We currently reject all templates that have either zero args or that have a
parameter pack without a name. Both cases are actually allowed in C++, so
rejecting them leads to LLDB instead falling back to a dummy 'void' type. This
leads to all kind of errors later on (most notable, variables that have such
template types appear to be missing as we can't have 'void' variables and
inheriting from such a template type will cause Clang to hit some asserts when
finding that the base class is 'void').
This just removes the too strict tests and adds a few tests for this stuff (+
some combinations of these tests with preceding template parameters).
Things that I left for follow-up patches:
* All the possible interactions with template-template arguments which seem like a whole new source of possible bugs.
* Function templates which completely lack sanity checks.
* Variable templates are not implemented.
* Alias templates are not implemented too.
* The rather strange checks that just make sure that the separate list of
template arg names and values always have the same length. I believe those
ought to be asserts, but my current plan is to move both those things into a
single list that can't end up in this inconsistent state.
Reviewed By: JDevlieghere, shafik
Differential Revision: https://reviews.llvm.org/D92425
* Un-inline the test.
* Use expect_expr everywhere and also check all involved types.
* Clang-format the test sources.
* Explain what we're actually testing with the 'C' and 'D' templates.
* Split out the non-template-parameter-pack part of the test into its own small test.
Our type formatters/summaries match on the internal type name we generate in LLDB for Clang types.
These names were generated using Clang's default printing policy. However Clang's
default printing policy got tweaked over the last month to make the generated type
names more readable (by for example excluding inline/anonymous namespaces and
removing template arguments that have their default value). This broke the formatter
system where LLDB's matching logic now no longer can format certain types as
the new type names generated by Clang's default printing policy no longer match
the type names that LLDB/the user specified.
I already introduced LLDB's own type printing policy and fixed the inline/anonymous
namespaces in da121fff11 (just to get the
test suite passing again).
This patch is restoring the old type printing behaviour where always include the template
arguments in the internal type name (even if they match the default args). This should get
template type formatters/summaries working again in the rare situation where we do
know template default arguments within LLDB. This can only happen when either having
a template that was parsed in the expression parser or when we get type information from a C++ module.
The Clang change that removed defaulted template arguments from Clang's printing policy was
e7f3e2103c
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D92311
LLDB is currently always activating C++ when parsing expressions as LLDB itself
is using C++ features when creating the final AST that will be codegen'd
(specifically, references to variables, namespaces and using declarations are
used).
This is causing problems for users that have variables in non-C++ programs (e.g.
plain C or Objective-C) that have names which are keywords in C++. Expressions
referencing those variables fail to parse as LLDB's Clang parser thinks those
identifiers are C++ keywords and not identifiers that may belong to a
declaration.
We can't just disable C++ in the expression parser for those situations as
replacing the functionality of the injected C++ code isn't trivial. So this
patch is just disabling most keywords that are exclusive to C++ in LLDB's Clang
parser when we are in a non-C++ expression. There are a few keywords we can't
disable for now:
* `using` as that's currently used in some situations to inject variables into the expression function.
* `__null` as that's used by LLDB to define `NULL`/`Nil`/`nil`.
Getting rid of these last two keywords is possible but is a large enough change
that this will be handled in follow up patches.
Note that this only changes the keyword status of those tokens but this patch
does not remove any C++ functionality from the expression parser. The type
system still follows C++ rules and so does the rest of the expression parser.
There is another small change that gives the hardcoded macro definitions in LLDB
a higher precedence than the macros imported from the Objective-C modules. The
reason for this is that the Objective-C modules in LLDB are actually parsed in
Objective-C++ mode and they end up providing the C++ definitions of certain
system macros (like `NULL` being defined as `nullptr`). So we have to move the
LLDB definition forward and surround the definition from the module with an
`#ifdef` to make sure that we use the correct LLDB definition that doesn't
reference C++ keywords. Or to give an example, this is how the expression source
code changes:
Before:
```
#define NULL (nullptr) // injected module definition
#ifndef NULL
#define NULL (__null) // hardcoded LLDB definition
#endif
```
After:
```
#ifndef NULL
#define NULL (__null) // hardcoded LLDB definition
#endif
#ifndef NULL
#define NULL (nullptr) // injected module definition
#endif
```
Fixes rdar://10356912
Reviewed By: shafik
Differential Revision: https://reviews.llvm.org/D82770
When parsing DWARF and laying out bit-fields we don't properly take into account when they are in a union, they will all have a zero offset.
