Commit Graph

11202 Commits

Author SHA1 Message Date
Sam Parker 898a81dfc5 [NFC][ARM] Replace lambda with any_of 2020-11-11 10:02:55 +00:00
Pirama Arumuga Nainar 8262e94a6d [ARM] Fix PR 47980: Use constrainRegClass during foldImmediate opt.
Previously we used setRegClass to rgpr, which may expand the register
domain if the result was already in a constrained class (tcgpr in the
above PR).

Differential Revision: https://reviews.llvm.org/D91192
2020-11-10 13:38:11 -08:00
Benjamin Kramer 92c61a045f [ARM] Silence unused variable warning in Release builds. NFC. 2020-11-10 20:35:28 +01:00
David Green 08d1c2d470 [ARM] Introduce t2DoLoopStartTP
This introduces a new pseudo instruction, almost identical to a
t2DoLoopStart but taking 2 parameters - the original loop iteration
count needed for a low overhead loop, plus the VCTP element count needed
for a DLSTP instruction setting up a tail predicated loop. The idea is
that the instruction holds both values and the backend
ARMLowOverheadLoops pass can pick between the two, depending on whether
it creates a tail predicated loop or falls back to a low overhead loop.

To do that there needs to be something that converts a t2DoLoopStart to
a t2DoLoopStartTP, for which this patch repurposes the
MVEVPTOptimisationsPass as a "tail predication and vpt optimisation"
pass. The extra operand for the t2DoLoopStartTP is chosen based on the
operands of VCTP's in the loop, and the instruction is moved as late in
the block as possible to attempt to increase the likelihood of making
tail predicated loops.

Differential Revision: https://reviews.llvm.org/D90591
2020-11-10 18:08:12 +00:00
David Green dbe1bf63aa [ARM] Cleanup for ARMLowOverheadLoops. NFC 2020-11-10 17:28:07 +00:00
David Green c7e275388e [ARM] Don't aggressively unroll vector remainder loops
We already do not unroll loops with vector instructions under MVE, but
that does not include the remainder loops that the vectorizer produces.
These remainder loops will be rarely executed and are not worth
unrolling, as the trip count is likely to be low if they get executed at
all. Luckily they get llvm.loop.isvectorized to make recognizing them
simpler.

We have wanted to do this for a while but hit issues with low overhead
loops being reverted due to difficult registry allocation. With recent
changes that seems to be less of an issue now.

Differential Revision: https://reviews.llvm.org/D90055
2020-11-10 17:01:31 +00:00
David Green 73a6cd4b6b [ARM] Add a RegAllocHint for hinting t2DoLoopStart towards LR
This hints the operand of a t2DoLoopStart towards using LR, which can
help make it more likely to become t2DLS lr, lr. This makes it easier to
move if needed (as the input is the same as the output), or potentially
remove entirely.

The hint is added after others (from COPY's etc) which still take
precedence. It needed to find a place to add the hint, which currently
uses the post isel custom inserter.

Differential Revision: https://reviews.llvm.org/D89883
2020-11-10 16:28:57 +00:00
David Green b2ac9681a7 [ARM] Alter t2DoLoopStart to define lr
This changes the definition of t2DoLoopStart from
t2DoLoopStart rGPR
to
GPRlr = t2DoLoopStart rGPR

This will hopefully mean that low overhead loops are more tied together,
and we can more reliably generate loops without reverting or being at
the whims of the register allocator.

This is a fairly simple change in itself, but leads to a number of other
required alterations.

 - The hardware loop pass, if UsePhi is set, now generates loops of the
   form:
       %start = llvm.start.loop.iterations(%N)
     loop:
       %p = phi [%start], [%dec]
       %dec = llvm.loop.decrement.reg(%p, 1)
       %c = icmp ne %dec, 0
       br %c, loop, exit
 - For this a new llvm.start.loop.iterations intrinsic was added, identical
   to llvm.set.loop.iterations but produces a value as seen above, gluing
   the loop together more through def-use chains.
 - This new instrinsic conceptually produces the same output as input,
   which is taught to SCEV so that the checks in MVETailPredication are not
   affected.
 - Some minor changes are needed to the ARMLowOverheadLoop pass, but it has
   been left mostly as before. We should now more reliably be able to tell
   that the t2DoLoopStart is correct without having to prove it, but
   t2WhileLoopStart and tail-predicated loops will remain the same.
 - And all the tests have been updated. There are a lot of them!

This patch on it's own might cause more trouble that it helps, with more
tail-predicated loops being reverted, but some additional patches can
hopefully improve upon that to get to something that is better overall.

Differential Revision: https://reviews.llvm.org/D89881
2020-11-10 15:57:58 +00:00
David Green c8cd7e2bbf [ARM] Remove MI variable aliasing. NFC
This was accidentally using the same name for two different variables in
the same line. Whilst it seems to work for some compilers, others have
trouble and it is probably not a fantastic idea.
2020-11-09 18:18:43 +00:00
Momchil Velikov 937ab6a785 [ARM][MachineOutliner] Emit more CFI instructions
This patch make the outliner emit CFI instructions in a few more
places:

  * after LR is restored, but before the return in an outlined
  function

  * around save/restore of LR to/from a register at calls to outlined
  functions

  * around save/restore of LR to/from the stack at calls to outlined
  functions

The latter two only when the function does NOT spill LR. If the
function spills LR, then outliner generated saves/restores around
calls are not considered interesting for unwinding the frame.

