Commit Graph

234 Commits

Author SHA1 Message Date
Craig Topper e6c7a3a54f [SelectionDAG] Don't apply MinRCSize constraint in InstrEmitter::AddRegisterOperand for IMPLICIT_DEF sources.
MinRCSize is 4 and prevents constrainRegClass from changing the
register class if the new class has size less than 4.

IMPLICIT_DEF gets a unique vreg for each use and will be removed
by the ProcessImplicitDef pass before register allocation. I don't
think there is any reason to prevent constraining the virtual register
to whatever register class the use needs.

The attached test case was previously creating a copy of IMPLICIT_DEF
because vrm8nov0 has 3 registers in it.

Reviewed By: arsenm

Differential Revision: https://reviews.llvm.org/D128005
2022-06-16 14:55:14 -07:00
Jeremy Morse fb6596f1ec [DebugInfo][InstrRef] Avoid a crash from mixed variable location modes
Variable locations now come in two modes, instruction referencing and
DBG_VALUE. At -O0 we pick DBG_VALUE to allow fast construction of variable
information. Unfortunately, SelectionDAG edits the optimisation level in
the presence of opt-bisect-limit, meaning different passes have different
views of what variable location mode we should use. That causes assertions
when they're mixed.

This patch plumbs through a boolean in SelectionDAG from start to
instruction emission, so that we don't rely on the current optimisation
level for correctness.

Differential Revision: https://reviews.llvm.org/D123033
2022-04-06 11:55:38 +01:00
serge-sans-paille ed98c1b376 Cleanup includes: DebugInfo & CodeGen
Discourse thread: https://discourse.llvm.org/t/include-what-you-use-include-cleanup
Differential Revision: https://reviews.llvm.org/D121332
2022-03-12 17:26:40 +01:00
serge-sans-paille ffe8720aa0 Reduce dependencies on llvm/BinaryFormat/Dwarf.h
This header is very large (3M Lines once expended) and was included in location
where dwarf-specific information were not needed.

More specifically, this commit suppresses the dependencies on
llvm/BinaryFormat/Dwarf.h in two headers: llvm/IR/IRBuilder.h and
llvm/IR/DebugInfoMetadata.h. As these headers (esp. the former) are widely used,
this has a decent impact on number of preprocessed lines generated during
compilation of LLVM, as showcased below.

This is achieved by moving some definitions back to the .cpp file, no
performance impact implied[0].

As a consequence of that patch, downstream user may need to manually some extra
files:

llvm/IR/IRBuilder.h no longer includes llvm/BinaryFormat/Dwarf.h
llvm/IR/DebugInfoMetadata.h no longer includes llvm/BinaryFormat/Dwarf.h

In some situations, codes maybe relying on the fact that
llvm/BinaryFormat/Dwarf.h was including llvm/ADT/Triple.h, this hidden
dependency now needs to be explicit.

$ clang++ -E  -Iinclude -I../llvm/include ../llvm/lib/Transforms/Scalar/*.cpp -std=c++14 -fno-rtti -fno-exceptions | wc -l
after:   10978519
before:  11245451

Related Discourse thread: https://llvm.discourse.group/t/include-what-you-use-include-cleanup
[0] https://llvm-compile-time-tracker.com/compare.php?from=fa7145dfbf94cb93b1c3e610582c495cb806569b&to=995d3e326ee1d9489145e20762c65465a9caeab4&stat=instructions

Differential Revision: https://reviews.llvm.org/D118781
2022-02-04 11:44:03 +01:00
Jeremy Morse a20987adf4 [DebugInfo][InstrRef] Add indirection from dbg.declare in SelectionDAG
Usually dbg.declares get translated into either entries in an MF
side-table, or a DBG_VALUE on entry to the function with IsIndirect set
(including in instruction referencing mode). Much rarer is a dbg.declare
attached to a non-argument value, such as in the test added in this patch
where there's a variable-length-array. Such dbg.declares become SDDbgValue
nodes with InIndirect=true.

As it happens, we weren't correctly emitting DBG_INSTR_REFs with the
additional indirection. This patch adds the extra indirection, encoded as
adding an additional DW_OP_deref to the expression.

Differential Revision: https://reviews.llvm.org/D114440
2021-11-29 22:24:19 +00:00
Jack Andersen bd4dad87f4 [MachineInstr] Move MIParser's DBG_VALUE RegState::Debug invariant into MachineInstr::addOperand
Based on the reasoning of D53903, register operands of DBG_VALUE are
invariably treated as RegState::Debug operands. This change enforces
this invariant as part of MachineInstr::addOperand so that all passes
emit this flag consistently.

RegState::Debug is inconsistently set on DBG_VALUE registers throughout
LLVM. This runs the risk of a filtering iterator like
MachineRegisterInfo::reg_nodbg_iterator to process these operands
erroneously when not parsed from MIR sources.

