when dealing with -gmodules debug info.
This fixes the bot failures on Darwin.
A recent clang change (presumably https://reviews.llvm.org/D104291)
introduced a bug where .pcm files would identify themselves as
DW_LANG_C_plus_plus, but the .o that references them would identify as
DW_LANG_C_plus_plus_14. While that bug needs to be fixed, too, it
shows that the current strict comparison also isn't meaningful.
rdar://79423225
One nice feature of the os_signpost API is that format string
substitutions happen in the consumer, not the logging
application. LLVM's current Signpost class doesn't take advantage of
this though and instead always uses a static "Begin/End %s" format
string.
This patch uses variadic macros to allow the API to be used as
intended. Unfortunately, the primary use-case I had in mind (the
LLDB_SCOPED_TIMER() macro) does not get much better from this, because
__PRETTY_FUNCTION__ is *not* a macro, but a static string, so
signposts created by LLDB_SCOPED_TIMER() still use a static "%s"
format string. At least LLDB_SCOPED_TIMERF() works as intended.
This reapplies the previously reverted patch with additional include
order fixes for non-modular builds of LLDB.
Differential Revision: https://reviews.llvm.org/D103575
This converts a default constructor's member initializers into C++11
default member initializers. This patch was automatically generated with
clang-tidy and the modernize-use-default-member-init check.
$ run-clang-tidy.py -header-filter='lldb' -checks='-*,modernize-use-default-member-init' -fix
This is a mass-refactoring patch and this commit will be added to
.git-blame-ignore-revs.
Differential revision: https://reviews.llvm.org/D103483
The `lock` call directly will check for us if the `weak_ptr` is expired and
returns an invalid `shared_ptr` (which we correctly handle), so this check is
redundant.
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D103442
The C headers are deprecated so as requested in D102845, this is replacing them
all with their (not deprecated) C++ equivalent.
Reviewed By: shafik
Differential Revision: https://reviews.llvm.org/D103084
In D98289#inline-939112 @dblaikie said:
Perhaps this could be more informative about what makes the range list
index of 0 invalid? "index 0 out of range of range list table (with
range list base 0xXXX) with offset entry count of XX (valid indexes
0-(XX-1))" Maybe that's too verbose/not worth worrying about since
this'll only be relevant to DWARF producers trying to debug their
DWARFv5, maybe no one will ever see this message in practice. Just
a thought.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D102851
DW_AT_ranges can use DW_FORM_sec_offset (instead of DW_FORM_rnglistx).
In such case DW_AT_rnglists_base does not need to be present.
DWARF-5 spec:
"If the offset_entry_count is zero, then DW_FORM_rnglistx cannot
be used to access a range list; DW_FORM_sec_offset must be used
instead. If the offset_entry_count is non-zero, then
DW_FORM_rnglistx may be used to access a range list;"
This fix is for TestTypeCompletion.py category `dwarf` using GCC with DWARF-5.
The fix just provides GetRnglist() lazy getter for `m_rnglist_table`.
The testcase is easier to review by:
diff -u lldb/test/Shell/SymbolFile/DWARF/DW_AT_low_pc-addrx.s \
lldb/test/Shell/SymbolFile/DWARF/DW_AT_range-DW_FORM_sec_offset.s
Differential Revision: https://reviews.llvm.org/D98289
We have a bug in which using member_clang_type.GetByteSize() triggers record
layout and during this process since the record was not yet complete we ended
up reaching a record that had not been layed out yet.
Using member_type->GetByteSize() avoids this situation since it relies on size
from DWARF and will not trigger record layout.
For reference: rdar://77293040
Differential Revision: https://reviews.llvm.org/D102445
A type system is not guaranteed to have a symbol file. This patch adds null-pointer checks so we don't crash when trying to access a type system's symbol file.
Reviewed By: aprantl, teemperor
Differential Revision: https://reviews.llvm.org/D101539
This patch refactors a good part of the code base turning the usual
FileSpec, Line, Column, CheckInlines, ExactMatch arguments into a
SourceLocationSpec object.
This change is required for a following patch that will add handling of the
column line information when doing symbol resolution.
Differential Revision: https://reviews.llvm.org/D100965
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch moves the Declaration class from the Symbol library to the
Core library. This will allow to use it in a more generic fashion and
aims to lower the dependency cycles when it comes to the linking.
The patch also does some cleaning up by making column information
permanent and removing the LLDB_ENABLE_DECLARATION_COLUMNS directives.
Differential revision: https://reviews.llvm.org/D101556
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
`InsertSequence` doesn't take ownership of the pointer so releasing this pointer
is just leaking memory.