Differential Revision: https://reviews.llvm.org/D89483
2020-11-09 15:26:18 +00:00
Sam Tebbs 40a3f7e48d [ARM][LowOverheadLoops] Merge a VCMP and the new VPST into a VPT
There were cases where a VCMP and a VPST were merged even if the VCMP
didn't have the same defs of its operands as the VPST. This is fixed by
adding RDA checks for the defs. This however gave rise to cases where
the new VPST created would precede the un-merged VCMP and so would fail
a predicate mask assertion since the VCMP wasn't predicated. This was
solved by converting the VCMP to a VPT instead of inserting the new
VPST.

Differential Revision: https://reviews.llvm.org/D90461
2020-11-09 15:03:48 +00:00
David Green a0a9e1c798 [ARM] Remove kill flags between VCMP and insertion point
When we fold a VCMP into a VPST instruction any kill flags between the
old VCMP position and the new insertion point need to be removed, in
order to keep the verifier happy.

Differential Revision: https://reviews.llvm.org/D90964
2020-11-09 13:17:53 +00:00
Lucas Prates c2c2cc1360 [ARM][AArch64] Adding Neoverse V1 CPU support
Add support for the Neoverse V1 CPU to the ARM and AArch64 backends.

This is based on patches from Mark Murray and Victor Campos.

Reviewed By: dmgreen

Differential Revision: https://reviews.llvm.org/D90765
2020-11-09 13:15:40 +00:00
Sanjay Patel 264a6df353 [ARM] remove cost-kind predicate for cmp/sel costs
This is the cmp/sel sibling to D90692.
Again, the reasoning is: the throughput cost is number of instructions/uops,
so size/blended costs are identical except in special cases (for example,
fdiv or other known-expensive machine instructions or things like MVE that
may require cracking into >1 uops).

We need to check for a valid (non-null) condition type parameter because
SimplifyCFG may pass nullptr for that (and so we will crash multiple
regression tests without that check). I'm not sure if passing nullptr makes
sense, but other code in the cost model does appear to check if that param
is set or not.

Differential Revision: https://reviews.llvm.org/D90781
2020-11-05 14:52:25 -05:00
Sander de Smalen d57bba7cf8 [SVE] Return StackOffset for TargetFrameLowering::getFrameIndexReference.
To accommodate frame layouts that have both fixed and scalable objects
on the stack, describing a stack location or offset using a pointer + uint64_t
is not sufficient. For this reason, we've introduced the StackOffset class,
which models both the fixed- and scalable sized offsets.

The TargetFrameLowering::getFrameIndexReference is made to return a StackOffset,
so that this can be used in other interfaces, such as to eliminate frame indices
in PEI or to emit Debug locations for variables on the stack.

This patch is purely mechanical and doesn't change the behaviour of how
the result of this function is used for fixed-sized offsets. The patch adds
various checks to assert that the offset has no scalable component, as frame
offsets with a scalable component are not yet supported in various places.

Reviewed By: arsenm

Differential Revision: https://reviews.llvm.org/D90018
2020-11-05 11:02:18 +00:00
Cameron McInally c126eb7529 [SelectionDAG] Add legalizations for VECREDUCE_SEQ_FMUL
Hook up legalizations for VECREDUCE_SEQ_FMUL. This is following up on the VECREDUCE_SEQ_FADD work from D90247.

Differential Revision: https://reviews.llvm.org/D90644
2020-11-04 14:20:31 -06:00
David Green eb611930b6 [ARM] Remove unused variable. NFC 2020-11-04 09:00:03 +00:00
Sanjay Patel c40126e740 [ARM] remove cost-kind predicate for most math op costs
This is based on the same idea that I am using for the basic model implementation
and what I have partly already done for x86: throughput cost is number of
instructions/uops, so size/blended costs are identical except in special cases
(for example, fdiv or other known-expensive machine instructions or things like
MVE that may require cracking into >1 uop)).

Differential Revision: https://reviews.llvm.org/D90692
2020-11-03 17:23:46 -05:00
David Green bd32386410 [ARM] Remove unused variable. NFC 2020-11-03 12:58:10 +00:00
David Green e474499402 [ARM] Treat memcpy/memset/memmove as call instructions for low overhead loops
If an instruction will be lowered to a call there is no advantage of
using a low overhead loop as the LR register will need to be spilled and
reloaded around the call, and the low overhead will end up being
reverted. This teaches our hardware loop lowering that these memory
intrinsics will be calls under certain situations.

Differential Revision: https://reviews.llvm.org/D90439
2020-11-03 11:53:09 +00:00
Momchil Velikov 7360d6d921 [ARM][MachineOutliner] Do not overestimate LR liveness in return block
The `LiveRegUnits` utility (as well as `LivePhysRegs`) considers
callee-saved registers to be alive at the point after the return
instruction in a block. In the ARM backend, the `LR` register is
classified as callee-saved, which is not really correct (from an ARM
eABI or just common sense point of view).  These two conditions cause
the `MachineOutliner` to overestimate the liveness of `LR`, which
results in unnecessary saves/restores of `LR` around calls to outlined
sequences.  It also causes the `MachineVerifer` to crash in some
cases, because the save instruction reads a dead `LR`, for example
when the following program:

int h(int, int);

int f(int a, int b, int c, int d) {
  a = h(a + 1, b - 1);
  b = b + c;
  return 1 + (2 * a + b) * (c - d) / (a - b) * (c + d);
}

int g(int a, int b, int c, int d) {
  a = h(a - 1, b + 1);
  b = b + c;
  return 2 + (2 * a + b) * (c - d) / (a - b) * (c + d);
}

is compiled with `-target arm-eabi -march=armv7-m -Oz`.

