According to the documentation in StackMap section for the safepoint we should have:
"The first Location in each pair describes the base pointer for the object. The second is the derived pointer actually being relocated."
But before this change we emitted them in reverse order - derived pointer first, base pointer second.
llvm-svn: 237126
to use the information in the module rather than TargetOptions.
We've had and clang has used the use-soft-float attribute for some
time now so have the backends set a subtarget feature based on
a particular function now that subtargets are created based on
functions and function attributes.
For the one middle end soft float check go ahead and create
an overloadable TargetLowering::useSoftFloat function that
just checks the TargetSubtargetInfo in all cases.
Also remove the command line option that hard codes whether or
not soft-float is set by using the attribute for all of the
target specific test cases - for the generic just go ahead and
add the attribute in the one case that showed up.
llvm-svn: 237079
This is a less ambitious version of:
http://reviews.llvm.org/rL236546
because that was reverted in:
http://reviews.llvm.org/rL236600
because it caused memory corruption that wasn't related to FMF
but was actually due to making nodes with 2 operands derive from a
plain SDNode rather than a BinarySDNode.
This patch adds the minimum plumbing necessary to use IR-level
fast-math-flags (FMF) in the backend without actually using
them for anything yet. This is a follow-on to:
http://reviews.llvm.org/rL235997
...which split the existing nsw / nuw / exact flags and FMF
into their own struct.
llvm-svn: 237046
The bug showed up as a compile-time assertion failure:
Assertion `NumBits >= MIN_INT_BITS && "bitwidth too small"' failed
when building msan tests on x86-64.
Prior to r236850, this bug was masked due to a bogus alignment check,
which also accidentally rejected non-byte-sized accesses. Afterwards,
an invalid ElementSizeBytes == 0 got further into the function, and
triggered the assertion failure.
It would probably be a good idea to allow it to handle merging stores
of unusual widths as well, but for now, to un-break it, I'm just
making the minimal fix.
Differential Revision: http://reviews.llvm.org/D9626
llvm-svn: 236927
When emitting something like 'add x, 1000' if we remat the 1000 then we should be able to
mark the vreg containing 1000 as killed. Given that we go bottom up in fast-isel, a later
use of 1000 will be higher up in the BB and won't kill it, or be impacted by the lower kill.
However, rematerialised constant expressions aren't generated bottom up. The local value save area
grows downwards. This means that if you remat 2 constant expressions which both use 1000 then the
first will kill it, then the second, which is *lower* in the BB will read a killed register.
This is the case in the attached test where the 2 GEPs both need to generate 'add x, 6680' for the constant offset.
Note that this commit only makes kill flag generation conservative. There's nothing else obviously wrong with
the local value save area growing downwards, and in fact it needs to for handling arbitrarily complex constant expressions.
However, it would be nice if there was a solution which would let us generate more accurate kill flags, or just kill flags completely.
llvm-svn: 236922
When selecting an extract instruction, we don't actually generate code but instead work out which register we are reading, and rewrite uses of the extract def to the source register. This is done via updateValueMap,.
However, its possible that the source register we are rewriting *to* to also have uses. If those uses are after a kill of the value we are rewriting *from* then we have uses after a kill and the verifier fails.
This code checks for the case where the to register is also used, and if so it clears all kill on the from register. This is conservative, but better that always clearing kills on the from register.
llvm-svn: 236897
This changes the shape of the statepoint intrinsic from:
@llvm.experimental.gc.statepoint(anyptr target, i32 # call args, i32 unused, ...call args, i32 # deopt args, ...deopt args, ...gc args)
to:
@llvm.experimental.gc.statepoint(anyptr target, i32 # call args, i32 flags, ...call args, i32 # transition args, ...transition args, i32 # deopt args, ...deopt args, ...gc args)
This extension offers the backend the opportunity to insert (somewhat) arbitrary code to manage the transition from GC-aware code to code that is not GC-aware and back.
In order to support the injection of transition code, this extension wraps the STATEPOINT ISD node generated by the usual lowering lowering with two additional nodes: GC_TRANSITION_START and GC_TRANSITION_END. The transition arguments that were passed passed to the intrinsic (if any) are lowered and provided as operands to these nodes and may be used by the backend during code generation.
Eventually, the lowering of the GC_TRANSITION_{START,END} nodes should be informed by the GC strategy in use for the function containing the intrinsic call; for now, these nodes are instead replaced with no-ops.
Differential Revision: http://reviews.llvm.org/D9501
llvm-svn: 236888
1) check whether the alignment of the memory is sufficient for the
*merged* store or load to be efficient.
Not doing so can result in some ridiculously poor code generation, if
merging creates a vector operation which must be aligned but isn't.
2) DON'T check that the alignment of each load/store is equal. If
you're merging 2 4-byte stores, the first *might* have 8-byte
alignment, but the second certainly will have 4-byte alignment. We do
want to allow those to be merged.
llvm-svn: 236850
After r236617, branch probabilities are no longer guaranteed to be >= 1. This
patch makes the swich lowering code handle that correctly, without bumping the
branch weights by 1 which might cause overflow and skews the probabilities.
Covered by @zero_weight_tree in test/CodeGen/X86/switch.ll.
llvm-svn: 236739
If called twice in the same BB on the same constant, FastISel::fastEmit_ri_ was marking the materialized vreg as killed on each use, instead of only the last use.
Change this to only mark the last use as killed by making earlier uses check if the vreg is already used elsewhere.
llvm-svn: 236650
Summary:
When computing branch weights in BPI, we used to disallow branches with
weight 0. This is a minor nuisance, because a branch with weight 0 is
different to "don't have information". In the context of
instrumentation, it may mean "never executed", in the context of
sampling, it means "never or seldom executed".
In allowing 0 weight branches, I ran into issues with the switch
expansion code in selection DAG. It is currently hardwired to not handle
branches with weight 0. To maintain the current behaviour, I changed it
to use 1 when it finds 0, but perhaps the algorithm needs changes to
tolerate branches with weight zero.
Reviewers: hansw
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9533
llvm-svn: 236617
Summary: This patch correctly handles undef case of EXTRACT_VECTOR_ELT node where the element index is constant and not less than vector size.
Test Plan:
CodeGen for X86 test included.
Also one incorrect regression test fixed.
Reviewers: qcolombet, chandlerc, hfinkel
Reviewed By: hfinkel
Subscribers: hfinkel, llvm-commits
Differential Revision: http://reviews.llvm.org/D9250
llvm-svn: 236584
For accessors in the `Statepoint` class, use symbolic constants for
offsets into the argument vector instead of literals. This makes the
code intent clearer and simpler to change.
llvm-svn: 236566
Summary:
We default the value argument to nullptr. The only use of the value is
in diagnosePossiblyInvalidConstraint and that seems to be resilient to
it being nullptr.
Reviewers: atrick, reames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9479
llvm-svn: 236555
Summary:
The exported class will be used in later change, in
StatepointLowering.cpp. It is still internal to SelectionDAG (not
exported via include/).
Reviewers: reames, atrick
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9478
llvm-svn: 236554
Summary:
Currently this does not change anything, but change will be used in a
later change to StatepointLowering.cpp
Reviewers: reames, atrick
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9477
llvm-svn: 236553
This patch adds the minimum plumbing necessary to use IR-level
fast-math-flags (FMF) in the backend without actually using
them for anything yet. This is a follow-on to:
http://reviews.llvm.org/rL235997
...which split the existing nsw / nuw / exact flags and FMF
into their own struct.
There are 2 structural changes here:
1. The main diff is that we're preparing to extend the optimization
flags to affect more than just binary SDNodes. Eg, IR intrinsics
( https://llvm.org/bugs/show_bug.cgi?id=21290 ) or non-binop nodes
that don't even exist in IR such as FMA, FNEG, etc.
2. The other change is that we're actually copying the FP fast-math-flags
from the IR instructions to SDNodes.
Differential Revision: http://reviews.llvm.org/D8900
llvm-svn: 236546
This patch makes ReplaceExtractVectorEltOfLoadWithNarrowedLoad convert
the element number from getVectorIdxTy() to PtrTy before doing pointer
arithmetic on it. This is needed on z, where element numbers are i32
but pointers are i64.
Original patch by Richard Sandiford.
llvm-svn: 236530
For little-endian, the function would convert (extract_vector_elt (load X), Y)
to X + Y*sizeof(elt). For big-endian it would instead use
X + sizeof(vec) - Y*sizeof(elt). The big-endian case wasn't right since
vector index order always follows memory/array order, even for big-endian.
(Note that the current handling has to be wrong for Y==0 since it would
access beyond the end of the vector.)
Original patch by Richard Sandiford.
llvm-svn: 236529
When lowering a load or store for TypeWidenVector, the type legalizer
would use a single load or store if the associated integer type was legal.
E.g. it would load a v4i8 as an i32 if i32 was legal.
This patch extends that behavior to promoted integers as well as legal ones.
If the integer type for the full vector width is TypePromoteInteger,
the element type is going to be TypePromoteInteger too, and it's still
better to use a single promoting load or truncating store rather than N
individual promoting loads or truncating stores. E.g. if you have a v2i8
on a target where i16 is promoted to i32, it's better to load the v2i8 as
an i16 rather than load both i8s individually.
Original patch by Richard Sandiford.
llvm-svn: 236528
This patch fixes issues with vector constant folding not correctly handling scalar input operands if they require implicit truncation - this was tested with llvm-stress as recommended by Patrik H Hagglund.
The patch ensures that integer input scalars from a build vector are correctly truncated before folding, and that constant integer scalar results are promoted to a legal type before inclusion in the new folded build vector.
I have added another crash test case and also a test for UINT_TO_FP / SINT_TO_FP using an non-truncated scalar input, which was failing before this patch.
Differential Revision: http://reviews.llvm.org/D9282
llvm-svn: 236308
changes:
Don't apply on hexagon and NVPTX since they no longer claim to support UADDO/USUBO
Add location to getConstant
Drop comment about the ops being turned into expand
llvm-svn: 236240
At the least it should be guarded by some kind of target hook.
It also introduced catastrophic compile time and code quality
regressions on some out of tree targets (test case still being
reduced/sanitized).
Sanjay agreed with reverting this patch until these issues can be
resolved.
llvm-svn: 236199
This will cause hot nodes to appear closer to the root.
The literature says building the tree like this makes it a near-optimal (in
terms of search time given key frequencies) binary search tree. In LLVM's case,
we can do up to 3 comparisons in each leaf node, so it might be better to opt
for lower tree height in some cases; that's something to look into in the
future.
Differential Revision: http://reviews.llvm.org/D9318
llvm-svn: 236192
Finish off PR23080 by renaming the debug info IR constructs from `MD*`
to `DI*`. The last of the `DIDescriptor` classes were deleted in
r235356, and the last of the related typedefs removed in r235413, so
this has all baked for about a week.
Note: If you have out-of-tree code (like a frontend), I recommend that
you get everything compiling and tests passing with the *previous*
commit before updating to this one. It'll be easier to keep track of
what code is using the `DIDescriptor` hierarchy and what you've already
updated, and I think you're extremely unlikely to insert bugs. YMMV of
course.
Back to *this* commit: I did this using the rename-md-di-nodes.sh
upgrade script I've attached to PR23080 (both code and testcases) and
filtered through clang-format-diff.py. I edited the tests for
test/Assembler/invalid-generic-debug-node-*.ll by hand since the columns
were off-by-three. It should work on your out-of-tree testcases (and
code, if you've followed the advice in the previous paragraph).
Some of the tests are in badly named files now (e.g.,
test/Assembler/invalid-mdcompositetype-missing-tag.ll should be
'dicompositetype'); I'll come back and move the files in a follow-up
commit.
llvm-svn: 236120
This is a compromise: with this simple patch, we should always handle a chain of exactly 3
operations optimally, but we're not generating the optimal balanced binary tree for a longer
sequence.
In general, this transform will reduce the dependency chain for a sequence of instructions
using N operands from a worst case N-1 dependent operations to N/2 dependent operations.
The optimal balanced binary tree would reduce the chain to log2(N).
The trade-off for not dealing with longer sequences is: (1) we have less complexity in the
compiler, (2) we avoid unknown compile-time blowup calculating a balanced tree, and (3) we
don't need to worry about the increased register pressure required to parallelize longer
sequences. It also seems unlikely that we would ever encounter really long strings of
dependent ops like that in the wild, but I'm not sure how to verify that speculation.
FWIW, I see no perf difference for test-suite running on btver2 (x86-64) with -ffast-math
and this patch.
We can extend this patch to cover other associative operations such as fmul, fmax, fmin,
integer add, integer mul.
This is a partial fix for:
https://llvm.org/bugs/show_bug.cgi?id=17305
and if extended:
https://llvm.org/bugs/show_bug.cgi?id=21768https://llvm.org/bugs/show_bug.cgi?id=23116
The issue also came up in:
http://reviews.llvm.org/D8941
Differential Revision: http://reviews.llvm.org/D9232
llvm-svn: 236031
This is a preliminary step to using the IR-level floating-point fast-math-flags in the SDAG (D8900).
In this patch, we introduce the optimization flags as their own struct. As noted in the TODO comment,
we should eventually share this data between the IR passes and the backend.
We also switch the existing nsw / nuw / exact bit functionality of the BinaryWithFlagsSDNode class to
use the new struct.
