This is similar to the select logic just ahead of the new code.
Min/max choose exactly one value from the inputs, so if both of
those are a power-of-2, then the result must be a power-of-2.
This might help with D98152, but we likely still need other
pieces of the puzzle to avoid regressions.
The change in PatternMatch.h is needed to build with clang.
It's possible there is a better way to deal with the 'const'
incompatibities.
Differential Revision: https://reviews.llvm.org/D99276
This select of ctpop with 0 pattern can get left behind after
loop idiom recognize converts a loop to ctpop. LLVM 10 was able
to optimize this, but LLVM 11 and later is not. The difference
seems to be that some select transforms are now limited based
on canCreateUndefOrPoison.
Teaching canCreateUndefOrPoison about ctpop restores the
LLVM 10 codegen.
Differential Revision: https://reviews.llvm.org/D99207
This is an alternative to D98391/D98585, playing things more
conservatively. If AllowRefinement == false, then we don't use
InstSimplify methods at all, and instead explicitly implement a
small number of non-refining folds. Most cases are handled by
constant folding, and I only had to add three folds to cover
our unit tests / test-suite. While this may lose some optimization
power, I think it is safer to approach from this direction, given
how many issues this code has already caused.
Differential Revision: https://reviews.llvm.org/D99027
This is a follow-up to D98588, and fixes the inline `FIXME` about a GEP-related simplification not
preserving the provenance.
https://alive2.llvm.org/ce/z/qbQoAY
Additional tests were added in {rGf125f28afdb59eba29d2491dac0dfc0a7bf1b60b}
Depends on D98672
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D98611
The motivating pattern was handled in 0a2d69480d ,
but we should have this for symmetry.
But this really highlights that we could generalize for
any shifted constant if we match this in instcombine.
https://alive2.llvm.org/ce/z/MrmVNt
Add simplification of smul.fix and smul.fix.sat according to
X * 0 -> 0
X * undef -> 0
X * (1 << scale) -> X
This includes the commuted patterns and splatted vectors.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D98299
Do constant folding according to
posion * C -> poison
C * poison -> poison
undef * C -> 0
C * undef -> 0
for smul_fix and smul_fix_sat intrinsics (for any scale).
Reviewed By: nikic, aqjune, nagisa
Differential Revision: https://reviews.llvm.org/D98410
Return UGT rather than NE for icmp @g, null, which is slightly
stronger. This is consistent with what we do for more complex
folds. It is somewhat silly that @g ugt null does not get folded
while (gep @g) ugt null does.
While @g ugt null is always true (ignoring weak symbols),
@g sgt null is not necessarily the case -- that would imply that
it is forbidden to place globals in the high half of the address
space.
I noticed that we were not folding expressions like this:
icmp ult (constexpr), null
in https://llvm.org/PR49355, so we end up with extremely large
icmp instructions as the constant expressions pile up on each other.
There is no potential to mis-fold an unsigned boundary condition
with a zero/null, so this is just falling through a crack in the
pattern matching.
The more general case of comparisons of non-zero constants and
constexpr are more tricky and may require the datalayout to know
how to cast to different types, etc. Negative tests verify that
we are only changing a subset of potential patterns.
Differential Revision: https://reviews.llvm.org/D98150
Pulled out of the original D90479 patch - also includes the "impossible shift amount" filtering from computeKnownBitsFromShiftOperator.
Differential Revision: https://reviews.llvm.org/D90479
Followup to D72573 - as detailed in https://blog.regehr.org/archives/1709 we don't make use of the known leading/trailing zeros for shifted values in cases where we don't know the shift amount value.
Stop ValueTracking returning zero for poison shift patterns and use the KnownBits shift helpers directly.
Extend KnownBits::shl to combine all possible shifted combinations if both min/max shift amount values are in range.
Differential Revision: https://reviews.llvm.org/D90479
Pulled out from D90479 - this recognises invalid nsw shl patterns with signbit changes that result in poison.
Differential Revision: https://reviews.llvm.org/D97305
This patch adds a new intrinsic experimental.vector.reduce that takes a single
vector and returns a vector of matching type but with the original lane order
reversed. For example:
```
vector.reverse(<A,B,C,D>) ==> <D,C,B,A>
```
The new intrinsic supports fixed and scalable vectors types.
The fixed-width vector relies on shufflevector to maintain existing behaviour.
Scalable vector uses the new ISD node - VECTOR_REVERSE.
This new intrinsic is one of the named shufflevector intrinsics proposed on the
mailing-list in the RFC at [1].
Patch by Paul Walker (@paulwalker-arm).
[1] https://lists.llvm.org/pipermail/llvm-dev/2020-November/146864.html
Differential Revision: https://reviews.llvm.org/D94883
This is a follow-up of D95238's LangRef update.
This patch updates `programUndefinedIfUndefOrPoison(V)` to return true if
`V` is used by any memory-accessing instruction.
Interestingly, this affected many tests in Attributors, mainly about adding noundefs.