Differential Revision: https://reviews.llvm.org/D91118
This adds `expect_var_path` to test variable paths so we no longer have to
use `frame var` and find substrs in the command output. The behaviour
is identical with `expect_expr` (and it also uses the same checking backend),
but it instead calls `GetValueForVariablePath` to evaluate the string as a variable
path.
Also rewrites a few of the tests that previously used `frame variable` to use
`expect_var_path`.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D90450
Make category-specifying files visible. There is really no good reason
to keep them hidden, and having them visible increases the chances
that someone will actually spot them.
Differential Revision: https://reviews.llvm.org/D91065
Add preconditions to `TestBase.expect()` that catch semantically invalid calls
that happen to succeed anyway. This also fixes the broken callsites caught by
these checks.
This prevents the following incorrect calls:
1. `self.expect("lldb command", "some substr")`
2. `self.expect("lldb command", "assert message", "some substr")`
Differential Revision: https://reviews.llvm.org/D88792
Clang has some type sugar that only serves as a way to preserve the way a user
has typed a certain type in the source code. These types are currently not
unwrapped when we query the type name for a Clang type, which means that this
type sugar actually influences what formatters are picked for a certain type.
Currently if a user decides to reference a type by doing `::GlobalDecl Var = 3;`,
the type formatter for `GlobalDecl` will not be used (as the type sugar
around the type gives it the name `::GlobalDecl`. The same goes for other ways
to spell out a type such as `auto` etc.
With this patch most of this type sugar gets stripped when the full type name is
calculated. Typedefs are not getting desugared as that seems counterproductive.
I also don't desugar atomic types as that's technically not type sugar.
Reviewed By: jarin
Differential Revision: https://reviews.llvm.org/D87481
TestCPP11EnumTypes is one of the most expensive tests on my system and takes
around 35 seconds to run. A relatively large amount of that time is actually
doing CPU intensive work it seems (and not waiting on timeouts like other
slow tests).
The main issue is that this test repeatedly compiles the same source files
with different compiler defines. The test is also including standard library
headers, so it will also build all system modules with the gmodules debug
info variant. This leads to the problem that this test ends up compiling all
system Clang modules 8 times (one for each subtest with a unique define). As
the system modules are quite large, this causes that this test spends most
of its runtime just recompiling all system modules on macOS.
There is also the small issue that this test is starting and start-stopping
the test process a few hundred times.
This rewrites the test to instead just use a macro to instantiate all the
enum types in a single source and uses global variables to test the values
(which means there is no more need to continue/stop or even start a process).
I kept running all the debug info variants (event though it doesn't seem really
relevant) to keep this as NFC as possible.
This reduced the test runtime by around 1.5 seconds on my system (or in relative
numbers, the runtime of this test decreases by 95%).
TypeSystemClang::CreateTypedef was creating a typedef in the right
DeclContext, but it was not actually adding it as a child of the
context. The resulting inconsistent state meant that we would be unable
to reference the typedef from an expression directly, but we could use
them if they end up being pulled in by some previous subexpression
(because the ASTImporter will set up the correct links in the expression
ast).
This patch adds the typedef to the decl context it is created in.
Differential Revision: https://reviews.llvm.org/D86140
Rename the existing expectedFailure to expectedFailureIfFn to better
describe its purpose and provide an overload for
unittest2.expectedFailure in decorators.py.
Like the other type sugar removed by RemoveWrappingTypes, SubstTemplateTypeParm
is just pure sugar that should be ignored. If we don't ignore it (as we do now),
LLDB will fail to read values from record fields that have a
SubstTemplateTypeParm type.
Only way to produce such a type in LLDB is to either use the `import-std-module`
setting to get a template into the expression parser or just create your own
template directly in the expression parser which is what we do in the test.
