These overloads are listed in appendix A of the ELFv2 ABI specification
without a requirement for ISA 3.0. So these need to be available on
all Altivec-capable architectures. The implementation in altivec.h
erroneously had them guarded for Power9 due to the availability of
the VCMPNE[BHW] instructions. However these need to be implemented
in terms of the VCMPEQ[BHW] instructions on older architectures.
Fixes: https://bugs.llvm.org/show_bug.cgi?id=47423
The load builtins in altivec.h do not have const in the signature
for the pointer parameter. This prevents using them for loading
from constant pointers. A notable case for such a use is Eigen.
This patch simply adds the missing const.
Fixes: https://bugs.llvm.org/show_bug.cgi?id=47408
This patch implements the builtins for Vector Multiply Builtins (vmulxxd family of instructions), and adds the appropriate test cases for these builtins. The builtins utilize the vector multiply instructions itnroduced with ISA 3.1.
Differential Revision: https://reviews.llvm.org/D83955
For example:
#define FOO(x) (x)
FOO({});
... forms a statement-expression after macro expansion. This warning
applies to '({' and '})' delimiting statement-expressions, '[[' and ']]'
delimiting attributes, and '::*' introducing a pointer-to-member.
The warning for forming these compound tokens across macro expansions
(or across files!) is enabled by default; the warning for whitespace
within the tokens is not, but is included in -Wall.
Differential Revision: https://reviews.llvm.org/D86751
This patch implements the builtins for Vector Load with Zero and Signed Extend Builtins (lxvr_x for b, h, w, d), and adds the appropriate test cases for these builtins. The builtins utilize the vector load instructions itnroduced with ISA 3.1.
Differential Revision: https://reviews.llvm.org/D82502#inline-797941
This patch implements the function prototypes vec_mulh and vec_dive in order to
utilize the vector multiply high (vmulh[s|u][w|d]) and vector divide extended
(vdive[s|u][w|d]) instructions introduced in Power10.
Differential Revision: https://reviews.llvm.org/D82609
This patch implements the vec_extractm function prototypes in altivec.h in
order to utilize the vector extract with mask instructions introduced in Power10.
Differential Revision: https://reviews.llvm.org/D82675
This patch implements the builtins for the vector shifts (shl, srl, sra), and
adds the appropriate test cases for these builtins. The builtins utilize the
vector shift instructions introduced within ISA 3.1.
Differential Revision: https://reviews.llvm.org/D83338
This patch implements the function prototypes vec_extractl and vec_extracth in altivec.h to utilize the vector extract double element instructions introduced in Power10.
Differential Revision: https://reviews.llvm.org/D84622
Power10 introduces new instructions for vector multiply, divide and modulus.
These instructions can be exploited by the builtin functions: vec_mul, vec_div,
and vec_mod, respectively.
This patch aims adds the function prototype, vec_mod, as vec_mul and vec_div
been previously implemented in altivec.h.
This patch also adds the following front end tests:
vec_mul for v2i64
vec_div for v4i32 and v2i64
vec_mod for v4i32 and v2i64
Differential Revision: https://reviews.llvm.org/D82576
This patch implements the `vec_xst_trunc` function in altivec.h in order to
utilize the Store VSX Vector Rightmost [byte | half | word | doubleword] Indexed
instructions introduced in Power10.
Differential Revision: https://reviews.llvm.org/D82467
This patch implements builtins for the following prototypes:
unsigned long long __builtin_cntlzdm (unsigned long long, unsigned long long)
unsigned long long __builtin_cnttzdm (unsigned long long, unsigned long long)
vector unsigned long long vec_cntlzm (vector unsigned long long, vector unsigned long long)
vector unsigned long long vec_cnttzm (vector unsigned long long, vector unsigned long long)
Differential Revision: https://reviews.llvm.org/D80941
This patch implements builtins for the following prototypes for the VSX Permute
Control Vector Generate with Mask Instructions:
vector unsigned char vec_genpcvm (vector unsigned char, const int);
vector unsigned short vec_genpcvm (vector unsigned short, const int);
vector unsigned int vec_genpcvm (vector unsigned int, const int);
vector unsigned long long vec_genpcvm (vector unsigned long long, const int);
Differential Revision: https://reviews.llvm.org/D81774
This patch implements builtins for the following prototypes:
```
vector signed char vec_clrl (vector signed char a, unsigned int n);
vector unsigned char vec_clrl (vector unsigned char a, unsigned int n);
vector signed char vec_clrr (vector signed char a, unsigned int n);
vector signed char vec_clrr (vector unsigned char a, unsigned int n);
```
Differential Revision: https://reviews.llvm.org/D81707
This patch implements builtins for the following prototypes:
vector unsigned long long vec_pdep(vector unsigned long long, vector unsigned long long);
vector unsigned long long vec_pext(vector unsigned long long, vector unsigned long long __b);
unsigned long long __builtin_pdepd (unsigned long long, unsigned long long);
unsigned long long __builtin_pextd (unsigned long long, unsigned long long);
Revision Depends on D80758
Differential Revision: https://reviews.llvm.org/D80935
As we currently have it implemented in altivec.h, the offsets for these two
intrinsics are element offsets. The documentation in the ABI (as well as the
implementation in both XL and GCC) states that these should be byte offsets.
Differential revision: https://reviews.llvm.org/D63636
We currently emit a double precision comparison instruction for this, whereas we
need to emit the single precision version.
Differential revision: https://reviews.llvm.org/D64024
Summary:
This is similar to vec_ct* in https://reviews.llvm.org/rL304205.
The argument must be a constant, otherwise instruction selection
will fail. always_inline is not enough for isel to always fold
everything away at -O0.
The fix is to turn the function into macros in altivec.h.