This issue was observed in the development of the llvm-mos fork which
adds a backend that relies on physical register operands much more than
existing targets. Physical RegUnit 0 has the same numeric encoding as
$noreg (indicating an undef for DBG_VALUE). Allowing debug operands into
the machine scheduler correlates $noreg with RegUnit 0 (i.e. a collision
of register numbers with different zero semantics). Eventually, this
causes an assert where DBG_VALUE instructions are prohibited from
participating in live register ranges.

Reviewed By: MatzeB, StephenTozer

Differential Revision: https://reviews.llvm.org/D110105
2021-10-07 16:08:52 +01:00
Jeremy Morse 0116ed0069 [DebugInfo][InstrRef] Don't use instr-ref for unoptimised functions
InstrRefBasedLDV is marginally slower than VarlocBasedLDV when analysing
optimised code -- however, it's much slower when analysing code compiled
-O0.

To avoid this: don't use instruction referencing for -O0 functions. In the
"pure" case of unoptimised code, this won't really harm the debugging
experience because most variables won't have been promoted off the stack,
so can't go missing. It becomes more complicated when optimised code is
inlined into functions marked optnone; however these are rare, and as -O0
doesn't run many optimisations there should be little damage to the debug
experience as a result.

I've taken the opportunity to refactor testing for instruction-referencing
into a MachineFunction method, which seems the most appropriate place to
put it.

Differential Revision: https://reviews.llvm.org/D108585
2021-08-25 15:10:36 +01:00
Paul Robinson 75aa3d520d Add a DIExpression const-folder to prevent silly expressions.
It's entirely possible (because it actually happened) for a bool
variable to end up with a 256-bit DW_AT_const_value.  This came about
when a local bool variable was initialized from a bitfield in a
32-byte struct of bitfields, and after inlining and constant
propagation, the variable did have a constant value. The sequence of
optimizations had it carrying "i256" values around, but once the
constant made it into the llvm.dbg.value, no further IR changes could
affect it.

Technically the llvm.dbg.value did have a DIExpression to reduce it
back down to 8 bits, but the compiler is in no way ready to emit an
oversized constant *and* a DWARF expression to manipulate it.
Depending on the circumstances, we had either just the very fat bool
value, or an expression with no starting value.

The sequence of optimizations that led to this state did seem pretty
reasonable, so the solution I came up with was to invent a DWARF
constant expression folder.  Currently it only does convert ops, but
there's no reason it couldn't do other ops if that became useful.

This broke three tests that depended on having convert ops survive
into the DWARF, so I added an operator that would abort the folder to
each of those tests.

Differential Revision: https://reviews.llvm.org/D106915
2021-08-05 06:14:40 -07:00
Jeremy Morse 2b2ffb7bdc [DebugInfo][InstrRef][3/4] Produce DBG_INSTR_REFs for all variable locations
This patch emits DBG_INSTR_REFs for two remaining flavours of variable
locations that weren't supported: copies, and inter-block VRegs. There are
still some locations that must be represented by DBG_VALUE such as
constants, but they're mostly independent of optimisations.

For variable locations that refer to values defined in different blocks,
vregs are allocated before isel begins, but the defining instruction
might not exist until late in isel. To get around this, emit
DBG_INSTR_REFs in a "half done" state, where the first operand refers to a
VReg. Then at the end of isel, patch these back up to refer to
instructions, using the finalizeDebugInstrRefs method.

Copies are something that I complained about the original RFC, and I
really don't want to have to put instruction numbers on copies. They don't
define a value: they move them. To address this isel, salvageCopySSA
interprets:
 * COPYs,
 * SUBREG_TO_REG,
 * Anything that isCopyInstr thinks is a copy.
And follows chains of copies back to the defining instruction that they
read from. This relies on any physical registers that COPYs read being
defined in the same block, or being entry-block arguments. For the former
we can put an instruction number on the defining instruction; for the
latter we can drop a DBG_PHI that reads the incoming value.

Differential Revision: https://reviews.llvm.org/D88896
2021-07-06 18:31:38 +01:00
Simon Pilgrim 114e712c34 InstrEmitter.cpp - don't dereference a dyn_cast<>.
dyn_cast<> can return nullptr which we would then dereference - use cast<> which will assert that the type is correct.
2021-06-08 17:59:04 +01:00
Jonas Paulsson d058262b14 [SystemZ] Support i128 inline asm operands.
Support virtual, physical and tied i128 register operands in inline assembly.

i128 is on SystemZ not really supported and is not a legal type and generally
such a value will be split into two i64 parts. There are however some
instructions that require a pair of two GPR64 registers contained in the GR128
bit reg class, which is untyped.

For inline assmebly operands, it proved to be very cumbersome to first follow
the general behavior of splitting an i128 operand into two parts and then
later rebuild the INLINEASM MI to have one GR128 register. Instead, some
minor common code changes were made to SelectionDAGBUilder to only create one
GR128 register part to begin with. In particular:

- getNumRegisters() now has an optional parameter "RegisterVT" which is
  passed by AddInlineAsmOperands() and GetRegistersForValue().

- The bitcasting in GetRegistersForValue is not performed if RegVT is
  Untyped.