The tradeoff is that instead of using the free but limited space of SDNode's SubclassData, we add a
data member to the subclass. This means we don't have to repeat all of the get/set methods per flag,
but we're potentially adding size to all nodes of this subclassi type.
In practice on 64-bit systems (measured on Linux and MacOS X), there is no size difference between an
SDNode and BinaryWithFlagsSDNode after this change: they're both 80 bytes. This means that we had at
least one free byte to play with due to struct alignment.
Differential Revision: http://reviews.llvm.org/D9325
llvm-svn: 235997
[DebugInfo] Add debug locations to constant SD nodes
This adds debug location to constant nodes of Selection DAG and updates
all places that create constants to pass debug locations
(see PR13269).
Can't guarantee that all locations are correct, but in a lot of cases choice
is obvious, so most of them should be. At least all tests pass.
Tests for these changes do not cover everything, instead just check it for
SDNodes, ARM and AArch64 where it's easy to get incorrect locations on
constants.
This is not complete fix as FastISel contains workaround for wrong debug
locations, which drops locations from instructions on processing constants,
but there isn't currently a way to use debug locations from constants there
as llvm::Constant doesn't cache it (yet). Although this is a bit different
issue, not directly related to these changes.
Differential Revision: http://reviews.llvm.org/D9084
llvm-svn: 235989
This adds debug location to constant nodes of Selection DAG and updates
all places that create constants to pass debug locations
(see PR13269).
Can't guarantee that all locations are correct, but in a lot of cases choice
is obvious, so most of them should be. At least all tests pass.
Tests for these changes do not cover everything, instead just check it for
SDNodes, ARM and AArch64 where it's easy to get incorrect locations on
constants.
This is not complete fix as FastISel contains workaround for wrong debug
locations, which drops locations from instructions on processing constants,
but there isn't currently a way to use debug locations from constants there
as llvm::Constant doesn't cache it (yet). Although this is a bit different
issue, not directly related to these changes.
Differential Revision: http://reviews.llvm.org/D9084
llvm-svn: 235977
I previously thought switch clusters would need to use uint64_t in case
the weights of multiple cases overflowed a 32-bit int. It turns
out that the weights on a terminator instruction are capped to allow for
being added together, so using a uint32_t should be safe.
llvm-svn: 235945
Previously, the code would try to put a fall-through case last,
even if that meant moving a case with much higher branch weight
further down the chain.
Ordering by branch weight is most important, putting a fall-through
block last is secondary.
llvm-svn: 235942
right scaling.
In the function canFoldInAddressingMode, VT is computed as the type of the
destination/source of a LOAD/STORE operations, instead of the memory type of the
operation.
On targets with a scaling factor on the offset of the LOAD/STORE operations, the
function may return false for actually valid cases. This may then prevent the
selection of profitable pre or post indexed load/store operations, and instead
select pre or post indexed load/store for unprofitable cases.
Patch by Francois de Ferriere <francois.de-ferriere@st.com>!
Differential Revision: http://reviews.llvm.org/D9146
llvm-svn: 235780
This introduces an intrinsic called llvm.eh.exceptioncode. It is lowered
by copying the EAX value live into whatever basic block it is called
from. Obviously, this only works if you insert it late during codegen,
because otherwise mid-level passes might reschedule it.
llvm-svn: 235768
Third time's the charm. The previous commit was reverted as a
reverse for-loop in SelectionDAGBuilder::lowerWorkItem did 'I--'
on an iterator at the beginning of a vector, causing asserts
when using debugging iterators. This commit fixes that.
llvm-svn: 235608
Patch to remove extra bitcasts from shuffles, this is often a legacy of XformToShuffleWithZero being used to combine bitmaskings (of float vectors bitcast to integer vectors) into shuffles: bitcast(shuffle(bitcast(s0),bitcast(s1))) -> shuffle(s0,s1)
Differential Revision: http://reviews.llvm.org/D9097
llvm-svn: 235578
This is a re-commit of r235101, which also fixes the problems with the previous patch:
- Switches with only a default case and non-fallthrough were handled incorrectly
- The previous patch tickled a bug in PowerPC Early-Return Creation which is fixed here.
> This is a major rewrite of the SelectionDAG switch lowering. The previous code
> would lower switches as a binary tre, discovering clusters of cases
> suitable for lowering by jump tables or bit tests as it went along. To increase
> the likelihood of finding jump tables, the binary tree pivot was selected to
> maximize case density on both sides of the pivot.
>
> By not selecting the pivot in the middle, the binary trees would not always
> be balanced, leading to performance problems in the generated code.
>
> This patch rewrites the lowering to search for clusters of cases
> suitable for jump tables or bit tests first, and then builds the binary
> tree around those clusters. This way, the binary tree will always be balanced.
>
> This has the added benefit of decoupling the different aspects of the lowering:
> tree building and jump table or bit tests finding are now easier to tweak
> separately.
>
> For example, this will enable us to balance the tree based on profile info
> in the future.
>
> The algorithm for finding jump tables is quadratic, whereas the previous algorithm
> was O(n log n) for common cases, and quadratic only in the worst-case. This
> doesn't seem to be major problem in practice, e.g. compiling a file consisting
> of a 10k-case switch was only 30% slower, and such large switches should be rare
> in practice. Compiling e.g. gcc.c showed no compile-time difference. If this
> does turn out to be a problem, we could limit the search space of the algorithm.
>
> This commit also disables all optimizations during switch lowering in -O0.
>
> Differential Revision: http://reviews.llvm.org/D8649
llvm-svn: 235560
This removes the -sehprepare flag and makes __C_specific_handler
functions always to use WinEHPrepare.
This was tested by building all of chromium_builder_tests and running a
few tests that use SEH, but if something breaks, we can revert this.
llvm-svn: 235557
This turned up after r235333, but was a pre-existing bug. The optimization
which transforms select(c, load, load) into a load of a select of the addresses
does not handle indexed loads (pre/post inc/dec). However, it did not check for
them either, leading to a crash if it tried to transform one of them.
llvm-svn: 235497
X86 backend.
The code generated for symbolic targets is identical to the code generated for
constant targets, except that a relocation is emitted to fix up the actual
target address at link-time. This allows IR and object files containing
patchpoints to be cached across JIT-invocations where the target address may
change.
llvm-svn: 235483
Remove early returns for when `getVariable()` is null, and just assert
that it never happens. The Verifier already confirms that there's a
valid variable on these intrinsics, so we should assume the debug info
isn't broken. I also updated a check for a `!dbg` attachment, which the
Verifier similarly guarantees.
llvm-svn: 235400
Keep the old SEH fan-in lowering on by default for now, since projects
rely on it. This will make it easy to test this change with a simple
flag flip.
llvm-svn: 235399
Fixed issue with the combine of CONCAT_VECTOR of 2 BUILD_VECTOR nodes - the optimisation wasn't ensuring that the scalar operands of both nodes were the same type/size for implicit truncation.
Test case spotted by Patrik Hagglund
llvm-svn: 235371
Summary:
This fixes http://llvm.org/bugs/show_bug.cgi?id=16439.
This is one possible way to approach this. The other would be to split InL>>(nbits-Amt) into (InL>>(nbits-1-Amt))>>1, which is also valid since since we only need to care about Amt up nbits-1. It's hard to tell which one is better since the shift might be expensive if this stage of expansion is not yet a legal machine integer, whereas comparisons with zero are relatively cheap at all sizes, but more expensive than a shift if the shift is on a legal machine type.
Patch by Keno Fischer!
Test Plan: regression test from http://reviews.llvm.org/D7752
Reviewers: chfast, resistor
Reviewed By: chfast, resistor
Subscribers: sanjoy, resistor, chfast, llvm-commits
Differential Revision: http://reviews.llvm.org/D4978
llvm-svn: 235370
When an inline asm call has an output register marked as early-clobber, but
that same register is also an input operand, what should we do? GCC accepts
this, and is documented to accept this for read/write operands saying,
"Furthermore, if the earlyclobber operand is also a read/write operand, then
that operand is written only after it's used." For write-only operands, the
situation seems less clear, but I have at least one existing codebase that
assumes this will work, in part because it has syscall macros like this:
({ \
register uint64_t r0 __asm__ ("r0") = (__NR_ ## name); \
register uint64_t r3 __asm__ ("r3") = ((uint64_t) (arg0)); \
register uint64_t r4 __asm__ ("r4") = ((uint64_t) (arg1)); \
register uint64_t r5 __asm__ ("r5") = ((uint64_t) (arg2)); \
__asm__ __volatile__ \
("sc" \
: "=&r"(r0),"=&r"(r3),"=&r"(r4),"=&r"(r5) \
: "0"(r0), "1"(r3), "2"(r4), "3"(r5) \
: "r6","r7","r8","r9","r10","r11","r12","cr0","memory"); \
r3; \
})
Furthermore, with register aliases and subregister relationships that only the
backend knows about, rejecting this in the frontend seems like a difficult
proposition (if we wanted to do so). However, keeping the early-clobber flag on
the INLINEASM MI does not work for us, because it will cause the register's
live interval to end to soon (so it will not appear defined to be used as an
input).
Fortunately, fixing this does not seem hard: When forming the INLINEASM MI,
check to see if any of the early-clobber outputs are also inputs, and if so,
remove the early-clobber flag.
llvm-svn: 235283
Summary:
- Handle TypePromoteFloat in switch statements
- Move an expression into an assert to avoid unused variable in
non-assert builds.
Reviewers: srhines, ab
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9086
llvm-svn: 235220
Summary:
This patch adds legalization support to operate on FP16 as a load/store type
and do operations on it as floats.
Tests for ARM are added to test/CodeGen/ARM/fp16-promote.ll
Reviewers: srhines, t.p.northover
Differential Revision: http://reviews.llvm.org/D8755
llvm-svn: 235215
This is a followon to r233681 - I'd misunderstood the semantics of FTRUNC,
and had confused it with (FP_ROUND ..., 0).
Thanks for Ahmed Bougacha for his post-commit review!
llvm-svn: 235191
This now emits simple, unoptimized xdata tables for __C_specific_handler
based on the handlers listed in @llvm.eh.actions calls produced by
WinEHPrepare.
This adds support for running __finally blocks when exceptions are
thrown, and removes the old landingpad fan-in codepath.
I ran some manual execution tests on small basic test cases with and
without optimization, as well as on Chrome base_unittests, which uses a
small amount of SEH. I'm sure there are bugs, and we may need to
revert.
llvm-svn: 235154
This is a major rewrite of the SelectionDAG switch lowering. The previous code
would lower switches as a binary tre, discovering clusters of cases
suitable for lowering by jump tables or bit tests as it went along. To increase
the likelihood of finding jump tables, the binary tree pivot was selected to
maximize case density on both sides of the pivot.
By not selecting the pivot in the middle, the binary trees would not always
be balanced, leading to performance problems in the generated code.
This patch rewrites the lowering to search for clusters of cases
suitable for jump tables or bit tests first, and then builds the binary
tree around those clusters. This way, the binary tree will always be balanced.
This has the added benefit of decoupling the different aspects of the lowering:
tree building and jump table or bit tests finding are now easier to tweak
separately.
For example, this will enable us to balance the tree based on profile info
in the future.
The algorithm for finding jump tables is O(n^2), whereas the previous algorithm
was O(n log n) for common cases, and quadratic only in the worst-case. This
doesn't seem to be major problem in practice, e.g. compiling a file consisting
of a 10k-case switch was only 30% slower, and such large switches should be rare
in practice. Compiling e.g. gcc.c showed no compile-time difference. If this
does turn out to be a problem, we could limit the search space of the algorithm.
This commit also disables all optimizations during switch lowering in -O0.
Differential Revision: http://reviews.llvm.org/D8649
llvm-svn: 235101
Fix for test case found by James Molloy - TRUNCATE of constant build vectors can be more simply achieved by simply replacing with a new build vector node with the truncated value type - no need to touch the scalar operands at all.
llvm-svn: 235079
The only type that isn't an integer, isn't floating point, and isn't
a vector; ladies and gentlemen, the gift that keeps on giving: x86_mmx!
Fixes PR23246.
Original message (reverted in r235062):
[CodeGen] Combine concat_vectors of scalars into build_vector.
Combine something like:
(v8i8 concat_vectors (v2i8 bitcast (i16)) x4)
into:
(v8i8 (bitcast (v4i16 BUILD_VECTOR (i16) x4)))
If any of the scalars are floating point, use that throughout.
Differential Revision: http://reviews.llvm.org/D8948
llvm-svn: 235072
This avoids emitting code for unreachable landingpad blocks that contain
calls to llvm.eh.actions and indirectbr.
It's also a first step towards unifying the SEH and WinEH lowering
codepaths. I'm keeping the old fan-in lowering of SEH around until the
preparation version works well enough that we can switch over without
breaking existing users.
llvm-svn: 235037
Gut all the non-pointer API from the variable wrappers, except an
implicit conversion from `DIGlobalVariable` to `DIDescriptor`. Note
that if you're updating out-of-tree code, `DIVariable` wraps
`MDLocalVariable` (`MDVariable` is a common base class shared with
`MDGlobalVariable`).
llvm-svn: 234840
Combine something like:
(v8i8 concat_vectors (v2i8 bitcast (i16)) x4)
into:
(v8i8 (bitcast (v4i16 BUILD_VECTOR (i16) x4)))
If any of the scalars are floating point, use that throughout.