This patch computes the liveness of `LR` in return blocks only, while
taking into account the few ARM instructions, which read `LR`, but
nevertheless the register is not mentioned (explicitly or implicitly)
in the instruction operands.

Differential Revision: https://reviews.llvm.org/D89189
2020-11-02 16:47:22 +00:00
Florian Hahn b3b993a7ad Reland "[TTI] Add VecPred argument to getCmpSelInstrCost."
This reverts the revert commit 408c4408fa.

This version of the patch includes a fix for a crash caused by
treating ICmp/FCmp constant expressions as instructions.

Original message:

On some targets, like AArch64, vector selects can be efficiently lowered
if the vector condition is a compare with a supported predicate.

This patch adds a new argument to getCmpSelInstrCost, to indicate the
predicate of the feeding select condition. Note that it is not
sufficient to use the context instruction when querying the cost of a
vector select starting from a scalar one, because the condition of the
vector select could be composed of compares with different predicates.

This change greatly improves modeling the costs of certain
compare/select patterns on AArch64.

I am also planning on putting up patches to make use of the new argument in
SLPVectorizer & LV.
2020-11-02 15:39:29 +00:00
Evgeny Leviant cc96a82291 [TableGen][SchedModels] Fix read/write variant substitution
Patch fixes case when sched class has write and read variants belonging
to different processor models.

Differential revision: https://reviews.llvm.org/D89777
2020-11-02 17:39:04 +03:00
David Green 30ad742644 [ARM] Fix crash for gather of pointer costs.
If the elt size is unknown due to it being a pointer, a comparison
against 0 will cause an assert. Make sure the elt size is large enough
before comparing and for the moment just return the scalar cost.
2020-10-31 13:10:14 +00:00
Florian Hahn 408c4408fa Revert "[TTI] Add VecPred argument to getCmpSelInstrCost."
This reverts commit 73f01e3df5.

This appears to break
http://lab.llvm.org:8011/#/builders/85/builds/383.
2020-10-30 21:26:14 +00:00
Cameron McInally dda1e74b58 [Legalize] Add legalizations for VECREDUCE_SEQ_FADD
Add Legalization support for VECREDUCE_SEQ_FADD, so that we don't need to depend on ExpandReductionsPass.

Differential Revision: https://reviews.llvm.org/D90247
2020-10-30 16:02:55 -05:00
Florian Hahn 73f01e3df5 [TTI] Add VecPred argument to getCmpSelInstrCost.
On some targets, like AArch64, vector selects can be efficiently lowered
if the vector condition is a compare with a supported predicate.

This patch adds a new argument to getCmpSelInstrCost, to indicate the
predicate of the feeding select condition. Note that it is not
sufficient to use the context instruction when querying the cost of a
vector select starting from a scalar one, because the condition of the
vector select could be composed of compares with different predicates.

This change greatly improves modeling the costs of certain
compare/select patterns on AArch64.

I am also planning on putting up patches to make use of the new argument in
SLPVectorizer & LV.

Reviewed By: dmgreen, RKSimon

Differential Revision: https://reviews.llvm.org/D90070
2020-10-30 13:49:08 +00:00
David Green d14db8c8dc [ARM] Match MVE vqdmulh
This adds ISel matching for a form of VQDMULH. There are several ir
patterns that we could match to that instruction, this one is for:

min(ashr(mul(sext(a), sext(b)), 7), 127)

Which is what llvm will optimize to once it has removed the max that
usually makes up the min/max saturate pattern, as in this case the
compare will always be false. The additional complication to match i32
patterns (which extend into an i64) is that the min will be a
vselect/setcc, as vmin is not supported for i64 vectors. Tablegen
patterns have also been updated to attempt to reuse the MVE_TwoOpPattern
patterns.

Differential Revision: https://reviews.llvm.org/D90096
2020-10-30 13:34:27 +00:00
Nicholas Guy eb9fe24eaf [ARM] Fix IT block generation after Thumb2SizeReduce with -Oz
Fixes a regression caused by D82439, in which IT blocks were no longer being generated when -Oz is present.

Differential Revision: https://reviews.llvm.org/D88496
2020-10-29 15:17:31 +00:00
Evgeny Leviant a28388f95b [ARM][SchedModels] Move IsLDMBaseRegInListPred to ARMSchedule.td. NFC
This predicate is not specific to cortex-a57 and can be used in other processor
models as well.
2020-10-26 22:31:41 +03:00
Evgeny Leviant e74f66125e [ARM][SchedModels] Convert IsLdstsoScaledNotOptimalPred to MCSchedPredicate
Differential revision: https://reviews.llvm.org/D90150
2020-10-26 20:22:41 +03:00
Evgeny Leviant a877bda397 Fix issue in cortex-a57 sched model
Differential revision: https://reviews.llvm.org/D90152
2020-10-26 20:16:40 +03:00
Evgeny Leviant a95ce5f65f [ARM][SchedModels] Rename and generalize predicate. NFC 2020-10-26 12:14:55 +03:00
Evgeny Leviant 99b2756517 [ARM][SchedModels] Get rid of IsLdrAm2ScaledPred
Differential revision: https://reviews.llvm.org/D90024
2020-10-26 12:01:39 +03:00
Evgeny Leviant a4fc18e641 [ARM][SchedModels] Convert IsLdstsoMinusRegPred to MCSchedPredicate
Differential revision: https://reviews.llvm.org/D90029
2020-10-26 11:54:08 +03:00
Evgeny Leviant d613e39d52 [ARM][SchedModels] Convert IsLdrAm3NegRegOffPred to MCSchedPredicate
Differential revision: https://reviews.llvm.org/D90045
2020-10-26 11:43:02 +03:00
David Green 61bc18de0b [Schedule] Add a MultiHazardRecognizer
This adds a MultiHazardRecognizer and starts to make use of it in the
ARM backend. The idea of the class is to allow multiple independent
hazard recognizers to be added to a single base MultiHazardRecognizer,
allowing them to all work in parallel without requiring them to be
chained into subclasses. They can then be added or not based on cpu or
subtarget features, which will become useful in the ARM backend once
more hazard recognizers are being used for various things.