Follow up to D100806 that was fixing other leak sanitizer test failures
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D100846
DWARF allows .dwo file paths to be relative rather than absolute. When
they are relative, DWARF uses DW_AT_comp_dir to find the .dwo
file. DW_AT_comp_dir can also be relative, making the entire search
patch for the .dwo file relative. In this case, LLDB currently
searches relative to its current working directory, i.e. the directory
from which the debugger was launched. This is not right, as the
compiler, which generated the relative paths, can have no idea where
the debugger will be launched. The correct thing is to search relative
to the location of the executable binary. That is what this patch
does.
Differential Revision: https://reviews.llvm.org/D97786
DWARF allows .dwo file paths to be relative rather than absolute. When
they are relative, DWARF uses DW_AT_comp_dir to find the .dwo
file. DW_AT_comp_dir can also be relative, making the entire search
patch for the .dwo file relative. In this case, LLDB currently
searches relative to its current working directory, i.e. the directory
from which the debugger was launched. This is not right, as the
compiler, which generated the relative paths, can have no idea where
the debugger will be launched. The correct thing is to search relative
to the location of the executable binary. That is what this patch
does.
Differential Revision: https://reviews.llvm.org/D97786
When LLDB's DWARF parser is parsing the member DIEs of a struct/class it
currently fully resolves the types of static member variables in a class before
adding the respective `VarDecl` to the record.
For record types fully resolving the type will also parse the member DIEs of the
respective class. The other way of resolving is just 'forward' resolving the type
which will try to load only the minimum amount of information about the type
(for records that would only be the name/kind of the type). Usually we always
resolve types on-demand so it's rarely useful to speculatively fully resolve
them on the first use.
This patch changes makes that we only 'forward' resolve the types of static
members. This solves the fact that LLDB unnecessarily loads debug information
to parse the type if it's maybe not needed later and it also avoids a crash where
the parsed type might in turn reference the surrounding class that is currently
being parsed.
The new test case demonstrates the crash that might happen. The crash happens
with the following steps:
1. We parse class `ToLayout` and it's members.
2. We parse the static class member and fully resolve its type
(`DependsOnParam2<ToLayout>`).
3. That type has a non-static class member `DependsOnParam1<ToLayout>` for which
LLDB will try to calculate the size.
4. The layout (and size)`DependsOnParam1<ToLayout>` turns depends on the
`ToLayout` size/layout.
5. Clang will calculate the record layout/size for `ToLayout` even though we are
currently parsing it and it's missing it's non-static member.
The created is missing the offset for the yet unparsed non-static member. If we
later try to get the offset we end up hitting different asserts. Most common is
the one in `TypeSystemClang::DumpValue` where it checks that the record layout
has offsets for the current FieldDecl.
```
assert(field_idx < record_layout.getFieldCount());
```
Fixed rdar://67910011
Reviewed By: shafik
Differential Revision: https://reviews.llvm.org/D100180
If the debug info is missing the terminating null die, we would crash
when trying to access the nonexisting children/siblings. This was
discovered because the test case for D98619 accidentaly produced such
input.
Remove the "depth" variable, as the same information can be obtained
through die_index_stack.size().
Also add a test case for a one tricky case I noticed -- a unit
containing only a null unit die.
When LLVM error handling was introduced to the parsing of the .debug_aranges it would cause major issues if any DWARFDebugArangeSet::extract() calls returned any errors. The code in DWARFDebugInfo::GetCompileUnitAranges() would end up calling DWARFDebugAranges::extract() which would return an error if _any_ DWARFDebugArangeSet had any errors, but it default constructed a DWARFDebugAranges object into DWARFDebugInfo::m_cu_aranges_up and populated it partially, and returned an error prior to finishing much needed functionality in the DWARFDebugInfo::GetCompileUnitAranges() function. Subsequent callers to this function would see that the DWARFDebugInfo::m_cu_aranges_up was actually valid and return this partially populated DWARFDebugAranges reference _and_ it would not be sorted or minimized.
This above bugs would cause an incomplete .debug_aranges parsing, it would skip manually parsing any compile units for ranges, and would not sort the DWARFDebugAranges in m_cu_aranges_up.
This bug would also cause breakpoints set by file and line to fail to set correctly if a symbol context for an address could not be resolved properly, which the incomplete and unsorted DWARFDebugAranges object that DWARFDebugInfo::GetCompileUnitAranges() returned would cause symbol context lookups resolved by address (breakpoint address) to fail to find any DWARF debug info for a given address.