Differential Revision: http://reviews.llvm.org/D8948
llvm-svn: 234809
Instead of calling the somewhat confusingly-named
`DIVariable::isInlinedFnArgument()`, do the check directly here.
There's possibly a small functionality change here: instead of
`dyn_cast<>`'ing `DV->getScope()` to `MDSubprogram`, I'm looking up the
scope chain for the actual subprogram. I suspect that this is a no-op
for function arguments so in practise there isn't a real difference.
I've also added a `FIXME` to check the `inlinedAt:` chain instead, since
I wonder if that would be more reliable than the
`MDSubprogram::describes()` function.
Since this was the only user of `DIVariable::isInlinedFnArgument()`,
delete it.
llvm-svn: 234799
Revert "Remove default in fully-covered switch (to fix Clang -Werror -Wcovered-switch-default)"
Revert "R600: Add carry and borrow instructions. Use them to implement UADDO/USUBO"
Revert "LegalizeDAG: Try to use Overflow operations when expanding ADD/SUB"
Using overflow operations fails CodeGen/Generic/2011-07-07-ScheduleDAGCrash.ll
on hexagon, nvptx, and r600. Revert while I investigate.
llvm-svn: 234768
In case of different types used for the condition of the selects the
select(select) -> select(and) normalisation cannot be performed.
See also: http://reviews.llvm.org/D7622
llvm-svn: 234763
The patch is generated using clang-tidy misc-use-override check.
This command was used:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py \
-checks='-*,misc-use-override' -header-filter='llvm|clang' \
-j=32 -fix -format
http://reviews.llvm.org/D8925
llvm-svn: 234679
The IPToState table must be emitted after we have generated labels for
all functions in the table. Don't rely on the order of the list of
globals. Instead, utilize WinEHFuncInfo to tell us how many catch
handlers we expect to outline. Once we know we've visited all the catch
handlers, emit the cppxdata.
llvm-svn: 234566
For the most common ones (such as fadd), we already did the promotion.
Do the same thing for all the others.
Currently, we'll just crash/assert on all these operations, as
there's no hardware or libcall support whatsoever.
f16 (half) is specified as an interchange - not arithmetic - format,
and is expected to be promoted to single-precision for arithmetic
operations.
While there, teach the legalizer about promoting some of the (mostly
floating-point) operations that we never needed before.
Differential Revision: http://reviews.llvm.org/D8648
See related discussion on the thread for: http://reviews.llvm.org/D8755
llvm-svn: 234550
We already do:
concat_vectors(scalar, undef) -> scalar_to_vector(scalar)
When the scalar is legal.
When it's not, but is a truncated legal scalar, we can also do:
concat_vectors(trunc(scalar), undef) -> scalar_to_vector(scalar)
Which is equivalent, since the upper lanes are undef anyway.
While there, teach the combine to look at more than 2 operands.
Differential Revision: http://reviews.llvm.org/D8883
llvm-svn: 234530
The bug manifests when there are two loads and two stores chained as follows in
a DAG,
(ld v3f32) -> (st f32) -> (ld v3f32) -> (st f32)
and the stores' values are extracted from the preceding vector loads.
MergeConsecutiveStores would replace the first store in the chain with the
merged vector store, which would create a cycle between the merged store node
and the last load node that appears in the chain.
This commits fixes the bug by replacing the last store in the chain instead.
rdar://problem/20275084
Differential Revision: http://reviews.llvm.org/D8849
llvm-svn: 234430
Fast isel used to zero extends immediates to 64 bits. This normally goes
unnoticed because the value is truncated to 32 bits for output.
Two cases were it is noticed:
* We fail to use smaller encodings.
* If the original constant was smaller than i32.
In the tests using i1 constants, codegen would change to use -1, which is fine
(and matches what regular isel does) since only the lowest bit is then used.
Instead, this patch then changes the ir to use i8 constants, which looks more
like what clang produces.
llvm-svn: 234249
The uselist isn't enough to infer anything about the lifetime of such
allocas. If we want to re-add this optimization, we will need to
leverage lifetime markers to do it.
Fixes PR23122.
llvm-svn: 234196
This add support for catching an exception such that an exception object
available to the catch handler will be initialized by the runtime.
llvm-svn: 234062
We don't need to represent UnwindHelp in IR. Instead, we can use the
knowledge that we are emitting the parent function to decide if we
should create the UnwindHelp stack object.
llvm-svn: 234061
As a follow-up to r234021, assert that a debug info intrinsic variable's
`MDLocalVariable::getInlinedAt()` always matches the
`MDLocation::getInlinedAt()` of its `!dbg` attachment.
The goal here is to get rid of `MDLocalVariable::getInlinedAt()`
entirely (PR22778), but I'll let these assertions bake for a while
first.
If you have an out-of-tree backend that just broke, you're probably
attaching the wrong `DebugLoc` to a `DBG_VALUE` instruction. The one
you want is the location that was attached to the corresponding
`@llvm.dbg.declare` or `@llvm.dbg.value` call that you started with.
llvm-svn: 234038
This patch attempts to fold the shuffling of 'scalar source' inputs - BUILD_VECTOR and SCALAR_TO_VECTOR nodes - if the shuffle node is the only user. This folds away a lot of unnecessary shuffle nodes, and allows quite a bit of constant folding that was being missed.
Differential Revision: http://reviews.llvm.org/D8516
llvm-svn: 234004
This lets us catch exceptions in simple cases.
N.B. Things that do not work include (but are not limited to):
- Throwing from within a catch handler.
- Catching an object with a named catch parameter.
- 'CatchHigh' is fictitious, we aren't sure of its purpose.
- We aren't entirely efficient with regards to the number of EH states
that we generate.
- IP-to-State tables are sensitive to the order of emission.
llvm-svn: 233767
The existing code in getMemsetValue only handled integer-preferred types when
the fill value was not a constant. Make this more robust in two ways:
1. If the preferred type is a floating-point value, do the mul-splat trick on
the corresponding integer type and then bitcast.
2. If the preferred type is a vector, do the mul-splat trick on one vector
element, and then build a vector out of them.
Fixes PR22754 (although, we should also turn off use of vector types at -O0).
llvm-svn: 233749
it more liberally.
SplitVecOp_TRUNCATE has logic for recursively splitting oversize vectors
that need more than one round of splitting to become legal. There are many
other ISD nodes that could benefit from this logic, so factor it out and
use it for FP_TO_UINT,FP_TO_SINT,SINT_TO_FP,UINT_TO_FP and FTRUNC.
llvm-svn: 233681
Generate tables in the .xdata section representing what actions to take
when an exception is thrown. This currently fills in state for
cleanups, catch handlers are still unfinished.
llvm-svn: 233636
DAGCombiner::ReassociateOps was correctly testing for an constant integer scalar but failed to correctly test for constant integer vectors (it was testing for any constant vector).
llvm-svn: 233482
Tailcalls are only OK with forwarded sret pointers. With explicit sret,
one approximation is to check that the pointer isn't an Instruction, as
in that case it might point into some local memory (alloca). That's not
OK with tailcalls.
Explicit sret counterpart to r233409.
Differential Revison: http://reviews.llvm.org/D8510
llvm-svn: 233410
Tailcalls are only OK with forwarded sret pointers. With sret demotion,
they're not, as we'd have a pointer into a soon-to-be-dead stack frame.
Differential Revison: http://reviews.llvm.org/D8510
llvm-svn: 233409
This was discussed a while back and I left it optional for migration. Since it's been far more than the 'week or two' that was discussed, time to actually make this manditory.
llvm-svn: 233357
This patch adds support for explicitly provided spill slots in the GC arguments of a gc.statepoint. This is somewhat analogous to gcroot, but leverages the STATEPOINT MI node and StackMap infrastructure. The motivation for this is:
1) The stack spilling code for gc.statepoints hasn't advanced as fast as I'd like. One major option is to give up on doing spilling in the backend and do it at the IR level instead. We'd give up the ability to have gc values in registers, but that's a minor cost in practice. We are not neccessarily moving in that direction, but having the ability to prototype such a thing cheaply is interesting.
2) I want to port the gcroot lowering to use the statepoint infastructure. Given the metadata printers for gcroot expect a fixed set of stack roots, it's easiest to just reuse the explicit stack slots and pass them directly to the underlying statepoint.
I'm holding off on the documentation for the new feature until I'm reasonable sure this is going to stick around.
llvm-svn: 233356
We don't have any logic to emit those tables yet, so the SDAG lowering
of this intrinsic is just a stub. We can see the intrinsic in the
prepared IR, though.
llvm-svn: 233354
It can happen (by line CurSU->isPending = true; // This SU is not in
AvailableQueue right now.) that a SUnit is mark as available but is
not in the AvailableQueue. For SUnit being selected for scheduling
both conditions must be met.
This patch mainly defensively protects from invalid removing a node
from a queue. Sometimes nodes are marked isAvailable but are not in
the queue because they have been defered due to some hazard.
Patch by Pawel Bylica!
llvm-svn: 233351
This patch adds supports for the vector constant folding of TRUNCATE and FP_EXTEND instructions and tidies up the SINT_TO_FP and UINT_TO_FP instructions to match.
It also moves the vector constant folding for the FNEG and FABS instructions to use the DAG.getNode() functionality like the other unary instructions.
Differential Revision: http://reviews.llvm.org/D8593
llvm-svn: 233224
We don't have any logic to emit those tables yet, so the sdag lowering
of this intrinsic is just a stub. We can see the intrinsic in the
prepared IR, though.
llvm-svn: 233209
Reverts the code change from r221168 and the relevant test.
It was a mistake to disable the combiner, and based on the ultimate
definition of 'optnone' we shouldn't have considered the test case
as failing in the first place.
llvm-svn: 233153
While the uitofp scalar constant folding treats an integer as an unsigned value (from lang ref):
%X = sitofp i8 -1 to double ; yields double:-1.0
%Y = uitofp i8 -1 to double ; yields double:255.0
The vector constant folding was always using sitofp:
%X = sitofp <2 x i8> <i8 -1, i8 -1> to <2 x double> ; yields <double -1.0, double -1.0>
%Y = uitofp <2 x i8> <i8 -1, i8 -1> to <2 x double> ; yields <double -1.0, double -1.0>
This patch fixes this so that the correct opcode is used for sitofp and uitofp.
%X = sitofp <2 x i8> <i8 -1, i8 -1> to <2 x double> ; yields <double -1.0, double -1.0>
%Y = uitofp <2 x i8> <i8 -1, i8 -1> to <2 x double> ; yields <double 255.0, double 255.0>
Differential Revision: http://reviews.llvm.org/D8560
llvm-svn: 233033
Fixing sign extension in makeLibCall for MIPS64. In MIPS64 architecture all
32 bit arguments (int, unsigned int, float 32 (soft float)) must be sign
extended. This fixes test "MultiSource/Applications/oggenc/".
Patch by Strahinja Petrovic.
Differential Revision: http://reviews.llvm.org/D7791
llvm-svn: 232943
Because the operands of a vector SETCC node can be of a different type from the
result (and often are), it can happen that even if we'd prefer to widen the
result type of the SETCC, the operands have been split instead. In this case,
the SETCC result also must be split. This mirrors what is done in
WidenVecRes_SELECT, and should be NFC elsewhere because if the operands are not
widened the following calls to GetWidenedVector will assert (which is what was
happening in the test case).
llvm-svn: 232935
This is very related to the bug fixed in r174431. The problem is that
SelectionDAG does not include alignment in the uniquing of loads and
stores. When an otherwise no-op DAGCombine would increase the alignment
of a load or store, the original node would be returned (with the
alignment increased), which would cause the node not to be processed by
any further DAGCombines.
I don't have a direct testcase for this that manifests on an in-tree
target, but I did see some noise in the tests for other targets and have
updated them for it.
llvm-svn: 232780
Targets which provide a rotate make it possible to replace a sequence of
(XOR (SHL 1, x), -1) with (ROTL ~1, x). This saves an instruction on
architectures like X86 and POWER(64).
Differential Revision: http://reviews.llvm.org/D8350
llvm-svn: 232572
The operand flag word for ISD::INLINEASM nodes now contains a 15-bit
memory constraint ID when the operand kind is Kind_Mem. This constraint
ID is a numeric equivalent to the constraint code string and is converted
with a target specific hook in TargetLowering.
This patch maps all memory constraints to InlineAsm::Constraint_m so there
is no functional change at this point. It just proves that using these
previously unused bits in the encoding of the flag word doesn't break
anything.
The next patch will make each target preserve the current mapping of
everything to Constraint_m for itself while changing the target independent
implementation of the hook to return Constraint_Unknown appropriately. Each
target will then be adapted in separate patches to use appropriate
Constraint_* values.
PR22883 was caused the matching operands copying the whole of the operand flags
for the matched operand. This included the constraint id which needed to be
replaced with the operand number. This has been fixed with a conversion
function. Following on from this, matching operands also used the operand
number as the constraint id. This has been fixed by looking up the matched
operand and taking it from there.
llvm-svn: 232165
This should complete the job started in r231794 and continued in r232045:
We want to replace as much custom x86 shuffling via intrinsics
as possible because pushing the code down the generic shuffle
optimization path allows for better codegen and less complexity
in LLVM.