- The RC for a tied use in AddInlineAsmOperands() is now computed either from
  the tied def (virtual register), or by getMinimalPhysRegClass() (physical
  register).

- InstrEmitter.cpp:EmitCopyFromReg() has been fixed so that the register
  class (DstRC) can also be computed for an illegal type.

In the SystemZ backend getNumRegisters(), splitValueIntoRegisterParts() and
joinRegisterPartsIntoValue() have been implemented to handle i128 operands.

Differential Revision: https://reviews.llvm.org/D100788

Review: Ulrich Weigand
2021-05-26 10:08:32 -05:00
gbtozers 5491a86f59 [DebugInfo] Emit DBG_VALUE_LIST from ISel
This patch completes ISel support for DIArgList dbg.values by allowing
SDDbgValues with multiple location operands to be emitted as DBG_VALUE_LIST
instructions.

The primary change of this patch is refactoring EmitDbgValue by pulling location
operand emission out to the new function AddDbgValueLocationOps, which is used
for both DIArgList and single value dbg.values. Outside of that, the only
behaviour change is that the scheduler has a lambda added, HasUnknownVReg, to
prevent us from attempting to emit a DBG_VALUE_LIST before all of its used VRegs
have become available.

Differential Revision: https://reviews.llvm.org/D88592
2021-03-09 12:17:39 +00:00
gbtozers 9525af7b91 [DebugInfo] Support representation of multiple location operands in SDDbgValue
This patch modifies the class that represents debug values during ISel,
SDDbgValue, to support multiple location operands (to represent a dbg.value that
uses a DIArgList). Part of this class's functionality has been split off into a
new class, SDDbgOperand.

The new class SDDbgOperand represents a single value, corresponding to an SSA
value or MachineOperand in the IR and MIR respectively. Members of SDDbgValue
that were previously related to that specific value (as opposed to the
variable or DIExpression), such as the Kind enum, have been moved to
SDDbgOperand. SDDbgValue now contains an array of SDDbgOperand instead, allowing
it to hold more than one of these values.

All changes outside SDDbgValue are simply updates to use the new interface.

Differential Revision: https://reviews.llvm.org/D88585
2021-03-08 18:45:17 +00:00
Hongtao Yu 24d4291ca7 [CSSPGO] Pseudo probes for function calls.
An indirect call site needs to be probed for its potential call targets. With CSSPGO a direct call also needs a probe so that a calling context can be represented by a stack of callsite probes. Unlike pseudo probes for basic blocks that are in form of standalone intrinsic call instructions, pseudo probes for callsites have to be attached to the call instruction, thus a separate instruction would not work.

One possible way of attaching a probe to a call instruction is to use a special metadata that carries information about the probe. The special metadata will have to make its way through the optimization pipeline down to object emission. This requires additional efforts to maintain the metadata in various places. Given that the `!dbg` metadata is a first-class metadata and has all essential support in place , leveraging the `!dbg` metadata as a channel to encode pseudo probe information is probably the easiest solution.

With the requirement of not inflating `!dbg` metadata that is allocated for almost every instruction, we found that the 32-bit DWARF discriminator field which mainly serves AutoFDO can be reused for pseudo probes. DWARF discriminators distinguish identical source locations between instructions and with pseudo probes such support is not required. In this change we are using the discriminator field to encode the ID and type of a callsite probe and the encoded value will be unpacked and consumed right before object emission. When a callsite is inlined, the callsite discriminator field will go with the inlined instructions. The `!dbg` metadata of an inlined instruction is in form of a scope stack. The top of the stack is the instruction's original `!dbg` metadata and the bottom of the stack is for the original callsite of the top-level inliner. Except for the top of the stack, all other elements of the stack actually refer to the nested inlined callsites whose discriminator field (which actually represents a calliste probe) can be used together to represent the inline context of an inlined PseudoProbeInst or CallInst.

To avoid collision with the baseline AutoFDO in various places that handles dwarf discriminators where a check against  the `-pseudo-probe-for-profiling` switch is not available, a special encoding scheme is used to tell apart a pseudo probe discriminator from a regular discriminator. For the regular discriminator, if all lowest 3 bits are non-zero, it means the discriminator is basically empty and all higher 29 bits can be reversed for pseudo probe use.

Callsite pseudo probes are inserted in `SampleProfileProbePass` and a target-independent MIR pass `PseudoProbeInserter` is added to unpack the probe ID/type from `!dbg`.

Note that with this work the switch -debug-info-for-profiling will not work with -pseudo-probe-for-profiling anymore. They cannot be used at the same time.

Reviewed By: wmi

Differential Revision: https://reviews.llvm.org/D91756
2020-12-02 13:45:20 -08:00
Hongtao Yu d0e42037bf [CSSPGO] MIR target-independent pseudo instruction for pseudo-probe intrinsic
This change introduces a MIR target-independent pseudo instruction corresponding to the IR intrinsic llvm.pseudoprobe for pseudo-probe block instrumentation. Please refer to https://reviews.llvm.org/D86193 for the whole story.

