This normalizes most paths (except ones input from the user as command
line arguments) into the preferred form, if `real_style()` evaluates to
`windows_forward`.
Differential Revision: https://reviews.llvm.org/D111880
This behaves just like the regular Windows style, with both separator
forms accepted, but with get_separator() returning forward slashes.
Add a more descriptive name for the existing style, keeping the old
name around as an alias initially.
Add a new function `make_preferred()` (like the C++17
`std::filesystem::path` function with the same name), which converts
windows paths to the preferred separator form (while this one works on
any platform and takes a `path::Style` argument).
Contrary to `native()` (just like `make_preferred()` in `std::filesystem`),
this doesn't do anything at all on Posix, it doesn't try to reinterpret
backslashes into forward slashes there.
Differential Revision: https://reviews.llvm.org/D111879
This interface should not have existed in the first place, let alone
be a public member.
It allows calling `ElementCount::get(..)->getValue()`, which is ambiguous.
The interfaces to be used are either getFixedValue() or getKnownMinValue().
Remove sys::path::is_style_native(), which was added alongside
is_style_windows() and is_style_posix().
Thinking a bit about the windows forward-slash style variant in
https://reviews.llvm.org/D111879, it's not clear to me how the new
sys::path::is_style_native() should behave for them.
- Should it return true for both `windows_slash` and
`windows_backslash`?
- Should it return true for only one of them?
I can think of hypothetical uses and justifications for either one, and
I could also imagine clients guessing either behaviour when just looking
at the function name in code.
Call sites will probably be more clear if they don't use this function,
and instead write out the code:
```
// Is "S" the coarse-grained native style?
if (is_style_windows(S) == is_style_windows(Style::native))
// Is "S" the fine-grained native style?
if (is_style_windows(S) == is_style_windows(Style::native) &&
preferred_separator(S) == preferred_separator(Style::native))
```
Can always add this again if someone needs it and can justify one
behaviour over the other, but for now might as well avoid growing users.
fs::copy_file() on Darwin has a nice optimization to clone the file when
possible. Change the implementation to use clonefile() directly, instead
of the higher-level copyfile(). The latter does the wrong thing for
symlinks, which requires calling `stat` first...
With that out of the way, optimistically call clonefile() all the time,
and then for any error that's recoverable try again with copyfile()
(without the COPYFILE_CLONE flag, as before).
Differential Revision: https://reviews.llvm.org/D112250
Expose three helpers in namespace llvm::sys::path to detect the
path rules followed by sys::path::Style.
- is_style_posix()
- is_style_windows()
- is_style_native()
This are constexpr functions that that will allow a bunch of
path-related code to stop checking `_WIN32`.
Originally I looked at adding system_style(), analogous to
sys::endian::system_endianness(), but future patches (from others) will
add more Windows style variants for slash preferences. These helpers
should be resilient to that change, allowing callers to detect basic
path rules.
Differential Revision: https://reviews.llvm.org/D112288
The support for neoverse-512tvb mirrors the same option available in GCC[1].
There is no functional effect for this option yet.
This patch ensures the driver accepts "-mcpu=neoverse-512tvb", and enough
plumbing is in place to allow the new option to be used in the future.
[1]https://gcc.gnu.org/onlinedocs/gcc/AArch64-Options.html
Differential Revision: https://reviews.llvm.org/D112406
Change buffer_unique_ostream's constructor to call
raw_ostream::SetUnbuffered() on its owned stream. Otherwise,
buffer_unique_ostream's destructor could cause the owned stream to
temporarily allocate a buffer only to be immediately flushed.
Also add some tests for buffer_ostream and buffer_unique_ostream. Use
the same naming scheme as other raw_ostream-related tests (e.g.,
`raw_ostreamTest` for the fixture, `raw_ostream_test.cpp` for the
filename).
(I considered changing buffer_ostream in the same way (calling
SetUnbuffered on the referenced stream), but that seemed like overreach
since the client may have more things to write.)
(I considered merging buffer_ostream and buffer_unique_ostream into a
single class (with a `raw_ostream&` and a `std::unique_ptr` that is only
sometimes used), but that makes the class bigger and the small amount of
code deduplication seems uncompelling.)