AVX2 introduced proper integer variants of the hacked integer insert/extract
C intrinsics that were created for this same functionality with AVX1.
This should complete the removal of insert/extract128 intrinsics.
The Clang precursor patch for this change was checked in at r232109.
llvm-svn: 232120
This (r232027) has caused PR22883; so it seems those bits might be used by
something else after all. Reverting until we can figure out what else to do.
Original commit message:
The operand flag word for ISD::INLINEASM nodes now contains a 15-bit
memory constraint ID when the operand kind is Kind_Mem. This constraint
ID is a numeric equivalent to the constraint code string and is converted
with a target specific hook in TargetLowering.
This patch maps all memory constraints to InlineAsm::Constraint_m so there
is no functional change at this point. It just proves that using these
previously unused bits in the encoding of the flag word doesn't break anything.
The next patch will make each target preserve the current mapping of
everything to Constraint_m for itself while changing the target independent
implementation of the hook to return Constraint_Unknown appropriately. Each
target will then be adapted in separate patches to use appropriate Constraint_*
values.
llvm-svn: 232093
Now that we've replaced the vinsertf128 intrinsics,
do the same for their extract twins.
This is very much like D8086 (checked in at r231794):
We want to replace as much custom x86 shuffling via intrinsics
as possible because pushing the code down the generic shuffle
optimization path allows for better codegen and less complexity
in LLVM.
This is also the LLVM sibling to the cfe D8275 patch.
Differential Revision: http://reviews.llvm.org/D8276
llvm-svn: 232045
Summary:
The operand flag word for ISD::INLINEASM nodes now contains a 15-bit
memory constraint ID when the operand kind is Kind_Mem. This constraint
ID is a numeric equivalent to the constraint code string and is converted
with a target specific hook in TargetLowering.
This patch maps all memory constraints to InlineAsm::Constraint_m so there
is no functional change at this point. It just proves that using these
previously unused bits in the encoding of the flag word doesn't break anything.
The next patch will make each target preserve the current mapping of
everything to Constraint_m for itself while changing the target independent
implementation of the hook to return Constraint_Unknown appropriately. Each
target will then be adapted in separate patches to use appropriate Constraint_*
values.
Reviewers: hfinkel
Reviewed By: hfinkel
Subscribers: hfinkel, jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D8171
llvm-svn: 232027
CodeGen incorrectly ignores (assert from APInt) constant index bigger
than 2^64 in getelementptr instruction. This is a test and fix for that.
Patch by Paweł Bylica!
Reviewed By: rnk
Subscribers: majnemer, rnk, mcrosier, resistor, llvm-commits
Differential Revision: http://reviews.llvm.org/D8219
llvm-svn: 231984
that control, individually, all of the disparate things it was
controlling.
At the same time move a FIXME in the Hexagon port to a new
subtarget function that will enable a user of the machine
scheduler to avoid using the source scheduler for pre-RA-scheduling.
The FIXME would have this removed, but involves either testcase
changes or adding -pre-RA-sched=source to a few testcases.
llvm-svn: 231980
Also it extracts getCopyFromRegs helper function in SelectionDAGBuilder as we need to be able to customize type of the register exported from basic block during lowering of the gc.result.
(Resubmitting this change after not being able to reproduce buildbot failure)
Differential Revision: http://reviews.llvm.org/D7760
llvm-svn: 231800
We want to replace as much custom x86 shuffling via intrinsics
as possible because pushing the code down the generic shuffle
optimization path allows for better codegen and less complexity
in LLVM.
This is the sibling patch for the Clang half of this change:
http://reviews.llvm.org/D8088
Differential Revision: http://reviews.llvm.org/D8086
llvm-svn: 231794
Summary:
This is part of the work to support memory constraints that behave
differently to 'm'. The subsequent patches will expand on the existing
encoding (which is a 32-bit int) and as a result in some flag words will no
longer fit into an i16. This problem only affected the MSP430 target which
appears to have 16-bit pointers.
Reviewers: hfinkel
Reviewed By: hfinkel
Subscribers: hfinkel, llvm-commits
Differential Revision: http://reviews.llvm.org/D8168
llvm-svn: 231783
Summary:
Now that the DataLayout is a mandatory part of the module, let's start
cleaning the codebase. This patch is a first attempt at doing that.
This patch is not exactly NFC as for instance some places were passing
a nullptr instead of the DataLayout, possibly just because there was a
default value on the DataLayout argument to many functions in the API.
Even though it is not purely NFC, there is no change in the
validation.
I turned as many pointer to DataLayout to references, this helped
figuring out all the places where a nullptr could come up.
I had initially a local version of this patch broken into over 30
independant, commits but some later commit were cleaning the API and
touching part of the code modified in the previous commits, so it
seemed cleaner without the intermediate state.
Test Plan:
Reviewers: echristo
Subscribers: llvm-commits
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 231740
This fixes a subtle issue that was introduced in r205153.
When reusing a store for the extractelement expansion (to load directly
from it, inserting of going through the stack), later stores to the
same location might have overwritten the data we were expecting to
extract from.
To fix that, we need to explicitly replace the chain going out of the
reused store, so that later stores also have an explicit dependency on
the generated element-extracting loads, and can't clobber them.
rdar://20066785
Differential Revision: http://reviews.llvm.org/D8180
llvm-svn: 231721
We have an increasing number of cases where we are creating commuted shuffle masks - all implementing nearly the same code.
This patch adds a static helper function - ShuffleVectorSDNode::commuteMask() and replaces a number of cases to use it.
Differential Revision: http://reviews.llvm.org/D8139
llvm-svn: 231581
In theory this allows the compiler to skip materializing the array on
the stack. In practice clang often fails to do that, but that's a
different story. NFC.
llvm-svn: 231571
This patch fixes the logic in the DAGCombiner that folds an AND node according
to rule: (and (X (load V)), C) -> (X (load V))
An AND between a vector load 'X' and a constant build_vector 'C' can be folded
into the load itself only if we can prove that the AND operation is redundant.
The algorithm implemented by 'visitAND' firstly computes the splat value 'S'
from C, and then checks if S has the lower 'B' bits set (where B is the size in
bits of the vector element type). The algorithm takes into account also the
'undef' bits in the splat mask.
Unfortunately, the algorithm only worked under the assumption that the size of S
is a multiple of the vector element type. With this patch, we conservatively
avoid folding the AND if the splat bits are not compatible with the vector
element type.
Added X86 test and-load-fold.ll
Differential Revision: http://reviews.llvm.org/D8085
llvm-svn: 231563
This patch attempts to convert a SCALAR_TO_VECTOR using an operand from an EXTRACT_VECTOR_ELT into a VECTOR_SHUFFLE.
This prevents many cases of spilling scalar data between the gpr + simd registers.
At present the optimization only accepts cases where there is no TRUNC of the scalar type (i.e. all types must match).
Differential Revision: http://reviews.llvm.org/D8132
llvm-svn: 231554
This is based on the following equivalences:
select(C0 & C1, X, Y) <=> select(C0, select(C1, X, Y), Y)
select(C0 | C1, X, Y) <=> select(C0, X, select(C1, X, Y))
Many target cannot perform and/or on the CPU flags and therefore the
right side should be choosen to avoid materializign the i1 flags in an
integer register. If the target can perform this operation efficiently
we normalize to the left form.
Differential Revision: http://reviews.llvm.org/D7622
llvm-svn: 231507
This is in preparation for changing visitSELECT to normalize towards
select(Cond0, select(Cond1, X, Y), Y);
select(Cond0, X, select(Cond1, X, Y)) which perfom an implicit and/or of
the conditions.
The factored function contains all DAGCombine rules which reduce two values
combined by an And/Or operation to a single value. This does not include rules
involving constants as visitSELECT already handles that case.
Differential Revision: http://reviews.llvm.org/D8026
llvm-svn: 231506
Currently shuffles may only be combined if they are of the same type, despite the fact that bitcasts are often introduced in between shuffle nodes (e.g. x86 shuffle type widening).
This patch allows a single input shuffle to peek through bitcasts and if the input is another shuffle will merge them, shuffling using the smallest sized type, and re-applying the bitcasts at the inputs and output instead.
Dropped old ShuffleToZext test - this patch removes the use of the zext and vector-zext.ll covers these anyhow.
Differential Revision: http://reviews.llvm.org/D7939
llvm-svn: 231380
Added lowering for ISD::CONCAT_VECTORS and ISD::INSERT_SUBVECTOR for i1 vectors,
it is needed to pass all masked_memop.ll tests for SKX.
llvm-svn: 231371
Also it extracts getCopyFromRegs helper function in SelectionDAGBuilder as we need to be able to customize type of the register exported from basic block during lowering of the gc.result.
llvm-svn: 231366
When trying to convert a BUILD_VECTOR into a shuffle, we try to split a single source vector that is twice as wide as the destination vector.
We can not do this when we also need the zero vector to create a blend.
This fixes PR22774.
Differential Revision: http://reviews.llvm.org/D8040
llvm-svn: 231219
Accidentally committed a few more of these cleanup changes than
intended. Still breaking these out & tidying them up.
This reverts commit r231135.
llvm-svn: 231136
There doesn't seem to be any need to assert that iterator assignment is
between iterators over the same node - if you want to reuse an iterator
variable to iterate another node, that's perfectly acceptable. Just
don't mix comparisons between iterators into disjoint sequences, as
usual.
llvm-svn: 231135
We were missing a check for the following fold in DAGCombiner:
// fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2))
If 'x' is also a constant, then we shouldn't do anything. Otherwise, we could end up swapping the operands back and forth forever.
This should fix:
http://llvm.org/bugs/show_bug.cgi?id=22698
Differential Revision: http://reviews.llvm.org/D7917
llvm-svn: 230884
Level 1 should abort for all instructions but call/terminators/args.
Instead it was aborting only if the level was > 2
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 230861
Summary:
Currently fast-isel-abort will only abort for regular instructions,
and just warn for function calls, terminators, function arguments.
There is already fast-isel-abort-args but nothing for calls and
terminators.
This change turns the fast-isel-abort options into an integer option,
so that multiple levels of strictness can be defined.
This will help no being surprised when the "abort" option indeed does
not abort, and enables the possibility to write test that verifies
that no intrinsics are forgotten by fast-isel.
Reviewers: resistor, echristo
Subscribers: jfb, llvm-commits
Differential Revision: http://reviews.llvm.org/D7941
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 230775
a lookup, pass that in rather than use a naked call to getSubtargetImpl.
This involved passing down and around either a TargetMachine or
TargetRegisterInfo. Update all callers/definitions around the targets
and SelectionDAG.
llvm-svn: 230699
have the debugger step through each one individually. Turn off the
combine for adjacent stores at -O0 so we get this behavior.
Possibly, DAGCombine shouldn't run at all at -O0, but that's for
another day; see PR22346.
Differential Revision: http://reviews.llvm.org/D7181
llvm-svn: 230659
Author: Simon Pilgrim <llvm-dev@redking.me.uk>
Date: Mon Feb 23 23:04:28 2015 +0000
Fix based on post-commit comment on D7816 & rL230177 - BUILD_VECTOR operand truncation was using the the BV's output scalar type instead of the input type.
and
Author: Simon Pilgrim <llvm-dev@redking.me.uk>
Date: Sun Feb 22 18:17:28 2015 +0000
[DagCombiner] Generalized BuildVector Vector Concatenation
The CONCAT_VECTORS combiner pass can transform the concat of two BUILD_VECTOR nodes into a single BUILD_VECTOR node.
This patch generalises this to support any number of BUILD_VECTOR nodes, and also permits UNDEF nodes to be included as well.
This was noticed as AVX vec128 -> vec256 canonicalization sometimes creates a CONCAT_VECTOR with a real vec128 lower and an vec128 UNDEF upper.
Differential Revision: http://reviews.llvm.org/D7816
as the root cause of PR22678 which is causing an assertion inside the DAG combiner.
I'll follow up to the main thread as well.
llvm-svn: 230358
The logic is almost there already, with our special homogeneous aggregate
handling. Tweaking it like this allows front-ends to emit AAPCS compliant code
without ever having to count registers or add discarded padding arguments.
Only arrays of i32 and i64 are needed to model AAPCS rules, but I decided to
apply the logic to all integer arrays for more consistency.
llvm-svn: 230348
For almost all node types, if the target requested custom lowering, and
LowerOperation returned its input, we'd treat the original node as legal. This
did not work, however, for many loads and stores, because they follow
slightly different code paths, and we did not account for the possibility of
LowerOperation returning its input at those call sites.
I think that we now handle this consistently everywhere. At the call sites in
LegalizeDAG, we used to assert in this case, so there's no functional change
for any existing code there. For the call sites in LegalizeVectorOps, this
really only affects whether or not we set Changed = true, but I think makes the
semantics clearer.
No test case here, but it will be covered by an upcoming PowerPC commit adding
QPX support.
llvm-svn: 230332
This patch teaches the backend how to expand a double-half conversion into
a double-float conversion immediately followed by a float-half conversion.
We do this only under fast-math, and if float-half conversions are legal
for the target.
Added test CodeGen/X86/fastmath-float-half-conversion.ll
Differential Revision: http://reviews.llvm.org/D7832
llvm-svn: 230276
The CONCAT_VECTORS combiner pass can transform the concat of two BUILD_VECTOR nodes into a single BUILD_VECTOR node.