An `llvm.pseudoprobe` intrinsic call will be lowered into a target-independent operation named `PSEUDO_PROBE`. Given the following instrumented IR,

```
define internal void @foo2(i32 %x, void (i32)* %f) !dbg !4 {
bb0:
   %cmp = icmp eq i32 %x, 0
   call void @llvm.pseudoprobe(i64 837061429793323041, i64 1)
   br i1 %cmp, label %bb1, label %bb2
bb1:
   call void @llvm.pseudoprobe(i64 837061429793323041, i64 2)
   br label %bb3
bb2:
   call void @llvm.pseudoprobe(i64 837061429793323041, i64 3)
   br label %bb3
bb3:
   call void @llvm.pseudoprobe(i64 837061429793323041, i64 4)
   ret void
}
```
the corresponding MIR is shown below. Note that block `bb3` is duplicated into `bb1` and `bb2` where its probe is duplicated too. This allows for an accurate execution count to be collected for `bb3`, which is basically the sum of the counts of `bb1` and `bb2`.

```
bb.0.bb0:
   frame-setup PUSH64r undef $rax, implicit-def $rsp, implicit $rsp
   TEST32rr killed renamable $edi, renamable $edi, implicit-def $eflags
   PSEUDO_PROBE 837061429793323041, 1, 0
   $edi = MOV32ri 1, debug-location !13; test.c:0
   JCC_1 %bb.1, 4, implicit $eflags

bb.2.bb2:
   PSEUDO_PROBE 837061429793323041, 3, 0
   PSEUDO_PROBE 837061429793323041, 4, 0
   $rax = frame-destroy POP64r implicit-def $rsp, implicit $rsp
   RETQ

bb.1.bb1:
   PSEUDO_PROBE 837061429793323041, 2, 0
   PSEUDO_PROBE 837061429793323041, 4, 0
   $rax = frame-destroy POP64r implicit-def $rsp, implicit $rsp
   RETQ
```

The target op PSEUDO_PROBE will be converted into a piece of binary data by the object emitter with no machine instructions generated. This is done in a different patch.

Reviewed By: wmi

Differential Revision: https://reviews.llvm.org/D86495
2020-11-20 10:52:43 -08:00
Jeremy Morse c4e7857d4e [DebugInstrRef] Create DBG_INSTR_REFs in SelectionDAG
When given the -experimental-debug-variable-locations option (via -Xclang
or to llc), have SelectionDAG generate DBG_INSTR_REF instructions instead
of DBG_VALUE. For now, this only happens in a limited circumstance: when
the value referred to is not a PHI and is defined in the current block.
Other situations introduce interesting problems, addresed in later patches.

Practically, this patch hooks into InstrEmitter and if it can find a
defining instruction for a value, gives it an instruction number, and
points the DBG_INSTR_REF at that <instr, operand> pair.

Differential Revision: https://reviews.llvm.org/D85747
2020-10-14 14:24:08 +01:00
Denis Antrushin c08d48fc2d [Statepoints] Change statepoint machine instr format to better suit VReg lowering.
Current Statepoint MI format is this:

   STATEPOINT
   <id>, <num patch bytes >, <num call arguments>, <call target>,
   [call arguments...],
   <StackMaps::ConstantOp>, <calling convention>,
   <StackMaps::ConstantOp>, <statepoint flags>,
   <StackMaps::ConstantOp>, <num deopt args>, [deopt args...],
   <gc base/derived pairs...> <gc allocas...>

Note that GC pointers are listed in pairs <base,derived>.
This causes base pointers to appear many times (at least twice) in
instruction, which is bad for us when VReg lowering is ON.
The problem is that machine operand tiedness is 1-1 relation, so
it might look like this:

  %vr2 = STATEPOINT ... %vr1, %vr1(tied-def0)

Since only one instance of %vr1 is tied, that may lead to incorrect
codegen (see PR46917 for more details), so we have to always spill
base pointers. This mostly defeats new VReg lowering scheme.

This patch changes statepoint instruction format so that every
gc pointer appears only once in operand list. That way they all can
be tied. Additional set of operands is added to preserve base-derived
relation required to build stackmap.
New statepoint has following format:

  STATEPOINT
  <id>, <num patch bytes>, <num call arguments>, <call target>,
  [call arguments...],
  <StackMaps::ConstantOp>, <calling convention>,
  <StackMaps::ConstantOp>, <statepoint flags>,
  <StackMaps::ConstantOp>, <num deopt args>, [deopt args...],
  <StackMaps::ConstantOp>, <num gc pointers>, [gc pointers...],
  <StackMaps::ConstantOp>, <num gc allocas>,  [gc allocas...]
  <StackMaps::ConstantOp>, <num entries in gc map>, [base/derived indices...]

Changes are:
  - every gc pointer is listed only once in a flat length-prefixed list;
  - alloca list is prefixed with its length too;
  - following alloca list is length-prefixed list of base-derived
    indices of pointers from gc pointer list. Note that indices are
    logical (number of pointer), not absolute (index of machine operand).

