The prevailing style does not add the message. The directive name is not useful
because the next line replicates the error line which includes the directive.
D88631 added initial support for:
- -mstack-protector-guard=
- -mstack-protector-guard-reg=
- -mstack-protector-guard-offset=
flags, and D100919 extended these to AArch64. Unfortunately, these flags
aren't retained for LTO. Make them module attributes rather than
TargetOptions.
Link: https://github.com/ClangBuiltLinux/linux/issues/1378
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D102742
Follow up to D101357 / 3fa6510f6.
Supersedes D102330.
Goal: Use flags setting rdffrs instead of rdffr + ptest.
Problem: RDFFR_P doesn't have have a flags setting equivalent.
Solution: in instcombine, canonicalize to RDFFR_PP at the IR level, and
rely on RDFFR_PP+PTEST => RDFFRS_PP optimization in
AArch64InstrInfo::optimizePTestInstr.
While here:
* Test that rdffr.z+ptest generates a rdffrs.
* Use update_{test,llc}_checks.py on the tests.
* Use sve attribute on functions.
Differential Revision: https://reviews.llvm.org/D102623
Linker scripts might not handle COMDAT sections. SLSHardeing adds
new section for each __llvm_slsblr_thunk_xN. This new option allows
the generation of the thunks into the normal text section to handle these
exceptional cases.
,comdat or ,noncomdat can be added to harden-sls to control the codegen.
-mharden-sls=[all|retbr|blr],nocomdat.
Reviewed By: kristof.beyls
Differential Revision: https://reviews.llvm.org/D100546
This adds custom lowering for the MLOAD and MSTORE ISD nodes when
passed fixed length vectors in SVE. This is done by converting the
vectors to VLA vectors and using the VLA code generation.
Fixed length extending loads and truncating stores currently produce
correct code, but do not use the built in extend/truncate in the
load and store instructions. This will be fixed in a future patch.
Differential Revision: https://reviews.llvm.org/D101834
bswap.v2i16 + sitofp in LLVM IR generate a sequence of:
- REV32 + USHR for bswap.v2i16
- SHL + SSHR + SCVTF for sext to v2i32 and scvt
The shift instructions are excessive as noted in PR24820, and they can
be optimized to just SSHR.
Differential Revision: https://reviews.llvm.org/D102333
We can use an ORRWrs (mov) + SUBREG_TO_REG rather than a UBFX for G_ZEXT on
s32->s64.
This closer matches what SDAG does, and is likely more power efficient etc.
(Also fixed up arm64-rev.ll which had a fallback check line which was entirely
useless.)
Simple example: https://godbolt.org/z/h1jKKdx5c
Differential Revision: https://reviews.llvm.org/D102656
Use existing KnownBits helpers from KnownBits.h to simplify G_ICMPs.
E.g.
x == x -> true
x != x -> false
load(x) > 1 -> true (when the load is known to be greater than 1)
And so on.
Differential Revision: https://reviews.llvm.org/D102542
The implementation just extends the vector to a larger element type, and
extracts from that. Not fancy, but generates reasonable code.
There was discussion in the review of doing the promotion in
target-independent code, but I'm sticking with this to avoid making
LegalizeDAG infrastructure more complicated.
Differential Revision: https://reviews.llvm.org/D87651
Follow up to D88631 but for aarch64; the Linux kernel uses the command
line flags:
1. -mstack-protector-guard=sysreg
2. -mstack-protector-guard-reg=sp_el0
3. -mstack-protector-guard-offset=0
to use the system register sp_el0 for the stack canary, enabling the
kernel to have a unique stack canary per task (like a thread, but not
limited to userspace as the kernel can preempt itself).
Address pr/47341 for aarch64.
Fixes: https://github.com/ClangBuiltLinux/linux/issues/289
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed By: xiangzhangllvm, DavidSpickett, dmgreen
Differential Revision: https://reviews.llvm.org/D100919
Adding lowering support for bitreverse.
Previously, lowering bitreverse would expand it into a series of other instructions. This patch makes it so this produces a single rbit instruction instead.
Reviewed By: dmgreen
Differential Revision: https://reviews.llvm.org/D102397
Swift's new concurrency features are going to require guaranteed tail calls so
that they don't consume excessive amounts of stack space. This would normally
mean "tailcc", but there are also Swift-specific ABI desires that don't
naturally go along with "tailcc" so this adds another calling convention that's
the combination of "swiftcc" and "tailcc".
Support is added for AArch64 and X86 for now.
AArch64's fctv* instructions implement the saturating behaviour that the
fpto*i.sat intrinsics require, in cases where the destination width
matches the saturation width. Lowering them removes a lot of unnecessary
generated code.
Only scalar lowerings are supported for now.
Differential Revision: https://reviews.llvm.org/D102353
Addition of this node allows us to better utilize the different forms of
the SVE BIC instructions, including using the alias to an AND (immediate).
Differential Revision: https://reviews.llvm.org/D101831
This extends any frame record created in the function to include that
parameter, passed in X22.
The new record looks like [X22, FP, LR] in memory, and FP is stored with 0b0001
in bits 63:60 (CodeGen assumes they are 0b0000 in normal operation). The effect
of this is that tools walking the stack should expect to see one of three
values there:
* 0b0000 => a normal, non-extended record with just [FP, LR]
* 0b0001 => the extended record [X22, FP, LR]
* 0b1111 => kernel space, and a non-extended record.
