This patch adds a new option to the LoopVectorizer to control how
scalable vectors can be used.
Initially, this suggests three levels to control scalable
vectorization, although other more aggressive options can be added in
the future.
The possible options are:
- Disabled: Disables vectorization with scalable vectors.
- Enabled: Vectorize loops using scalable vectors or fixed-width
vectors, but favors fixed-width vectors when the cost
is a tie.
- Preferred: Like 'Enabled', but favoring scalable vectors when the
cost-model is inconclusive.
Reviewed By: paulwalker-arm, vkmr
Differential Revision: https://reviews.llvm.org/D101945
This marks FSIN and other operations to EXPAND for scalable
vectors, so that they are not assumed to be legal by the cost-model.
Depends on D97470
Reviewed By: dmgreen, paulwalker-arm
Differential Revision: https://reviews.llvm.org/D97471
As a followup to D95291, getOperandsScalarizationOverhead was still
using a VF as a vector factor if the arguments were scalar, and would
assert on certain matrix intrinsics with differently sized vector
arguments. This patch removes the VF arg, instead passing the Types
through directly. This should allow it to more accurately compute the
cost without having to guess at which operands will be vectorized,
something difficult with more complex intrinsics.
This adjusts one SVE test as it is now calling the wrong intrinsic vs
veccall. Without invalid InstructCosts the cost of the scalarized
intrinsic is too low. This should get fixed when the cost of
scalarization is accounted for with scalable types.
Differential Revision: https://reviews.llvm.org/D96287
Changes `getScalarizationOverhead` to return an invalid cost for scalable VFs
and adds some simple tests for loops containing a function for which
there is a vectorized variant available.
Reviewed By: david-arm
Differential Revision: https://reviews.llvm.org/D96356