Differential Revision: https://reviews.llvm.org/D87154
2020-10-06 17:40:29 +07:00
Denis Antrushin 2a52c3301a [Statepoints] Properly handle const base pointer.
Current code in InstEmitter assumes all GC pointers are either
VRegs or stack slots - hence, taking only one operand.
But it is possible to have constant base, in which case it
occupies two machine operands.

Add a convinience function to StackMaps to get index of next
meta argument and use it in InsrEmitter to properly advance to
the next statepoint meta operand.

Reviewed By: reames

Differential Revision: https://reviews.llvm.org/D87252
2020-09-09 14:07:00 +07:00
Philip Reames 3da1a9634e [Statepoints] Support lowering gc relocations to virtual registers
(Disabled under flag for the moment)

This is part of a larger project wherein we are finally integrating lowering of gc live operands with the register allocator.  Today, we force spill all operands in SelectionDAG.  The code to do so is distinctly non-optimal.  The approach this patch is working towards is to instead lower the relocations directly into the MI form, and let the register allocator pick which ones get spilled and which stack slots they get spilled to.  In terms of performance, the later part is actually more important as it avoids redundant shuffling of values between stack slots.

This particular change adds ISEL support to produce the variadic def STATEPOINT form required by the above.  In particular, the first N are lowered to variadic tied def/use pairs.  So new statepoint looks like this:
reloc1,reloc2,... = STATEPOINT ..., base1, derived1<tied-def0>, base2, derived2<tied-def1>, ...

N is limited by the maximal number of tied registers machine instruction can have (15 at the moment).

The current patch is restricted to handling relocations within a single basic block.  Cross block relocations (e.g. invokes) are handled via the legacy mechanism.  This restriction will be relaxed in future patches.

Patch By: dantrushin
Differential Revision: https://reviews.llvm.org/D81648
2020-07-25 14:26:05 -07:00
Simon Pilgrim fe0006c882 TargetLowering.h - remove unnecessary TargetMachine.h include. NFC
Replace with forward declaration and move dependency down to source files that actually need it.

Both TargetLowering.h and TargetMachine.h are 2 of the most expensive headers (top 10) in the ClangBuildAnalyzer report when building llc.
2020-05-23 19:49:38 +01:00
Craig Topper 8c72b0271b [CodeGen] Use Align in MachineConstantPool. 2020-05-12 10:06:40 -07:00
Craig Topper bebdc62c3f [SelectionDAG] Remove ConstantPoolSDNode::getAlignment.
Use getAlign instead.

Differential Revision: https://reviews.llvm.org/D79459
2020-05-08 16:04:11 -07:00
Simon Pilgrim 032738d17e InstrEmitter.h - reduce SelectionDAG.h include to SelectionDAGNodes.h include.
Add SDDbgLabel/TargetLowering forward declarations.
Add the full SelectionDAG.h include to InstrEmitter.cpp.
2020-04-19 11:52:31 +01:00
Matt Arsenault 586769cce2 DAG: Use Register 2020-04-08 13:44:31 -04:00
Matt Arsenault 30ebafaa56 CodeGen: Convert some TII hooks to use Register 2020-04-03 14:52:54 -04:00
Thomas Lively 7b64a59060 Reland "[WebAssembly][InstrEmitter] Foundation for multivalue call lowering"
This reverts commit 649aba93a2, now that
the approach started there has been shown to be workable in the patch
series culminating in https://reviews.llvm.org/D74192.
2020-02-18 13:49:46 -08:00
Jeremy Morse 6531a78ac4 Revert "[DebugInfo] Remove some users of DBG_VALUEs IsIndirect field"
This reverts commit ed29dbaafa.

I'm backing out D68945, which as the discussion for D73526 shows, doesn't
seem to handle the -O0 path through the codegen backend correctly. I'll
reland the patch when a fix is worked out, apologies for all the churn.
The two parent commits are part of this revert too.

Conflicts:
	llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp
	llvm/test/DebugInfo/X86/dbg-addr-dse.ll

SelectionDAGBuilder conflict is due to a nearby change in e39e2b4a79
that's technically unrelated. dbg-addr-dse.ll conflicted because
41206b61e3 (legitimately) changes the order of two lines.

There are further modifications to dbg-value-func-arg.ll: it landed after
the patch being reverted, and I've converted indirection to be represented
by the isIndirect field rather than DW_OP_deref.
2020-02-06 14:41:40 +00:00
Jeremy Morse ed5998d21e Revert "[SafeStack][DebugInfo] Insert DW_OP_deref in correct location"
This reverts commit 2d3174c4df.

The overall solution for this problem is reverting D68945, which wasn't
handling the -O0 path through the codegen backend correctly. See:
discussion in D73526.
2020-02-06 14:41:39 +00:00
Thomas Lively 649aba93a2 Revert "[WebAssembly][InstrEmitter] Foundation for multivalue call lowering"
Summary:
This reverts commit 3ef169e586. The
purpose of this commit was to allow stack machines to perform
instruction selection for instructions with variadic defs. However,
MachineInstrs fundamentally cannot support variadic defs right now, so
this change does not turn out to be useful.

