Select into corresponding V_CMP instruction based on CmpInst predicate,
stored as immediate, in last operand.
Differential Revision: https://reviews.llvm.org/D82652
I'm guessing this was a holdover from when 0 was an invalid stack
pointer, but surprised nobody has discovered this before.
Also don't allow offset folding for -1 pointers, since it looks weird
to partially fold this.
I consider this to be a hack, since we probably should not mark any
16-bit extract as legal, and require all extracts to be done on
multiples of 32. There are quite a few more battles to fight in the
legalizer for sub-dword vectors, so just select this for now so we can
pass OpenCL conformance without crashing.
Also fix the same assert for G_INSERTs. Unlike G_EXTRACT there's not a
trivial way to select this so just fail on it.
Confusingly, these were unrelated and had different semantics. The
G_PTR_MASK instruction predates the llvm.ptrmask intrinsic, but has a
different format. G_PTR_MASK only allows clearing the low bits of a
pointer, and only a constant number of bits. The ptrmask intrinsic
allows an arbitrary mask. Replace G_PTR_MASK to match the intrinsic.
Only selects the cases that look like the old instruction. More work
is needed to select the general case. Also new legalization code is
still needed to deal with the case where the incoming mask size does
not match the pointer size, which has a specified behavior in the
langref.
This is currently missing most of the hard parts to lower correctly,
so disable it for now. This fixes at least one OpenCL conformance test
and allows it to pass with fallback. Hide this behind an option for
now.
This does for G_EXTRACT_VECTOR_ELT what 588bd7be36 did for G_TRUNC.
Ideally types without a corresponding register class wouldn't reach
here, but we're currently missing some (in particular a 192-bit class
is missing).
Summary:
This fixes a few issues related to SMRD offsets. On gfx9 and gfx10 we have a
signed byte offset immediate, however we can overflow into a negative since we
treat it as unsigned.
Also, the SMRD SOFFSET sgpr is an unsigned offset on all subtargets. We
sometimes tried to use negative values here.
Third, S_BUFFER instructions should never use a signed offset immediate.
Differential Revision: https://reviews.llvm.org/D77082
Add the scratch wave offset to the scratch buffer descriptor (SRSrc) in
the entry function prologue. This allows us to removes the scratch wave
offset register from the calling convention ABI.
As part of this change, allow the use of an inline constant zero for the
SOffset of MUBUF instructions accessing the stack in entry functions
when a frame pointer is not requested/required. Entry functions with
calls still need to set up the calling convention ABI stack pointer
register, and reference it in order to address arguments of called
functions. The ABI stack pointer register remains unswizzled, but is now
wave-relative instead of queue-relative.
Non-entry functions also use an inline constant zero SOffset for
wave-relative scratch access, but continue to use the stack and frame
pointers as before. When the stack or frame pointer is converted to a
swizzled offset it is now scaled directly, as the scratch wave offset no
longer needs to be subtracted first.
Update llvm/docs/AMDGPUUsage.rst to reflect these changes to the calling
convention.
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D75138
We weren't considering the packed case correctly, and this was passing
through to the selector. The selector only checked the size, so this
would incorrectly compile to a single 32-bit scalar add.
As usual, the LegalizerHelper is somewhat awkward to use from
applyMappingImpl. I think this is the first place we've needed
multi-step legalization here though.
G_SHUFFLE_VECTOR is legal since it theoretically may help match op_sel
for VOP3P instructions. Expand it in some other way in case it doesn't
fold into the use instructions.
We should try the generated matchers before the manual selection. This
means the patterns are now handling the common cases, but the manual
selection code is not yet dead. It's still handling the non-s32/s64
cases (like v2s16 and v2s32). Currently tablegen doesn't have a nice
way to have a single pattern that covers multiple types.
We have patterns for s_pack* selection, but they assume the inputs are
a build_vector with 16-bit inputs, not a truncating build
vector. Since there's still outstanding work for how to handle
mismatched result and source element vector operations, and since I'm
trying a different packed vector strategy than SelectionDAG, just
manually select this for now.
This looked through copies to find the source modifiers, which may
have been SGPR->VGPR copies added to avoid potential constant bus
violations. Re-insert a copy to a VGPR if this happens.
Vector indexing with a constant index should be folded out in the
legalizer, but this was accidentally falling through. This would
produce the indexing operation with $noreg. Handle this case as a
dynamic index just in case a bug like this happens again in the
future.
I believe this also fixes bugs with CI 32-bit handling, which was
incorrectly skipping offsets that look like signed 32-bit values. Also
validate the offsets are dword aligned before folding.
This should be no problem to support with a pattern, but it turns out
there are just too many yaks to shave. The main problem is in the DAG
emitter, which I have no desire to sink effort into fixing.
If we had a bit to disable patterns in the DAG importer, fixing the
GlobalISelEmitter is more manageable.
Trivial type predicates should be moved into the tablegen pattern
itself, and not checked inside complex patterns. This eliminates a
redundant complex pattern, and fixes select source modifiers for
GlobalISel.
I have further patches which fully handle select in tablegen and
remove all of the C++ selection, although it requires the ugliness to
support the entire range of legal register types.
Use intermediate instructions, unlike with buffer stores. This is
necessary because of the need to have an internal way to distinguish
between signed and unsigned extloads. This introduces some duplication
and near duplication with the buffer store selection path. The store
handling should maybe be moved into legalization to match and
eliminate the duplication.