Fixes https://bugs.llvm.org/show_bug.cgi?id=43072
Reviewers: nemanjai, hfinkel, #powerpc, wuzish
Reviewed By: #powerpc, wuzish
Subscribers: wuzish, kbarton, MaskRay, shchenz, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D66699
llvm-svn: 370902
Summary:
These all had somewhat custom file headers with different text from the
ones I searched for previously, and so I missed them. Thanks to Hal and
Kristina and others who prompted me to fix this, and sorry it took so
long.
Reviewers: hfinkel
Subscribers: mcrosier, javed.absar, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D60406
llvm-svn: 357941
A number of builtins in altivec.h load/store vectors from pointers to scalar
types. Currently they just cast the pointer to a vector pointer, but expressions
like that have the alignment of the target type. Of course, the input pointer
did not have that alignment so this triggers UBSan (and rightly so).
This resolves https://bugs.llvm.org/show_bug.cgi?id=39704
Differential revision: https://reviews.llvm.org/D54787
llvm-svn: 347556
The second parameter of vec_sr function is representing shift bits and it should be modulo the number of bits in the element like what vec_sl does now.
This is actually required by the ABI:
Each element of the result vector is the result of logically right shifting the corresponding
element of ARG1 by the number of bits specified by the value of the corresponding
element of ARG2, modulo the number of bits in the element. The bits that are shifted out
are replaced by zeros.
Differential Revision: https://reviews.llvm.org/D54087
llvm-svn: 346471
The second argument must be a constant, otherwise instruction selection
will fail. always_inline is not enough for isel to always fold
everything away at -O0.
Sadly the overloading turned this into a big macro mess. Fixes PR33212.
llvm-svn: 304205
For a << b (as original vec_sl does), if b >= sizeof(a) * 8, the
behavior is undefined. However, Power instructions do define the
behavior, which is equivalent to a << (b % (sizeof(a) * 8)).
This patch changes altivec.h to use a << (b % (sizeof(a) * 8)), to
ensure the consistent semantic of the instructions. Then it combines
the generated multiple instructions back to a single shift.
This patch handles left shift only. Right shift, on the other hand, is
more complicated, considering arithematic/logical right shift.
Differential Revision: https://reviews.llvm.org/D28037
llvm-svn: 292659
Add builtins for the functions and custom codegen mapping the builtins to their
corresponding intrinsics and handling the endian related swapping.
https://reviews.llvm.org/D26546
llvm-svn: 291179
(commit again after fixing the buildbot failures)
This adds various overloads of the following builtins to altivec.h:
vec_neg
vec_nabs
vec_adde
vec_addec
vec_sube
vec_subec
vec_subc
Note that for vec_sub builtins on 32 bit integers, the semantics is similar to
what ISA describes for instructions like vsubecuq that work on quadwords: the
first operand is added to the one's complement of the second operand. (As
opposed to two's complement which I expected).
llvm-svn: 287872
(commit again after fixing the buildbot failures)
This adds various overloads of the following builtins to altivec.h:
vec_neg
vec_nabs
vec_adde
vec_addec
vec_sube
vec_subec
vec_subc
Note that for vec_sub builtins on 32 bit integers, the semantics is similar to
what ISA describes for instructions like vsubecuq that work on quadwords: the
first operand is added to the one's complement of the second operand. (As
opposed to two's complement which I expected).
llvm-svn: 287795
This adds various overloads of the following builtins to altivec.h:
vec_neg
vec_nabs
vec_adde
vec_addec
vec_sube
vec_subec
vec_subc
Note that for vec_sub builtins on 32 bit integers, the semantics is similar to
what ISA describes for instructions like vsubecuq that work on quadwords: the
first operand is added to the one's complement of the second operand. (As
opposed to two's complement which I expected).
llvm-svn: 287772
This patch implements all the overloads for vec_xl_be and vec_xst_be. On BE,
they behaves exactly the same with vec_xl and vec_xst, therefore they are
simply implemented by defining a matching macro. On LE, they are implemented
by defining new builtins and intrinsics. For int/float/long long/double, it
is just a load (lxvw4x/lxvd2x) or store(stxvw4x/stxvd2x). For char/char/short,
we also need some extra shuffling before or after call the builtins to get the
desired BE order. For int128, simply call vec_xl or vec_xst.
llvm-svn: 286971
Adds 2 vector functions for converting from a vector of unsigned short to a
vector of float. One converts the low 4 halfwords and one converts the high
4 halfwords.
Differential Revision: https://reviews.llvm.org/D26534
llvm-svn: 286863
Add vector extract exponent/significand functions to altivec.h, as well as
functions (and related constants) to test the data class of vector float
and vector double.
Differential Revision: https://reviews.llvm.org/D26271
llvm-svn: 286830
This patch corresponds to review:
https://reviews.llvm.org/D24397
It adds the __POWER9_VECTOR__ macro and the -mpower9-vector option along with
a number of altivec.h functions (refer to the code review for a list).
llvm-svn: 282481
macros rather than functions.
Unfortunately couldn't come up with a simple testcase that didn't need
code generation to verify what was going on.
llvm-svn: 270625
Includes new built-in, conversion of built-in to target-independent intrinsic
and update in the header file. Tests are also updated. There is a second part in
the backend for which I will post a separate code-review. BACKEND PART SHOULD BE
COMMITTED FIRST.
Phabricator: http://reviews.llvm.org/D17816
llvm-svn: 263051
Issue: https://llvm.org/bugs/show_bug.cgi?id=26720
Fix compile error when building ffmpeg for PowerPC64LE because of some
vec_vsx_ld/vec_vsx_st intrinsics are not supported by current clang.