This patch generalises this to support any number of BUILD_VECTOR nodes, and also permits UNDEF nodes to be included as well.
This was noticed as AVX vec128 -> vec256 canonicalization sometimes creates a CONCAT_VECTOR with a real vec128 lower and an vec128 UNDEF upper.
Differential Revision: http://reviews.llvm.org/D7816
llvm-svn: 230177
DAGCombine will rewrite an BUILD_VECTOR where all non-undef inputs some from
[US]INT_TO_FP, as a BUILD_VECTOR of integers with the conversion applied as a
vector operation. We check operation legality of the conversion, but fail to
check legality of the integer vector type itself. Because targets don't
normally override operation legality defaults for illegal types, we need to
check this also.
This came up in the context of the QPX vector entensions for PowerPC (which can
have legal floating-point vector types without corresponding legal integer
vector types). No in-tree test case for this yes, but one can be added once
the QPX support has been committed.
llvm-svn: 230176
When expanding a truncating store or extending load using vector extracts or
inserts and scalar stores and loads, we were giving each of these scalar stores
or loads the same alignment as the original vector operation. While this will
often be right (most vector operations, especially those produced by
autovectorization, have the alignment of the underlying scalar type), the
vector operation could certainly have a larger alignment.
No test case (yet); noticed by inspection.
llvm-svn: 230175
Synthesizing a call directly using the MI layer would confuse the frame
lowering code. This is problematic as frame lowering is highly
sensitive the particularities of calls, etc.
llvm-svn: 230129
This allows sharing of FMA forming combines to work
with instructions that have the same semantics as a separate
multiply and add.
This is expand by default, and only formed post legalization
so it shouldn't have much impact on targets that do not want it.
llvm-svn: 230070
First, don't combine bit masking into vector shuffles (even ones the
target can handle) once operation legalization has taken place. Custom
legalization of vector shuffles may exist for these patterns (making the
predicate return true) but that custom legalization may in some cases
produce the exact bit math this matches. We only really want to handle
this prior to operation legalization.
However, the x86 backend, in a fit of awesome, relied on this. What it
would do is mark VSELECTs as expand, which would turn them into
arithmetic, which this would then match back into vector shuffles, which
we would then lower properly. Amazing.
Instead, the second change is to teach the x86 backend to directly form
vector shuffles from VSELECT nodes with constant conditions, and to mark
all of the vector types we support lowering blends as shuffles as custom
VSELECT lowering. We still mark the forms which actually support
variable blends as *legal* so that the custom lowering is bypassed, and
the legal lowering can even be used by the vector shuffle legalization
(yes, i know, this is confusing. but that's how the patterns are
written).
This makes the VSELECT lowering much more sensible, and in fact should
fix a bunch of bugs with it. However, as you'll see in the test cases,
right now what it does is point out the *hilarious* deficiency of the
new vector shuffle lowering when it comes to blends. Fortunately, my
very next patch fixes that. I can't submit it yet, because that patch,
somewhat obviously, forms the exact and/or pattern that the DAG combine
is matching here! Without this patch, teaching the vector shuffle
lowering to produce the right code infloops in the DAG combiner. With
this patch alone, we produce terrible code but at least lower through
the right paths. With both patches, all the regressions here should be
fixed, and a bunch of the improvements (like using 2 shufps with no
memory loads instead of 2 andps with memory loads and an orps) will
stay. Win!
There is one other change worth noting here. We had hilariously wrong
vectorization cost estimates for vselect because we fell through to the
code path that assumed all "expand" vector operations are scalarized.
However, the "expand" lowering of VSELECT is vector bit math, most
definitely not scalarized. So now we go back to the correct if horribly
naive cost of "1" for "not scalarized". If anyone wants to add actual
modeling of shuffle costs, that would be cool, but this seems an
improvement on its own. Note the removal of 16 and 32 "costs" for doing
a blend. Even in SSE2 we can blend in fewer than 16 instructions. ;] Of
course, we don't right now because of OMG bad code, but I'm going to fix
that. Next patch. I promise.
llvm-svn: 229835
1) We should not try to simplify if the sext has multiple uses
2) There is no need to simplify is the source value is already sign-extended.
Patch by Gil Rapaport <gil.rapaport@intel.com>
Differential Revision: http://reviews.llvm.org/D6949
llvm-svn: 229659
This is a follow-on patch to:
http://reviews.llvm.org/D7093
That patch canonicalized constant splats as build_vectors,
and this patch removes the constant check so we can canonicalize
all splats as build_vectors.
This fixes the 2nd test case in PR22283:
http://llvm.org/bugs/show_bug.cgi?id=22283
The unfortunate code duplication between SelectionDAG and DAGCombiner
is discussed in the earlier patch review. At least this patch is just
removing code...
This improves an existing x86 AVX test and changes codegen in an ARM test.
Differential Revision: http://reviews.llvm.org/D7389
llvm-svn: 229511
This adds a safe interface to the machine independent InputArg struct
for accessing the index of the original (IR-level) argument. When a
non-native return type is lowered, we generate the hidden
machine-level sret argument on-the-fly. Before this fix, we were
representing this argument as OrigArgIndex == 0, which is an outright
lie. In particular this crashed in the AArch64 backend where we
actually try to access the type of the original argument.
Now we use a sentinel value for machine arguments that have no
original argument index. AArch64, ARM, Mips, and PPC now check for this
case before accessing the original argument.
Fixes <rdar://19792160> Null pointer assertion in AArch64TargetLowering
llvm-svn: 229413
directly into blends of the splats.
These patterns show up even very late in the vector shuffle lowering
where we don't have any chance for DAG combining to kick in, and
blending is a tremendously simpler operation to model. By coercing the
shuffle into a blend we can much more easily match and lower shuffles of
splats.
Immediately with this change there are significantly more blends being
matched in the x86 vector shuffle lowering.
llvm-svn: 229308
test.
This was just a matter of the DAG combine for vector shuffles being too
aggressive. This is a bit of a grey area, but I think generally if we
can re-use intermediate shuffles, we should. Certainly, given the test
cases I have available, this seems like the right call.
llvm-svn: 229285
Canonicalize access to function attributes to use the simpler API.
getAttributes().getAttribute(AttributeSet::FunctionIndex, Kind)
=> getFnAttribute(Kind)
getAttributes().hasAttribute(AttributeSet::FunctionIndex, Kind)
=> hasFnAttribute(Kind)
Also, add `Function::getFnStackAlignment()`, and canonicalize:
getAttributes().getStackAlignment(AttributeSet::FunctionIndex)
=> getFnStackAlignment()
llvm-svn: 229208
The PowerPC backend has long promoted some floating-point vector operations
(such as select) to integer vector operations. Unfortunately, this behavior was
broken by r216555. When using FP_EXTEND/FP_ROUND for promotions, we must check
that both the old and new types are floating-point types. Otherwise, we must
use BITCAST as we did prior to r216555 for everything.
llvm-svn: 228969
We used to do this DAG combine, but it's not always correct:
If the first fp_round isn't a value preserving truncation, it might
introduce a tie in the second fp_round, that wouldn't occur in the
single-step fp_round we want to fold to.
In other words, double rounding isn't the same as rounding.
Differential Revision: http://reviews.llvm.org/D7571
llvm-svn: 228911
Add new token factor node and its users to worklist if alias analysis is
turned on, in DAGCombiner::visitTokenFactor(). Alias analysis may cause
a lot of new token factors to be inserted into the DAG, and they need to
be optimized to avoid significant slow-downs.
Reviewed by Hal Finkel.
llvm-svn: 228841
The isSigned argument of makeLibCall function was hard-coded to false
(unsigned). This caused zero extension on MIPS64 soft float.
As the result SingleSource/Benchmarks/Stanford/FloatMM test and
SingleSource/UnitTests/2005-07-17-INT-To-FP test failed.
The solution was to use the proper argument.
Patch by Strahinja Petrovic.
Differential Revision: http://reviews.llvm.org/D7292
llvm-svn: 228765
nodes when folding bitcasts of constants.
We can't fold things and then check after-the-fact whether it was legal.
Once we have formed the DAG node, arbitrary other nodes may have been
collapsed to it. There is no easy way to go back. Instead, we need to
test for the specific folding cases we're interested in and ensure those
are legal first.
This could in theory make this less powerful for bitcasting from an
integer to some vector type, but AFAICT, that can't actually happen in
the SDAG so its fine. Now, we *only* whitelist specific int->fp and
fp->int bitcasts for post-legalization folding. I've added the test case
from the PR.
(Also as a note, this does not appear to be in 3.6, no backport needed)
llvm-svn: 228656
The combine that forms extloads used to be disabled on vector types,
because "None of the supported targets knows how to perform load and
sign extend on vectors in one instruction."
That's not entirely true, since at least SSE4.1 X86 knows how to do
those sextloads/zextloads (with PMOVS/ZX).
But there are several aspects to getting this right.
First, vector extloads are controlled by a profitability callback.
For instance, on ARM, several instructions have folded extload forms,
so it's not always beneficial to create an extload node (and trying to
match extloads is a whole 'nother can of worms).
The interesting optimization enables folding of s/zextloads to illegal
(splittable) vector types, expanding them into smaller legal extloads.
It's not ideal (it introduces some legalization-like behavior in the
combine) but it's better than the obvious alternative: form illegal
extloads, and later try to split them up. If you do that, you might
generate extloads that can't be split up, but have a valid ext+load
expansion. At vector-op legalization time, it's too late to generate
this kind of code, so you end up forced to scalarize. It's better to
just avoid creating egregiously illegal nodes.
This optimization is enabled unconditionally on X86.
Note that the splitting combine is happy with "custom" extloads. As
is, this bypasses the actual custom lowering, and just unrolls the
extload. But from what I've seen, this is still much better than the
current custom lowering, which does some kind of unrolling at the end
anyway (see for instance load_sext_4i8_to_4i64 on SSE2, and the added
FIXME).
Also note that the existing combine that forms extloads is now also
enabled on legal vectors. This doesn't have a big effect on X86
(because sext+load is usually combined to sext_inreg+aextload).
On ARM it fires on some rare occasions; that's for a separate commit.
Differential Revision: http://reviews.llvm.org/D6904
llvm-svn: 228325
This commit creates infinite loop in DAG combine for in the LLVM test-suite
for aarch64 with mcpu=cylcone (just having neon may be enough to expose this).
llvm-svn: 227272
This patch resolves part of PR21711 ( http://llvm.org/bugs/show_bug.cgi?id=21711 ).
The 'f3' test case in that report presents a situation where we have two 128-bit
stores extracted from a 256-bit source vector.
Instead of producing this:
vmovaps %xmm0, (%rdi)
vextractf128 $1, %ymm0, 16(%rdi)
This patch merges the 128-bit stores into a single 256-bit store:
vmovups %ymm0, (%rdi)
Differential Revision: http://reviews.llvm.org/D7208
llvm-svn: 227242
When lowering memcpy, memset or memmove, this assert checks whether the pointer
operands are in an address space < 256 which means "user defined address space"
on X86. However, this notion of "user defined address space" does not exist
for other targets.
llvm-svn: 227191
derived classes.
Since global data alignment, layout, and mangling is often based on the
DataLayout, move it to the TargetMachine. This ensures that global
data is going to be layed out and mangled consistently if the subtarget
changes on a per function basis. Prior to this all targets(*) have
had subtarget dependent code moved out and onto the TargetMachine.
*One target hasn't been migrated as part of this change: R600. The
R600 port has, as a subtarget feature, the size of pointers and
this affects global data layout. I've currently hacked in a FIXME
to enable progress, but the port needs to be updated to either pass
the 64-bitness to the TargetMachine, or fix the DataLayout to
avoid subtarget dependent features.
llvm-svn: 227113
This change reverts the interesting parts of 226311 (and 227046). This change introduced two problems, and I've been convinced that an alternate approach is preferrable anyways.
The bugs were:
- Registery appears to require all users be within the same linkage unit. After this change, asking for "statepoint-example" in Transform/ would sometimes get you nullptr, whereas asking the same question in CodeGen would return the right GCStrategy. The correct long term fix is to get rid of the utter hack which is Registry, but I don't have time for that right now. 227046 appears to have been an attempt to fix this, but I don't believe it does so completely.
- GCMetadataPrinter::finishAssembly was being called more than once per GCStrategy. Each Strategy was being added to the GCModuleInfo multiple times.
Once I get time again, I'm going to split GCModuleInfo into the gc.root specific part and a GCStrategy owning Analysis pass. I'm probably also going to kill off the Registry. Once that's done, I'll move the new GCStrategyAnalysis and all built in GCStrategies into Analysis. (As original suggested by Chandler.) This will accomplish my original goal of being able to access GCStrategy from Transform/ without adding all of the builtin GCs to IR/.
llvm-svn: 227109
This fixes a regression introduced by r226816.
When replacing a splat shuffle node with a constant build_vector,
make sure that the new build_vector has a valid number of elements.
Thanks to Patrik Hagglund for reporting this problem and providing a
small reproducible.
llvm-svn: 227002
This mostly reverts commit r222062 and replaces it with a new enum. At
some point this enum will grow at least for other MSVC EH personalities.
Also beefs up the way we were sniffing the personality function.