This also renames ARMHazardRecognizer to ARMHazardRecognizerFPMLx in the
process, to more clearly explain what that recognizer is designed for.

Differential Revision: https://reviews.llvm.org/D72939
2020-10-26 08:06:17 +00:00
David Green 92205bf122 [ARM] Remove some dead code. NFC 2020-10-24 17:22:49 +01:00
Paul C. Anagnostopoulos 876af264c1 [TableGen] Change !getop and !setop to !getdagop and !setdagop.
Differential Revision: https://reviews.llvm.org/D89814
2020-10-23 10:36:05 -04:00
Evgeny Leviant cb86522c94 [ARM][SchedModels] Convert IsR1P0AndLaterPred to MCSchedPredicate. NFC
Differential revision: https://reviews.llvm.org/D90017
2020-10-23 14:27:49 +03:00
Evgeny Leviant 7a78073be7 [ARM][SchedModels] Let ldm* instruction scheduling use MCSchedPredicate
Differential revision: https://reviews.llvm.org/D89957
2020-10-23 10:33:20 +03:00
Mircea Trofin e24537d48f [NFC][MC] Use MCRegister for ReachingDefAnalysis APIs
Also updated the users of the APIs; and a drive-by small change to
RDFRegister.cpp

Differential Revision: https://reviews.llvm.org/D89912
2020-10-22 08:47:35 -07:00
Evgeny Leviant ed6a91f456 [ARM][SchedModels] Convert IsLdstsoScaledPred to MCSchedPredicate
Differential revision: https://reviews.llvm.org/D89939
2020-10-22 18:03:01 +03:00
Evgeny Leviant bf9edcb6fd [ARM][SchedModels] Convert IsLdrAm3RegOffPred to MCSchedPredicate
Differential revision: https://reviews.llvm.org/D89876
2020-10-21 20:49:10 +03:00
Paul C. Anagnostopoulos dfd6b69e01 [ARM] [TableGen] Clean up !if(!eq(boolean, 1) and related booleans
Differential Revision: https://reviews.llvm.org/D89822
2020-10-21 09:52:45 -04:00
Nicholas Guy 9a2d2bedb7 Add "SkipDead" parameter to TargetInstrInfo::DefinesPredicate
Some instructions may be removable through processes such as IfConversion,
however DefinesPredicate can not be made aware of when this should be considered.
This parameter allows DefinesPredicate to distinguish these removable instructions
on a per-call basis, allowing for more fine-grained control from processes like
ifConversion.

Renames DefinesPredicate to ClobbersPredicate, to better reflect it's purpose

Differential Revision: https://reviews.llvm.org/D88494
2020-10-21 11:52:47 +01:00
Evgeny Leviant 991e86156c [ARM][SchedModels] Convert IsCPSRDefinedPred to MCSchedPredicate
Differential revision: https://reviews.llvm.org/D89460
2020-10-20 11:14:21 +03:00
David Green 6dcbc323fd Revert "[ARM][LowOverheadLoops] Adjust Start insertion."
This reverts commit 38f625d0d1.

This commit contains some holes in its logic and has been causing
issues since it was commited. The idea sounds OK but some cases were not
handled correctly. Instead of trying to fix that up later it is probably
simpler to revert it and work to reimplement it in a more reliable way.
2020-10-20 08:55:21 +01:00
Luqman Aden 51892a42da [COFF][ARM] Fix CodeView for Windows on 32bit ARM targets.
Create the LLVM / CodeView register mappings for the 32-bit ARM Window targets.

Reviewed By: compnerd

Differential Revision: https://reviews.llvm.org/D89622
2020-10-19 22:16:16 -07:00
Evgeny Leviant 8a7ca143f8 [ARM][SchedModels] Convert IsPredicatedPred to MCSchedPredicate
Differential revision: https://reviews.llvm.org/D89553
2020-10-19 11:37:54 +03:00
David Green b93d74ac9c [ARM] Basic getArithmeticReductionCost reduction costs
This adds some basic costs for MVE reductions - currently just costing
the simple legal add vectors as a single MVE instruction. More complex
costing can be added in the future when the framework more readily
allows it.

Differential Revision: https://reviews.llvm.org/D88980
2020-10-17 10:29:00 +01:00
David Green d79ee3a807 [ARM] Add a very basic active_lane_mask cost
This adds a very basic cost for active_lane_mask under MVE - making the
assumption that they will be free and then apologizing for that in a
comment.

In reality they may either be free (by being nicely folded into a tail
predicated loop), cost the same as a VCTP or be expanded into vdup's,
adds and cmp's. It is difficult to detect the difference from a single
getIntrinsicInstrCost call, so makes the assumption that the vectorizer
is adding them, and only added them where it makes sense.

We may need to change this in the future to better model predicate costs
in the vectorizer, especially at -Os or non-tail predicated loops. The
vectorizer currently does not query the cost of these instructions but
that will change in the future and a zero cost there probably makes the
most sense at the moment.