All other values are currently reserved.
If compiling for arm64e this context pointer is address-discriminated with the
discriminator 0xc31a and the DB (process-specific) key.
There is also an "i8** @llvm.swift.async.context.addr()" intrinsic providing
front-ends access to this slot (and forcing its creation initialized to nullptr
if necessary).
There are three essentially different cases to handle:
* -O1, no LSE. The IR is expanded to ldxp/stxp and we need patterns to select
them.
* -O0, no LSE. We get G_ATOMIC_CMPXCHG, and need to produce CMP_SWAP_N
pseudos. The registers are all 64-bit so this is easy.
* LSE. We get G_ATOMIC_CMPXCHG and need to produce a CASP instruction with
XSeqPair registers.
The last case is by far the hardest, and and adds 128-bit GPR support as a
byproduct.
The Arm Architecture Reference Manual says that the SystemHintOp_BTI
opcode is prefered when CRm:op2 matches 0100:xx0, but llvm-mc
currently accepts 0100:xxx, which isn't right.
Differential Revision: https://reviews.llvm.org/D102415
The complex selection pattern for add/sub shifted immediates is
incorrect in it's handling of incoming constant values, in that it
does not properly anticipate the values to be signed extended to
32-bits.
Co-authored-by: Graham Hunter <graham.hunter@arm.com>
Differential Revision: https://reviews.llvm.org/D101833
When a ptest is used to set flags from the output of rdffr, the ptest
can be eliminated, using a flags-setting rdffrs instead.
Additionally, check that nothing consumes flags between rdffr and ptest;
this case appears to have been missed previously.
* There is no unpredicated RDFFRS instruction.
* If substituting RDFFR_PP, require that the mask argument of the
PTEST matches that of the RDFFR_PP.
* Move some precondition code up inside optimizePTestInstr, so that it
covers the new code paths for RDFFR which return earlier.
* Only consider RDFFR, PTEST in same basic block.
* Check for other flag setting instructions between the two, abort if
found.
* Drop an old TODO comment about removing dead PTEST instructions.
RDFFR_P to follow in later patch.
Differential Revision: https://reviews.llvm.org/D101357
The sve.convert.to.svbool lowering has the effect of widening a logical
<M x i1> vector representing lanes into a physical <16 x i1> vector
representing bits in a predicate register.
In general, if converting to svbool, the contents of lanes in the
physical register might not be known. For sve.convert.to.svbool the new
lanes are specified to be zeroed, requiring 'and' instructions to mask
off the new lanes. For lanes coming from a ptrue or a comparison,
however, they are known to be zero.
CodeGen Before:
ptrue p0.s, vl16
ptrue p1.s
ptrue p2.b
and p0.b, p2/z, p0.b, p1.b
ret
After:
ptrue p0.s, vl16
ret
Differential Revision: https://reviews.llvm.org/D101544
Currently the ValueHandler handles both selecting the type and
location for arguments, as well as inserting instructions needed to
handle them. Split this so that the determination of the argument
handling is independent of the function state. Currently the checks
for tail call compatibility do not follow the full assignment logic,
so it misses cases where arguments require nontrivial legalization.
This should help avoid targets ending up in a buggy state where the
argument evaluation may change in different contexts.
We can handle the distinction easily enough in the generic code, and
this makes it easier to abstract the selection of type/location from
the code to insert code.
This is roughly equivalent to the floating point portion of
`AArch64TargetLowering::LowerVSETCC`. Main part that's missing is the v4s16 bit.
This also adds helpers equivalent to `EmitVectorComparison`, and
`changeVectorFPCCToAArch64CC`. This moves `changeFCMPPredToAArch64CC` out of
the selector into AArch64GlobalISelUtils for the sake of code reuse.
This is done in post-legalizer lowering with pseudos to simplify selection.
The imported patterns end up handling selection for us this way.
Differential Revision: https://reviews.llvm.org/D101782
The combines in `tryCombineMemCpyFamily` have heuristics (e.g.
`TLI.getMaxStoresPerMemset`) which consider size. So, theoretically, enabling
these combines on minsize functions shouldn't be harmful.
With this enabled we save 0.9% geomean on CTMark at -Oz, and 5.1% on Bullet.
There are no code size regressions.
Differential Revision: https://reviews.llvm.org/D102198
Expanding a fixed length operation involves wrapping the operation in an
insert/extract subvector pair, as such, when this is done to bitcast we
end up with an extract_subvector of a bitcast. DAGCombine tries to
convert this into a bitcast of an extract_subvector which restores the
initial fixed length bitcast, causing an infinite loop of legalization.
As part of this patch, we must make sure the above DAGCombine does not
trigger after legalization if the created bitcast would not be legal.
Differential Revision: https://reviews.llvm.org/D101990
When using predicated intrinsics, if the predicate used is all lanes active,
use an unpredicated form of the instruction, additionally this allows for
better use of immediate forms.
This only includes instructions where the unpredicated/predicated forms
matched in such a way that instruction selection would not introduce extra
ptrue instructions. This allows us to convert the intrinsics directly to
architecture independent ISD nodes.
Depends on D101062
Differential Revision: https://reviews.llvm.org/D101828
When using predicated arithmetic intrinsics, if the predicate used is all
lanes active, use an unpredicated form of the instruction, additionally
this allows for better use of immediate forms.