This patch fixes all of the issues that I found:
- DWARFDebugInfo::GetCompileUnitAranges() no longer returns a "llvm::Expected<DWARFDebugAranges &>", but just returns a "const DWARFDebugAranges &". Why? Because this code contained a fallback that would parse all of the valid DWARFDebugArangeSet objects, and would check which compile units had valid .debug_aranges set entries, and manually build an address ranges table using DWARFUnit::BuildAddressRangeTable(). If we return an error because any DWARFDebugArangeSet has any errors, then we don't do any of this code. Now we parse all DWARFDebugArangeSet objects that have no errors, if any calls to DWARFDebugArangeSet::extract() return errors, we skip that DWARFDebugArangeSet so that we can use the fallback call to DWARFUnit::BuildAddressRangeTable(). Since DWARFDebugInfo::GetCompileUnitAranges() needs to parse what it can from the .debug_aranges and build address ranges tables for any compile units that don't have any .debug_aranges sets, everything now works as expected.
- Fix an issue where a DWARFDebugArangeSet contains multiple terminator entries. The LLVM parser and llvm-dwarfdump properly warn about this because it happens with linux compilers and linkers and was the original cause of the bug I am fixing here. We now correctly warn about this issue if "log enable dwarf info" is enabled, but we continue to parse the DWARFDebugArangeSet correctly so we don't lose data that is contained in the .debug_aranges section.
- DWARFDebugAranges::extract() no longer returns a llvm::Error because we need to be able to parse all of the valid DWARFDebugArangeSet objects. It also will correctly skip a DWARFDebugArangeSet object that has errors in the middle of the stream by setting the start offsets of each DWARFDebugArangeSet to be calculated by the previous DWARFDebugArangeSet::extract() calculated offset that uses the header which contains the length of the DWARFDebugArangeSet. This means if do we run into real errors while parsing individual DWARFDebugArangeSet objects, we can continue to parse the rest of the validly encoded DWARFDebugArangeSet objects in the .debug_aranges section. This will allow LLDB to parse DWARF that contains a possibly newer .debug_aranges set format than LLDB currently supports because we will error out for the parsing of the DWARFDebugArangeSet, but be able to skip to the next DWARFDebugArangeSet object using the "DWARFDebugArangeSet.m_header.length" field to calculate the next starting offset.
Tests were added to cover all new functionality.
Differential Revision: https://reviews.llvm.org/D99401
LLDB can often appear deadlocked to users that use IDEs when it is indexing DWARF, or parsing symbol tables. These long running operations can make a debug session appear to be doing nothing even though a lot of work is going on inside LLDB. This patch adds a public API to allow clients to listen to debugger events that report progress and will allow UI to create an activity window or display that can show users what is going on and keep them informed of expensive operations that are going on inside LLDB.
Differential Revision: https://reviews.llvm.org/D97739
SymbolFileDWARF::ResolveSymbolContext is currently unaware that in DWARF5 the primary file is specified at file index 0. As a result it misses to correctly resolve the symbol context for the primary file when DWARF5 debug data is used and the primary file is only specified at index 0.
This change makes use of CompileUnit::ResolveSymbolContext to resolve the symbol context. The ResolveSymbolContext in CompileUnit has been previously already updated to reflect changes in DWARF5
and contains a more readable version. It can resolve more, but will also do a bit more work than
SymbolFileDWARF::ResolveSymbolContext (getting the Module, and going through SymbolFileDWARF::ResolveSymbolContextForAddress), however, it's mostly directed by $resolve_scope
what will be resolved, and ensures that code is easier to maintain if there's only one path.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D98619
The idiom:
```
DeclContext::lookup_result R = DeclContext::lookup(Name);
for (auto *D : R) {...}
```
is not safe when in the loop body we trigger deserialization from an AST file.
The deserialization can insert new declarations in the StoredDeclsList whose
underlying type is a vector. When the vector decides to reallocate its storage
the pointer we hold becomes invalid.
This patch replaces a SmallVector with an singly-linked list. The current
approach stores a SmallVector<NamedDecl*, 4> which is around 8 pointers.
The linked list is 3, 5, or 7. We do better in terms of memory usage for small
cases (and worse in terms of locality -- the linked list entries won't be near
each other, but will be near their corresponding declarations, and we were going
to fetch those memory pages anyway). For larger cases: the vector uses a
doubling strategy for reallocation, so will generally be between half-full and
full. Let's say it's 75% full on average, so there's N * 4/3 + 4 pointers' worth
of space allocated currently and will be 2N pointers with the linked list. So we
break even when there are N=6 entries and slightly lose in terms of memory usage
after that. We suspect that's still a win on average.
Thanks to @rsmith!
Differential revision: https://reviews.llvm.org/D91524
Apply changes from https://reviews.llvm.org/D91014 to other places where DWARF entries are being processed.
Test case is provided by @jankratochvil.