Previously we would emit the Itanium LSDA despite using
__C_specific_handler.
Reviewers: majnemer
Differential Revision: http://reviews.llvm.org/D6987
llvm-svn: 226920
Summary: When trying to constant fold an FMA in the DAG, getNode()
fails to fold the FMA if an operand is not finite. In this case this
patch allows the constant folding if !TLI->hasFloatingPointExceptions()
Reviewers: resistor
Reviewed By: resistor
Subscribers: hfinkel, llvm-commits
Differential Revision: http://reviews.llvm.org/D6912
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 226901
v2: use getZExtValue
add missing break
codestyle
v3: add few more comments
Signed-off-by: Jan Vesely <jan.vesely@rutgers.edu>
Reviewed-by: Matt Arsenault <Matthew.Arsenault@amd.com>
llvm-svn: 226880
Specifically, gc.result benefits from this greatly. Instead of:
gc.result.int.*
gc.result.float.*
gc.result.ptr.*
...
We now have a gc.result.* that can specialize to literally any type.
Differential Revision: http://reviews.llvm.org/D7020
llvm-svn: 226857
This is a 2nd try at the same optimization as http://reviews.llvm.org/D6698.
That patch was checked in at r224611, but reverted at r225031 because it
caused a failure outside of the regression tests.
The cause of the crash was not recognizing consecutive stores that have mixed
source values (loads and vector element extracts), so this patch adds a check
to bail out if any store value is not coming from a vector element extract.
This patch also refactors the shared logic of the constant source and vector
extracted elements source cases into a helper function.
Differential Revision: http://reviews.llvm.org/D6850
llvm-svn: 226845
This solves PR22276.
Splats of constants would sometimes produce redundant shuffles, sometimes ridiculously so (see the PR for details). Fold these shuffles into BUILD_VECTORs early on instead.
Differential Revision: http://reviews.llvm.org/D7093
Fixed recommit of r226811.
llvm-svn: 226816
This solves PR22276.
Splats of constants would sometimes produce redundant shuffles, sometimes ridiculously so (see the PR for details). Fold these shuffles into BUILD_VECTORs early on instead.
Differential Revision: http://reviews.llvm.org/D7093
llvm-svn: 226811
The problem occurs when after vectorization we have type
<2 x i32>. This type is promoted to <2 x i64> and then requires
additional efforts for expanding loads and truncating stores.
I added EXPAND / TRUNCATE attributes to the masked load/store
SDNodes. The code now contains additional shuffles.
I've prepared changes in the cost estimation for masked memory
operations, it will be submitted separately.
llvm-svn: 226808
Type MVT::i1 became legal in KNL, but store operation can't be narrowed to this type,
since the size of VT (1 bit) is not equal to its actual store size(8 bits).
Added a test provided by David (dag@cray.com)
llvm-svn: 226805
This addresses part of llvm.org/PR22262. Specifically, it prevents
considering the densities of sub-ranges that have fewer than
TLI.getMinimumJumpTableEntries() elements. Those densities won't help
jump tables.
This is not a complete solution but works around the most pressing
issue.
Review: http://reviews.llvm.org/D7070
llvm-svn: 226600
This is in preparation for a fix to llvm.org/PR22262. One of the ideas
here is to first find a good jump table range first and then split
before and after it. Thereby, we don't need to use the
split-based-on-density heuristic at all, which can make the "binary
tree" deteriorate in various cases.
Also some minor cleanups.
No functional changes.
llvm-svn: 226551
APIs and replace it and numerous booleans with an option struct.
The critical edge splitting API has a really large surface of flags and
so it seems worth burning a small option struct / builder. This struct
can be constructed with the various preserved analyses and then flags
can be flipped in a builder style.
The various users are now responsible for directly passing along their
analysis information. This should be enough for the critical edge
splitting to work cleanly with the new pass manager as well.
This API is still pretty crufty and could be cleaned up a lot, but I've
focused on this change just threading an option struct rather than
a pass through the API.
llvm-svn: 226456
Loading 2 2x32-bit float vectors into the bottom half of a 256-bit vector
produced suboptimal code in AVX2 mode with certain IR combinations.
In particular, the IR optimizer folded 2f32 + 2f32 -> 4f32, 4f32 + 4f32
(undef) -> 8f32 into a 2f32 + 2f32 -> 8f32, which seems more canonical,
but then mysteriously generated rather bad code; the movq/movhpd combination
didn't match.
The problem lay in the BUILD_VECTOR optimization path. The 2f32 inputs
would get promoted to 4f32 by the type legalizer, eventually resulting
in a BUILD_VECTOR on two 4f32 into an 8f32. The BUILD_VECTOR then, recognizing
these were both half the output size, concatted them and then produced
a shuffle. However, the resulting concat + shuffle was more complex than
it should be; in the case where the upper half of the output is undef, we
probably want to generate shuffle + concat instead.
This enhancement causes the vector_shuffle combine step to recognize this
suboptimal pattern and correct it. I included it there instead of in BUILD_VECTOR
in case the same suboptimal pattern occurs for other reasons.
This results in the optimizer correctly producing the optimal movq + movhpd
sequence for all three variations on this IR, even with AVX2.
I've included a test case.
Radar link: rdar://problem/19287012
Fix for PR 21943.
From: Fiona Glaser <fglaser@apple.com>
llvm-svn: 226360
Note: This change ended up being slightly more controversial than expected. Chandler has tentatively okayed this for the moment, but I may be revisiting this in the near future after we settle some high level questions.
Rather than have the GCStrategy object owned by the GCModuleInfo - which is an immutable analysis pass used mainly by gc.root - have it be owned by the LLVMContext. This simplifies the ownership logic (i.e. can you have two instances of the same strategy at once?), but more importantly, allows us to access the GCStrategy in the middle end optimizer. To this end, I add an accessor through Function which becomes the canonical way to get at a GCStrategy instance.
In the near future, this will allows me to move some of the checks from http://reviews.llvm.org/D6808 into the Verifier itself, and to introduce optimization legality predicates for some of the recent additions to InstCombine. (These will follow as separate changes.)
Differential Revision: http://reviews.llvm.org/D6811
llvm-svn: 226311
This patch was generated by a clang tidy checker that is being open sourced.
The documentation of that checker is the following:
/// The emptiness of a container should be checked using the empty method
/// instead of the size method. It is not guaranteed that size is a
/// constant-time function, and it is generally more efficient and also shows
/// clearer intent to use empty. Furthermore some containers may implement the
/// empty method but not implement the size method. Using empty whenever
/// possible makes it easier to switch to another container in the future.
Patch by Gábor Horváth!
llvm-svn: 226161
The pass is really just a means of accessing a cached instance of the
TargetLibraryInfo object, and this way we can re-use that object for the
new pass manager as its result.
Lots of delta, but nothing interesting happening here. This is the
common pattern that is developing to allow analyses to live in both the
old and new pass manager -- a wrapper pass in the old pass manager
emulates the separation intrinsic to the new pass manager between the
result and pass for analyses.
llvm-svn: 226157
While the term "Target" is in the name, it doesn't really have to do
with the LLVM Target library -- this isn't an abstraction which LLVM
targets generally need to implement or extend. It has much more to do
with modeling the various runtime libraries on different OSes and with
different runtime environments. The "target" in this sense is the more
general sense of a target of cross compilation.
This is in preparation for porting this analysis to the new pass
manager.
No functionality changed, and updates inbound for Clang and Polly.
llvm-svn: 226078
This fixes lots of generic CodeGen tests that use __gcc_personality_v0.
This suggests that using ExceptionHandling::MSVC was a mistake, and we
should instead classify each function by personality function. This
would, for example, allow us to LTO a binary containing uses of SEH and
Itanium EH.
llvm-svn: 226019
utils/sort_includes.py.
I clearly haven't done this in a while, so more changed than usual. This
even uncovered a missing include from the InstrProf library that I've
added. No functionality changed here, just mechanical cleanup of the
include order.
llvm-svn: 225974
This option takes the name of the basic block you want to visualize
with -view-*-dags
Differential Revision: http://reviews.llvm.org/D6948
llvm-svn: 225953
In case folding a node end up with a NaN as operand for the select,
the folding of the condition of the selectcc node returns "UNDEF".
Differential Revision: http://reviews.llvm.org/D6889
llvm-svn: 225952
Now that the source and destination types can be specified,
allow doing an expansion that doesn't use an EXTLOAD of the
result type. Try to do a legal extload to an intermediate type
and extend that if possible.
This generalizes the special case custom lowering of extloads
R600 has been using to work around this problem.
This also happens to fix a bug that would incorrectly use more
aligned loads than should be used.
llvm-svn: 225925
PATCHPOINT is a strange pseudo-instruction. Depending on how it is used, and
whether or not the AnyReg calling convention is being used, it might or might
not define a value. However, its TableGen definition says that it defines one
value, and so when it doesn't, the code in ScheduleDAGSDNodes::RegDefIter
becomes confused and the code that uses the RegDefIter will try to get the
register class of the MVT::Other type associated with the PATCHPOINT's chain
result (under certain circumstances).
This will be covered by the PPC64 PatchPoint test cases once that support is
re-committed.
llvm-svn: 225907
This adds handling for ExceptionHandling::MSVC, used by the
x86_64-pc-windows-msvc triple. It assumes that filter functions have
already been outlined in either the frontend or the backend. Filter
functions are used in place of the landingpad catch clause type info
operands. In catch clause order, the first filter to return true will
catch the exception.
The C specific handler table expects the landing pad to be split into
one block per handler, but LLVM IR uses a single landing pad for all
possible unwind actions. This patch papers over the mismatch by
synthesizing single instruction BBs for every catch clause to fill in
the EH selector that the landing pad block expects.
Missing functionality:
- Accessing data in the parent frame from outlined filters
- Cleanups (from __finally) are unsupported, as they will require
outlining and parent frame access
- Filter clauses are unsupported, as there's no clear analogue in SEH
In other words, this is the minimal set of changes needed to write IR to
catch arbitrary exceptions and resume normal execution.
Reviewers: majnemer
Differential Revision: http://reviews.llvm.org/D6300
llvm-svn: 225904
This requires a new hook to prevent expanding sqrt in terms
of rsqrt and reciprocal. v_rcp_f32, v_rsq_f32, and v_sqrt_f32 are
all the same rate, so this expansion would just double the number
of instructions and cycles.
llvm-svn: 225828
While, generally speaking, the process of lowering arguments for a patchpoint
is the same as lowering a regular indirect call, on some targets it may not be
exactly the same. Targets may not, for example, want to add additional register
dependencies that apply only to making cross-DSO calls through linker stubs,
may not want to load additional registers out of function descriptors, and may
not want to add additional side-effect-causing instructions that cannot be
removed later with the call itself being generated.
The PowerPC target will use this in a future commit (for all of the reasons
stated above).
llvm-svn: 225806
This name is less descriptive, but it sort of puts things in the
'llvm.frame...' namespace, relating it to frameallocate and
frameaddress. It also avoids using "allocate" and "allocation" together.
llvm-svn: 225752
These intrinsics allow multiple functions to share a single stack
allocation from one function's call frame. The function with the
allocation may only perform one allocation, and it must be in the entry
block.
Functions accessing the allocation call llvm.recoverframeallocation with
the function whose frame they are accessing and a frame pointer from an
active call frame of that function.
These intrinsics are very difficult to inline correctly, so the
intention is that they be introduced rarely, or at least very late
during EH preparation.
Reviewers: echristo, andrew.w.kaylor
Differential Revision: http://reviews.llvm.org/D6493
llvm-svn: 225746
As pointed out by Aditya (and Owen), when we elide an FP extend to form an FMA,
we need to extend the incoming operands so that the resulting node will really
be legal. This is currently enabled only for PowerPC, and it happens to work
there regardless, but this should fix the functionality for everyone else
should anyone else wish to use it.
llvm-svn: 225492
As pointed out by Aditya (and Owen), there are two things wrong with this code.
First, it adds patterns which elide FP extends when forming FMAs, and that might
not be profitable on all targets (it belongs behind the pre-existing
aggressive-FMA-formation flag). This is fixed by this change.
Second, the resulting nodes might have operands of different types (the
extensions need to be re-added). That will be fixed in the follow-up commit.
llvm-svn: 225485
type (in addition to the memory type).
The *LoadExt* legalization handling used to only have one type, the
memory type. This forced users to assume that as long as the extload
for the memory type was declared legal, and the result type was legal,
the whole extload was legal.
However, this isn't always the case. For instance, on X86, with AVX,
this is legal:
v4i32 load, zext from v4i8
but this isn't:
v4i64 load, zext from v4i8
Whereas v4i64 is (arguably) legal, even without AVX2.
Note that the same thing was done a while ago for truncstores (r46140),
but I assume no one needed it yet for extloads, so here we go.
Calls to getLoadExtAction were changed to add the value type, found
manually in the surrounding code.
Calls to setLoadExtAction were mechanically changed, by wrapping the
call in a loop, to match previous behavior. The loop iterates over
the MVT subrange corresponding to the memory type (FP vectors, etc...).
I also pulled neighboring setTruncStoreActions into some of the loops;
those shouldn't make a difference, as the additional types are illegal.
(e.g., i128->i1 truncstores on PPC.)
No functional change intended.
