Fixed a bug introduced by D16683 when a binary shuffle is simplified to a unary shuffle (with undef/zero sentinel mask indices) - if this resulted in only the second input being used combineX86ShuffleChain failed to take this into account and still referenced the first input.
llvm-svn: 261434
First small step towards fixing PR26667 - we need to ensure that combineX86ShuffleChain only gets called with a valid shuffle input node (a similar issue was found in D17041).
llvm-svn: 261433
TLSADDR nodes are lowered into actuall calls inside MC. In order to prevent
shrink-wrapping from pushing prologue/epilogue past them (which result
in TLS variables being accessed before the stack frame is set up), we
put markers, so that the stack gets adjusted properly.
Thanks to Quentin Colombet for guidance/help on how to fix this problem!
llvm-svn: 261387
Summary:
Instead of trying to replace SMRD instructions with a VGPR base pointer
with an equivalent MUBUF instruction, we now copy the base pointer to
SGPRs using v_readfirstlane.
This is safe to do, because any load selected as an SMRD instruction
has been proven to have a uniform base pointer, so each thread in the
wave will have the same pointer value in VGPRs.
This will fix some errors on VI from trying to replace SMRD instructions
with addr64-enabled MUBUF instructions that don't exist.
Reviewers: arsenm, cfang, nhaehnle
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D17305
llvm-svn: 261385
Summary:
When optimizing for size, sqrt calls can be incorrectly selected as
AVX512 VSQRT instructions. This is because X86InstrAVX512.td has a
`Requires<[OptForSize]>` in its `avx512_sqrt_scalar` multiclass
definition. Even if the target does not support AVX512, the class can
apparently still be chosen, leading to an incorrect selection of
`vsqrtss`.
In PR26625, this lead to an assertion: Reg >= X86::FP0 && Reg <=
X86::FP6 && "Expected FP register!", because the `vsqrtss` instruction
requires an XMM register, which is not available on i686 CPUs.
Reviewers: grosbach, resistor, joker.eph
Subscribers: spatel, emaste, llvm-commits
Differential Revision: http://reviews.llvm.org/D17414
llvm-svn: 261360
Summary:
This was broken in r260694 which swapped the address and data operands
for flat store instructions. The code in SIInsertWaits assumes
that the data operand always comes before the address operand, so
we need to add a special case for flat.
Reviewers: arsenm
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D17366
llvm-svn: 261330
According to the SystemZ ABI, 128-bit integer types should be
passed and returned via implicit reference. However, this is
not currently implemented at the LLVM IR level for the i128
type. This does not matter when compiling C/C++ code, since
clang will implement the implicit reference itself.
However, it turns out that when calling libgcc helper routines
operating on 128-bit integers, LLVM will use i128 argument and
return value types; the resulting code is not compatible with
the ABI used in libgcc, leading to crashes (see PR26559).
This should be simple to fix, except that i128 currently is not
even a legal type for the SystemZ back end. Therefore, common
code will already split arguments and return values into multiple
parts. The bulk of this patch therefore consists of detecting
such parts, and correctly handling passing via implicit reference
of a value split into multiple parts. If at some time in the
future, i128 becomes a legal type, this code can be removed again.
This fixes PR26559.
llvm-svn: 261325
This is effectively NFC because Atom is the only in-order x86 subtarget currently,
but the predicate would have become wrong if any other in-order CPU came along.
See related discussion in:
http://reviews.llvm.org/D16836
llvm-svn: 261275
This patch is part of the work to make PPCLoopDataPrefetch
target-independent
(http://thread.gmane.org/gmane.comp.compilers.llvm.devel/92758).
Obviously the pass still only used from PPC at this point. Subsequent
patches will start driving this from ARM64 as well.
Due to the previous patch most lines should show up as moved lines.
llvm-svn: 261265
This is done only to make the next patch that move the pass out PPC to
Transforms easier to read. After this most line should show up as moved
lines in that patch.
This patch is part of the work to make PPCLoopDataPrefetch
target-independent
(http://thread.gmane.org/gmane.comp.compilers.llvm.devel/92758).
llvm-svn: 261264
If we know that all of our successors want to be in the exact same
state, it makes sense to hoist the state transition into their common
predecessor.
Differential Revision: http://reviews.llvm.org/D17391
llvm-svn: 261262
In r260133, LLVM was changed to no longer extend i8/i16 return values,
as it's not required by the ABI. However, code was found in the wild
that relies on the old behaviour on Darwin, so this commit reverts
back to that old behaviour for Darwin.
On other platforms, it's less likely that code would be depending on
the old behaviour, as GCC and MSVC haven't been extending such return
values.
llvm-svn: 261235
Summary:
These correspond to IMAGE_LOAD/STORE[_MIP] and are going to be used by Mesa
for the GL_ARB_shader_image_load_store extension.
IMAGE_LOAD is already matched by llvm.SI.image.load. That intrinsic has
a legacy name and pretends not to read memory.
Differential Revision: http://reviews.llvm.org/D17276
llvm-svn: 261224
Compiling Hexagon target with GCC 6 produces "error: should have been
declared inside" due to GCC PR c++/69657 which was merged.
Properly wrapping operator<<() definitions within the namespace llvm
fixes the issue.
Author: domagoj.stolfa
Differential Revision: http://reviews.llvm.org/D17281
llvm-svn: 261220
In cases where the PSHUFB shuffle mask is shared it might not be bitcasted to a vXi8 byte vector. This patch adds support for decoding these wider shuffle masks from the ConstantPool.