Differential Revision: https://reviews.llvm.org/D88989
2020-10-17 10:09:42 +01:00
David Sherwood 47f2dc7e5f [SVE][NFC] Replace some TypeSize comparisons in non-AArch64 Targets
In most of lib/Target we know that we are not dealing with scalable
types so it's perfectly fine to replace TypeSize comparison operators
with their fixed width equivalents, making use of getFixedSize()
and so on.

Differential Revision: https://reviews.llvm.org/D89101
2020-10-15 09:01:21 +01:00
Evgeny Leviant 2ad82b0ed1 [ARM.td] Make instruction definitions visible to sched models
Differential revision: https://reviews.llvm.org/D89308
2020-10-14 09:58:45 +03:00
David Green cb27006a94 [ARM] Attempt to make Tail predication / RDA more resilient to empty blocks
There are a number of places in RDA where we assume the block will not
be empty. This isn't necessarily true for tail predicated loops where we
have removed instructions. This attempt to make the pass more resilient
to empty blocks, not casting pointers to machine instructions where they
would be invalid.

The test contains a case that was previously failing, but recently been
hidden on trunk. It contains an empty block to begin with to show a
similar error.

Differential Revision: https://reviews.llvm.org/D88926
2020-10-10 14:50:25 +01:00
Amara Emerson 322d0afd87 [llvm][mlir] Promote the experimental reduction intrinsics to be first class intrinsics.
This change renames the intrinsics to not have "experimental" in the name.

The autoupgrader will handle legacy intrinsics.

Relevant ML thread: http://lists.llvm.org/pipermail/llvm-dev/2020-April/140729.html

Differential Revision: https://reviews.llvm.org/D88787
2020-10-07 10:36:44 -07:00
Sam Tebbs 68e002e181 [ARM] Fold select_cc(vecreduce_[u|s][min|max], x) into VMINV or VMAXV
This folds a select_cc or select(set_cc) of a max or min vector reduction with a scalar value into a VMAXV or VMINV.

    Differential Revision: https://reviews.llvm.org/D87836
2020-10-06 14:44:58 +01:00
Amara Emerson c9f5cdd453 Revert "[ARM]Fold select_cc(vecreduce_[u|s][min|max], x) into VMINV or VMAXV"
This reverts commit 2573cf3c3d.

These seem to break some lit tests.
2020-10-05 10:52:43 -07:00
Sam Tebbs 2573cf3c3d [ARM]Fold select_cc(vecreduce_[u|s][min|max], x) into VMINV or VMAXV
This folds a select_cc or select(set_cc) of a max or min vector reduction with a scalar value into a VMAXV or VMINV.

    Differential Revision: https://reviews.llvm.org/D87836
2020-10-05 15:51:28 +01:00
David Green 7feafa0286 [ARM] Fix pointer offset when splitting stores from VMOVDRR
We were not accounting for the pointer offset when splitting a store from
a VMOVDRR node, which could lead to incorrect aliasing info. In this
case it is the fneg via integer arithmetic that gives us a store->load
pair that we started getting wrong.

Differential Revision: https://reviews.llvm.org/D88653
2020-10-03 16:47:50 +01:00
Meera Nakrani f7c0e2b8f2 [ARM] Prevent constants from iCmp instruction from being hoisted if part of a min(max()) pattern
Marks constants of an ICmp instruction as free if it's only user is a select
instruction that is part of a min(max()) pattern. Ensures that in loops, in
particular when loop unrolling is turned on, SSAT will still be correctly generated.

Differential Revision: https://reviews.llvm.org/D88662
2020-10-02 09:28:35 +00:00
Meera Nakrani 48c9e8244b [ARM] Removed hasSideEffects from signed/unsigned saturates
Removed hasSideEffects from SSAT and USAT so that they are no longer
marked as unpredictable.

Differential Revision: https://reviews.llvm.org/D88545
2020-10-01 14:55:01 +00:00
Sam Parker 7e02bc81c6 [NFC][ARM] LowOverheadLoop DEBUG statements 2020-10-01 13:38:16 +01:00
Sam Parker 38f625d0d1 [ARM][LowOverheadLoops] Adjust Start insertion.
Try to move the insertion point to become the terminator of the
block, usually the preheader.

Differential Revision: https://reviews.llvm.org/D88638
2020-10-01 10:49:19 +01:00
Sam Parker 6ec5f32497 [ARM][LowOverheadLoops] Iteration count liveness
Before deciding to insert a [W|D]LSTP, check that defining LR with
the element count won't affect any other instructions that should be
taking the iteration count.

Differential Revision: https://reviews.llvm.org/D88549
2020-10-01 10:11:10 +01:00
Sam Parker 7b90516d47 [ARM][LowOverheadLoops] Start insertion point
If possible, try not to move the start position earlier than it
already is.

Differential Revision: https://reviews.llvm.org/D88542
2020-10-01 10:05:25 +01:00
Sam Parker dfa2c14b8f [ARM][LowOverheadLoops] Use iterator for InsertPt.
Use a MachineBasicBlock::iterator instead of a MachineInstr* for the
position of our LoopStart instruction. NFCish, as it change debug
info.
2020-10-01 08:32:35 +01:00
Rahman Lavaee 8955950c12 Exception support for basic block sections
This is part of the Propeller framework to do post link code layout optimizations. Please see the RFC here: https://groups.google.com/forum/#!msg/llvm-dev/ef3mKzAdJ7U/1shV64BYBAAJ and the detailed RFC doc here: https://github.com/google/llvm-propeller/blob/plo-dev/Propeller_RFC.pdf

This patch provides exception support for basic block sections by splitting the call-site table into call-site ranges corresponding to different basic block sections. Still all landing pads must reside in the same basic block section (which is guaranteed by the the core basic block section patch D73674 (ExceptionSection) ). Each call-site table will refer to the landing pad fragment by explicitly specifying @LPstart (which is omitted in the normal non-basic-block section case). All these call-site tables will share their action and type tables.