This also includes a new complex isel pattern which allows matching an
all active predicate when the types are different but the predicate is a
superset of the type being used. For example, to allow a b8 ptrue for a
b32 predicate operand.
This only includes instructions where the unpredicated/predicated forms
are mismatched between variants, meaning that the removal of the
predicate is done during instruction selection in order to prevent
spurious re-introductions of ptrue instructions.
Co-authored-by: Paul Walker <paul.walker@arm.com>
Differential Revision: https://reviews.llvm.org/D101062
DAGCombiner tries to combine a (fpext (load)) to (fround (extload))
but SVE has no FP-extending loads. By marking these as expand,
the combine no longer happens.
This also fixes a similar issue for fptrunc, where the source type
is not a legal type.
Reviewed By: bsmith, kmclaughlin
Differential Revision: https://reviews.llvm.org/D102053
Since index_vector is lowered into step_vector in D100816, we can just remove
index_vector, use step_vector for codegen directly.
Differential Revision: https://reviews.llvm.org/D101593
We never bothered to have a separate set of combines for -O0 in the prelegalizer
before. This results in some minor performance hits for a mode where performance
isn't a concern (although not regressing code size significantly is still preferable).
This also removes the CSE option since we don't need it for -O0.
Through experiments, I've arrived at a set of combines that gets the most code
size improvement at -O0, while reducing the amount of time spent in the combiner
by around 35% give or take.
Differential Revision: https://reviews.llvm.org/D102038
Using `clampScalar` here because we ought to mark s128 as custom eventually.
(Right now, it will just fall back.)
With this legalization, we get the same code as SDAG:
https://godbolt.org/z/TneoPKrKG
Differential Revision: https://reviews.llvm.org/D100908
Similar to X86 D73230 & 46788a21f9
With this change, we can set dso_local in clang's -fpic -fno-semantic-interposition mode,
for default visibility external linkage non-ifunc-non-COMDAT definitions.
For such dso_local definitions, variable access/taking the address of a
function/calling a function will go through a local alias to avoid GOT/PLT.
Note: the 'S' inline assembly constraint refers to an absolute symbolic address
or a label reference (D46745).
Differential Revision: https://reviews.llvm.org/D101872
Based off a discussion on D89281 - where the AARCH64 implementations were being replaced to use funnel shifts.
Any target that has efficient funnel shift lowering can handle the shift parts expansion using the same expansion, avoiding a lot of duplication.
I've generalized the X86 implementation and moved it to TargetLowering - so far I've found that AARCH64 and AMDGPU benefit, but many other targets (ARM, PowerPC + RISCV in particular) could easily use this with a few minor improvements to their funnel shift lowering (or the folding of their target ops that funnel shifts lower to).
NOTE: I'm trying to avoid adding full SHIFT_PARTS legalizer handling as I think it might actually be possible to remove these opcodes in the medium-term and use funnel shift / libcall expansion directly.
Differential Revision: https://reviews.llvm.org/D101987
Unfortunately the current call lowering code is built on top of the
legacy MVT/DAG based code. However, GlobalISel was not using it the
same way. In short, the DAG passes legalized types to the assignment
function, and GlobalISel was passing the original raw type if it was
simple.
I do believe the DAG lowering is conceptually broken since it requires
picking a type up front before knowing how/where the value will be
passed. This ends up being a problem for AArch64, which wants to pass
i1/i8/i16 values as a different size if passed on the stack or in
registers.
The argument type decision is split across 3 different places which is
hard to follow. SelectionDAG builder uses
getRegisterTypeForCallingConv to pick a legal type, tablegen gives the
illusion of controlling the type, and the target may have additional
hacks in the C++ part of the call lowering. AArch64 hacks around this
by not using the standard AnalyzeFormalArguments and special casing
i1/i8/i16 by looking at the underlying type of the original IR
argument.
I believe people have generally assumed the calling convention code is
processing the original types, and I've discovered a number of dead
paths in several targets.
x86 actually relies on the opposite behavior from AArch64, and relies
on x86_32 and x86_64 sharing calling convention code where the 64-bit
cases implicitly do not work on x86_32 due to using the pre-legalized
types.
AMDGPU targets without legal i16/f16 have always used a broken ABI
that promotes to i32/f32. GlobalISel accidentally fixed this to be the
ABI we should have, but this fixes it so we're using the worse ABI
that is compatible with the DAG. Ideally we would fix the DAG to match
the old GlobalISel behavior, but I don't wish to fight that battle.
A new native GlobalISel call lowering framework should let the target
process the incoming types directly.
CCValAssigns select a "ValVT" and "LocVT" but the meanings of these
aren't entirely clear. Different targets don't use them consistently,
even within their own call lowering code. My current belief is the
intent was "ValVT" is supposed to be the legalized value type to use
in the end, and and LocVT was supposed to be the ABI passed type
(which is also legalized).
With the default CCState::Analyze functions always passing the same
type for these arguments, these only differ when the TableGen part of
the lowering decide to promote the type from one legal type to
another. AArch64's i1/i8/i16 hack ends up inverting the meanings of
these values, so I had to add an additional hack to let the target
interpret how large the argument memory is.
