... so just ensure that we pass DomTreeUpdater it into it.
Fixes DomTree preservation for a large number of tests,
all of which are marked as such so that they do not regress.
... so just ensure that we pass DomTreeUpdater it into it.
Fixes DomTree preservation for a large number of tests,
all of which are marked as such so that they do not regress.
From C11 and C++11 onwards, a forward-progress requirement has been
introduced for both languages. In the case of C, loops with non-constant
conditionals that do not have any observable side-effects (as defined by
6.8.5p6) can be assumed by the implementation to terminate, and in the
case of C++, this assumption extends to all functions. The clang
frontend will emit the `mustprogress` function attribute for C++
functions (D86233, D85393, D86841) and emit the loop metadata
`llvm.loop.mustprogress` for every loop in C11 or later that has a
non-constant conditional.
This patch modifies LoopDeletion so that only loops with
the `llvm.loop.mustprogress` metadata or loops contained in functions
that are required to make progress (`mustprogress` or `willreturn`) are
checked for observable side-effects. If these loops do not have an
observable side-effect, then we delete them.
Loops without observable side-effects that do not satisfy the above
conditions will not be deleted.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D86844
Vectors where all elements have the same known constant range are treated as a
single constant range in the lattice. When bitcasting such vectors, there is a
mis-match between the width of the lattice value (single constant range) and
the original operands (vector). Go to overdefined in that case.
Fixes PR47991.
CallInst::updateProfWeight() creates branch_weights with i64 instead of i32.
To be more consistent everywhere and remove lots of casts from uint64_t
to uint32_t, use i64 for branch_weights.
Reviewed By: davidxl
Differential Revision: https://reviews.llvm.org/D88609
CallInst::updateProfWeight() creates branch_weights with i64 instead of i32.
To be more consistent everywhere and remove lots of casts from uint64_t
to uint32_t, use i64 for branch_weights.
Reviewed By: davidxl
Differential Revision: https://reviews.llvm.org/D88609
This is to simplify icmp instructions in the form like:
%cmp = icmp eq i32 (i8*, i8*)* bitcast (i32 (i32**, i32**)* @f32 to i32
%(i8*, i8*)), bitcast (i32 (i64**, i64**) @f64 to i32 (i8*, i8*)*)
Here @f32 and @f64 are two functions.
Differential Revision: https://reviews.llvm.org/D87850
If a module has many values that need to be resolved by
ResolvedUndefsIn, compilation takes quadratic time overall. Solve should
do a small amount of work, since not much is added to the worklists each
time markOverdefined is called. But ResolvedUndefsIn is linear over the
length of the function/module, so resolving one undef at a time is
quadratic in general.
To solve this, make ResolvedUndefsIn resolve every undef value at once,
instead of resolving them one at a time. This loses a little
optimization power, but can be a lot faster.
We still need a loop around ResolvedUndefsIn because markOverdefined
could change the set of blocks that are live. That should be uncommon,
hopefully. We could optimize it by tracking which blocks transition from
dead to live, instead of iterating over the whole module to find them.
But I'll leave that for later. (The whole function will become a lot
simpler once we start pruning branches on undef.)
The regression test changes seem minor. The specific cases in question
could probably be optimized with a bit more work, but they seem like
edge cases that don't really matter.
Fixes an "infinite" compile issue my team found on an internal workoad.
Differential Revision: https://reviews.llvm.org/D89080
-debug-pass is a legacy PM only option.
Some tests checks that the pass returned that it made a change,
which is not relevant to the NPM, since passes return PreservedAnalyses.
Some tests check that passes are freed at the proper time, which is also
not relevant to the NPM.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D87945
For intrinsics supported by ConstantRange, compute the result range
based on the argument ranges. We do this independently of whether
some or all of the input ranges are full, as we can often still
constrain the result in some way.
Differential Revision: https://reviews.llvm.org/D87183
Currently IPSCCP (and others like CVP/GVN) blindly propagate pointer
equalities. In certain cases, that leads to dereferenceable pointers
being replaced, as in the example test case.
I think this is not allowed, as it introduces an access of an
un-dereferenceable pointer. Note that the pointer is inbounds, but one
past the last element, so it is valid, but not dereferenceable.
This patch is mostly to highlight the issue and start a discussion.
Currently it only checks for specifically looking
one-past-the-last-element pointers with array typed bases.
This causes the mis-compile outlined in
https://stackoverflow.com/questions/55754313/is-this-gcc-clang-past-one-pointer-comparison-behavior-conforming-or-non-standar
In the test case, if we replace %p with the GEP for the store, we
subsequently determine that the store and the load cannot alias, because
they are to different underlying objects.
Note that Alive2 seems to think that the replacement is valid:
https://alive2.llvm.org/ce/z/2rorhk
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D85332
In IPSCCP when a function is optimized to return undef, it should clear the returned attribute for all its input arguments
and its corresponding call sites.
The bug is exposed when the value of an input argument of the function is assigned to a physical register and
because of the argument having a returned attribute, the value of this physical register will continue to be used
as the function return value right after the call instruction returns, even if the value that this register holds may
be clobbered during the function call. This potentially results in incorrect values being used afterwards.
Reviewed By: jdoerfert, fhahn
Differential Revision: https://reviews.llvm.org/D84220
Teach SCCP to create notconstant lattice values from inequality
assumes and nonnull metadata, and update getConstant() to make
use of them. Additionally isOverdefined() needs to be changed to
consider notconstant an overdefined value.
Handling inequality branches is delayed until our branch on undef
story in other passes has been improved.
Differential Revision: https://reviews.llvm.org/D83643
If an analysis is actually invalidated, there's already a log statement
for that: 'Invalidating analysis: FooAnalysis'.