Differential Revision: https://reviews.llvm.org/D110369
Expected<T>::moveInto() takes as an out parameter any `OtherT&` that's
assignable from `T&&`. It moves any stored value before returning
takeError().
Since moveInto() consumes both the Error and the value, it's only
anticipated that we'd use call it on temporaries/rvalues, with naming
the Expected first likely to be an anti-pattern of sorts (either you
want to deal with both at the same time, or you don't). As such,
starting it out as `&&`-qualified... but it'd probably be fine to drop
that if there's a good use case for lvalues that appears.
There are two common patterns that moveInto() cleans up:
```
// If the variable is new:
Expected<std::unique_ptr<int>> ExpectedP = makePointer();
if (!ExpectedP)
return ExpectedP.takeError();
std::unique_ptr<int> P = std::move(*ExpectedP);
// If the target variable already exists:
if (Expected<T> ExpectedP = makePointer())
P = std::move(*ExpectedP);
else
return ExpectedP.takeError();
```
moveInto() takes less typing and avoids needing to name (or leak into
the scope) an extra variable.
```
// If the variable is new:
std::unique_ptr<int> P;
if (Error E = makePointer().moveInto(P))
return E;
// If the target variable already exists:
if (Error E = makePointer().moveInto(P))
return E;
```
It also seems useful for unit tests, to log errors (but continue) when
there's an unexpected failure. E.g.:
```
// Crash on error, or undefined in non-asserts builds.
std::unique_ptr<MemoryBuffer> MB = cantFail(makeMemoryBuffer());
// Avoid crashing on error without moveInto() :(.
Expected<std::unique_ptr<MemoryBuffer>>
ExpectedMB = makeMemoryBuffer();
ASSERT_THAT_ERROR(ExpectedMB.takeError(), Succeeded());
std::unique_ptr<MemoryBuffer> MB = std::move(ExpectedMB);
// Avoid crashing on error with moveInto() :).
std::unique_ptr<MemoryBuffer> MB;
ASSERT_THAT_ERROR(makeMemoryBuffer().moveInto(MB), Succeeded());
```
Differential Revision: https://reviews.llvm.org/D112278
armv9-a, armv9.1-a and armv9.2-a can be targeted using the -march option
both in ARM and AArch64.
- Armv9-A maps to Armv8.5-A.
- Armv9.1-A maps to Armv8.6-A.
- Armv9.2-A maps to Armv8.7-A.
- The SVE2 extension is enabled by default on these architectures.
- The cryptographic extensions are disabled by default on these
architectures.
The Armv9-A architecture is described in the Arm® Architecture Reference
Manual Supplement Armv9, for Armv9-A architecture profile
(https://developer.arm.com/documentation/ddi0608/latest).
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D109517
Stop using APInt constructors and methods that were soft-deprecated in
D109483. This fixes all the uses I found in llvm, except for the APInt
unit tests which should still test the deprecated methods.
Differential Revision: https://reviews.llvm.org/D110807
This ensures that re-creating "the same" FS results in the same UIDs for files.
In turn, this means that creating a clang module (preamble) using one in-memory
filesystem and consuming it using another doesn't create duplicate FileEntrys
for files that are the same in both FSes.
It's tempting to give the creator control over the UIDs instead. However that
requires fiddly API changes, e.g. what should the UIDs of intermediate
directories be?
This change is more "magic" but seems safe given:
- InMemoryFilesystem is used in testing more than production
- comparing UIDs across filesystems is unusual
- files with the same path and content are usually logically equivalent
(The usual reason for re-creating virtual filesystems rather than reusing them
is that typical use involves mutating their CWD and so is not threadsafe).
Differential Revision: https://reviews.llvm.org/D110711
The closing namespace comment prevents clang-format from dropping a
blank line after the final test. Also add in a blank line (which
simplifies merging/rebasing/etc. WIP patches).
Most PDB fields on disk are 32-bit but describe the file in terms of MSF
blocks, which are 4 kiB by default.
So PDB files can be a bit larger than 4 GiB, and much larger if you create them
with a block size > 4 kiB.