Since targets don't consistently interpret ValVT and LocVT, this
doesn't produce quite equivalent code to the initial DAG
lowerings. I've opted to consistently interpret LocVT as the in-memory
size for stack passed values, and ValVT as the register type to assign
from that memory. We therefore produce extending loads directly out of
the IRTranslator, whereas the DAG would emit regular loads of smaller
values. This will also produce loads/stores that are wider than the
argument value if the allocated stack slot is larger (and there will
be undef padding bytes). If we had the optimizations to reduce
load/stores based on truncated values, this wouldn't produce a
different end result.
Since ValVT/LocVT are more consistently interpreted, we now will emit
more G_BITCASTS as requested by the CCAssignFn. For example AArch64
was directly assigning types to some physical vector registers which
according to the tablegen spec should have been casted to a vector
with a different element type.
This also moves the responsibility for inserting
G_ASSERT_SEXT/G_ASSERT_ZEXT from the target ValueHandlers into the
generic code, which is closer to how SelectionDAGBuilder works.
I had to xfail an x86 test since I don't see a quick way to fix it
right now (I filed bug 50035 for this). It's broken independently of
this change, and only triggers since now we end up with more ands
which hit the improperly handled selection pattern.
I also observed that FP arguments that need promotion (e.g. f16 passed
as f32) are broken, and use regular G_TRUNC and G_ANYEXT.
TLDR; the current call lowering infrastructure is bad and nobody has
ever understood how it chooses types.
This untangles the MCContext and the MCObjectFileInfo. There is a circular
dependency between MCContext and MCObjectFileInfo. Currently this dependency
also exists during construction: You can't contruct a MOFI without a MCContext
without constructing the MCContext with a dummy version of that MOFI first.
This removes this dependency during construction. In a perfect world,
MCObjectFileInfo wouldn't depend on MCContext at all, but only be stored in the
MCContext, like other MC information. This is future work.
This also shifts/adds more information to the MCContext making it more
available to the different targets. Namely:
- TargetTriple
- ObjectFileType
- SubtargetInfo
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D101462
This patch fixes an issue where a pre-indexed store e.g.,
STR x1, [x0, #24]! with a store like STR x0, [x0, #8] are
merged into a single store: STP x1, x0, [x0, #24]!
. They shouldn’t be merged because the second store uses
x0 as both the stored value and the address and so it needs to be using the updated x0.
Therefore, it should not be folded into a STP <>pre.
Additionally a new test case is added to verify this fix.
Differential Revision: https://reviews.llvm.org/D101888
Change-Id: I26f1985ac84e970961e2cdca23c590fa6773851a
This issue was reported in PR50057: Cannot select:
t10: i64 = AArch64ISD::VSHL t2, Constant:i32<2>
Shift intrinsics (llvm.aarch64.neon.ushl.i64 and sshl) with a constant
shift operand are lowered into AArch64ISD::VSHL in tryCombineShiftImm.
VSHL has i64 and v1i64 patterns for a right shift, but only v1i64 for
a left shift.
This patch adds the missing i64 pattern for AArch64ISD::VSHL, and LIT
tests to cover scalar variants (i64 and v1i64) of all shift
intrinsics (only ushl and sshl cases fail without the patch, others
were just not covered).
Differential Revision: https://reviews.llvm.org/D101580
Specifically, this allow us to rely on the lane zero'ing behaviour of
SVE reduce instructions.
Co-authored-by: Paul Walker <paul.walker@arm.com>
Differential Revision: https://reviews.llvm.org/D101369
In some cases, we can improve the generated code by using a load with
the "wrong" element width: in particular, using ld1b/st1b when we see
reg+reg without a shift.
Differential Revision: https://reviews.llvm.org/D100527
This can come up in rare situations, where a csel is created with
identical operands. These can be folded simply to the original value,
allowing the csel to be removed and further simplification to happen.
This patch also removes FCSEL as it is unused, not being produced
anywhere or lowered to anything.
Differential Revision: https://reviews.llvm.org/D101687
Setting the preffered function alignment to 16 for Cortex A53/A55
improves performance in a wide range of benchmarks. This brings it
in line with the Cortex-A53/A55 tuning that is used in GCC
(gcc/config/aarch64/aarch64.c).
Differential Revision: https://reviews.llvm.org/D101636
Change-Id: I2ce47fe7ab5e3b54f49c89038d8da4e404742de2
Apply the same logic used to check if CMPXCHG nodes should be expanded
at -O0: the register allocator may end up spilling some register in
between the atomic load/store pairs, breaking the atomicity and possibly
stalling the execution.
Fixes PR48017
Reviewed By: efriedman
Differential Revision: https://reviews.llvm.org/D101163
This is a long overdue cleanup. Not every use is eliminated, I stuck to uses
that were directly being called from select(), and not the render functions.
Differential Revision: https://reviews.llvm.org/D101590
These operations don't exist natively, so just let the
target-independent code expand to plain shifts.
The generated sequences could probably be optimized a bit more, but
they seem good enough for now.
Differential Revision: https://reviews.llvm.org/D101574
This patch merges STR<S,D,Q,W,X>pre-STR<S,D,Q,W,X>ui and
LDR<S,D,Q,W,X>pre-LDR<S,D,Q,W,X>ui instruction pairs into a single
STP<S,D,Q,W,X>pre and LDP<S,D,Q,W,X>pre instruction, respectively.
For each pair, there is a MIR test that verifies this optimization.
Differential Revision: https://reviews.llvm.org/D99272
Change-Id: Ie97a20c8c716c08492fe229c22e14e3c98ef08b7
The functionality in SVEIntrinsicOpts::isReinterpretToSVBool was moved in
D101302, however the original now unused function was not removed (NFC).