New added intrinsics:
(vector) {signed|unsigned} {short|char} vec_vsx_ld: (total: 8)
bool vec_vsx_ld: (total: 1)
(vector) {signed|unsigned} {short|char} vec_vsx_st: (total: 8)
bool vec_vsx_st: (total: 1)
Total: 18 intrinsics
Phabricator: http://reviews.llvm.org/D17637
llvm-svn: 262359
This patch corresponds to review:
http://reviews.llvm.org/D13190
Implemented the following interfaces to conform to ELF V2 ABI version 1.1.
vector signed __int128 vec_adde (vector signed __int128, vector signed __int128, vector signed __int128);
vector unsigned __int128 vec_adde (vector unsigned __int128, vector unsigned __int128, vector unsigned __int128);
vector signed __int128 vec_addec (vector signed __int128, vector signed __int128, vector signed __int128);
vector unsigned __int128 vec_addec (vector unsigned __int128, vector unsigned __int128, vector unsigned __int128);
vector signed int vec_addc(vector signed int __a, vector signed int __b);
vector bool char vec_cmpge (vector signed char __a, vector signed char __b);
vector bool char vec_cmpge (vector unsigned char __a, vector unsigned char __b);
vector bool short vec_cmpge (vector signed short __a, vector signed short __b);
vector bool short vec_cmpge (vector unsigned short __a, vector unsigned short __b);
vector bool int vec_cmpge (vector signed int __a, vector signed int __b);
vector bool int vec_cmpge (vector unsigned int __a, vector unsigned int __b);
vector bool char vec_cmple (vector signed char __a, vector signed char __b);
vector bool char vec_cmple (vector unsigned char __a, vector unsigned char __b);
vector bool short vec_cmple (vector signed short __a, vector signed short __b);
vector bool short vec_cmple (vector unsigned short __a, vector unsigned short __b);
vector bool int vec_cmple (vector signed int __a, vector signed int __b);
vector bool int vec_cmple (vector unsigned int __a, vector unsigned int __b);
vector double vec_double (vector signed long long __a);
vector double vec_double (vector unsigned long long __a);
vector bool char vec_eqv(vector bool char __a, vector bool char __b);
vector bool short vec_eqv(vector bool short __a, vector bool short __b);
vector bool int vec_eqv(vector bool int __a, vector bool int __b);
vector bool long long vec_eqv(vector bool long long __a, vector bool long long __b);
vector signed short vec_madd(vector signed short __a, vector signed short __b, vector signed short __c);
vector signed short vec_madd(vector signed short __a, vector unsigned short __b, vector unsigned short __c);
vector signed short vec_madd(vector unsigned short __a, vector signed short __b, vector signed short __c);
vector unsigned short vec_madd(vector unsigned short __a, vector unsigned short __b, vector unsigned short __c);
vector bool long long vec_mergeh(vector bool long long __a, vector bool long long __b);
vector bool long long vec_mergel(vector bool long long __a, vector bool long long __b);
vector bool char vec_nand(vector bool char __a, vector bool char __b);
vector bool short vec_nand(vector bool short __a, vector bool short __b);
vector bool int vec_nand(vector bool int __a, vector bool int __b);
vector bool long long vec_nand(vector bool long long __a, vector bool long long __b);
vector bool char vec_orc(vector bool char __a, vector bool char __b);
vector bool short vec_orc(vector bool short __a, vector bool short __b);
vector bool int vec_orc(vector bool int __a, vector bool int __b);
vector bool long long vec_orc(vector bool long long __a, vector bool long long __b);
vector signed long long vec_sub(vector signed long long __a, vector signed long long __b);
vector signed long long vec_sub(vector bool long long __a, vector signed long long __b);
vector signed long long vec_sub(vector signed long long __a, vector bool long long __b);
vector unsigned long long vec_sub(vector unsigned long long __a, vector unsigned long long __b);
vector unsigned long long vec_sub(vector bool long long __a, vector unsigned long long __b);
vector unsigned long long vec_sub(vector unsigned long long __V2 ABI V1.1
http://ror float vec_sub(vector float __a, vector float __b);
unsigned char vec_extract(vector bool char __a, int __b);
signed short vec_extract(vector signed short __a, int __b);
unsigned short vec_extract(vector bool short __a, int __b);
signed int vec_extract(vector signed int __a, int __b);
unsigned int vec_extract(vector bool int __a, int __b);
signed long long vec_extract(vector signed long long __a, int __b);
unsigned long long vec_extract(vector unsigned long long __a, int __b);
unsigned long long vec_extract(vector bool long long __a, int __b);
double vec_extract(vector double __a, int __b);
vector bool char vec_insert(unsigned char __a, vector bool char __b, int __c);
vector signed short vec_insert(signed short __a, vector signed short __b, int __c);
vector bool short vec_insert(unsigned short __a, vector bool short __b, int __c);
vector signed int vec_insert(signed int __a, vector signed int __b, int __c);
vector bool int vec_insert(unsigned int __a, vector bool int __b, int __c);
vector signed long long vec_insert(signed long long __a, vector signed long long __b, int __c);
vector unsigned long long vec_insert(unsigned long long __a, vector unsigned long long __b, int __c);
vector bool long long vec_insert(unsigned long long __a, vector bool long long __b, int __c);
vector double vec_insert(double __a, vector double __b, int __c);
vector signed long long vec_splats(signed long long __a);
vector unsigned long long vec_splats(unsigned long long __a);
vector signed __int128 vec_splats(signed __int128 __a);
vector unsigned __int128 vec_splats(unsigned __int128 __a);
vector double vec_splats(double __a);
int vec_all_eq(vector double __a, vector double __b);
int vec_all_ge(vector double __a, vector double __b);
int vec_all_gt(vector double __a, vector double __b);
int vec_all_le(vector double __a, vector double __b);
int vec_all_lt(vector double __a, vector double __b);
int vec_all_nan(vector double __a);
int vec_all_ne(vector double __a, vector double __b);
int vec_all_nge(vector double __a, vector double __b);
int vec_all_ngt(vector double __a, vector double __b);
int vec_any_eq(vector double __a, vector double __b);
int vec_any_ge(vector double __a, vector double __b);
int vec_any_gt(vector double __a, vector double __b);
int vec_any_le(vector double __a, vector double __b);
int vec_any_lt(vector double __a, vector double __b);
int vec_any_ne(vector double __a, vector double __b);
vector unsigned char vec_sbox_be (vector unsigned char);
vector unsigned char vec_cipher_be (vector unsigned char, vector unsigned char);
vector unsigned char vec_cipherlast_be (vector unsigned char, vector unsigned char);
vector unsigned char vec_ncipher_be (vector unsigned char, vector unsigned char);
vector unsigned char vec_ncipherlast_be (vector unsigned char, vector unsigned char);
vector unsigned int vec_shasigma_be (vector unsigned int, const int, const int);
vector unsigned long long vec_shasigma_be (vector unsigned long long, const int, const int);
vector unsigned short vec_pmsum_be (vector unsigned char, vector unsigned char);
vector unsigned int vec_pmsum_be (vector unsigned short, vector unsigned short);
vector unsigned long long vec_pmsum_be (vector unsigned int, vector unsigned int);
vector unsigned __int128 vec_pmsum_be (vector unsigned long long, vector unsigned long long);
vector unsigned char vec_gb (vector unsigned char);
vector unsigned long long vec_bperm (vector unsigned __int128 __a, vector unsigned char __b);
Removed the folowing interfaces either because their signatures have changed
in version 1.1 of the ABI or because they were implemented for ELF V2 ABI but
have actually been deprecated in version 1.1.
