This patch fixes PR50823.
The shuffle mask should be twisted twice before gotten the correct one due to the difference between inner HOP and outer.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D104903
If the inner shuffle already contains undef elements, then accept them in the merged shuffle as well.
This helps some X86 HADD/SUB patterns where slow targets were ending up with HADD/SUB because the (un)merged shuffles were stuck either side of the ADD/SUB - meaning we ended up with a total cost much higher than the "2*shuffle+add" that a slow target usually expands a HADD/SUB to.
This patch uses partial DemandedElts masks to further simplify target shuffle chains and finally starts making target shuffle combining part of SimplifyDemandedBits/SimplifyDemandedVectorElts.
We already manage this for Depth == 0 cases, where combineX86ShuffleChain would early-out if the shuffle combined to the same op, but the patch generalizes this by manipulating the depth handling of combineX86ShufflesRecursively - calling with a new Depth = 0 and reducing the maximum shuffle combine depth accordingly.
Differential Revision: https://reviews.llvm.org/D66004
We can now enable this for AVX1 targets can now assist with canonicalizeShuffleMaskWithHorizOp cleanup.
There's still a few missed opportunities for merging subvector insert/extracts into shuffles, but they shouldn't cause any regressions now.
Instead of just attempting to fold shuffle(HOP,HOP) for a specific target shuffle, make this part of combineX86ShufflesRecursively so we can perform this on the combined shuffle chain, which is particularly useful for recognising more cases of where we're performing multiple HOPs that can be merged and pre-AVX where we don't have good blend/unary target shuffle support.
This is beginning to look like a canonicalization stage that could be performed as part of shuffle combining
Another step towards PR41813
Recommit of rG9bd97d036398 with fixed offset adjustments
If a shuffle is referring to both the lower and upper half lanes of an unary horizontal op, then canonicalize the mask to only refer to the lower half.
If the mask input to getV4X86ShuffleImm8 only refers to a single source element (+ undefs) then canonicalize to a full broadcast.
getV4X86ShuffleImm8 defaults to inline values for undefs, which can be useful for shuffle widening/narrowing but does leave SimplifyDemanded* calls thinking the shuffle depends on unnecessary elements.
I'm still investigating what we should do more generally to avoid these undemanded elements, but broadcast cases was a simpler win.
An initial backend patch towards fixing the various poor HADD combines (PR34724, PR41813, PR45747 etc.).
This extends isHorizontalBinOp to check if we have per-element horizontal ops (odd+even element pairs), but not in the expected serial order - in which case we build a "post shuffle mask" that we can apply to the HOP result, assuming we have fast-hops/optsize etc.
The next step will be to extend the SHUFFLE(HOP(X,Y)) combines as suggested on PR41813 - accepting more post-shuffle masks even on slow-hop targets if we can fold it into another shuffle.
Differential Revision: https://reviews.llvm.org/D83789
We had previously limited the shuffle(HORIZOP,HORIZOP) combine to binary shuffles, but we can often merge unary shuffles just as well, folding in UNDEF/ZERO values into the 64-bit half lanes.
For the (P)HADD/HSUB cases this is limited to fast-horizontal cases but PACKSS/PACKUS combines under all cases.
We often widen xmm/ymm vectors to ymm/zmm by insertion into an undef base vector. By letting getTargetShuffleAndZeroables track the undef elts we can help avoid a lot of unnecessary cross-lane shuffles.
Fixes PR44694
Now that we can use HADD/SUB for scalar additions from any pair of extracted elements (D61263), we can relax the one use limit as we will be able to merge multiple uses into using the same HADD/SUB op.
This exposes a couple of missed opportunities in LowerBuildVectorv4x32 which will be committed separately.
Differential Revision: https://reviews.llvm.org/D61782
llvm-svn: 360594
If we only use the lower xmm of a ymm hop, then extract the xmm's (for free), perform the xmm hop and then insert back into a ymm (for free).
Fixes some of the regressions noted in D61782
llvm-svn: 360435
As reported on PR39920, "slow horizontal ops" targets tend to internally expand to 2*shuffle+add/sub - so if we can reduce 2*shuffle+add/sub to a hadd/sub then we should do it - similar port usage but reduced instruction count.
This works out in most cases, although the "PR22377" regression in vector-shuffle-combining.ll is annoying - going from 2*shuffle+add+shuffle to hadd+2*shuffle - I've opened PR41813 to cover this.
Differential Revision: https://reviews.llvm.org/D61308
llvm-svn: 360360
add (extractelt (X, 0), extractelt (X, 1)) --> extractelt (hadd X, X), 0
This is the integer sibling to D56011.