Differential Revision: https://reviews.llvm.org/D101642
As discussed in D100107, this patch first convert index_vector to
step_vector, and convert step_vector back to index_vector after LegalizeDAG.
Differential Revision: https://reviews.llvm.org/D100816
When creating G_SBFX/G_UBFX opcodes, the last operand is the
width instead of the bit position. The bit position is used
for the AArch64 SBFM and UBFM instructions. The bit position
is converted to a width if the SBFX/UBFX aliases are generated.
For other SBMF/UBFM aliases, such as shifts, the bit position
is used.
Differential Revision: https://reviews.llvm.org/D101543
Added an extra analysis for better choosing of shuffle kind in
getShuffleCost functions for better cost estimation if mask was
provided.
Differential Revision: https://reviews.llvm.org/D100865
Added an extra analysis for better choosing of shuffle kind in
getShuffleCost functions for better cost estimation if mask was
provided.
Differential Revision: https://reviews.llvm.org/D100865
At the intrinsic layer the sve.insr operation takes a scalar. When this
scalar is an integer we are forcing a data transition between GPRs and
ZPRs that is potentially costly.
Often the integer scalar is the result of a vector extract, when
performing a reduction for example. In such cases we should keep all
data within the ZPRs.
Co-authored-by: Paul Walker <paul.walker@arm.com>
Differential Revision: https://reviews.llvm.org/D101169
By converting the SVE intrinsic to a normal LLVM insertelement we give
the code generator a better chance to remove transitions between GPRs
and VPRs
Co-authored-by: Paul Walker <paul.walker@arm.com>
Depends on D101302
Differential Revision: https://reviews.llvm.org/D101167
As part of this the ptrue coalescing done in SVEIntrinsicOpts has been
modified to not introduce redundant converts, since the convert removal
will no longer run after that optimisation to clean up.
Differential Revision: https://reviews.llvm.org/D101302
SelectionDAG has separate ISD opcodes for regular global values and thread-local
global values, while GlobalISel does not.
This combine was ported from SDAG directly without knowing that. As a result,
it was running on TLS globals.
This makes it so that `matchFoldGlobalOffset` doesn't match on TLS globals, and
adds an assert to `selectTLSGlobalValue` to make sure that TLS globals never
have offsets.
Differential Revision: https://reviews.llvm.org/D101478
In terms of readability, the `enum CFIMoveType` didn't better document what it
intends to convey i.e. the type of CFI section that gets emitted.
Reviewed By: dblaikie, MaskRay
Differential Revision: https://reviews.llvm.org/D76519
This reverts commit 0ce723cb22.
D76519 was not quite NFC. If we see a CFISection::Debug function before a
CFISection::EH one (-fexceptions -fno-asynchronous-unwind-tables), we may
incorrectly pick CFISection::Debug and emit a `.cfi_sections .debug_frame`.
We should use .eh_frame instead.
This scenario is untested.
When vectorising for AArch64 targets if you specify the SVE attribute
we automatically then treat masked loads and stores as legal. Also,
since we have no cost model for masked memory ops we believe it's
cheap to use the masked load/store intrinsics even for fixed width
vectors. This can lead to poor code quality as the intrinsics will
currently be scalarised in the backend. This patch adds a basic
cost model that marks fixed-width masked memory ops as significantly
more expensive than for scalable vectors.
Tests for the cost model are added here:
Transforms/LoopVectorize/AArch64/masked-op-cost.ll
Differential Revision: https://reviews.llvm.org/D100745
In terms of readability, the `enum CFIMoveType` didn't better document what it
intends to convey i.e. the type of CFI section that gets emitted.
Reviewed By: dblaikie, MaskRay
Differential Revision: https://reviews.llvm.org/D76519
This is similar to D69796 from the ARM backend. We remove the UseAA
feature, enabling it globally in the AArch64 backend. This should in
general be an improvement allowing the backend to reorder more
instructions in scheduling and codegen, and enabling it by default helps
to improve the testing of the feature, not making it cpu-specific. A
debugging option is added instead for testing.
Differential Revision: https://reviews.llvm.org/D98781
The function AArch64TargetLowering::LowerFixedLengthVectorIntDivideToSVE
previously assumed the operands were full vectors, but this is not
always true. This function would produce bogus if the division operands
are not full vectors, resulting in miscompiles when dividing 8-bit or
16-bit vectors.
The fix is to perform an extend + div + truncate for non-full vectors,
instead of the usual unpacking and unzipping logic. This is an additive
change which reduces the non-full integer vector divisions to a pattern
recognised by the existing lowering logic.
For future reference, an example of code that would miscompile before
this patch is below:
1 int8_t foo(unsigned N, int8_t *a, int8_t *b, int8_t *c) {
2 int8_t result = 0;
3 for (int i = 0; i < N; ++i) {
4 result += (a[i] / b[i]) / c[i];
5 }
6 return result;
7 }
Differential Revision: https://reviews.llvm.org/D100370
EMITBKEY is emitted for PAC-RET+bkey, which is a non machine instructions.
PR: 49957
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D100996
This improves the lowering of v8i16 and v16i8 vector reverse shuffles.
Instead of going via a generic tbl it uses a rev64; ext pair, as already
happens for v4i32.
