This allows to convert the add instruction to s_addk_i32 and
v_add_nc_u32 instead of needing v_add_co_u32 when converting to a VALU
instruction.
Differential Revision: https://reviews.llvm.org/D103322
Preexisting waitcnt may not update the scoreboard if the instruction
being examined needed to wait on fewer counters than what was encoded in
the old waitcnt instruction. Fixing this results in the elimination of
some redudnat waitcnt.
These changes also enable combining consecutive waitcnt into a single
S_WAITCNT or S_WAITCNT_VSCNT instruction.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D100281
Support for XNACK and SRAMECC is not static on some GPUs. We must be able
to differentiate between different scenarios for these dynamic subtarget
features.
The possible settings are:
- Unsupported: The GPU has no support for XNACK/SRAMECC.
- Any: Preference is unspecified. Use conservative settings that can run anywhere.
- Off: Request support for XNACK/SRAMECC Off
- On: Request support for XNACK/SRAMECC On
GCNSubtarget will track the four options based on the following criteria. If
the subtarget does not support XNACK/SRAMECC we say the setting is
"Unsupported". If no subtarget features for XNACK/SRAMECC are requested we
must support "Any" mode. If the subtarget features XNACK/SRAMECC exist in the
feature string when initializing the subtarget, the settings are "On/Off".
The defaults are updated to be conservatively correct, meaning if no setting
for XNACK or SRAMECC is explicitly requested, defaults will be used which
generate code that can be run anywhere. This corresponds to the "Any" setting.
Differential Revision: https://reviews.llvm.org/D85882
Treat a non-atomic volatile load and store as a relaxed atomic at
system scope for the address spaces accessed. This will ensure all
relevant caches will be bypassed.
A volatile atomic is not changed and still only bypasses caches upto
the level specified by the SyncScope operand.
Differential Revision: https://reviews.llvm.org/D94214
It does not seem to fold offsets but this is not specific
to the flat scratch as getPtrBaseWithConstantOffset() does
not return the split for these tests unlike its SDag
counterpart.
Differential Revision: https://reviews.llvm.org/D93670