Depends on D73927.

Reviewers: aheejin

Subscribers: dschuff, sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D73928
2020-02-04 20:04:59 -08:00
Leonard Chan 2d3174c4df [SafeStack][DebugInfo] Insert DW_OP_deref in correct location
This patch addresses the issue found in https://bugs.llvm.org/show_bug.cgi?id=44585
where a DW_OP_deref was placed at the end of a dwarf expression, resulting in corrupt
symbols when debugging.

This is an attempt to reland with a few fixes for buildbot since I
haven't merged from master in a bit.

Differential Revision: https://reviews.llvm.org/D73526
2020-01-30 17:09:42 -08:00
Leonard Chan 3b23453b6c Revert "[SafeStack][DebugInfo] Insert DW_OP_deref in correct location"
This reverts commit fff6a1b0f1.

This was breaking a bunch of buildbots.
2020-01-30 16:18:41 -08:00
Leonard Chan fff6a1b0f1 [SafeStack][DebugInfo] Insert DW_OP_deref in correct location
This patch addresses the issue found in https://bugs.llvm.org/show_bug.cgi?id=44585
where a DW_OP_deref was placed at the end of a dwarf expression, resulting in
corrupt symbols when debugging.

Differential Revision: https://reviews.llvm.org/D73526
2020-01-30 15:58:37 -08:00
Thomas Lively 3ef169e586 [WebAssembly][InstrEmitter] Foundation for multivalue call lowering
Summary:
WebAssembly is unique among upstream targets in that it does not at
any point use physical registers to store values. Instead, it uses
virtual registers to model positions in its value stack. This means
that some target-independent lowering activities that would use
physical registers need to use virtual registers instead for
WebAssembly and similar downstream targets. This CL generalizes the
existing `usesPhysRegsForPEI` lowering hook to
`usesPhysRegsForValues` in preparation for using it in more places.

One such place is in InstrEmitter for instructions that have variadic
defs. On register machines, it only makes sense for these defs to be
physical registers, but for WebAssembly they must be virtual registers
like any other values. This CL changes InstrEmitter to check the new
target lowering hook to determine whether variadic defs should be
physical or virtual registers.

These changes are necessary to support a generalized CALL instruction
for WebAssembly that is capable of returning an arbitrary number of
arguments. Fully implementing that instruction will require additional
changes that are described in comments here but left for a follow up
commit.

Reviewers: aheejin, dschuff, qcolombet

Subscribers: sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D71484
2020-01-21 11:13:46 -08:00
Ulrich Weigand f0fd11df7d [FPEnv] Invert sense of MIFlag::FPExcept flag
In D71841 we inverted the sense of the SDNode-level flag to ensure all nodes
default to potentially raising FP exceptions unless otherwise specified --
i.e. if we forget to propagate the flag somewhere, the effect is now only
lost performance, not incorrect code.

However, the related flag at the MI level still defaults to nodes not raising
FP exceptions unless otherwise specified. To be fully on the (conservatively)
safe side, we should invert that flag as well.

This patch does so by replacing MIFlag::FPExcept with MIFlag::NoFPExcept.
(Note that this does also introduce an incompatible change in the MIR format.)

Reviewed By: craig.topper

Differential Revision: https://reviews.llvm.org/D72466
2020-01-10 15:34:50 +01:00
Ulrich Weigand 63336795f0 [FPEnv] Default NoFPExcept SDNodeFlag to false
The NoFPExcept bit in SDNodeFlags currently defaults to true, unlike all
other such flags. This is a problem, because it implies that all code that
transforms SDNodes without copying flags can introduce a correctness bug,
not just a missed optimization.

This patch changes the default to false. This makes it necessary to move
setting the (No)FPExcept flag for constrained intrinsics from the
visitConstrainedIntrinsic routine to the generic visit routine at the
place where the other flags are set, or else the intersectFlagsWith
call would erase the NoFPExcept flag again.

In order to avoid making non-strict FP code worse, whenever
SelectionDAGISel::SelectCodeCommon matches on a set of orignal nodes
none of which can raise FP exceptions, it will preserve this property
on all results nodes generated, by setting the NoFPExcept flag on
those result nodes that would otherwise be considered as raising
an FP exception.

To check whether or not an SD node should be considered as raising
an FP exception, the following logic applies:

- For machine nodes, check the mayRaiseFPException property of
  the underlying MI instruction
- For regular nodes, check isStrictFPOpcode
- For target nodes, check a newly introduced isTargetStrictFPOpcode

The latter is implemented by reserving a range of target opcodes,
similarly to how memory opcodes are identified. (Note that there a
bit of a quirk in identifying target nodes that are both memory nodes
and strict FP nodes. To simplify the logic, right now all target memory
nodes are automatically also considered strict FP nodes -- this could
be fixed by adding one more range.)