The C++ ABI somehow assumes that no landing pads point directly to LPStart (which works in the normal case since the function begin is never a landing pad), and uses LP.offset = 0 to specify no landing pad. In the case of basic block section where one section contains all the landing pads, the landing pad offset relative to LPStart could actually be zero. Thus, we avoid zero-offset landing pads by inserting a **nop** operation as the first non-CFI instruction in the exception section.

**Background on Exception Handling in C++ ABI**
https://github.com/itanium-cxx-abi/cxx-abi/blob/master/exceptions.pdf

Compiler emits an exception table for every function. When an exception is thrown, the stack unwinding library queries the unwind table (which includes the start and end of each function) to locate the exception table for that function.

The exception table includes a call site table for the function, which is used to guide the exception handling runtime to take the appropriate action upon an exception. Each call site record in this table is structured as follows:

| CallSite                       |  -->  Position of the call site (relative to the function entry)
| CallSite length           |  -->  Length of the call site.
| Landing Pad               |  -->  Position of the landing pad (relative to the landing pad fragment’s begin label)
| Action record offset  |  -->  Position of the first action record

The call site records partition a function into different pieces and describe what action must be taken for each callsite. The callsite fields are relative to the start of the function (as captured in the unwind table).

The landing pad entry is a reference into the function and corresponds roughly to the catch block of a try/catch statement. When execution resumes at a landing pad, it receives an exception structure and a selector value corresponding to the type of the exception thrown, and executes similar to a switch-case statement. The landing pad field is relative to the beginning of the procedure fragment which includes all the landing pads (@LPStart). The C++ ABI requires all landing pads to be in the same fragment. Nonetheless, without basic block sections, @LPStart is the same as the function @Start (found in the unwind table) and can be omitted.

The action record offset is an index into the action table which includes information about which exception types are caught.

**C++ Exceptions with Basic Block Sections**
Basic block sections break the contiguity of a function fragment. Therefore, call sites must be specified relative to the beginning of the basic block section. Furthermore, the unwinding library should be able to find the corresponding callsites for each section. To do so, the .cfi_lsda directive for a section must point to the range of call-sites for that section.
This patch introduces a new **CallSiteRange** structure which specifies the range of call-sites which correspond to every section:

  `struct CallSiteRange {
    // Symbol marking the beginning of the precedure fragment.
    MCSymbol *FragmentBeginLabel = nullptr;
    // Symbol marking the end of the procedure fragment.
    MCSymbol *FragmentEndLabel = nullptr;
    // LSDA symbol for this call-site range.
    MCSymbol *ExceptionLabel = nullptr;
    // Index of the first call-site entry in the call-site table which
    // belongs to this range.
    size_t CallSiteBeginIdx = 0;
    // Index just after the last call-site entry in the call-site table which
    // belongs to this range.
    size_t CallSiteEndIdx = 0;
    // Whether this is the call-site range containing all the landing pads.
    bool IsLPRange = false;
  };`

With N basic-block-sections, the call-site table is partitioned into N call-site ranges.

Conceptually, we emit the call-site ranges for sections sequentially in the exception table as if each section has its own exception table. In the example below, two sections result in the two call site ranges (denoted by LSDA1 and LSDA2) placed next to each other. However, their call-sites will refer to records in the shared Action Table. We also emit the header fields (@LPStart and CallSite Table Length) for each call site range in order to place the call site ranges in separate LSDAs. We note that with -basic-block-sections, The CallSiteTableLength will not actually represent the length of the call site table, but rather the reference to the action table. Since the only purpose of this field is to locate the action table, correctness is guaranteed.

Finally, every call site range has one @LPStart pointer so the landing pads of each section must all reside in one section (not necessarily the same section). To make this easier, we decide to place all landing pads of the function in one section (hence the `IsLPRange` field in CallSiteRange).

|  @LPStart                   |  --->  Landing pad fragment     ( LSDA1 points here)
| CallSite Table Length | ---> Used to find the action table.
| CallSites                     |
| …                                 |
| …                                 |
| @LPStart                    |  --->  Landing pad fragment ( LSDA2 points here)
| CallSite Table Length |
| CallSites                     |
| …                                 |
| …                                 |
…
…
|      Action Table          |
|      Types Table           |

Reviewed By: MaskRay

Differential Revision: https://reviews.llvm.org/D73739
2020-09-30 11:05:55 -07:00
Sam Parker 779a8a028f [ARM][LowOverheadLoops] TryRemove helper.
Make a helper function that wraps around RDA::isSafeToRemove and
utilises the existing DCE IT block checks.
2020-09-30 09:37:24 +01:00
Sam Parker 195c22f273 [ARM] Change VPT state assertion
Just because we haven't encountered an instruction setting the VPR,
it doesn't mean we can't create a VPT block - the VPR maybe a
live-in.