The tests are updated using llvm/utils/update_test_checks.py. I checked that the diffs
are about updating noundefs.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D96642
With the addition of the `willreturn` attribute, functions that may
not return (e.g. due to an infinite loop) are well defined, if they are
not marked as `willreturn`.
This patch updates `wouldInstructionBeTriviallyDead` to not consider
calls that may not return as dead.
This patch still provides an escape hatch for intrinsics, which are
still assumed as willreturn unconditionally. It will be removed once
all intrinsics definitions have been reviewed and updated.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D94106
We can fold x*C1/C2 <= x to true if C1 <= C2. This is valid even
if the multiplication is not nuw: https://alive2.llvm.org/ce/z/vULors
The multiplication or division can be replaced by shifts. We don't
handle the case where both are shifts, as that should get folded
away by InstCombine.
This is a partial fix for https://bugs.llvm.org/show_bug.cgi?id=44403.
Folding gep p, q-p to q is only legal if p and q have the same
provenance. This fold should probably be guarded by something like
getUnderlyingObject(p) == getUnderlyingObject(q).
This patch is a partial fix that removes the special handling for
gep p, 0-p, which will fold to a null pointer, which would certainly
not pass an underlying object check (unless p is also null, in which
case this would fold trivially anyway). Folding to a null pointer
is particularly problematic due to the special handling it receives
in many places, making end-to-end miscompiles more likely.
Differential Revision: https://reviews.llvm.org/D93820
Similar to the Arm VCTP intrinsics, if the operands of an
active.lane.mask are both known, the constant lane mask can be
calculated. This can come up after unrolling the loops.
Differential Revision: https://reviews.llvm.org/D94103
Calling null or undef results in immediate undefined behavior.
Return poison instead of undef in this case, similar to what
we do for immediate UB due to division by zero.
Make InstSimplify return poison rather than undef for out-of-bounds
shifts, as specified by LandRef:
> If op2 is (statically or dynamically) equal to or larger than the
> number of bits in op1, this instruction returns a poison value.
Differential Revision: https://reviews.llvm.org/D93998
As the comment already indicates, performing an operation with
nnan/ninf flags on a nan/inf or undef results in poison. Now that
we have a proper poison value, we no longer need to relax it to
undef.
Div/rem by zero is immediate undefined behavior and anything goes.
Currently we fold it to undef, this patch changes it to fold to
poison instead, which is slightly stronger.
Differential Revision: https://reviews.llvm.org/D93995
This is the same change as D93990, but for extractelement rather
than insertelement.
> If idx exceeds the length of val for a fixed-length vector, the
> result is a poison value. For a scalable vector, if the value of
> idx exceeds the runtime length of the vector, the result is a
> poison value.
This is a simple patch that updates InstSimplify to return poison if the index is/can be out-of-bounds
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D93990
This commit copies existing tests at llvm/Transforms containing
'shufflevector X, undef' and replaces them with 'shufflevector X, poison'.
The new copied tests have *-inseltpoison.ll suffix at its file name
(as db7a2f347f did)
See https://reviews.llvm.org/D93793
Test files listed using
grep -R -E "^[^;]*shufflevector <.*> .*, <.*> undef" | cut -d":" -f1 | uniq
Test files copied & updated using
file_org=llvm/test/Transforms/$1
if [[ "$file_org" = *-inseltpoison.ll ]]; then
file=$file_org
else
file=${file_org%.ll}-inseltpoison.ll
if [ ! -f $file ]; then
cp $file_org $file
fi
fi
sed -i -E 's/^([^;]*)shufflevector <(.*)> (.*), <(.*)> undef/\1shufflevector <\2> \3, <\4> poison/g' $file
head -1 $file | grep "Assertions have been autogenerated by utils/update_test_checks.py" -q
if [ "$?" == 1 ]; then
echo "$file : should be manually updated"
# The test is manually updated
exit 1
fi
python3 ./llvm/utils/update_test_checks.py --opt-binary=./build-releaseassert/bin/opt $file
This commit copies existing tests at llvm/Transforms and replaces
'insertelement undef' in those files with 'insertelement poison'.
(see https://reviews.llvm.org/D93586)
Tests listed using this script:
grep -R -E '^[^;]*insertelement <.*> undef,' . | cut -d":" -f1 | uniq |
wc -l
Tests updated:
file_org=llvm/test/Transforms/$1
file=${file_org%.ll}-inseltpoison.ll
cp $file_org $file
sed -i -E 's/^([^;]*)insertelement <(.*)> undef/\1insertelement <\2> poison/g' $file
head -1 $file | grep "Assertions have been autogenerated by utils/update_test_checks.py" -q
if [ "$?" == 1 ]; then
echo "$file : should be manually updated"
# I manually updated the script
exit 1
fi
python3 ./llvm/utils/update_test_checks.py --opt-binary=./build-releaseassert/bin/opt $file
The transform wasn't checking that the LHS of the comparison
*is* the `X` in question...
This is the miscompile that was holding up D87188.
Thanks to Dave Green for producing an actionable reproducer!
.. because it causes miscompilation when combined with select i1 -> and/or.
It is the select fold which is incorrect; but it is costly to disable the fold, so hack this one.