Reviewed By: jarin
Differential Revision: https://reviews.llvm.org/D85132
Template specializations are not handled in many of the
TypeSystemClang methods. For example, GetNumChildren does not handle
the TemplateSpecialization type class, so template specializations
always look like empty objects.
This patch just desugars template specializations in the existing
RemoveWrappingTypes desugaring helper.
Differential Revision: https://reviews.llvm.org/D83858
Summary:
Currently expect_expr will not run the expression if no target is selected. This
patch changes this behavior so that expect_expr will instead fall back to the
dummy target similar to what the `expression` command is doing. This way we
don't have to compile an empty executable to be able to use `expect_expr` (which
is a waste of resources for tests that just test generic type system features).
As a test I modernized the TestTypeOfDeclTypeExpr into a Python test +
expect_expr (as it relied on the dummy target fallback of the expression
command).
Reviewers: labath, JDevlieghere
Reviewed By: labath
Subscribers: abidh
Differential Revision: https://reviews.llvm.org/D83388
Currently the ItaniumRecordLayoutBuilder when laying out base classes has the virtual
and non-virtual bases mixed up when pulling the base class layouts from the external source.
This came up in an LLDB bug where on arm64 because of differences in how it deals with
tail padding would layout the bases differently without the correct layout from the
external source (LLDB). This would result in some fields being off by 4 bytes.
Differential Revision: https://reviews.llvm.org/D83008
After this patch all remaining tests should pass on macOS when replayed
from a reproducer.
To capture the reproducers:
./bin/llvm-lit ../llvm-project/lldb/test/ --param lldb-run-with-repro=capture
To replay the reproducers:
./bin/llvm-lit ../llvm-project/lldb/test/ --param lldb-run-with-repro=replay
Many tests use (commented out) print statement for debugging the test
itself. This patch adds a new trace method to lldbtest to reuse the
existing tracing infrastructure and replace these print statements.
Differential revision: https://reviews.llvm.org/D80448
This reverts commit 5f88f39ab8. It broke these
three tests on the Window bot:
lldb-api :: commands/expression/completion/TestExprCompletion.py
lldb-api :: lang/cpp/scope/TestCppScope.py
lldb-api :: lang/cpp/standards/cpp11/TestCPP11Standard.py
Summary:
Currently we never enable C++14 in the expression evaluator. This enables it when the language of the program is C++14.
It seems C++17 and so on isn't yet in any of the language enums (and the DWARF standard it seems), so C++17 support will be a follow up patch.
Reviewers: labath, JDevlieghere
Reviewed By: labath, JDevlieghere
Subscribers: aprantl
Differential Revision: https://reviews.llvm.org/D80308
The overloaded new operator in TestCppOperators.py are working by accident because of how
we currently deal with artificial methods.
Differential Revision: https://reviews.llvm.org/D79251
Summary:
Sometimes a result variable of some expression can be presented as an elaborated
type. In this case the methods `IsTypedefType()` and `GetTypedefedType()` of
`SBType` didn't work. This patch fixes that.
I didn't find the test for these API methods, so I added a basic test for this
too.
Reviewers: aprantl, teemperor, labath, leonid.mashinskiy
Reviewed By: teemperor
Subscribers: labath, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D78697
This is a regression since:
[lldb][NFC] Modernize lang/cpp/scope test
acb0b99c8e
rGacb0b99c8e4f
File "/home/jkratoch/redhat/llvm-monorepo/lldb/test/API/lang/cpp/scope/TestCppScope.py", line 19, in test
self.assertEqual(global_var_names, expected_var_names)
AssertionError: Lists differ: ['C::a', 'A::a', 'B::a', '::a'... != ['A::a', 'B::a', 'C::a', '::a'...
First differing element 0:
C::a
A::a
- ['C::a', 'A::a', 'B::a', '::a']
+ ['A::a', 'B::a', 'C::a', '::a']
ManualDWARFIndex using NameToDIE does not sort alphabetically:
// This is only for uniqueness, not lexicographical ordering, so we can
// just compare pointers.
return uintptr_t(lhs.GetCString()) < uintptr_t(rhs.GetCString());
Summary:
D73024 seems to have fixed one set crash, but it introduced another.