vector signed char vec_eqv(vector bool char __a, vector signed char __b);
vector signed char vec_eqv(vector signed char __a, vector bool char __b);
vector unsigned char vec_eqv(vector bool char __a, vector unsigned char __b);
vector unsigned char vec_eqv(vector unsigned char __a, vector bool char __b);
vector signed short vec_eqv(vector bool short __a, vector signed short __b);
vector signed short vec_eqv(vector signed short __a, vector bool short __b);
vector unsigned short vec_eqv(vector bool short __a, vector unsigned short __b);
vector unsigned short vec_eqv(vector unsigned short __a, vector bool short __b);
vector signed int vec_eqv(vector bool int __a, vector signed int __b);
vector signed int vec_eqv(vector signed int __a, vector bool int __b);
vector unsigned int vec_eqv(vector bool int __a, vector unsigned int __b);
vector unsigned int vec_eqv(vector unsigned int __a, vector bool int __b);
vector signed long long vec_eqv(vector bool long long __a, vector signed long long __b);
vector signed long long vec_eqv(vector signed long long __a, vector bool long long __b);
vector unsigned long long vec_eqv(vector bool long long __a, vector unsigned long long __b);
vector unsigned long long vec_eqv(vector unsigned long long __a, vector bool long long __b);
vector float vec_eqv(vector bool int __a, vector float __b);
vector float vec_eqv(vector float __a, vector bool int __b);
vector double vec_eqv(vector bool long long __a, vector double __b);
vector double vec_eqv(vector double __a, vector bool long long __b);
vector unsigned short vec_nand(vector bool short __a, vector unsigned short __b);
llvm-svn: 248813
The vec_sld interface provides access to the vsldoi instruction.
Unlike most of the vec_* interfaces, we do not attempt to change the
generated code for vec_sld based on the endian mode. It is too
difficult to correctly infer the desired semantics because of
different element types, and the corrected instruction sequence is
expensive, involving loading a permute control vector and performing a
generalized permute.
For GCC, this was implemented as "Don't touch the vec_sld"
implementation. When it came time for the LLVM implementation, I did
the same thing. However, this was hasty and incorrect. In LLVM's
version of altivec.h, vec_sld was previously defined in terms of the
vec_perm interface. Because vec_perm semantics are adjusted for
little endian, this means that leaving vec_sld untouched causes it to
generate something different for LE than for BE. Not good.
This patch adjusts the form of vec_perm that is used for vec_sld and
vec_vsldoi, effectively undoing the modifications so that the same
vsldoi instruction will be generated for both BE and LE.
There is an accompanying back-end patch to take care of some small
ripple effects caused by these changes.