The test is marked to run only on x64 and exclude Windows and Darwin, because the assembly is not OS-independent.
(First attempt https://reviews.llvm.org/D96778 broke the build bots)
Reviewed By: jankratochvil
Differential Revision: https://reviews.llvm.org/D97765
In DWARF v4 compile units go in .debug_info and type units go in
.debug_types. However, in v5 both kinds of units are in .debug_info.
Therefore we can't decide whether to use the CU or TU index just by
looking at which section we're reading from. We have to wait until we
have read the unit type from the header.
Differential Revision: https://reviews.llvm.org/D96194
The comment for ValueType claims that all values <1 are errors, but
not all switch statements take this into account. This patch
introduces an explicit Error case and deletes all default: cases, so
we get warned about incomplete switch coverage.
https://reviews.llvm.org/D96537
Finishing out the support (to the best of my knowledge/based on current
testing running the whole check-lldb with a clang forcibly using
DW_AT_ranges on all DW_TAG_subprograms) for this feature.
Differential Revision: https://reviews.llvm.org/D94064
gcc already produces debug info with this form
-freorder-block-and-partition
clang produces this sort of thing with -fbasic-block-sections and with a
coming-soon tweak to use ranges in DWARFv5 where they can allow greater
reuse of debug_addr than the low/high_pc forms.
This fixes the case of breaking on a function name, but leaves broken
printing a variable - a follow-up commit will add that and improve the
test case to match.
Differential Revision: https://reviews.llvm.org/D94063
In split DWARF v5 files, the DWO id is no longer in the DW_AT_GNU_dwo_id
attribute. It's in the CU header instead. This change makes lldb look in
both places.
Differential Revision: https://reviews.llvm.org/D93444
This patch introduces a LLDB_SCOPED_TIMER macro to hide the needlessly
repetitive creation of scoped timers in LLDB. It's similar to the
LLDB_LOG(F) macro.
Differential revision: https://reviews.llvm.org/D93663
To get LLDB one step closer to fulfil the software redundancy requirements of
modern aircrafts, we apparently decided to have two separately maintained
implementations of `CreateTypedef` in TypeSystemClang. Let's pass on the idea of
an LLDB-powered jetliner and deleted one implementation.
On a more serious note: This function got duplicated a long time ago when the
idea of CompilerType with a backing TypeSystemClang subclass happened
(56939cb310). One implementation was supposed to
be called from CompilerType::CreateTypedef and the other has just always been
around to create typedefs. By accident one of the implementations is only used
by the PDB parser while the CompilerType::CreateTypedef backend is used by the
rest of LLDB.
We also had some patches over the year that only fixed one of the two functions
(D18099 for example only fixed up the CompilerType::CreateTypedef
implementation). D51162 and D86140 both fixed the same missing `addDecl` call
for one of the two implementations.
This patch:
* deletes the `CreateTypedefType` function as its only used by the PDB parser
and the `CreateTypedef` implementation is anyway needed as it's the backend
implementation of CompilerType.
* replaces the calls in the PDB parser by just calling the CompilerType wrapper.
* moves the documentation to the remaining function.
* moves the check for empty typedef names that was only in the deleted
implementation to the other (I don't think this fixes anything as I believe
all callers are already doing the same check).
I'll fix up the usual stuff (not using StringRef, not doing early exit) in a NFC
follow-up.
This patch is not NFC as the PDB parser now calls the function that has the fix
from D18099.
Reviewed By: labath, JDevlieghere
Differential Revision: https://reviews.llvm.org/D93382
We currently reject all templates that have either zero args or that have a
parameter pack without a name. Both cases are actually allowed in C++, so
rejecting them leads to LLDB instead falling back to a dummy 'void' type. This
leads to all kind of errors later on (most notable, variables that have such
template types appear to be missing as we can't have 'void' variables and
inheriting from such a template type will cause Clang to hit some asserts when
finding that the base class is 'void').
This just removes the too strict tests and adds a few tests for this stuff (+
some combinations of these tests with preceding template parameters).
Things that I left for follow-up patches:
* All the possible interactions with template-template arguments which seem like a whole new source of possible bugs.
* Function templates which completely lack sanity checks.
* Variable templates are not implemented.
* Alias templates are not implemented too.
* The rather strange checks that just make sure that the separate list of
template arg names and values always have the same length. I believe those
ought to be asserts, but my current plan is to move both those things into a
single list that can't end up in this inconsistent state.
Reviewed By: JDevlieghere, shafik
Differential Revision: https://reviews.llvm.org/D92425
When parsing DWARF and laying out bit-fields we don't properly take into account when they are in a union, they will all have a zero offset.
Differential Revision: https://reviews.llvm.org/D91118