This is a first (necessary, but by far not not sufficient) step towards
supporting such PDB files. Now we don't truncate in-memory file offsets (which
are in terms of bytes, not in terms of blocks).
No effective behavior change. lld-link will still error out if it were to
produce PDBs > 4 GiB.
Differential Revision: https://reviews.llvm.org/D109923
Summary:
add a new API seek for the Cursor class in the DataExtractor.cpp
Reviewers: James Henderson, Fangrui Song
Differential Revision: https://reviews.llvm.org/D109603
This renames the primary methods for creating a zero value to `getZero`
instead of `getNullValue` and renames predicates like `isAllOnesValue`
to simply `isAllOnes`. This achieves two things:
1) This starts standardizing predicates across the LLVM codebase,
following (in this case) ConstantInt. The word "Value" doesn't
convey anything of merit, and is missing in some of the other things.
2) Calling an integer "null" doesn't make any sense. The original sin
here is mine and I've regretted it for years. This moves us to calling
it "zero" instead, which is correct!
APInt is widely used and I don't think anyone is keen to take massive source
breakage on anything so core, at least not all in one go. As such, this
doesn't actually delete any entrypoints, it "soft deprecates" them with a
comment.
Included in this patch are changes to a bunch of the codebase, but there are
more. We should normalize SelectionDAG and other APIs as well, which would
make the API change more mechanical.
Differential Revision: https://reviews.llvm.org/D109483
This ensures error messages from gtest includes the raw text of both
sides of the comparison - otherwise all gtest can report is the text of
the expression source, without any information about the values or how
they differ.
It's a common error in an API - to try to open an empty file, so it
seems like a reasonable FileError to produce "hey, you tried to open an
empty file" and to handle it the same way as any other file error.
Add KnownBits handling and unit tests for X*X self-multiplication cases which guarantee that bit1 of their results will be zero - see PR48683.
https://alive2.llvm.org/ce/z/NN_eaR
The next step will be to add suitable test coverage so this can be enabled in ValueTracking/DAG/GlobalISel - currently only a single Analysis/ScalarEvolution test is affected.
Differential Revision: https://reviews.llvm.org/D108992
The `HashBuilder` interface allows conveniently building hashes of various data
types, without relying on the underlying hasher type to know about hashed data
types.
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D106910
Reset cl::Positional, cl::Sink and cl::ConsumeAfter options as well in cl::ResetCommandLineParser().
Reviewed By: rriddle, sammccall
Differential Revision: https://reviews.llvm.org/D103356
Some files still contained the old University of Illinois Open Source
Licence header. This patch replaces that with the Apache 2 with LLVM
Exception licence.
Differential Revision: https://reviews.llvm.org/D107528
This allows users accessing options in libSupport before invoking
`cl::ParseCommandLineOptions`, and also matches the behavior before
D105959.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D106334
This patch adds support for the next-generation arch14
CPU architecture to the SystemZ backend.
This includes:
- Basic support for the new processor and its features.
- Detection of arch14 as host processor.
- Assembler/disassembler support for new instructions.
- New LLVM intrinsics for certain new instructions.
- Support for low-level builtins mapped to new LLVM intrinsics.
- New high-level intrinsics in vecintrin.h.
- Indicate support by defining __VEC__ == 10304.
Note: No currently available Z system supports the arch14
architecture. Once new systems become available, the
official system name will be added as supported -march name.
fixed fields with highly-aligned flexible fields.
The code was not considering the possibility that aligning
the current offset to the alignment of a queue might push
us past the end of the gap. Subtracting the offsets to
figure out the maximum field size for the gap then overflowed,
making us think that we had nearly unbounded space to fill.
Fixes PR 51131.
Code in getCPUNameFromS390Model currently assumes that the
numerical value of the model number always increases with
future hardware. While this has happened to be the case
with the last few machines, it is not guaranteed -- that
assumption was violated with (much) older machines, and
it can be violated again with future machines.
Fix by explicitly listing model numbers for all supported
machine models.