D92270
Folding a select of vector constants that include undef elements only
applies to fixed vectors, but there's no earlier check the type is not
scalable so it crashes for scalable vectors. This adds a check so this
optimization is only attempted for fixed vectors.
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D92046
This should be a perfectly reasonable operation for scalable vectors.
Currently, it only works for zeroinitializer values of
ScalableVectorType, but the fundamental operation is sound and it should
be possible to make it work for other splats
Reviewed By: david-arm
Differential Revision: https://reviews.llvm.org/D77442
This extends D78430 to solve cases like:
https://llvm.org/PR47858
There are still missed opportunities shown in the tests,
and as noted in the earlier patches, we have related
functionality in InstCombine, so we may want to extend
other folds in a similar way.
A semi-random sampling of test diff proofs in this patch:
https://rise4fun.com/Alive/sS4C
As discussed in D89952,
instcombine can sometimes find a way to reduce similar patterns,
but it is incomplete.
InstSimplify uses the computeConstantRange() ValueTracking analysis
via simplifyICmpWithConstant(), so we just need to fill in the max
value of cttz to process any "icmp pred cttz(X), C" pattern (the
min value is initialized to zero automatically).
https://alive2.llvm.org/ce/z/Z_SLWZ
Follow-up to D89976.
As discussed in D89952,
instcombine can sometimes find a way to reduce similar patterns,
but it is incomplete.
InstSimplify uses the computeConstantRange() ValueTracking analysis
via simplifyICmpWithConstant(), so we just need to fill in the max
value of ctlz to process any "icmp pred ctlz(X), C" pattern (the
min value is initialized to zero automatically).
Follow-up to D89976.
As discussed in D89952,
instcombine can sometimes find a way to reduce similar patterns,
but it is incomplete.
InstSimplify uses the computeConstantRange() ValueTracking analysis
via simplifyICmpWithConstant(), so we just need to fill in the max
value of ctpop to process any "icmp pred ctpop(X), C" pattern (the
min value is initialized to zero automatically).
Differential Revision: https://reviews.llvm.org/D89976
This improves simplifications for pattern `icmp (X+Y), (X+Z)` -> `icmp Y,Z`
if only one of the operands has NSW set, e.g.:
icmp slt (x + 0), (x +nsw 1)
We can still safely rewrite this to:
icmp slt 0, 1
because we know that the LHS can't overflow if the RHS has NSW set and
C1 < C2 && C1 >= 0, or C2 < C1 && C1 <= 0
This simplification is useful because ScalarEvolutionExpander which is used to
generate code for SCEVs in different loop optimisers is not always able to put
back NSW flags across control-flow, thus inhibiting CFG simplifications.
Differential Revision: https://reviews.llvm.org/D89317
This patch adds metadata !noundef and makes load instructions can optionally have it.
A load with !noundef always return a well-defined value (has no undef bit or isn't poison).
If the loaded value isn't well defined, the behavior is undefined.
This metadata can be used to encode the assumption from C/C++ that certain reads of variables should have well-defined values.
It is helpful for optimizing freeze instructions away, because freeze can be removed when its operand has well-defined value, and showing that a load from arbitrary location is well-defined is usually hard otherwise.
The same information can be encoded with llvm.assume with operand bundle; using metadata is chosen because I wasn't sure whether code motion can be freely done when llvm.assume is inserted from clang instead.
The existing codebase already is stripping unknown metadata when doing code motion, so using metadata is UB-safe as well.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D89050
This is an alternate fix (see D87835) for a bug where a NaN constant
gets wrongly transformed into Infinity via truncation.
In this patch, we uniformly convert any SNaN to QNaN while raising
'invalid op'.
But we don't have a way to directly specify a 32-bit SNaN value in LLVM IR,
so those are always encoded/decoded by calling convert from/to 64-bit hex.
See D88664 for a clang fix needed to allow this change.
Differential Revision: https://reviews.llvm.org/D88238
As discussed in D87877, instcombine already has this fold,
but it was missing from the more general ValueTracking logic.
https://alive2.llvm.org/ce/z/PumYZP
We shift the significand right on a truncation, but that needs to be made NaN-safe:
always set at least 1 bit in the significand.
https://llvm.org/PR43907
See D88238 for the likely follow-up (but needs some plumbing fixes before it can proceed).
Differential Revision: https://reviews.llvm.org/D87835
-debug-pass is a legacy PM only option.
Some tests checks that the pass returned that it made a change,
which is not relevant to the NPM, since passes return PreservedAnalyses.
Some tests check that passes are freed at the proper time, which is also
not relevant to the NPM.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D87945
This pass is like DeadCodeEliminationPass, but only does one pass
through a function instead of iterating on users of eliminated
instructions.
DeadCodeEliminationPass should be used in all cases.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D87933
The output here may not be optimal (yet), but it should be
consistent for commuted operands (it was not before) and
correct. We can do better by checking FMF and NaN if needed.
Code in InstSimplify generally assumes that we have already
folded code like this, so it was not handling 2 constant
inputs by commuting consistently.