Otherwise the statement is not very useful.
Reviewed By: asbirlea, ychen
Differential Revision: https://reviews.llvm.org/D84981
Determine whether switch edges are feasible based on range information,
and remove non-feasible edges lateron.
This does not try to determine whether the default edge is dead,
as we'd have to determine that the range is fully covered by the
cases for that.
Another limitation here is that we don't remove dead cases that
have the same successor as a live case. I'm not handling this
because I wanted to keep the edge removal based on feasible edges
only, rather than inspecting ranges again there -- this does not
seem like a particularly useful case to handle.
Differential Revision: https://reviews.llvm.org/D84270
Problem:
Right now, our "Running pass" is not accurate when passes are wrapped in adaptor because adaptor is never skipped and a pass could be skipped. The other problem is that "Running pass" for a adaptor is before any "Running pass" of passes/analyses it depends on. (for example, FunctionToLoopPassAdaptor). So the order of printing is not the actual order.
Solution:
Doing things like PassManager::Debuglogging is very intrusive because we need to specify Debuglogging whenever adaptor is created. (Actually, right now we're not specifying Debuglogging for some sub-PassManagers. Check PassBuilder)
This patch move debug logging for pass as a PassInstrument callback. We could be sure that all running passes are logged and in the correct order.
This could also be used to implement hierarchy pass logging in legacy PM. We could also move logging of pass manager to this if we want.
The test fixes looks messy. It includes changes:
- Remove PassInstrumentationAnalysis
- Remove PassAdaptor
- If a PassAdaptor is for a real pass, the pass is added
- Pass reorder (to the correct order), related to PassAdaptor
- Add missing passes (due to Debuglogging not passed down)
Reviewed By: asbirlea, aeubanks
Differential Revision: https://reviews.llvm.org/D84774
As far as I know, ipconstprop has not been used in years and ipsccp has
been used instead. This has the potential for confusion and sometimes
leads people to spend time finding & reporting bugs as well as
updating it to work with the latest API changes.
This patch moves the tests over to SCCP. There's one functional difference
I am aware of: ipconstprop propagates for each call-site individually, so
for functions that are called with different constant arguments it can sometimes
produce better results than ipsccp (at much higher compile-time cost).But
IPSCCP can be thought to do so as well for internal functions and as mentioned
earlier, the pass seems unused in practice (and there are no plans on working
towards enabling it anytime).
Also discussed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2020-July/143773.html
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D84447
Reapply with DTU update moved after CFG update, which is a
requirement of the API.
-----
Non-feasible control-flow edges are currently removed by replacing
the branch condition with a constant and then calling
ConstantFoldTerminator. This happens in a rather roundabout manner,
by inspecting the users (effectively: predecessors) of unreachable
blocks, and further complicated by the need to explicitly materialize
the condition for "forced" edges. I would like to extend SCCP to
discard switch conditions that are non-feasible based on range
information, but this is incompatible with the current approach
(as there is no single constant we could use.)
Instead, this patch explicitly removes non-feasible edges. It
currently only needs to handle the case where there is a single
feasible edge. The llvm_unreachable() branch will need to be
implemented for the aforementioned switch improvement.
Differential Revision: https://reviews.llvm.org/D84264
This patch updates IPSCCP to drop argmemonly and
inaccessiblemem_or_argmemonly if it replaces a pointer argument.
Fixes PR46717.
Reviewers: efriedma, davide, nikic, jdoerfert
Reviewed By: efriedma, jdoerfert
Differential Revision: https://reviews.llvm.org/D84432
It breaks stage-2 build. Clang crashed when compiling
llvm/lib/Target/Hexagon/HexagonFrameLowering.cpp
llvm/Support/GenericDomTree.h eraseNode: Node is not a leaf node
Non-feasible control-flow edges are currently removed by replacing
the branch condition with a constant and then calling
ConstantFoldTerminator. This happens in a rather roundabout manner,
by inspecting the users (effectively: predecessors) of unreachable
blocks, and further complicated by the need to explicitly materialize
the condition for "forced" edges. I would like to extend SCCP to
discard switch conditions that are non-feasible based on range
information, but this is incompatible with the current approach
(as there is no single constant we could use.)
Instead, this patch explicitly removes non-feasible edges. It
currently only needs to handle the case where there is a single
feasible edge. The llvm_unreachable() branch will need to be
implemented for the aforementioned switch improvement.
Differential Revision: https://reviews.llvm.org/D84264
As long as RenamedOp is not guaranteed to be accurate, we cannot
assert here and should just return false. This was already done
for the other conditions in this function.
Fixes https://bugs.llvm.org/show_bug.cgi?id=46814.
And adjust the indbrtest4 test to actually test what it's supposed
to. BB1 is supposed to be eliminated here, but isn't, because
BB0 still branches to it. This was lost due to the incomplete CHECK
lines.
If we inferred a range for the function return value, we can add !range
at all call-sites of the function, if the range does not include undef.
Reviewers: efriedma, davide, nikic
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D83952
Both users of predicteinfo (NewGVN and SCCP) are interested in
getting a cmp constraint on the predicated value. They currently
implement separate logic for this. This patch adds a common method
for this in PredicateBase.
This enables a missing bit of PredicateInfo handling in SCCP: Now
the predicate on the condition itself is also used. For switches
it means we know that the switched-on value is the same as the case
value. For assumes/branches we know that the condition is true or
false.
Differential Revision: https://reviews.llvm.org/D83640
Some of the tests in the llvm/test/Transforms/IPConstantProp directory
actually only use -ipsccp. Those tests belong to the other (IP)SCCP
tests in llvm/test/Transforms/SCCP/ and this commits moves them there to
avoid confusion with IPConstantProp.