https://bugs.llvm.org/show_bug.cgi?id=44185 ).
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D94061
This patch updates IRBuilder to create insertelement/shufflevector using poison as a placeholder.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D93793
As it's causing some bot failures (and per request from kbarton).
This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda.
llvm-svn: 358546
Remove attempts to commute non-Instructions to the LHS - the codegen changes appear to rely on chance more than anything else and also have a tendency to fight existing instcombine canonicalization which moves constants to the RHS of commutable binary ops.
This is prep work towards:
(a) reusing reorderInputsAccordingToOpcode for alt-shuffles and removing the similar reorderAltShuffleOperands
(b) improving reordering to optimized cases with commutable and non-commutable instructions to still find splat/consecutive ops.
Differential Revision: https://reviews.llvm.org/D59738
llvm-svn: 356913
Summary:
If the load/extractelement/extractvalue instructions are not originally
consecutive, the SLP vectorizer is unable to vectorize them. Patch
allows reordering of such instructions.
Patch does not support reordering of the repeated instruction, this must
be handled in the separate patch.
Reviewers: RKSimon, spatel, hfinkel, mkuper, Ayal, ashahid
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D43776
llvm-svn: 329085
Summary:
If the load/extractelement/extractvalue instructions are not originally
consecutive, the SLP vectorizer is unable to vectorize them. Patch
allows reordering of such instructions.
Reviewers: RKSimon, spatel, hfinkel, mkuper, Ayal, ashahid
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D43776
llvm-svn: 328980
Essentially the same as the GEP change in r230786.
A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)
import fileinput
import sys
import re
pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")
for line in sys.stdin:
sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7649
llvm-svn: 230794
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.
This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.
* This doesn't modify gep operators, only instructions (operators will be
handled separately)
* Textual IR changes only. Bitcode (including upgrade) and changing the
in-memory representation will be in separate changes.
* geps of vectors are transformed as:
getelementptr <4 x float*> %x, ...
->getelementptr float, <4 x float*> %x, ...
Then, once the opaque pointer type is introduced, this will ultimately look
like:
getelementptr float, <4 x ptr> %x
with the unambiguous interpretation that it is a vector of pointers to float.
* address spaces remain on the pointer, not the type:
getelementptr float addrspace(1)* %x
->getelementptr float, float addrspace(1)* %x
Then, eventually:
getelementptr float, ptr addrspace(1) %x
Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.
update.py:
import fileinput
import sys
import re
ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
def conv(match, line):
if not match:
return line
line = match.groups()[0]
if len(match.groups()[5]) == 0:
line += match.groups()[2]
line += match.groups()[3]
line += ", "
line += match.groups()[1]
line += "\n"
return line
for line in sys.stdin:
if line.find("getelementptr ") == line.find("getelementptr inbounds"):
if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
line = conv(re.match(ibrep, line), line)
elif line.find("getelementptr ") != line.find("getelementptr ("):
line = conv(re.match(normrep, line), line)
sys.stdout.write(line)
apply.sh:
for name in "$@"
do
python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
rm -f "$name.tmp"
done
The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh
After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).
The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7636
llvm-svn: 230786