Differential Revision: https://reviews.llvm.org/D100882
There are no patterns for the AArch64ISD::BSP ISD node for anything
other than NEON vectors at the moment. As a result, if we hit these
combines for vectors wider than a NEON vector (such as what we might get
with fixed length SVE) we will fail to lower.
This patch simply prevents us from attempting the combines if the input
vector type is too wide.
Reviewed By: peterwaller-arm
Differential Revision: https://reviews.llvm.org/D100961
When inspecting the calling convention, for calling windows functions
from a non-windows function, inspect the calling convention of
the called function, not the caller.
Also remove an unnecessary parameter to AArch64CallLowering
OutgoingArgHandler.
Differential Revision: https://reviews.llvm.org/D100890
Each of the cases marked as legal here have an imported pattern in
AArch64GenGlobalISel.inc. So, if we mark them as legal, we get selection for
free.
Technically this is only supposed to happen if we have NEON support. But, we
fall back if we don't have that in the legalizer right now. I suppose it'd be
better to have a FIXME so we can write the testcase when the time comes.
(Plus, it'd just fall back in selection if NEON isn't available, so it's not
*wrong*, I guess?)
This fixes some fallbacks in the test suite.
(Also use `isScalar` from LegalityPredicates.cpp while we're here just to tidy
things a little bit.)
Differential Revision: https://reviews.llvm.org/D100916
This patch changes the lowering of SELECT_CC from Legal to Expand for scalable
vector and adds support for scalable vectors in performSelectCombine.
When selecting the nodes to lower in visitSELECT it checks if it is possible to
use SELECT_CC in cases where SETCC is followed by SELECT. visistSELECT checks
if SELECT_CC is legal or custom to replace SELECT by SELECT_CC.
SELECT_CC used to be legal for scalable vector, so the node changes to
SELECT_CC. This used to crash the compiler as there is no support for SELECT_CC
with scalable vectors. So now the compiler lowers to VSELECT instead of
SELECT_CC.
Differential Revision: https://reviews.llvm.org/D100485
We were missing some instruction costs when converting vectors of
floating point half types into integers, so I've added those here.
I also manually generated assembly code for each FP->int case and
looked at the number of instructions generated, which meant
adjusting some of the existing costs too.
I've updated an existing test to reflect the new costs:
Analysis/CostModel/AArch64/sve-fptoi.ll
Differential Revision: https://reviews.llvm.org/D99935
It used to be that all of our intrinsics were call instructions, but over time, we've added more and more invokable intrinsics. According to the verifier, we're up to 8 right now. As IntrinsicInst is a sub-class of CallInst, this puts us in an awkward spot where the idiomatic means to check for intrinsic has a false negative if the intrinsic is invoked.
This change switches IntrinsicInst from being a sub-class of CallInst to being a subclass of CallBase. This allows invoked intrinsics to be instances of IntrinsicInst, at the cost of requiring a few more casts to CallInst in places where the intrinsic really is known to be a call, not an invoke.
After this lands and has baked for a couple days, planned cleanups:
Make GCStatepointInst a IntrinsicInst subclass.
Merge intrinsic handling in InstCombine and use idiomatic visitIntrinsicInst entry point for InstVisitor.
Do the same in SelectionDAG.
Do the same in FastISEL.
Differential Revision: https://reviews.llvm.org/D99976
Introduced the cost of thre reverse shuffles for AArch64, currently just
copied the costs for PermuteSingleSrc.
Differential Revision: https://reviews.llvm.org/D100871
apple-m1 has the same level of ISA support as apple-a14,
so this is a straightforward mechanical change. However, that
also means this inherits apple-a14's v8.5a+nobti quirkiness.
rdar://68287159
Mark MULHS/MULHU nodes as legal for both scalable and fixed SVE types,
and lower them to the appropriate SVE instructions.
Additionally now that the MULH nodes are legal, integer divides can be
expanded into a more performant code sequence.
Differential Revision: https://reviews.llvm.org/D100487
when the predicate used by last{a,b} specifies a known vector length.
For example:
aarch64_sve_lasta(VL1, D) -> extractelement(D, #1)
aarch64_sve_lastb(VL1, D) -> extractelement(D, #0)
Co-authored-by: Paul Walker <paul.walker@arm.com>
Differential Revision: https://reviews.llvm.org/D100476
Comparisons to zero or one after cset instructions can be safely
removed in examples like:
cset w9, eq cset w9, eq
cmp w9, #1 ---> <removed>
b.ne .L1 b.ne .L1
cset w9, eq cset w9, eq
cmp w9, #0 ---> <removed>
b.ne .L1 b.eq .L1
Peephole optimization to detect suitable cases and get rid of that
comparisons added.
Differential Revision: https://reviews.llvm.org/D98564
This is a partial port of AArch64TargetLowering::LowerCTPOP.
This custom lowering tries to uses NEON instructions to give a more efficient
CTPOP lowering when possible.
In the non-NEON/noimplicitfloat case, this should use the generic lowering
(see: https://godbolt.org/z/GcaPvWe4x). I think that's worth implementing after
implementing the widening code for s16/s8 though.
Differential Revision: https://reviews.llvm.org/D100399
These constraints are machine agnostic; there's no reason to handle
these per-arch. If arches don't support these constraints, then they
will fail elsewhere during instruction selection. We don't need virtual
calls to look these up; TargetLowering::getInlineAsmMemConstraint should
only be overridden by architectures with additional unique memory
constraints.