llvm-svn: 242297
This patch corresponds to review:
http://reviews.llvm.org/D11184
A number of new interfaces for altivec.h (as mandated by the ABI):
vector float vec_cpsgn(vector float, vector float)
vector double vec_cpsgn(vector double, vector double)
vector double vec_or(vector bool long long, vector double)
vector double vec_or(vector double, vector bool long long)
vector double vec_re(vector double)
vector signed char vec_cntlz(vector signed char)
vector unsigned char vec_cntlz(vector unsigned char)
vector short vec_cntlz(vector short)
vector unsigned short vec_cntlz(vector unsigned short)
vector int vec_cntlz(vector int)
vector unsigned int vec_cntlz(vector unsigned int)
vector signed long long vec_cntlz(vector signed long long)
vector unsigned long long vec_cntlz(vector unsigned long long)
vector signed char vec_nand(vector bool signed char, vector signed char)
vector signed char vec_nand(vector signed char, vector bool signed char)
vector signed char vec_nand(vector signed char, vector signed char)
vector unsigned char vec_nand(vector bool unsigned char, vector unsigned char)
vector unsigned char vec_nand(vector unsigned char, vector bool unsigned char)
vector unsigned char vec_nand(vector unsigned char, vector unsigned char)
vector short vec_nand(vector bool short, vector short)
vector short vec_nand(vector short, vector bool short)
vector short vec_nand(vector short, vector short)
vector unsigned short vec_nand(vector bool unsigned short, vector unsigned short)
vector unsigned short vec_nand(vector unsigned short, vector bool unsigned short)
vector unsigned short vec_nand(vector unsigned short, vector unsigned short)
vector int vec_nand(vector bool int, vector int)
vector int vec_nand(vector int, vector bool int)
vector int vec_nand(vector int, vector int)
vector unsigned int vec_nand(vector bool unsigned int, vector unsigned int)
vector unsigned int vec_nand(vector unsigned int, vector bool unsigned int)
vector unsigned int vec_nand(vector unsigned int, vector unsigned int)
vector signed long long vec_nand(vector bool long long, vector signed long long)
vector signed long long vec_nand(vector signed long long, vector bool long long)
vector signed long long vec_nand(vector signed long long, vector signed long long)
vector unsigned long long vec_nand(vector bool long long, vector unsigned long long)
vector unsigned long long vec_nand(vector unsigned long long, vector bool long long)
vector unsigned long long vec_nand(vector unsigned long long, vector unsigned long long)
vector signed char vec_orc(vector bool signed char, vector signed char)
vector signed char vec_orc(vector signed char, vector bool signed char)
vector signed char vec_orc(vector signed char, vector signed char)
vector unsigned char vec_orc(vector bool unsigned char, vector unsigned char)
vector unsigned char vec_orc(vector unsigned char, vector bool unsigned char)
vector unsigned char vec_orc(vector unsigned char, vector unsigned char)
vector short vec_orc(vector bool short, vector short)
vector short vec_orc(vector short, vector bool short)
vector short vec_orc(vector short, vector short)
vector unsigned short vec_orc(vector bool unsigned short, vector unsigned short)
vector unsigned short vec_orc(vector unsigned short, vector bool unsigned short)
vector unsigned short vec_orc(vector unsigned short, vector unsigned short)
vector int vec_orc(vector bool int, vector int)
vector int vec_orc(vector int, vector bool int)
vector int vec_orc(vector int, vector int)
vector unsigned int vec_orc(vector bool unsigned int, vector unsigned int)
vector unsigned int vec_orc(vector unsigned int, vector bool unsigned int)
vector unsigned int vec_orc(vector unsigned int, vector unsigned int)
vector signed long long vec_orc(vector bool long long, vector signed long long)
vector signed long long vec_orc(vector signed long long, vector bool long long)
vector signed long long vec_orc(vector signed long long, vector signed long long)
vector unsigned long long vec_orc(vector bool long long, vector unsigned long long)
vector unsigned long long vec_orc(vector unsigned long long, vector bool long long)
vector unsigned long long vec_orc(vector unsigned long long, vector unsigned long long)
vector signed char vec_div(vector signed char, vector signed char)
vector unsigned char vec_div(vector unsigned char, vector unsigned char)
vector signed short vec_div(vector signed short, vector signed short)
vector unsigned short vec_div(vector unsigned short, vector unsigned short)
vector signed int vec_div(vector signed int, vector signed int)
vector unsigned int vec_div(vector unsigned int, vector unsigned int)
vector signed long long vec_div(vector signed long long, vector signed long long)
vector unsigned long long vec_div(vector unsigned long long, vector unsigned long long)
vector unsigned char vec_mul(vector unsigned char, vector unsigned char)
vector unsigned int vec_mul(vector unsigned int, vector unsigned int)
vector unsigned long long vec_mul(vector unsigned long long, vector unsigned long long)
vector unsigned short vec_mul(vector unsigned short, vector unsigned short)
vector signed char vec_mul(vector signed char, vector signed char)
vector signed int vec_mul(vector signed int, vector signed int)
vector signed long long vec_mul(vector signed long long, vector signed long long)
vector signed short vec_mul(vector signed short, vector signed short)
vector signed long long vec_mergeh(vector signed long long, vector signed long long)
vector signed long long vec_mergeh(vector signed long long, vector bool long long)
vector signed long long vec_mergeh(vector bool long long, vector signed long long)
vector unsigned long long vec_mergeh(vector unsigned long long, vector unsigned long long)
vector unsigned long long vec_mergeh(vector unsigned long long, vector bool long long)
vector unsigned long long vec_mergeh(vector bool long long, vector unsigned long long)
vector double vec_mergeh(vector double, vector double)
vector double vec_mergeh(vector double, vector bool long long)
vector double vec_mergeh(vector bool long long, vector double)
vector signed long long vec_mergel(vector signed long long, vector signed long long)
vector signed long long vec_mergel(vector signed long long, vector bool long long)
vector signed long long vec_mergel(vector bool long long, vector signed long long)
vector unsigned long long vec_mergel(vector unsigned long long, vector unsigned long long)
vector unsigned long long vec_mergel(vector unsigned long long, vector bool long long)
vector unsigned long long vec_mergel(vector bool long long, vector unsigned long long)
vector double vec_mergel(vector double, vector double)
vector double vec_mergel(vector double, vector bool long long)
vector double vec_mergel(vector bool long long, vector double)
vector signed int vec_pack(vector signed long long, vector signed long long)
vector unsigned int vec_pack(vector unsigned long long, vector unsigned long long)
vector bool int vec_pack(vector bool long long, vector bool long long)
llvm-svn: 242171
This patch corresponds to review:
http://reviews.llvm.org/D10972
Fix for the handling of dependent features that are enabled by default
on some CPU's (such as -mvsx, -mpower8-vector).
Also provides a number of new interfaces or fixes existing ones in
altivec.h.