There's an additional restriction to only to do this transform in the
case where we don't have extra extracts from the source vector. Without
that, we can fail to match larger horizontal patterns that are more
beneficial than this minimal case. An improvement to the more general
h-op lowering may allow us to remove the restriction here in a follow-up.
llvm-svn: 351093
Previously, we limited this transform to cases where the
extraction into the build vector happens from vectors of
the same type as the build vector, but that's not required.
There's a slight potential regression seen in the AVX512
result for phadd -- we're using the 256-bit flavor of the
instruction now even though the 128-bit subset is sufficient.
The same problem could already be seen in the AVX2 result.
Follow-up patches will attempt to narrow that back down.
llvm-svn: 350928
This is a partial fix for:
https://bugs.llvm.org/show_bug.cgi?id=40243
...as seen in the integer test, we still need to correct the result when using the
existing (old) horizontal op matching function because it does not model the way
x86 256-bit horizontal ops return results (each 128-bit half is its own horizontal-op).
A potential follow-up change for that is discussed in the bug report - see also D56490.
This generally duplicates a lot of the existing matching code, but we can't just remove
that without introducing regressions, so the existing code is renamed and used less often.
Follow-ups may try to reduce that overlap.
Differential Revision: https://reviews.llvm.org/D56450
llvm-svn: 350826
The 1st try for this was at rL350369, but it caused IR-level diffs because
our cost models differentiate custom vs. legal/promote lowering. So that was
reverted at rL350373. The cost models were fixed independently at rL350403,
so this is effectively the same patch as last time.
Original commit message:
This would show up if we fix horizontal reductions to narrow as they go along,
but it's an improvement for size and/or Jaguar (fast-hops) independent of that.
We need to do this late to not interfere with other pattern matching of larger
horizontal sequences.
We can extend this to integer ops in a follow-up patch.
Differential Revision: https://reviews.llvm.org/D56011
llvm-svn: 350421
This would show up if we fix horizontal reductions to narrow as they go along,
but it's an improvement for size and/or Jaguar (fast-hops) independent of that.
We need to do this late to not interfere with other pattern matching of larger
horizontal sequences.
We can extend this to integer ops in a follow-up patch.
Differential Revision: https://reviews.llvm.org/D56011
llvm-svn: 350369
These are similar patterns, but when you throw AVX512 onto the pile,
the number of variations explodes. For FP, we really don't care about
AVX1 vs. AVX2 for FP ops. There may be some superficial shuffle diffs,
but that's not what we're testing for here, so I removed those RUNs.
Separating by type also lets us specify 'sse3' for the FP file vs. 'ssse3'
for the integer file...because x86.
llvm-svn: 350357
I noticed that we weren't generating broadcasts as much I thought we would with
D54271, and this is part of the problem.
Widening the shuffle elements means adding bitcasts and hiding the relationship
between a splatted scalar and the vector. If we can form a broadcast, do that
before going through the rest of the shuffle lowering because broadcasts should
be cheap and can often be load-folded.
Differential Revision: https://reviews.llvm.org/D54280
llvm-svn: 346498
This is the planned follow-up to D52997. Here we are reducing horizontal vector math codegen
by default. AMD Jaguar (btver2) should have no difference with this patch because it has
fast-hops. (If we want to set that bit for other CPUs, let me know.)
The code changes are small, but there are many test diffs. For files that are specifically
testing for hops, I added RUNs to distinguish fast/slow, so we can see the consequences
side-by-side. For files that are primarily concerned with codegen other than hops, I just
updated the CHECK lines to reflect the new default codegen.
To recap the recent horizontal op story:
1. Before rL343727, we were producing hops for all subtargets for a variety of patterns.
Hops were likely not optimal for all targets though.
2. The IR improvement in r343727 exposed a hole in the backend hop pattern matching, so
we reduced hop codegen for all subtargets. That was bad for Jaguar (PR39195).
3. We restored the hop codegen for all targets with rL344141. Good for Jaguar, but
probably bad for other CPUs.
4. This patch allows us to distinguish when we want to produce hops, so everyone can be
happy. I'm not sure if we have the best predicate here, but the intent is to undo the
extra hop-iness that was enabled by r344141.
Differential Revision: https://reviews.llvm.org/D53095
llvm-svn: 344361
This is intended to restore horizontal codegen to what it looked like before IR demanded elements improved in:
rL343727
As noted in PR39195:
https://bugs.llvm.org/show_bug.cgi?id=39195
...horizontal ops can be worse for performance than a shuffle+regular binop, so I've added a TODO. Ideally, we'd
solve that in a machine instruction pass, but a quicker solution will be adding a 'HasFastHorizontalOp' feature
bit to deal with it here in the DAG.
Differential Revision: https://reviews.llvm.org/D52997
llvm-svn: 344141