Reviewed By: echristo, MaskRay
Differential Revision: https://reviews.llvm.org/D100416
It turns out we actually import a bunch of selection code for intrinsics. The
imported code checks that the register banks on the G_INTRINSIC instruction
are correct. If so, it goes ahead and selects it.
This adds code to AArch64RegisterBankInfo to allow us to correctly determine
register banks on intrinsics which have known register bank constraints.
For now, this only handles @llvm.aarch64.neon.uaddlv. This is necessary for
porting AArch64TargetLowering::LowerCTPOP.
Also add a utility for getting the intrinsic ID from a G_INTRINSIC instruction.
This seems a little nicer than having to know about how intrinsic instructions
are structured.
Differential Revision: https://reviews.llvm.org/D100398
When we pass a AArch64 Homogeneous Floating-Point
Aggregate (HFA) argument with increased alignment
requirements, for example
struct S {
__attribute__ ((__aligned__(16))) double v[4];
};
Clang uses `[4 x double]` for the parameter, which is passed
on the stack at alignment 8, whereas it should be at
alignment 16, following Rule C.4 in
AAPCS (https://github.com/ARM-software/abi-aa/blob/master/aapcs64/aapcs64.rst#642parameter-passing-rules)
Currently we don't have a way to express in LLVM IR the
alignment requirements of the function arguments. The align
attribute is applicable to pointers only, and only for some
special ways of passing arguments (e..g byval). When
implementing AAPCS32/AAPCS64, clang resorts to dubious hacks
of coercing to types, which naturally have the needed
alignment. We don't have enough types to cover all the
cases, though.
This patch introduces a new use of the stackalign attribute
to control stack slot alignment, when and if an argument is
passed in memory.
The attribute align is left as an optimizer hint - it still
applies to pointer types only and pertains to the content of
the pointer, whereas the alignment of the pointer itself is
determined by the stackalign attribute.
For byval arguments, the stackalign attribute assumes the
role, previously perfomed by align, falling back to align if
stackalign` is absent.
On the clang side, when passing arguments using the "direct"
style (cf. `ABIArgInfo::Kind`), now we can optionally
specify an alignment, which is emitted as the new
`stackalign` attribute.
Patch by Momchil Velikov and Lucas Prates.
Differential Revision: https://reviews.llvm.org/D98794
With this patch vbslq_f32(vnegq_s32(a), b, c) lowers to a BIT instruction.
Co-authored-by: Paul Walker <paul.walker@arm.com>
Differential Revision: https://reviews.llvm.org/D100304
At the moment, getMemoryOpCost returns 1 for all inputs if CostKind is
CodeSize or SizeAndLatency. This fools LoopUnroll into thinking memory
operations on large vectors have a cost of one, even if they will get
expanded to a large number of memory operations in the backend.
This patch updates getMemoryOpCost to return the cost for the type
legalization for both CodeSize and SizeAndLatency. This should more
accurately reflect the number of memory operations required.
I am not sure how latency should properly be included in SizeAndLatency
from the description, but returning the size cost should be clearly more
accurate.
This does not cause any binary changes when building
MultiSource/SPEC2000/SPEC2006 with -O3 -flto for AArch64, likely because
large vector memops are not really formed by code emitted from Clang.
But using the C/C++ matrix extension can easily result in code with very
large vector operations directly from Clang, e.g.
https://clang.godbolt.org/z/6xzxcTGvb
Reviewed By: samparker
Differential Revision: https://reviews.llvm.org/D100291
On Windows, float arguments are normally passed in float registers
in the calling convention for regular functions. For variable
argument functions, floats are passed in integer registers. This
already was done correctly since many years.
However, the surprising bit was that floats among the fixed arguments
also are supposed to be passed in integer registers, contrary to regular
functions. (This also seems to be the behaviour on ARM though, both
on Windows, but also on e.g. hardfloat linux.)
In the calling convention, don't promote shorter floats to f64, but
convert them to integers of the same length. (Floats passed as part of
the actual variable arguments are promoted to double already on the
C/Clang level; the LLVM vararg calling convention doesn't do any
extra promotion of f32 to f64 - this matches how it works on X86 too.)
Technically, this is an ABI break compared to older LLVM versions,
but it fixes compatibility with the official platform ABI. (In practice,
floats among the fixed arguments in variable argument functions is
a pretty rare construct.)
Differential Revision: https://reviews.llvm.org/D100365
The existing BTI placement pass avoids inserting "BTI c" when the
function has local linkage and is only directly called. However,
even in this case, there is a (small) chance that the linker later
adds a hunk with an indirect call to the function, e.g. if the
function is placed in a separate section and moved far away from
its callers. Make sure to add BTI for these functions too.
Differential Revision: https://reviews.llvm.org/D99417
This fixes breakage on Windows/ARM64 after D94355.
Modelled after the corresponding code for X86; not entirely familiar
with those aspects of that layer otherwise.
Differential Revision: https://reviews.llvm.org/D99572
This reverts commit cca9b5985c.
Buildbot reported an error for CodeGen/AArch64/machine-combiner-fmul-dup.mir:
*** Bad machine code: Virtual register killed in block, but needed live out. ***
- function: indexed_2s
- basic block: %bb.0 entry (0x640fee8)
Virtual register %7 is used after the block.
*** Bad machine code: Virtual register defs don't dominate all uses. ***
- function: indexed_2s
- v. register: %7
LLVM ERROR: Found 2 machine code errors.