Changed signatures to conform to ABI:
vector short vec_perm(vector signed short, vector signed short, vector unsigned char)
vector int vec_perm(vector signed int, vector signed int, vector unsigned char)
vector long long vec_perm(vector signed long long, vector signed long long, vector unsigned char)
vector signed char vec_sld(vector signed char, vector signed char, const int)
vector unsigned char vec_sld(vector unsigned char, vector unsigned char, const int)
vector bool char vec_sld(vector bool char, vector bool char, const int)
vector unsigned short vec_sld(vector unsigned short, vector unsigned short, const int)
vector signed short vec_sld(vector signed short, vector signed short, const int)
vector signed int vec_sld(vector signed int, vector signed int, const int)
vector unsigned int vec_sld(vector unsigned int, vector unsigned int, const int)
vector float vec_sld(vector float, vector float, const int)
vector signed char vec_splat(vector signed char, const int)
vector unsigned char vec_splat(vector unsigned char, const int)
vector bool char vec_splat(vector bool char, const int)
vector signed short vec_splat(vector signed short, const int)
vector unsigned short vec_splat(vector unsigned short, const int)
vector bool short vec_splat(vector bool short, const int)
vector pixel vec_splat(vector pixel, const int)
vector signed int vec_splat(vector signed int, const int)
vector unsigned int vec_splat(vector unsigned int, const int)
vector bool int vec_splat(vector bool int, const int)
vector float vec_splat(vector float, const int)
Added a VSX path to:
vector float vec_round(vector float)
Added interfaces:
vector signed char vec_eqv(vector signed char, vector signed char)
vector signed char vec_eqv(vector bool char, vector signed char)
vector signed char vec_eqv(vector signed char, vector bool char)
vector unsigned char vec_eqv(vector unsigned char, vector unsigned char)
vector unsigned char vec_eqv(vector bool char, vector unsigned char)
vector unsigned char vec_eqv(vector unsigned char, vector bool char)
vector signed short vec_eqv(vector signed short, vector signed short)
vector signed short vec_eqv(vector bool short, vector signed short)
vector signed short vec_eqv(vector signed short, vector bool short)
vector unsigned short vec_eqv(vector unsigned short, vector unsigned short)
vector unsigned short vec_eqv(vector bool short, vector unsigned short)
vector unsigned short vec_eqv(vector unsigned short, vector bool short)
vector signed int vec_eqv(vector signed int, vector signed int)
vector signed int vec_eqv(vector bool int, vector signed int)
vector signed int vec_eqv(vector signed int, vector bool int)
vector unsigned int vec_eqv(vector unsigned int, vector unsigned int)
vector unsigned int vec_eqv(vector bool int, vector unsigned int)
vector unsigned int vec_eqv(vector unsigned int, vector bool int)
vector signed long long vec_eqv(vector signed long long, vector signed long long)
vector signed long long vec_eqv(vector bool long long, vector signed long long)
vector signed long long vec_eqv(vector signed long long, vector bool long long)
vector unsigned long long vec_eqv(vector unsigned long long, vector unsigned long long)
vector unsigned long long vec_eqv(vector bool long long, vector unsigned long long)
vector unsigned long long vec_eqv(vector unsigned long long, vector bool long long)
vector float vec_eqv(vector float, vector float)
vector float vec_eqv(vector bool int, vector float)
vector float vec_eqv(vector float, vector bool int)
vector double vec_eqv(vector double, vector double)
vector double vec_eqv(vector bool long long, vector double)
vector double vec_eqv(vector double, vector bool long long)
vector bool long long vec_perm(vector bool long long, vector bool long long, vector unsigned char)
vector double vec_round(vector double)
vector double vec_splat(vector double, const int)
vector bool long long vec_splat(vector bool long long, const int)
vector signed long long vec_splat(vector signed long long, const int)
vector unsigned long long vec_splat(vector unsigned long long,
vector bool int vec_sld(vector bool int, vector bool int, const int)
vector bool short vec_sld(vector bool short, vector bool short, const int)
llvm-svn: 241904
instructions introduced in POWER8.
These are the Clang-related changes for http://reviews.llvm.org/D10704
All builtins are added in altivec.h and guarded with the POWER8_VECTOR macro.
Phabricator review: http://reviews.llvm.org/D10736
llvm-svn: 241293
This patch corresponds to review:
http://reviews.llvm.org/D10637
This is the first round of additions of missing builtins listed in the ABI document. More to come (this builds onto what seurer already addes). This patch adds:
vector signed long long vec_abs(vector signed long long)
vector double vec_abs(vector double)
vector signed long long vec_add(vector signed long long, vector signed long long)
vector unsigned long long vec_add(vector unsigned long long, vector unsigned long long)
vector double vec_add(vector double, vector double)
vector double vec_and(vector bool long long, vector double)
vector double vec_and(vector double, vector bool long long)
vector double vec_and(vector double, vector double)
vector signed long long vec_and(vector signed long long, vector signed long long)
vector double vec_andc(vector bool long long, vector double)
vector double vec_andc(vector double, vector bool long long)
vector double vec_andc(vector double, vector double)
vector signed long long vec_andc(vector signed long long, vector signed long long)
vector double vec_ceil(vector double)
vector bool long long vec_cmpeq(vector double, vector double)
vector bool long long vec_cmpge(vector double, vector double)
vector bool long long vec_cmpge(vector signed long long, vector signed long long)
vector bool long long vec_cmpge(vector unsigned long long, vector unsigned long long)
vector bool long long vec_cmpgt(vector double, vector double)
vector bool long long vec_cmple(vector double, vector double)
vector bool long long vec_cmple(vector signed long long, vector signed long long)
vector bool long long vec_cmple(vector unsigned long long, vector unsigned long long)
vector bool long long vec_cmplt(vector double, vector double)
vector bool long long vec_cmplt(vector signed long long, vector signed long long)
vector bool long long vec_cmplt(vector unsigned long long, vector unsigned long long)
llvm-svn: 240821
This patch corresponds to review:
http://reviews.llvm.org/D10095
This is for just two instructions and related builtins:
vbpermq
vgbbd
llvm-svn: 239506
in POWER8.