Namely, if a class contains a covariant method returning itself, the
logic in MaybeCompleteReturnType could cause us to attempt a recursive
import, which would result in an assertion failure in
clang::DeclContext::removeDecl.
For some reason, this only manifested itself if the class contained at
least two member variables, and the class itself was imported as a
result of a recursive covariant import.
This patch fixes the crash by not attempting to import classes which are
already completed in MaybeCompleteReturnType. However, it's not clear to
me if this is the right fix, or if this should be handled automatically
by functions lower in the stack.
Reviewers: teemperor, shafik
Subscribers: lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D76840
When parsing DWARF and laying out bit-fields we currently don't take into account whether we have a base class or not.
Currently if the first field is a bit-field but the bit offset is due a field we inherit from a base class we currently
treat it as an unnamed bit-field and therefore add an extra field.
This fix will not check if we have a base class and assume that this offset is due to members we are inheriting from the base.
We are currently seeing asserts during codegen when debugging clang::DiagnosticOptions.
This assumption will fail in the case where the first field in the derived class in an unnamed bit-field. Fixing the first field
being an unnamed bit-field looks like it will require a larger change since we will need a way to track or discover the last field offset of the bases(s).
Differential Revision: https://reviews.llvm.org/D76808
It was an inline test before. Clang stopped emitting line information
for the TLS initialization and the inline test didn't have a way to
break before it anymore.
This rewrites the test as a full-fldeged python test and improves the
checking of the error case to verify that the failure we are looking
for is related to the TLS setup not being complete.
Fix to get the AST we generate for function templates closer to what clang generates and expects.
We fix which FuntionDecl we are passing to CreateFunctionTemplateSpecializationInfo and we strip
template parameters from the name when creating the FunctionDecl and FunctionTemplateDecl.
These two fixes together fix asserts and ambiguous lookup issues for several cases which are added to the already existing small function template test.
This fixes issues with overloads, overloads and ADL, variadic function templates and templated operator overloads.
Differential Revision: https://reviews.llvm.org/D75761
Summary:
Currently the test suite runs with enabled automatically applied Clang fix-its for expressions.
This is causing that sometimes incorrect expressions in tests are still evaluated even though they
are actually incorrect. Let's disable this feature in the test suite so that we know when expressions
are wrong and leave the fix-it testing to the dedicated tests for that feature.
Also updates the `lang/cpp/operators/` test as it seems Clang needs the `struct` keywords
before C and would otherwise fail without fixits.
Reviewers: jingham, JDevlieghere, shafik
Reviewed By: JDevlieghere, shafik
Subscribers: shafik, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D74957
Summary:
Around a third of our test sources have LLVM license headers. This patch removes those headers from all test
sources and also fixes any tests that depended on the length of the license header.
The reasons for this are:
* A few tests verify line numbers and will start failing if the number of lines in the LLVM license header changes. Once I landed my patch for valid SourceLocations in debug info we will probably have even more tests that verify line numbers.
* No other LLVM project is putting license headers in its test files to my knowledge.
* They make the test sources much more verbose than they have to be. Several tests have longer license headers than the actual test source.
For the record, the following tests had their line numbers changed to pass with the removal of the license header:
lldb-api :: functionalities/breakpoint/breakpoint_by_line_and_column/TestBreakpointByLineAndColumn.py
lldb-shell :: Reproducer/TestGDBRemoteRepro.test
lldb-shell :: Reproducer/TestMultipleTargets.test
lldb-shell :: Reproducer/TestReuseDirectory.test
lldb-shell :: ExecControl/StopHook/stop-hook-threads.test
lldb-shell :: ExecControl/StopHook/stop-hook.test
lldb-api :: lang/objc/exceptions/TestObjCExceptions.py
Reviewers: #lldb, espindola, JDevlieghere
Reviewed By: #lldb, JDevlieghere
Subscribers: emaste, aprantl, arphaman, JDevlieghere, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D74839
TestCPPAuto was only failing on windows due to the std::string
copying (which was not related at all to 'auto' functionality).
TestStepTarget is now also passing but that seems more that we
now have by accident the right behavior in Windows. I'll remove
the x-fail just to make the bot green again.