Differential Revision: https://reviews.llvm.org/D88224
2020-09-30 08:01:10 +01:00
Sam Parker 4c19b89b25 [NFC][ARM] Comments and lambdas
Add some comments in LowOverheadLoops and make some lambda variables
explicit arguments instead of capturing.
2020-09-29 08:41:53 +01:00
Sam Parker e82a0084d3 [ARM][LowOverheadLoops] Cleanup and re-arrange
Rename and reorganise how we decide where to put the LoopStart
instruction.
2020-09-28 16:06:30 +01:00
Tres Popp 509fba75df [llvm] Fix unused variable in non-debug configurations 2020-09-28 17:04:08 +02:00
Meera Nakrani 675431b987 [ARM] Added more patterns to generate SSAT/USAT with shift
Added patterns to generate an SSAT or USAT with shift for
SSAT/USAT instructions that are matched from IR patterns.

Differential Revision: https://reviews.llvm.org/D88145
2020-09-28 14:50:19 +00:00
Sam Parker 3d1d089155 [NFC][ARM] Factor out some logic for LoLoops.
Create a DCE function that accepts an instruction.
2020-09-28 14:51:52 +01:00
Sjoerd Meijer 1696dd27fb [ARM][MVE] Enable tail-predication by default
We have been running tests/benchmarks downstream with tail-predication enabled
for some time now and this behaves as expected: we are not aware of any
correctness issues, and this performs better across the board than with
tail-predication disabled. Time to flip the switch!

Differential Revision: https://reviews.llvm.org/D88093
2020-09-28 14:01:23 +01:00
Sjoerd Meijer f39f92c1f6 [ARM][MVE] tail-predication: overflow checks for elementcount, cont'd
This is a reimplementation of the overflow checks for the elementcount,
i.e. the 2nd argument of intrinsic get.active.lane.mask. The element
count is lowered in each iteration of the tail-predicated loop, and
we must prove that this expression doesn't overflow.

Many thanks to Eli Friedman and Sam Parker for all their help with
this work.

Differential Revision: https://reviews.llvm.org/D88086
2020-09-28 09:20:51 +01:00
David Green e4b9867cb6 [ARM] Expand cannotInsertWDLSTPBetween to the last instruction
9d9a11c7be added this check for predicatable instructions between the
D/WLSTP and the loop's start, but it was missing the last instruction in
the block. Change it to use some iterators instead.

Differential Revision: https://reviews.llvm.org/D88354
2020-09-28 09:14:40 +01:00
Sam Parker a399d1880b [ARM] Find VPT implicitly predicated by VCTP
On failing to find a VCTP in the list of instructions that explicitly
predicate the entry of a VPT block, inspect whether the block is
controlled via VPT which is implicitly predicated due to it's
predicated operand(s).

Differential Revision: https://reviews.llvm.org/D87819
2020-09-25 08:50:53 +01:00
Sam Parker 00ee52ae04 [NFC][ARM] Remove dead loop.
Remove a loop that just calculated a couple of values that were now
longer needed.
2020-09-24 15:37:26 +01:00
Sjoerd Meijer 2fc690ac90 [ARM] LowoverheadLoops: add an option to disable tail-predication
This might be useful for testing. We already have an option -tail-predication
but that controls the MVETailPredication pass.  This
-arm-loloops-disable-tail-pred is just for disabling it in the LowoverheadLoops
pass.

Differential Revision: https://reviews.llvm.org/D88212
2020-09-24 13:30:48 +01:00
Sam Parker 9d9a11c7be [ARM] Check for LSTP side-effects.
If the LSTP instruction is inserted with an element count low enough
to immediately predicate some lanes as false, this can have some
unintended effects on any proceeding MVE instructions in the
preheader.

Differential Revision: https://reviews.llvm.org/D88209
2020-09-24 13:28:35 +01:00
Eli Friedman 3f739f736b [SelectionDAG][GISel] Make LegalizeDAG lower FNEG using integer ops.
Previously, if a floating-point type was legal, but FNEG wasn't legal,
we would use FSUB.  Instead, we should use integer ops, to preserve the
semantics.  (Alternatively, there's a compiler-rt call we could use, but
there isn't much reason to use that.)

It turns out we actually are still using this obscure codepath in a few
cases: on some targets, we have "legal" floating-point types that don't
actually support any floating-point operations.  In particular, ARM and
AArch64 are using this path.

The implementation for SelectionDAG is pretty simple because we can
reuse the infrastructure from FCOPYSIGN.

See also 9a3dc3e, the corresponding change to type legalization.

Also includes a "bonus" change to STRICT_FSUB legalization, so we can
lower a STRICT_FSUB to a float libcall.

Includes the changes to both LegalizeDAG and GlobalISel so we don't have
inconsistent results in the future.

Fixes https://bugs.llvm.org/show_bug.cgi?id=46792 .

Differential Revision: https://reviews.llvm.org/D84287
2020-09-23 14:10:33 -07:00
David Sherwood e077367a28 [SVE] Make EVT::getScalarSizeInBits and others consistent with Type::getScalarSizeInBits
An existing function Type::getScalarSizeInBits returns a uint64_t
instead of a TypeSize class because the caller is requesting a
scalar size, which cannot be scalable. This patch makes other
similar functions requesting a scalar size consistent with that,
thereby eliminating more than 1000 implicit TypeSize -> uint64_t
casts.