These are the Clang-related changes for http://reviews.llvm.org/D9081
vadduqm
vaddeuqm
vaddcuq
vaddecuq
vsubuqm
vsubeuqm
vsubcuq
vsubecuq
All builtins are added in altivec.h, and guarded with the POWER8_VECTOR and
powerpc64 macros.
http://reviews.llvm.org/D9903
llvm-svn: 238145
This patch adds support for the following new instructions in the
Power ISA 2.07:
vpksdss
vpksdus
vpkudus
vpkudum
vupkhsw
vupklsw
These instructions are available through the vec_packs, vec_packsu,
vec_unpackh, and vec_unpackl built-in interfaces. These are
lane-sensitive instructions, so the built-ins have different
implementations for big- and little-endian, and the instructions must
be marked as killing the vector swap optimization for now.
The first three instructions perform saturating pack operations. The
fourth performs a modulo pack operation, which means it can be
represented with a vector shuffle, and conversely the appropriate
vector shuffles may cause this instruction to be generated. The other
instructions are only generated via built-in support for now.
I noticed during patch preparation that the macro __VSX__ was not
previously predefined when the power8-vector or direct-move features
are requested. This is an error, and I've corrected that here as
well.
Appropriate tests have been added.
There is a companion patch to llvm for the rest of this support.
llvm-svn: 237500
VSX makes the "vector long long" and "vector double" types available.
This patch enables the vec_perm interface for these types. The same
builtin is generated regardless of the specified type, so no
additional work or testing is needed in the back end. Tests are added
to ensure this builtin is generated by the front end.
llvm-svn: 221988
This patch adds builtin support for xvdivdp and xvdivsp, along with a
new test case. The builtins are accessed using vec_div in altivec.h.
Builtins are listed (mostly) alphabetically there, so inserting these
changed the line numbers for deprecation warnings tested in
test/Headers/altivec-intrin.c.
There is a companion patch for LLVM.
llvm-svn: 221984
This patch enables the vec_vsx_ld and vec_vsx_st intrinsics for
PowerPC, which provide programmer access to the lxvd2x, lxvw4x,
stxvd2x, and stxvw4x instructions.
New code in altivec.h defines these in terms of new builtins, which
are themselves defined in BuiltinsPPC.def. The builtins are converted
to LLVM intrinsics in CGBuiltin.cpp. Additional code is added to
builtins-ppc-vsx.c to verify the correct generation of the intrinsics.
Note that I moved the other VSX builtins so all VSX builtins will be
alphabetical in their own section in BuiltinsPPC.def.
There is a companion patch for LLVM.
llvm-svn: 221768
Now that we have initial support for VSX, we can begin adding
intrinsics for programmer access to VSX instructions. This patch
performs the necessary enablement in the front end, and tests it by
implementing intrinsics for minimum and maximum using the vector
double data type.
The main change in the front end is to no longer disallow "vector" and
"double" in the same declaration (lib/Sema/DeclSpec.cpp), but "vector"
and "long double" must still be disallowed. The new intrinsics are
accessed via vec_max and vec_min with changes in
lib/Headers/altivec.h. Note that for v4f32, we already access
corresponding VMX builtins, but with VSX enabled we should use the
forms that allow all 64 vector registers.
The new built-ins are defined in include/clang/Basic/BuiltinsPPC.def.
I've added a new test in test/CodeGen/builtins-ppc-vsx.c that is
similar to, but much smaller than, builtins-ppc-altivec.c. This
allows us to test VSX IR generation without duplicating CHECK lines
for the existing bazillion Altivec tests.
Since vector double is now legal when VSX is available, I've modified
the error message, and changed where we test for it and for vector
long double, since the target machine isn't visible in the old place.
This serendipitously removed a not-pertinent warning about 'long'
being deprecated when used with 'vector', when "vector long double" is
encountered and we just want to issue an error. The existing tests
test/Parser/altivec.c and test/Parser/cxx-altivec.cpp have been
updated accordingly, and I've added test/Parser/vsx.c to verify that
"vector double" is now legitimate with VSX enabled.
There is a companion patch for LLVM.
llvm-svn: 220989
The use of the vec_lvsl and vec_lvsr interfaces are discouraged for
little endian targets since Power8 hardware is a minimum requirement,
and Power8 provides reasonable performance for unaligned vector loads
and stores. Up till now we have not provided "correct" (i.e., big-
endian-compatible) code generation for these interfaces, as to do so
produces poorly performing code. However, this has become the source
of too many questions.
With this patch, LLVM will now produce compatible code for these
interfaces, but will also produce a deprecation warning message for
PPC64LE when one of them is used. This should make the porting direction
clearer to programmers. A similar patch has recently been committed to
GCC.
This patch includes a test for the warning message. There is a companion
patch that adds two unit tests to projects/test-suite.
llvm-svn: 219137
My original LE implementation of the vsldoi instruction, with its
altivec.h interfaces vec_sld and vec_vsldoi, produces incorrect
shufflevector operations in the LLVM IR. Correct code is generated
because the back end handles the incorrect shufflevector in a
consistent manner.
This patch and a companion patch for LLVM correct this problem by
removing the fixup from altivec.h and the corresponding fixup from the
PowerPC back end. Several test cases are also modified to reflect the
now-correct LLVM IR.
The vec_sums and vec_vsumsws interfaces in altivec.h are also fixed,
because they used vec_perm calls intended to be recognized as vsldoi
instructions. These vec_perm calls are now replaced with code that
more clearly shows the intent of the transformation.
llvm-svn: 214801
There are several Altivec tests that formerly ran only on big-endian
targets (and in some cases only on 32-bit targets). It is useful to
verify these on little-endian targets as well.