We can build it with -Werror=global-constructors now. This helps
in situation where libSupport is embedded as a shared library,
potential with dlopen/dlclose scenario, and when command-line
parsing or other facilities may not be involved. Avoiding the
implicit construction of these cl::opt can avoid double-registration
issues and other kind of behavior.
Reviewed By: lattner, jpienaar
Differential Revision: https://reviews.llvm.org/D105959
We can build it with -Werror=global-constructors now. This helps
in situation where libSupport is embedded as a shared library,
potential with dlopen/dlclose scenario, and when command-line
parsing or other facilities may not be involved. Avoiding the
implicit construction of these cl::opt can avoid double-registration
issues and other kind of behavior.
Reviewed By: lattner, jpienaar
Differential Revision: https://reviews.llvm.org/D105959
We can build it with -Werror=global-constructors now. This helps
in situation where libSupport is embedded as a shared library,
potential with dlopen/dlclose scenario, and when command-line
parsing or other facilities may not be involved. Avoiding the
implicit construction of these cl::opt can avoid double-registration
issues and other kind of behavior.
Reviewed By: lattner, jpienaar
Differential Revision: https://reviews.llvm.org/D105959
First patch in a series adding MC layer support for the Arm Scalable
Matrix Extension.
This patch adds the following features:
sme, sme-i64, sme-f64
The sme-i64 and sme-f64 flags are for the optional I16I64 and F64F64
features.
If a target supports I16I64 then the following instructions are
implemented:
* 64-bit integer ADDHA and ADDVA variants (D105570).
* SMOPA, SMOPS, SUMOPA, SUMOPS, UMOPA, UMOPS, USMOPA, and USMOPS
instructions that accumulate 16-bit integer outer products into 64-bit
integer tiles.
If a target supports F64F64 then the FMOPA and FMOPS instructions that
accumulate double-precision floating-point outer products into
double-precision tiles are implemented.
Outer products are implemented in D105571.
The reference can be found here:
https://developer.arm.com/documentation/ddi0602/2021-06
Reviewed By: CarolineConcatto
Differential Revision: https://reviews.llvm.org/D105569
This patch makes the operations on InstructionCost saturate, so that when
costs are accumulated they saturate to <max value>.
One of the compelling reasons for wanting to have saturation support
is because in various places, arbitrary values are used to represent
a 'high' cost, but when accumulating the cost of some set of operations
or a loop, overflow is not taken into account, which may lead to unexpected
results. By defining the operations to saturate, we can express the cost
of something 'very expensive' as InstructionCost::getMax().
Reviewed By: kparzysz, dmgreen
Differential Revision: https://reviews.llvm.org/D105108
C++23 will make these conversions ambiguous - so fix them to make the
codebase forward-compatible with C++23 (& a follow-up change I've made
will make this ambiguous/invalid even in <C++23 so we don't regress
this & it generally improves the code anyway)
This adds a new llvm::thread class with the same interface as std::thread
except there is an extra constructor that allows us to set the new thread's
stack size. On Darwin even the default size is boosted to 8MB to match the main
thread.
It also switches all users of the older C-style `llvm_execute_on_thread` API
family over to `llvm::thread` followed by either a `detach` or `join` call and
removes the old API.
Moved definition of DefaultStackSize into the .cpp file to hopefully
fix the build on some (GCC-6?) machines.
This adds a new llvm::thread class with the same interface as std::thread
except there is an extra constructor that allows us to set the new thread's
stack size. On Darwin even the default size is boosted to 8MB to match the main
thread.
It also switches all users of the older C-style `llvm_execute_on_thread` API
family over to `llvm::thread` followed by either a `detach` or `join` call and
removes the old API.
On AIX the alignment implementation has the storage aligned to the
preferred alignment instead of the alignment of a type. Macro guard
these tests for AIX and have them pass when the "reference alignment" is
less than or equal to the alignment observed. In other words, the
alignment applied is at least as strict as the required alignment.
Reviewed By: hubert.reinterpretcast
Differential Revision: https://reviews.llvm.org/D104786
This is a mechanical change. This actually also renames the
similarly named methods in the SmallString class, however these
methods don't seem to be used outside of the llvm subproject, so
this doesn't break building of the rest of the monorepo.