The test case in question makes use of this to recognise the shuffle mask is an unary UNPCKL pattern and simplifies accordingly.
llvm-svn: 261201
While we still do want reducible control flow, the RequiresStructuredCFG
flag imposes more strict structure constraints than WebAssembly wants.
Unsetting this flag enables critical edge splitting and tail merging.
Also, disable TailDuplication explicitly, as it doesn't support virtual
registers, and was previously only disabled by the RequiresStructuredCFG
flag.
llvm-svn: 261190
Changes:
- Added disassembler project
- Fixed all decoding conflicts in .td files
- Added DecoderMethod=“NONE” option to Target.td that allows to
disable decoder generation for an instruction.
- Created decoding functions for VS_32 and VReg_32 register classes.
- Added stubs for decoding all register classes.
- Added several tests for disassembler
Disassembler only supports:
- VI subtarget
- VOP1 instruction encoding
- 32-bit register operands and inline constants
[Valery]
One of the point that requires to pay attention to is how decoder
conflicts were resolved:
- Groups of target instructions were separated by using different
DecoderNamespace (SICI, VI, CI) using similar to AssemblerPredicate
approach.
- There were conflicts in IMAGE_<> instructions caused by two
different reasons:
1. dmask wasn’t specified for the output (fixed)
2. There are image instructions that differ only by the number of
the address components but have the same encoding by the HW spec. The
actual number of address components is determined by the HW at runtime
using image resource descriptor starting from the VGPR encoded in an
IMAGE instruction. This means that we should choose only one instruction
from conflicting group to be the rule for decoder. I didn’t find the way
to disable decoder generation for an arbitrary instruction and therefore
made a onelinear fix to tablegen generator that would suppress decoder
generation when DecoderMethod is set to “NONE”. This is a change that
should be reviewed and submitted first. Otherwise I would need to
specify different DecoderNamespace for every instruction in the
conflicting group. I haven’t checked yet if DecoderMethod=“NONE” is not
used in other targets.
3. IMAGE_GATHER decoder generation is for now disabled and to be
done later.
[/Valery]
Patch By: Sam Kolton
Differential Revision: http://reviews.llvm.org/D16723
llvm-svn: 261185
These passes are optimizations, and should be disabled when not
optimizing.
Also create an MCCodeGenInfo so the opt level is correctly plumbed to
the backend pass manager.
Also remove the command line flag for disabling register coloring;
running llc with -O0 should now be useful for debugging, so it's not
necessary.
Differential Revision: http://reviews.llvm.org/D17327
llvm-svn: 261176
After r261154, we were only clearing flags if the known-zero register was
originally live-in to the basic block, but we have to do it even if not when
more than one COPY has been eliminated, otherwise the user of the first COPY
may still have <kill> marked.
E.g.
BB#N:
%X0 = COPY %XZR
STRXui %X0<kill>, <fi#0>
%X0 = COPY %XZR
STRXui %X0<kill>, <fi#1>
We can eliminate both copies, X0 is not live-in, but we must clear the kill on
the first store.
Unfortunately, I've been unable to come up with a non-fragile test for this.
I've only seen it in the wild with regalloc-created spills, and attempts to
reproduce that in a reasonable way run afoul of COPY coalescing. Even volatile
asm clobbers were moved around. Should fix the aarch64 bot though.
llvm-svn: 261175
Mostly, this fixes the bug that if the CBZ guaranteed Xn but Wn was used, we
didn't sort out the use-def chain properly.
I've also made it check more than just the last instruction for a compatible
CBZ (so it can cope without fallthroughs). I'd have liked to do that
separately, but it's helps writing the test.
Finally, I removed some custom loops in favour of MachineInstr helpers and
refactored the control flow to flatten it and avoid possibly quadratic
iterations in blocks with many copies. NFC for these, just a general tidy-up.
llvm-svn: 261154
32-bit x86 Windows targets use a linked-list of nodes allocated on the
stack, referenced to via thread-local storage. The personality routine
interprets one of the fields in the node as a 'state number' which
indicates where the personality routine should transfer control.
State transitions are possible only before call-sites which may throw
exceptions. Our previous scheme had us update the state number before
all call-sites which may throw.
Instead, we can try to minimize the number of times we need to store by
reasoning about the nearest store which dominates the current call-site.
If the last store agrees with the current call-site, then we know that
the state-update is redundant and can be elided.
This is largely straightforward: an RPO walk of the blocks allows us to
correctly forward propagate the information when the function is a DAG.
Currently, loops are not handled optimally and may trigger superfluous
state stores.
Differential Revision: http://reviews.llvm.org/D16763
llvm-svn: 261122
Summary:
Previously the machine instructions for bar.sync &co. were not marked as
convergent. This resulted in some MI passes (such as TailDuplication,
fixed in an upcoming patch) doing unsafe things to these instructions.
Reviewers: jingyue
Subscribers: llvm-commits, tra, jholewinski, hfinkel
Differential Revision: http://reviews.llvm.org/D17318
llvm-svn: 261115
Summary:
Otherwise we'll try to do unsafe optimizations on these MIs, such as
sinking loads below calls.
(I suspect that this is not the only bug in the NVPTX instruction
tablegen files; I need to comb through them.)
Reviewers: jholewinski, tra
Subscribers: jingyue, jhen, llvm-commits
Differential Revision: http://reviews.llvm.org/D17315
llvm-svn: 261113
Bug description:
The bug was discovered when test was compiled with -O0.
In case scatter result is DAG root , VectorLegalizer failed (assert) due to LowerMSCATTER() return kmask as result.
Change LowerMSCATTER() to return chain as original node do.
Differential Revision: http://reviews.llvm.org/D17331
llvm-svn: 261090