While testing these, I discovered a typo in <altivec.h>. This is also
fixed by this patch.
llvm-svn: 210928
The vec_sld and vec_vsldoi interfaces perform a left-shift on vector
arguments for both big and little endian. However, because they rely
on the vec_perm interface which is endian-dependent, the permutation
vector needs to be reversed for LE to get the proper shift direction.
I've added some extra testing for these interfaces for LE in the
builtins-ppc-altivec.c.
llvm-svn: 210657
The PowerPC vsumsws instruction, accessed via vec_sums, is defined
architecturally with a big-endian bias, in that the second input vector
and the result always reference big-endian element 3 (little-endian
element 0). For ease of porting, the programmer wants elements 3 in
both cases.
To provide this semantics, for little endian we generate a permute for
the second input vector prior to the vsumsws instruction, and generate
a permute for the result vector following the vsumsws instruction.
The correctness of this code is tested by the new sums.c test added in
a previous patch, as well as the modifications to
builtins-ppc-altivec.c in the present patch.
llvm-svn: 210449
The PowerPC vector-unpack-high and vector-unpack-low instructions
are defined architecturally with a big-endian bias, in that the vector
element numbering is assumed to be "left to right" regardless of
whether the processor is in big-endian or little-endian mode. This
effectively reverses the meaning of "high" and "low." Such a
definition is unnatural for little-endian code generation.
To facilitate ease of porting, the vec_unpackh and vec_unpackl
interfaces are designed to use natural element ordering, so that
elements are numbered according to little-endian design principles
when code is generated for a little-endian target. The desired
semantics can be achieved by using the opposite instruction for
little-endian mode. That is, when a call to vec_unpackh appears in
the code, a vector-unpack-low is generated, and when a call to
vec_unpackl appears in the code, a vector-unpack-high is generated.
The correctness of this code is tested by the new unpack.c test
added in a previous patch, as well as the modifications to
builtins-ppc-altivec.c in the present patch.
Note that these interfaces were originally incorrectly implemented
when they take a vector pixel argument. This patch corrects this
implementation for both big- and little-endian code generation.
llvm-svn: 210391
The Altivec builtin test case test/CodeGen/builtins-ppc-altivec.c has
always been executed only for 32-bit PowerPC. These tests are equally
valid for 64-bit PowerPC. This patch updates the test to be run for
three targets: powerpc-unknown-unknown, powerpc64-unknown-unknown,
and powerpc64le-unknown-unknown. The expected code generation changes
for some of the Altivec builtins for little endian, so this patch adds
new CHECK-LE variants to the test for the powerpc64le target.
These tests satisfy the testing requirements for some previous patches
committed over the last couple of days for lib/Headers/altivec.h:
r210279 for vec_perm, r210337 for vec_mul[eo], and r210340 for
vec_pack.
llvm-svn: 210384
The PowerPC vector-pack instructions are defined architecturally with
a big-endian bias, in that the vector element numbering is assumed to
be "left to right" regardless of whether the processor is in
big-endian or little-endian mode. This definition is unnatural for
little-endian code generation.
To facilitate ease of porting, the vec_pack and related interfaces are
designed to use natural element ordering, so that elements are
numbered according to little-endian design principles when code is
generated for a little-endian target. The vec_pack calls are
implemented as calls to vec_perm, specifying selection of the
odd-numbered vector elements. For little endian, this means the
odd-numbered elements counting from the right end of the register.
Since the underlying instructions count from the left end, we must
instead select the even-numbered vector elements for little endian to
achieve the desired semantics.
The correctness of this code is tested by the new pack.c test added in
a previous patch. I plan to later make the existing ppc32 Altivec
compile-time tests work for ppc64 and ppc64le as well.
llvm-svn: 210340
The PowerPC vector-multiply-even and vector-multiply-odd instructions
are defined architecturally with a big-endian bias, in that the vector
element numbering is assumed to be "left to right" regardless of
whether the processor is in big-endian or little-endian mode. This
definition is unnatural for little-endian code generation.
To facilitate ease of porting, the vec_mule and vec_mulo interfacs are
designed to use natural element ordering, so that elements are
numbered according to little-endian design principles when code is
generated for a little-endian target. The desired semantics can be
achieved by using the opposite instruction for little-endian mode.
That is, when a call to vec_mule appears in the code, a
vector-multiply-odd is generated, and when a call to vec_mulo appears
in the code, a vector-multiply-even is generated.
The correctness of this code is tested by the new mult-even-odd.c test
added in a previous patch. I plan to later make the existing ppc32
Altivec compile-time tests work for ppc64 and ppc64le as well.
llvm-svn: 210337
The PowerPC vperm (vector permute) instruction is defined
architecturally with a big-endian bias, in that the two input vectors
are assumed to be concatenated "left to right" and the elements of the
combined input vector are assumed to be numbered from "left to right"
(i.e., with element 0 referencing the high-order element). This
definition is unnatural for little-endian code generation.
To facilitate ease of porting, the vec_perm interface is designed to
use natural element ordering, so that elements are numbered according
to little-endian design principles when code is generated for a
little-endian target. The desired semantics can be achieved with the
vperm instruction provided that the two input vector registers are
reversed, and the permute control vector is complemented. The
complementing is performed using an xor with a vector containing all
one bits.
Only the rightmost 5 bits of each element of the permute control
vector are relevant, so it would be possible to complement the vector
with respect to a <16xi8> vector containing all 31s. However, when
the permute control vector is not a constant, using 255 instead has
the advantage that the vec_xor can be recognized during code
generation as a vnor instruction. (Power8 introduces a vnand
instruction which could alternatively be generated.)
The correctness of this code is tested by the new perm.c test added in
a previous patch. I plan to later make the existing ppc32 Altivec
compile-time tests work for ppc64 and ppc64le as well.
llvm-svn: 210279