Differential revision: https://reviews.llvm.org/D87889
2020-09-23 09:20:08 +01:00
Stefanos Baziotis a7873e5abc Small fixes for "[LoopInfo] empty() -> isInnermost(), add isOutermost()" 2020-09-22 23:59:34 +03:00
Stefanos Baziotis 89c1e35f3c [LoopInfo] empty() -> isInnermost(), add isOutermost()
Differential Revision: https://reviews.llvm.org/D82895
2020-09-22 23:28:51 +03:00
Sam Parker 94c799fecf [ARM] Trying to fix asan buildbot 2020-09-22 13:43:23 +01:00
Meera Nakrani a3d0dce260 [ARM][TTI] Prevents constants in a min(max) or max(min) pattern from being hoisted when in a loop
Changes TTI function getIntImmCostInst to take an additional Instruction parameter,
which enables us to be able to check it is part of a min(max())/max(min()) pattern that will match SSAT.
We can then mark the constant used as free to prevent it being hoisted so SSAT can still be generated.
Required minor changes in some non-ARM backends to allow for the optional parameter to be included.

Differential Revision: https://reviews.llvm.org/D87457
2020-09-22 11:54:10 +00:00
Sam Parker b4fa884a73 [ARM] Improve VPT predicate tracking
The VPTBlock has been modified to track the 'global' state of the
VPR, as well as the state for each block. Each object now just holds
a list of instructions that makeup the block, while static structures
hold the predicate information. This enables global access for
querying how both a VPT block and individual instructions are
predicated. These changes now allow us, again, to handle more
complicated cases where multiple instructions build a predicate
and/or where the same predicate in used in multiple blocks.

It doesn't, however, get us back to before the tracking was 'fixed'
as some extra logic will be required to properly handle VPT
instructions. Currently a VPT could be effectively predicated because
of it's inputs, but the existing logic will not detect that and so
will refuse to perform the transformation. This can be seen in
remat-vctp.ll test where we still don't perform the transform.

Differential Revision: https://reviews.llvm.org/D87681
2020-09-22 10:40:27 +01:00
Sam Parker a0c1dcc318 [ARM] Remove MVEDomain from VLDR/STR of P0
Remove the domain from the instructions and create a shouldInspect
helper for LowOverheadLoops which queries it or a vpr operand.

Differential Revision: https://reviews.llvm.org/D87900
2020-09-22 09:05:50 +01:00
Sam Parker e461921d6c [ARM] VPT validForTailPredication
Mark all VPT instructions as valid.

Differential Revision: https://reviews.llvm.org/D87759
2020-09-22 08:58:37 +01:00
Momchil Velikov 742250bf62 [ARM][CMSE] Issue an error if passing arguments through memory across
security boundary

It was never supported and that part was accidentally omitted when
upstreaming D76518.

Differential Revision: https://reviews.llvm.org/D86478

Change-Id: If6ba9506eb0431c87a1d42a38aa60e47ce263039
2020-09-21 17:26:10 +01:00
David Green f4c5cadbcb [ARM] Select f32 constants with vmov.f16
This adds lowering for f32 values using the vmov.f16, which zeroes the
top bits whilst setting the lower bits to a pattern. This range of
values does not often come up, except where a f16 constant value has
been converted to a f32.

Differential Revision: https://reviews.llvm.org/D87790
2020-09-21 11:10:47 +01:00
David Green 29bd8ea110 [ARM] Constant fold VMOVrh
This adds simple constant folding for VMOVrh, to constant fold fp16
constants to integer values. It can help especially with soft calling
conventions, but some of the results are not optimal as we end up
loading using a vldr. This will be improved in a follow up patch.

Differential Revision: https://reviews.llvm.org/D87789
2020-09-20 21:32:51 +01:00
Gabriel Hjort Åkerlund c10200536f [TableGen][GlobalISel] Fix handling of zero_reg
When generating matching tables for GlobalISel, TableGen would output
"::zero_reg" whenever encountering the zero_reg, which in turn would
result in compilation error. This patch fixes that by instead outputting
NoRegister (== 0), which is the same result that TableGen produces when
generating matching tables for ISelDAG.

Reviewed By: arsenm

Differential Revision: https://reviews.llvm.org/D86215
2020-09-18 11:01:11 +02:00
David Green 7f7993e0da [ARM] Expand distributing increments to also handle existing pre/post inc instructions.
This extends the distributing postinc code in load/store optimizer to
also handle the case where there is an existing pre/post inc instruction,
where subsequent instructions can be modified to use the adjusted
offset from the increment. This can save us having to keep the old
register live past the increment instruction.

Differential Revision: https://reviews.llvm.org/D83377
2020-09-17 16:58:35 +01:00
David Green 34b27b9441 [ARM] Sink splats to MVE intrinsics
The predicated MVE intrinsics are generated as, for example,
llvm.arm.mve.add.predicated(x, splat(y). p). We need to sink the splat
value back into the loop, like we do for other instructions, so we can
re-select qr variants.

Differential Revision: https://reviews.llvm.org/D87693
2020-09-17 16:00:51 +01:00
Simon Pilgrim f026812110 InstCombiner.h - remove unnecessary KnownBits.h include. NFCI.
Move the include down to cpp files with an implicit dependency.
2020-09-17 14:28:42 +01:00
Sjoerd Meijer b5c3efeb7b [ARM][MVE] Tail-predication: predicate new elementcount checks on force-enabled
Additional sanity checks were added to get.active.lane.mask's second argument,
the loop tripcount/elementcount, in rG635b87511ec3. Like the other (overflow)
checks, skip this if tail-predication is forced.

Differential Revision: https://reviews.llvm.org/D87769
2020-09-16 17:05:14 +01:00
Sam Parker 3ce9ec0cfa [ARM] Reorder some logic
Re-order some checks in ValidateMVEInst.
2020-09-16 13:39:22 +01:00