Differential Revision: http://reviews.llvm.org/D6532
llvm-svn: 225421
This change includes the most basic possible GCStrategy for a GC which is using the statepoint lowering code. At the moment, this GCStrategy doesn't really do much - aside from actually generate correct stackmaps that is - but I went ahead and added a few extra correctness checks as proof of concept. It's mostly here to provide documentation on how to do one, and to provide a point for various optimization legality hooks I'd like to add going forward. (For context, see the TODOs in InstCombine around gc.relocate.)
Most of the validation logic added here as proof of concept will soon move in to the Verifier. That move is dependent on http://reviews.llvm.org/D6811
There was discussion in the review thread about addrspace(1) being reserved for something. I'm going to follow up on a seperate llvmdev thread. If needed, I'll update all the code at once.
Note that I am deliberately not making a GCStrategy required to use gc.statepoints with this change. I want to give folks out of tree - including myself - a chance to migrate. In a week or two, I'll make having a GCStrategy be required for gc.statepoints. To this end, I added the gc tag to one of the test cases but not others.
Differential Revision: http://reviews.llvm.org/D6808
llvm-svn: 225365
Right now in DAG Combine check the validity of the returned type
only when -debug is given on the command line. However usually
the test cases in the validation does not use -debug.
An Assert build should always check this.
llvm-svn: 224779
Extend the existing code which handles this for zext. This makes this
more useful for targets with ZeroOrNegativeOne BooleanContent and
obsoletes a custom combine SI uses for i1 setcc (sext(i1), 0, setne)
since the constant will now be shrunk to i1.
llvm-svn: 224691
This handles the case of a BUILD_VECTOR being constructed out of elements extracted from a vector twice the size of the result vector. Previously this was always scalarized. Now, we try to construct a shuffle node that feeds on extract_subvectors.
This fixes PR15872 and provides a partial fix for PR21711.
Differential Revision: http://reviews.llvm.org/D6678
llvm-svn: 224429
SwitchInst::getNumCases() returns unsinged, so using uint64_t to count cases
seems unnecessary.
Also fix a missing CHECK in the test case.
llvm-svn: 224393
SelectionDAG::isConsecutiveLoad() was not detecting consecutive loads
when the first load was offset from a base address.
This patch recognizes that pattern and subtracts the offset before comparing
the second load to see if it is consecutive.
The codegen change in the new test case improves from:
vmovsd 32(%rdi), %xmm0
vmovsd 48(%rdi), %xmm1
vmovhpd 56(%rdi), %xmm1, %xmm1
vmovhpd 40(%rdi), %xmm0, %xmm0
vinsertf128 $1, %xmm1, %ymm0, %ymm0
To:
vmovups 32(%rdi), %ymm0
An existing test case is also improved from:
vmovsd (%rdi), %xmm0
vmovsd 16(%rdi), %xmm1
vmovsd 24(%rdi), %xmm2
vunpcklpd %xmm2, %xmm0, %xmm0 ## xmm0 = xmm0[0],xmm2[0]
vmovhpd 8(%rdi), %xmm1, %xmm3
To:
vmovsd (%rdi), %xmm0
vmovsd 16(%rdi), %xmm1
vmovhpd 24(%rdi), %xmm0, %xmm0
vmovhpd 8(%rdi), %xmm1, %xmm1
This patch fixes PR21771 ( http://llvm.org/bugs/show_bug.cgi?id=21771 ).
Differential Revision: http://reviews.llvm.org/D6642
llvm-svn: 224379
Add in definedness checks for shift operators, null checks when
pointers are assumed by the code to be non-null, and explicit
unreachables.
llvm-svn: 224255
Add an option to disable optimization to shrink truncated larger type
loads to smaller type loads. On SI this prevents using scalar load
instructions in some cases, since there are no scalar extloads.
llvm-svn: 224084
Split `Metadata` away from the `Value` class hierarchy, as part of
PR21532. Assembly and bitcode changes are in the wings, but this is the
bulk of the change for the IR C++ API.
I have a follow-up patch prepared for `clang`. If this breaks other
sub-projects, I apologize in advance :(. Help me compile it on Darwin
I'll try to fix it. FWIW, the errors should be easy to fix, so it may
be simpler to just fix it yourself.
This breaks the build for all metadata-related code that's out-of-tree.
Rest assured the transition is mechanical and the compiler should catch
almost all of the problems.
Here's a quick guide for updating your code:
- `Metadata` is the root of a class hierarchy with three main classes:
`MDNode`, `MDString`, and `ValueAsMetadata`. It is distinct from
the `Value` class hierarchy. It is typeless -- i.e., instances do
*not* have a `Type`.
- `MDNode`'s operands are all `Metadata *` (instead of `Value *`).
- `TrackingVH<MDNode>` and `WeakVH` referring to metadata can be
replaced with `TrackingMDNodeRef` and `TrackingMDRef`, respectively.
If you're referring solely to resolved `MDNode`s -- post graph
construction -- just use `MDNode*`.
- `MDNode` (and the rest of `Metadata`) have only limited support for
`replaceAllUsesWith()`.
As long as an `MDNode` is pointing at a forward declaration -- the
result of `MDNode::getTemporary()` -- it maintains a side map of its
uses and can RAUW itself. Once the forward declarations are fully
resolved RAUW support is dropped on the ground. This means that
uniquing collisions on changing operands cause nodes to become
"distinct". (This already happened fairly commonly, whenever an
operand went to null.)
If you're constructing complex (non self-reference) `MDNode` cycles,
you need to call `MDNode::resolveCycles()` on each node (or on a
top-level node that somehow references all of the nodes). Also,
don't do that. Metadata cycles (and the RAUW machinery needed to
construct them) are expensive.
- An `MDNode` can only refer to a `Constant` through a bridge called
`ConstantAsMetadata` (one of the subclasses of `ValueAsMetadata`).
As a side effect, accessing an operand of an `MDNode` that is known
to be, e.g., `ConstantInt`, takes three steps: first, cast from
`Metadata` to `ConstantAsMetadata`; second, extract the `Constant`;
third, cast down to `ConstantInt`.
The eventual goal is to introduce `MDInt`/`MDFloat`/etc. and have
metadata schema owners transition away from using `Constant`s when
the type isn't important (and they don't care about referring to
`GlobalValue`s).
In the meantime, I've added transitional API to the `mdconst`
namespace that matches semantics with the old code, in order to
avoid adding the error-prone three-step equivalent to every call
site. If your old code was:
MDNode *N = foo();
bar(isa <ConstantInt>(N->getOperand(0)));
baz(cast <ConstantInt>(N->getOperand(1)));
bak(cast_or_null <ConstantInt>(N->getOperand(2)));
bat(dyn_cast <ConstantInt>(N->getOperand(3)));
bay(dyn_cast_or_null<ConstantInt>(N->getOperand(4)));
you can trivially match its semantics with:
MDNode *N = foo();
bar(mdconst::hasa <ConstantInt>(N->getOperand(0)));
baz(mdconst::extract <ConstantInt>(N->getOperand(1)));
bak(mdconst::extract_or_null <ConstantInt>(N->getOperand(2)));
bat(mdconst::dyn_extract <ConstantInt>(N->getOperand(3)));
bay(mdconst::dyn_extract_or_null<ConstantInt>(N->getOperand(4)));
and when you transition your metadata schema to `MDInt`:
MDNode *N = foo();
bar(isa <MDInt>(N->getOperand(0)));
baz(cast <MDInt>(N->getOperand(1)));
bak(cast_or_null <MDInt>(N->getOperand(2)));
bat(dyn_cast <MDInt>(N->getOperand(3)));
bay(dyn_cast_or_null<MDInt>(N->getOperand(4)));
- A `CallInst` -- specifically, intrinsic instructions -- can refer to
metadata through a bridge called `MetadataAsValue`. This is a
subclass of `Value` where `getType()->isMetadataTy()`.
`MetadataAsValue` is the *only* class that can legally refer to a
`LocalAsMetadata`, which is a bridged form of non-`Constant` values
like `Argument` and `Instruction`. It can also refer to any other
`Metadata` subclass.
(I'll break all your testcases in a follow-up commit, when I propagate
this change to assembly.)
llvm-svn: 223802
Introduce the ``llvm.instrprof_increment`` intrinsic and the
``-instrprof`` pass. These provide the infrastructure for writing
counters for profiling, as in clang's ``-fprofile-instr-generate``.
The implementation of the instrprof pass is ported directly out of the
CodeGenPGO classes in clang, and with the followup in clang that rips
that code out to use these new intrinsics this ends up being NFC.
Doing the instrumentation this way opens some doors in terms of
improving the counter performance. For example, this will make it
simple to experiment with alternate lowering strategies, and allows us
to try handling profiling specially in some optimizations if we want
to.
Finally, this drastically simplifies the frontend and puts all of the
lowering logic in one place.
llvm-svn: 223672
This can significantly reduce the size of the switch, allowing for more
efficient lowering.
I also worked with the idea of exploiting unreachable defaults by
omitting the range check for jump tables, but always ended up with a
non-neglible binary size increase. It might be worth looking into some more.
SimplifyCFG currently does this transformation, but I'm working towards changing
that so we can optimize harder based on unreachable defaults.
Differential Revision: http://reviews.llvm.org/D6510
llvm-svn: 223566
Added instcombine optimizations for BSWAP with AND/OR/XOR ops:
OP( BSWAP(x), BSWAP(y) ) -> BSWAP( OP(x, y) )
OP( BSWAP(x), CONSTANT ) -> BSWAP( OP(x, BSWAP(CONSTANT) ) )
Since its just a one liner, I've also added BSWAP to the DAGCombiner equivalent as well:
fold (OP (bswap x), (bswap y)) -> (bswap (OP x, y))
Refactored bswap-fold tests to use FileCheck instead of just checking that the bswaps had gone.
Differential Revision: http://reviews.llvm.org/D6407
llvm-svn: 223349
I'm recommiting the codegen part of the patch.
The vectorizer part will be send to review again.
Masked Vector Load and Store Intrinsics.
Introduced new target-independent intrinsics in order to support masked vector loads and stores. The loop vectorizer optimizes loops containing conditional memory accesses by generating these intrinsics for existing targets AVX2 and AVX-512. The vectorizer asks the target about availability of masked vector loads and stores.
Added SDNodes for masked operations and lowering patterns for X86 code generator.
Examples:
<16 x i32> @llvm.masked.load.v16i32(i8* %addr, <16 x i32> %passthru, i32 4 /* align */, <16 x i1> %mask)
declare void @llvm.masked.store.v8f64(i8* %addr, <8 x double> %value, i32 4, <8 x i1> %mask)
Scalarizer for other targets (not AVX2/AVX-512) will be done in a separate patch.
http://reviews.llvm.org/D6191
llvm-svn: 223348
We've long supported readcyclecounter on PPC64, but it is easier there (the
read of the 64-bit time-base register can be accomplished via a single
instruction). This now provides an implementation for PPC32 as well. On PPC32,
the time-base register is still 64 bits, but can only be read 32 bits at a time
via two separate SPRs. The ISA manual explains how to do this properly (it
involves re-reading the upper bits and looping if the counter has wrapped while
being read).
This requires PPC to implement a custom integer splitting legalization for the
READCYCLECOUNTER node, turning it into a target-specific SDAG node, which then
gets turned into a pseudo-instruction, which is then expanded to the necessary
sequence (which has three SPR reads, the comparison and the branch).
Thanks to Paul Hargrove for pointing out to me that this was still unimplemented.
llvm-svn: 223161
This is the third patch in a small series. It contains the CodeGen support for lowering the gc.statepoint intrinsic sequences (223078) to the STATEPOINT pseudo machine instruction (223085). The change also includes the set of helper routines and classes for working with gc.statepoints, gc.relocates, and gc.results since the lowering code uses them.
With this change, gc.statepoints should be functionally complete. The documentation will follow in the fourth change, and there will likely be some cleanup changes, but interested parties can start experimenting now.
I'm not particularly happy with the amount of code or complexity involved with the lowering step, but at least it's fairly well isolated. The statepoint lowering code is split into it's own files and anyone not working on the statepoint support itself should be able to ignore it.
During the lowering process, we currently spill aggressively to stack. This is not entirely ideal (and we have plans to do better), but it's functional, relatively straight forward, and matches closely the implementations of the patchpoint intrinsics. Most of the complexity comes from trying to keep relocated copies of values in the same stack slots across statepoints. Doing so avoids the insertion of pointless load and store instructions to reshuffle the stack. The current implementation isn't as effective as I'd like, but it is functional and 'good enough' for many common use cases.
In the long term, I'd like to figure out how to integrate the statepoint lowering with the register allocator. In principal, we shouldn't need to eagerly spill at all. The register allocator should do any spilling required and the statepoint should simply record that fact. Depending on how challenging that turns out to be, we may invest in a smarter global stack slot assignment mechanism as a stop gap measure.
Reviewed by: atrick, ributzka
llvm-svn: 223137
This can significantly reduce the size of the switch, allowing for more
efficient lowering.
I also worked with the idea of exploiting unreachable defaults by
omitting the range check for jump tables, but always ended up with a
non-neglible binary size increase. It might be worth looking into some more.
llvm-svn: 223049
This commit fixes a bug in stack protector pass where edge weights were not set
when new basic blocks were added to lists of successor basic blocks.