Reviewed By: craig.topper

Differential Revision: https://reviews.llvm.org/D71841
2020-01-02 16:59:45 +01:00
Jeremy Morse ed29dbaafa [DebugInfo] Remove some users of DBG_VALUEs IsIndirect field
This patch kills off a significant user of the "IsIndirect" field of
DBG_VALUE machine insts. Brought up in in PR41675, IsIndirect is
techncally redundant as it can be expressed by the DIExpression of a
DBG_VALUE inst, and it isn't helpful to have two ways of expressing
things.

Rather than setting IsIndirect, have DBG_VALUE creators add an extra deref
to the insts DIExpression. There should now be no appearences of
IsIndirect=True from isel down to LiveDebugVariables / VirtRegRewriter,
which is ensured by an assertion in LDVImpl::handleDebugValue. This means
we also get to delete the IsIndirect handling in LiveDebugVariables. Tests
can be upgraded by for example swapping the following IsIndirect=True
DBG_VALUE:

  DBG_VALUE $somereg, 0, !123, !DIExpression(DW_OP_foo)

With one where the indirection is in the DIExpression, by _appending_
a deref:

  DBG_VALUE $somereg, $noreg, !123, !DIExpression(DW_OP_foo, DW_OP_deref)

Which both mean the same thing. 

Most of the test changes in this patch are updates of that form; also some
changes in how the textual assembly printer handles these insts.

Differential Revision: https://reviews.llvm.org/D68945

llvm-svn: 374877
2019-10-15 10:46:24 +00:00
Craig Topper 4d1df2aa23 [TargetRegisterInfo] Remove SVT argument from getCommonSubClass.
This was added to support fp128 on x86-64, but appears to be
unneeded now. This may be because the FR128 register class
added back then was merged with the VR128 register class later.

llvm-svn: 371815
2019-09-13 05:24:37 +00:00
Daniel Sanders 0c47611131 Apply llvm-prefer-register-over-unsigned from clang-tidy to LLVM
Summary:
This clang-tidy check is looking for unsigned integer variables whose initializer
starts with an implicit cast from llvm::Register and changes the type of the
variable to llvm::Register (dropping the llvm:: where possible).

Partial reverts in:
X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister
X86FixupLEAs.cpp - Some functions return unsigned and arguably should be MCRegister
X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister
HexagonBitSimplify.cpp - Function takes BitTracker::RegisterRef which appears to be unsigned&
MachineVerifier.cpp - Ambiguous operator==() given MCRegister and const Register
PPCFastISel.cpp - No Register::operator-=()
PeepholeOptimizer.cpp - TargetInstrInfo::optimizeLoadInstr() takes an unsigned&
MachineTraceMetrics.cpp - MachineTraceMetrics lacks a suitable constructor

Manual fixups in:
ARMFastISel.cpp - ARMEmitLoad() now takes a Register& instead of unsigned&
HexagonSplitDouble.cpp - Ternary operator was ambiguous between unsigned/Register
HexagonConstExtenders.cpp - Has a local class named Register, used llvm::Register instead of Register.
PPCFastISel.cpp - PPCEmitLoad() now takes a Register& instead of unsigned&

Depends on D65919

Reviewers: arsenm, bogner, craig.topper, RKSimon

Reviewed By: arsenm

Subscribers: RKSimon, craig.topper, lenary, aemerson, wuzish, jholewinski, MatzeB, qcolombet, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, wdng, nhaehnle, sbc100, jgravelle-google, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, javed.absar, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, tpr, PkmX, jocewei, jsji, Petar.Avramovic, asbirlea, Jim, s.egerton, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D65962

llvm-svn: 369041
2019-08-15 19:22:08 +00:00
Matt Arsenault f4d3113a5f CodeGen: Migration to using Register
llvm-svn: 367974
2019-08-06 03:59:31 +00:00
Daniel Sanders 2bea69bf65 Finish moving TargetRegisterInfo::isVirtualRegister() and friends to llvm::Register as started by r367614. NFC
llvm-svn: 367633
2019-08-01 23:27:28 +00:00
Ulrich Weigand 6c5d5ce551 Allow target to handle STRICT floating-point nodes
The ISD::STRICT_ nodes used to implement the constrained floating-point
intrinsics are currently never passed to the target back-end, which makes
it impossible to handle them correctly (e.g. mark instructions are depending
on a floating-point status and control register, or mark instructions as
possibly trapping).

This patch allows the target to use setOperationAction to switch the action
on ISD::STRICT_ nodes to Legal. If this is done, the SelectionDAG common code
will stop converting the STRICT nodes to regular floating-point nodes, but
instead pass the STRICT nodes to the target using normal SelectionDAG
matching rules.

To avoid having the back-end duplicate all the floating-point instruction
patterns to handle both strict and non-strict variants, we make the MI
codegen explicitly aware of the floating-point exceptions by introducing
two new concepts:

- A new MCID flag "mayRaiseFPException" that the target should set on any
  instruction that possibly can raise FP exception according to the
  architecture definition.
- A new MI flag FPExcept that CodeGen/SelectionDAG will set on any MI
  instruction resulting from expansion of any constrained FP intrinsic.