This patch adds DUP+FMUL => FMUL_indexed pattern to InstCombiner.
FMUL_indexed is normally selected during instruction selection, but it
does not work in cases when VDUP and VMUL are in different basic
blocks.
Differential Revision: https://reviews.llvm.org/D99662
This patch adds the memory operands for indexed loads so
that certain optimizations can take place.
Differential Revision: https://reviews.llvm.org/D100215/
Change-Id: I539fcf046ca4ad1e7df1d893f57d751419d8364d
Added cost estimation for switch instruction, updated costs of branches, fixed
phi cost.
Had to increase `-amdgpu-unroll-threshold-if` default value since conditional
branch cost (size) was corrected to higher value.
Test renamed to "control-flow.ll".
Removed redundant code in `X86TTIImpl::getCFInstrCost()` and
`PPCTTIImpl::getCFInstrCost()`.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D96805
This adds support for swapping comparison operands when it may introduce new
folding opportunities.
This is roughly the same as the code added to AArch64ISelLowering in
162435e7b5.
For an example of a testcase which exercises this, see
llvm/test/CodeGen/AArch64/swap-compare-operands.ll
(Godbolt for that testcase: https://godbolt.org/z/43WEMb)
The idea behind this is that sometimes, we may be able to fold away, say, a
shift or extend in a compare by swapping its operands.
e.g. in the case of this compare:
```
lsl x8, x0, #1
cmp x8, x1
cset w0, lt
```
The following is equivalent:
```
cmp x1, x0, lsl #1
cset w0, gt
```
Most of the code here is just a reimplementation of what already exists in
AArch64ISelLowering.
(See `getCmpOperandFoldingProfit` and `getAArch64Cmp` for the equivalent code.)
Note that most of the AND code in the testcase doesn't actually fold. It seems
like we're missing selection support for that sort of fold right now, since SDAG
happily folds these away (e.g testSwapCmpWithShiftedZeroExtend8_32 in the
original .ll testcase)
Differential Revision: https://reviews.llvm.org/D89422
When attempting to truncate a FP vector and store the result out
to memory we crashed because we had no pattern for truncating FP
stores. In fact, we don't support these types of stores and the
correct fix is to stop marking these truncating stores as legal.
Tests have been added here:
CodeGen/AArch64/sve-fptrunc-store.ll
Differential Revision: https://reviews.llvm.org/D100025
When using the large code model with FastISel (for example via
clang -O0 which adds the optnone attribute), FP constants could
still be materialized using adrp + ldr. Unconditionally enable
the existing path for MachO to materialize the constant in code.
For testing, restore literal_pools_float.ll to exercise the constant
pool and add two optnone-functions that return a float and a double,
respectively. Consolidate fpimm.ll and add a new fast-isel-fpimm.ll
to check the code paths taken with FastISel.
Differential Revision: https://reviews.llvm.org/D99607
It is generally beneficial to prefer "movi d0, #0" over "fmov s0, wzr" as this
is most efficient across all cores; it is recognised as a zeroing idiom. For
newer cores, fmov instructions can also be eliminated early and there is no
difference with movi, but some implementations lack this so is not true for
other/older cores. Thus this standardises on using movi as this should always
gives the same or better performance than the fmov with wzr.
Differential Revision: https://reviews.llvm.org/D99586
This was using the .2d variant which zeros 128 bits, but using the .2s variant
that zeros 64 bits is faster on some cores.
This is a prep step for D99586 to always using movi for zeroing floats.
Differential Revision: https://reviews.llvm.org/D99710
This is a followup to D98145: As far as I know, tracking of kill
flags in FastISel is just a compile-time optimization. However,
I'm not actually seeing any compile-time regression when removing
the tracking. This probably used to be more important in the past,
before FastRA was switched to allocate instructions in reverse
order, which means that it discovers kills as a matter of course.
As such, the kill tracking doesn't really seem to serve a purpose
anymore, and just adds additional complexity and potential for
errors. This patch removes it entirely. The primary changes are
dropping the hasTrivialKill() method and removing the kill
arguments from the emitFast methods. The rest is mechanical fixup.
Differential Revision: https://reviews.llvm.org/D98294
Change the definition of G_SBFX and G_UBFX so that the lsb and width
can have different types than the src and dst operands.
Differential Revision: https://reviews.llvm.org/D99739
The main part of the patch is the change in RegAllocGreedy.cpp: Q.collectInterferringVregs()
needs to be called before iterating the interfering live ranges.
The rest of the patch offers support that is the case: instead of clearing the query's
InterferingVRegs field, we invalidate it. The clearing happens when the live reg matrix
is invalidated (existing triggering mechanism).
Without the change in RegAllocGreedy.cpp, the compiler ices.
This patch should make it more easily discoverable by developers that
collectInterferringVregs needs to be called before iterating.
I will follow up with a subsequent patch to improve the usability and maintainability of Query.
Differential Revision: https://reviews.llvm.org/D98232
When an SVE function calls another SVE function using the C calling
convention we use the more efficient SVE VectorCall PCS. However,
for the Fast calling convention we're incorrectly falling back to
the generic AArch64 PCS.
This patch adds the same "can use SVE vector calling convention"
detection used by CallingConv::C to CallingConv::Fast.
Co-authored-by: Paul Walker <paul.walker@arm.com>
Differential Revision: https://reviews.llvm.org/D99657