Any MI instruction that is *both* marked as mayRaiseFPException *and*
FPExcept then needs to be considered as raising exceptions by MI-level
codegen (e.g. scheduling).

Setting those two new flags is straightforward. The mayRaiseFPException
flag is simply set via TableGen by marking all relevant instruction
patterns in the .td files.

The FPExcept flag is set in SDNodeFlags when creating the STRICT_ nodes
in the SelectionDAG, and gets inherited in the MachineSDNode nodes created
from it during instruction selection. The flag is then transfered to an
MIFlag when creating the MI from the MachineSDNode. This is handled just
like fast-math flags like no-nans are handled today.

This patch includes both common code changes required to implement the
new features, and the SystemZ implementation.

Reviewed By: andrew.w.kaylor

Differential Revision: https://reviews.llvm.org/D55506

llvm-svn: 362663
2019-06-05 22:33:10 +00:00
Michael Liao 9c70c574b4 [SelectionDAG] Enhance the simplification of `copyto` from `implicit-def`.
Summary:
- The current implementation simplifies the case where the source of
  `copyto` is `implicit-def`ed. However, it only works when that
  `implicit-def` is single-used since it detects that from
  `implicit-def` and cannot determine which destination vreg should be
  used if there are multiple uses.
- This patch changes that detection when `copyto` is being emitted. If
  that `copyto`'s source is defined from `implicit-def`, it simplifies
  it. Hence, it works even that `implicit-def` is multi-used.
- Except it simplifies the internal IR, it won't improve the quality of
  code generation. However, it helps to detect 'implicit-def` in a
  straight-forward manner in some passes, such as `si-i1-copies`. A test
  case is added.

Reviewers: sunfish, nhaehnle

Subscribers: jvesely, hiraditya, asbirlea, llvm-commits, yaxunl

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D62342

llvm-svn: 361777
2019-05-27 18:26:29 +00:00
Alexander Timofeev ba447bae74 [AMDGPU] Divergence driven ISel. Assign register class for cross block values according to the divergence.
Details: To make instruction selection really divergence driven it is necessary to assign
             the correct register classes to the cross block values beforehand. For the divergent targets
             same value type requires different register classes dependent on the value divergence.

    Reviewers: rampitec, nhaehnle

    Differential Revision: https://reviews.llvm.org/D59990

    This commit was reverted because of the build failure.
    The reason was mlformed patch.
    Build failure fixed.

llvm-svn: 361741
2019-05-26 20:33:26 +00:00
Peter Collingbourne 3b93737446 Revert r361644, "[AMDGPU] Divergence driven ISel. Assign register class for cross block values according to the divergence."
Broke sanitizer bots:
http://lab.llvm.org:8011/builders/sanitizer-x86_64-linux/builds/21694/steps/bootstrap%20clang/logs/stdio
http://lab.llvm.org:8011/builders/sanitizer-x86_64-linux-fast/builds/32478/steps/check-llvm%20asan/logs/stdio

llvm-svn: 361688
2019-05-25 01:52:38 +00:00
Alexander Timofeev dffedea014 [AMDGPU] Divergence driven ISel. Assign register class for cross block values according to the divergence.
Details: To make instruction selection really divergence driven it is necessary to assign
         the correct register classes to the cross block values beforehand. For the divergent targets
         same value type requires different register classes dependent on the value divergence.

Reviewers: rampitec, nhaehnle

Differential Revision: https://reviews.llvm.org/D59990

llvm-svn: 361644
2019-05-24 15:32:18 +00:00
Chen Zheng b934fce613 [NFC] add/modify wrapper function for findRegisterDefOperand().
llvm-svn: 354438
2019-02-20 07:01:04 +00:00
Craig Topper 784929d045 Implementation of asm-goto support in LLVM
This patch accompanies the RFC posted here:
http://lists.llvm.org/pipermail/llvm-dev/2018-October/127239.html

This patch adds a new CallBr IR instruction to support asm-goto
inline assembly like gcc as used by the linux kernel. This
instruction is both a call instruction and a terminator
instruction with multiple successors. Only inline assembly
usage is supported today.

This also adds a new INLINEASM_BR opcode to SelectionDAG and
MachineIR to represent an INLINEASM block that is also
considered a terminator instruction.

There will likely be more bug fixes and optimizations to follow
this, but we felt it had reached a point where we would like to
switch to an incremental development model.

Patch by Craig Topper, Alexander Ivchenko, Mikhail Dvoretckii

Differential Revision: https://reviews.llvm.org/D53765

llvm-svn: 353563
2019-02-08 20:48:56 +00:00
Chandler Carruth 2946cd7010 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

llvm-svn: 351636
2019-01-19 08:50:56 +00:00
Krzysztof Parzyszek 5852aa44ae [SDAG] Clarify the origin of chain in REG_SEQUENCE in comment, NFC
llvm-svn: 349391
2018-12-17 20:30:20 +00:00
Krzysztof Parzyszek 6b01d35497 [SDAG] Ignore chain operand in REG_SEQUENCE when emitting instructions
llvm-svn: 349186
2018-12-14 20:14:12 +00:00