Differential Revision: http://reviews.llvm.org/D5766
llvm-svn: 222987
This reverts commit r222632 (and follow-up r222636), which caused a host
of LNT failures on an internal bot. I'll respond to the commit on the
list with a reproduction of one of the failures.
Conflicts:
lib/Target/X86/X86TargetTransformInfo.cpp
llvm-svn: 222936
Introduced new target-independent intrinsics in order to support masked vector loads and stores. The loop vectorizer optimizes loops containing conditional memory accesses by generating these intrinsics for existing targets AVX2 and AVX-512. The vectorizer asks the target about availability of masked vector loads and stores.
Added SDNodes for masked operations and lowering patterns for X86 code generator.
Examples:
<16 x i32> @llvm.masked.load.v16i32(i8* %addr, <16 x i32> %passthru, i32 4 /* align */, <16 x i1> %mask)
declare void @llvm.masked.store.v8f64(i8* %addr, <8 x double> %value, i32 4, <8 x i1> %mask)
Scalarizer for other targets (not AVX2/AVX-512) will be done in a separate patch.
http://reviews.llvm.org/D6191
llvm-svn: 222632
Before this patch, the DAGCombiner only tried to convert build_vector dag nodes
into shuffles if all operands were either extract_vector_elt or undef.
This patch improves that logic and teaches the DAGCombiner how to deal with
build_vector dag nodes where one or more operands are zero. A build_vector
dag node with some zero operands is turned into a shuffle only if the resulting
shuffle mask is legal for the target.
llvm-svn: 222536
This patch simplifies the logic that combines a pair of shuffle nodes into
a single shuffle if there is a legal mask. Also added comments to better
describe the algorithm. No functional change intended.
llvm-svn: 222522
E.g., ( a / D; b / D ) -> ( recip = 1.0 / D; a * recip; b * recip)
A hook is added to allow the target to control whether it needs to do such combine.
Reviewed in http://reviews.llvm.org/D6334
llvm-svn: 222510
This patch builds on http://reviews.llvm.org/D5598 to perform byte rotation shuffles (lowerVectorShuffleAsByteRotate) on pre-SSSE3 (palignr) targets - pre-SSSE3 is only enabled on i8 and i16 vector targets where it is a more definite performance gain.
I've also added a separate byte shift shuffle (lowerVectorShuffleAsByteShift) that makes use of the ability of the SLLDQ/SRLDQ instructions to implicitly shift in zero bytes to avoid the need to create a zero register if we had used palignr.
Differential Revision: http://reviews.llvm.org/D5699
llvm-svn: 222340
This is to be consistent with StringSet and ultimately with the standard
library's associative container insert function.
This lead to updating SmallSet::insert to return pair<iterator, bool>,
and then to update SmallPtrSet::insert to return pair<iterator, bool>,
and then to update all the existing users of those functions...
llvm-svn: 222334
Some optimisations in DAGCombiner cause miscompilations for targets that use
TargetLowering::UndefinedBooleanContent, because they assume that the results
of a SELECT_CC node are boolean values, and can be safely ANDed, ORed and
XORed. These optimisations are only valid for targets that use
ZeroOrOneBooleanContent or ZeroOrNegativeOneBooleanContent.
This is a follow-up to D6210/r221693.
llvm-svn: 222123
Indices into the table are stored in each MCRegisterClass instead of a pointer. A new method, getRegClassName, is added to MCRegisterInfo and TargetRegisterInfo to lookup the string in the table.
llvm-svn: 222118
This patch teaches the DAGCombiner how to combine shuffles according to rules:
shuffle(shuffle(A, Undef, M0), B, M1) -> shuffle(B, A, M2)
shuffle(shuffle(A, B, M0), B, M1) -> shuffle(B, A, M2)
shuffle(shuffle(A, B, M0), A, M1) -> shuffle(B, A, M2)
llvm-svn: 222090
Instead, we're going to separate metadata from the Value hierarchy. See
PR21532.
This reverts commit r221375.
This reverts commit r221373.
This reverts commit r221359.
This reverts commit r221167.
This reverts commit r221027.
This reverts commit r221024.
This reverts commit r221023.
This reverts commit r220995.
This reverts commit r220994.
llvm-svn: 221711
What would happen before that commit is that the SDDbgValues associated with
a deallocated SDNode would be marked Invalidated, but SDDbgInfo would keep
a map entry keyed by the SDNode pointer pointing to this list of invalidated
SDDbgNodes. As the memory gets reused, the list might get wrongly associated
with another new SDNode. As the SDDbgValues are cloned when they are transfered,
this can lead to an exponential number of SDDbgValues being produced during
DAGCombine like in http://llvm.org/bugs/show_bug.cgi?id=20893
Note that the previous behavior wasn't really buggy as the invalidation made
sure that the SDDbgValues won't be used. This commit can be considered a
memory optimization and as such is really hard to validate in a unit-test.
llvm-svn: 221709
LLVM replaces the SelectionDAG pattern (xor (set_cc cc x y) 1) with
(set_cc !cc x y), which is only correct when the xor has type i1.
Instead, we should check that the constant operand to the xor is all
ones.
llvm-svn: 221693
This patch improves the folding of vector AND nodes into blend operations for
targets that feature SSE4.1. A vector AND node where one of the operands is
a constant build_vector with elements that are either zero or all-ones can be
converted into a blend.
This allows for example to simplify the following code:
define <4 x i32> @test(<4 x i32> %A, <4 x i32> %B) {
%1 = and <4 x i32> %A, <i32 0, i32 0, i32 0, i32 -1>
%2 = and <4 x i32> %B, <i32 -1, i32 -1, i32 -1, i32 0>
%3 = or <4 x i32> %1, %2
ret <4 x i32> %3
}
Before this patch llc (-mcpu=corei7) generated:
andps LCPI1_0(%rip), %xmm0, %xmm0
andps LCPI1_1(%rip), %xmm1, %xmm1
orps %xmm1, %xmm0, %xmm0
retq
With this patch we generate a single 'vpblendw'.
llvm-svn: 221343
call DAGCombiner. But we ran into a case (on Windows) where the
calling convention causes argument lowering to bail out of fast-isel,
and we end up in CodeGenAndEmitDAG() which does run DAGCombiner.
So, we need to make DAGCombiner check for 'optnone' after all.
Commit includes the test that found this, plus another one that got
missed in the original optnone work.
llvm-svn: 221168
Change `Instruction::getMetadata()` to return `Value` as part of
PR21433.
Update most callers to use `Instruction::getMDNode()`, which wraps the
result in a `cast_or_null<MDNode>`.
llvm-svn: 221024
r212242 introduced a legalizer hook, originally to let AArch64 widen
v1i{32,16,8} rather than scalarize, because the legalizer expected, when
scalarizing the result of a conversion operation, to already have
scalarized the operands. On AArch64, v1i64 is legal, so that commit
ensured operations such as v1i32 = trunc v1i64 wouldn't assert.
It did that by choosing to widen v1 types whenever possible. However,
v1i1 types, for which there's no legal widened type, would still trigger
the assert.
This commit fixes that, by only scalarizing a trunc's result when the
operand has already been scalarized, and introducing an extract_elt
otherwise.
This is similar to r205625.
Fixes PR20777.
llvm-svn: 220937
Earlier this summer I fixed an issue where we were incorrectly combining
multiple loads that had different constraints such alignment, invariance,
temporality, etc. Apparently in one case I made copt paste error and swapped
alignment and invariance.
Tests included.
rdar://18816719
llvm-svn: 220933
This is a first step for generating SSE rsqrt instructions for
reciprocal square root calcs when fast-math is allowed.
For now, be conservative and only enable this for AMD btver2
where performance improves significantly - for example, 29%
on llvm/projects/test-suite/SingleSource/Benchmarks/BenchmarkGame/n-body.c
(if we convert the data type to single-precision float).
This patch adds a two constant version of the Newton-Raphson
refinement algorithm to DAGCombiner that can be selected by any target
via a parameter returned by getRsqrtEstimate()..
See PR20900 for more details:
http://llvm.org/bugs/show_bug.cgi?id=20900
Differential Revision: http://reviews.llvm.org/D5658
llvm-svn: 220570
This adds support for legalization of instructions of the form:
[fp_conv] <1 x i1> %op to <1 x double>
where fp_conv is one of fpto[us]i, [us]itofp. This used to assert
because they were simply missing from the vector operand scalarizer.
A similar problem arose in r190830, with trunc instead.
Fixes PR20778.
Differential Revision: http://reviews.llvm.org/D5810
llvm-svn: 220533
x86's CMPXCHG -> EFLAGS consumer wasn't being recorded as a real EFLAGS
dependency because it was represented by a pair of CopyFromReg(EFLAGS) ->
CopyToReg(EFLAGS) nodes. ScheduleDAG was expecting the source to be an
implicit-def on the instruction, where the result numbers in the DAG and the
Uses list in TableGen matched up precisely.
The Copy notation seems much more robust, so this patch extends ScheduleDAG
rather than refactoring x86.
Should fix PR20376.
llvm-svn: 220529
Our metadata scheme lazily assigns IDs to string metadata, but we have a mechanism to preassign them as well. Using a preassigned ID is helpful since we get compile time type checking, and avoid some (minimal) string construction and comparison. This change adds enum value for three existing metadata types:
+ MD_nontemporal = 9, // "nontemporal"
+ MD_mem_parallel_loop_access = 10, // "llvm.mem.parallel_loop_access"
+ MD_nonnull = 11 // "nonnull"
I went through an updated various uses as well. I made no attempt to get all uses; I focused on the ones which were easily grepable and easily to translate. For example, there were several items in LoopInfo.cpp I chose not to update.
llvm-svn: 220248
TL;DR: Indexing maps with [] creates missing entries.
The long version:
When selecting lifetime intrinsics, we index the *static* alloca map with the AllocaInst we find for that lifetime. Trouble is, we don't first check to see if this is a dynamic alloca.
On the attached example, this causes a dynamic alloca to create an entry in the static map, and returns 0 (the default) as the frame index for that lifetime. 0 was used for the frame index of the stack protector, which given that it now has a lifetime, is coloured, and merged with other stack slots.
PEI would later trigger an assert because it expects the stack protector to not be dead.
This fix ensures that we only get frame indices for static allocas, ie, those in the map. Dynamic ones are effectively dropped, which is suboptimal, but at least isn't completely broken.
rdar://problem/18672951
llvm-svn: 220099
v2: use dyn_cast
fixup comments
v3: use cast
Reviewed-by: Matt Arsenault <arsenm2@gmail.com>
Signed-off-by: Jan Vesely <jan.vesely@rutgers.edu>
llvm-svn: 220044
This is in preparation for another patch that makes patchpoints invokable.
Reviewers: atrick, ributzka
Reviewed By: ributzka
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5657
llvm-svn: 219967
Summary:
Backends can use setInsertFencesForAtomic to signal to the middle-end that
montonic is the only memory ordering they can accept for
stores/loads/rmws/cmpxchg. The code lowering those accesses with a stronger
ordering to fences + monotonic accesses is currently living in
SelectionDAGBuilder.cpp. In this patch I propose moving this logic out of it
for several reasons:
- There is lots of redundancy to avoid: extremely similar logic already
exists in AtomicExpand.
- The current code in SelectionDAGBuilder does not use any target-hooks, it
does the same transformation for every backend that requires it
- As a result it is plain *unsound*, as it was apparently designed for ARM.
It happens to mostly work for the other targets because they are extremely
conservative, but Power for example had to switch to AtomicExpand to be
able to use lwsync safely (see r218331).
- Because it produces IR-level fences, it cannot be made sound ! This is noted
in the C++11 standard (section 29.3, page 1140):
```
Fences cannot, in general, be used to restore sequential consistency for atomic
operations with weaker ordering semantics.
```
It can also be seen by the following example (called IRIW in the litterature):
```
atomic<int> x = y = 0;
int r1, r2, r3, r4;
Thread 0:
x.store(1);
Thread 1:
y.store(1);
Thread 2:
r1 = x.load();
r2 = y.load();
Thread 3:
r3 = y.load();
r4 = x.load();
```
r1 = r3 = 1 and r2 = r4 = 0 is impossible as long as the accesses are all seq_cst.
But if they are lowered to monotonic accesses, no amount of fences can prevent it..
This patch does three things (I could cut it into parts, but then some of them
would not be tested/testable, please tell me if you would prefer that):
- it provides a default implementation for emitLeadingFence/emitTrailingFence in
terms of IR-level fences, that mimic the original logic of SelectionDAGBuilder.
As we saw above, this is unsound, but the best that can be done without knowing
the targets well (and there is a comment warning about this risk).
- it then switches Mips/Sparc/XCore to use AtomicExpand, relying on this default
implementation (that exactly replicates the logic of SelectionDAGBuilder, so no
functional change)
- it finally erase this logic from SelectionDAGBuilder as it is dead-code.
Ideally, each target would define its own override for emitLeading/TrailingFence
using target-specific fences, but I do not know the Sparc/Mips/XCore memory model
well enough to do this, and they appear to be dealing fine with the ARM-inspired
default expansion for now (probably because they are overly conservative, as
Power was). If anyone wants to compile fences more agressively on these
platforms, the long comment should make it clear why he should first override
emitLeading/TrailingFence.
Test Plan: make check-all, no functional change
Reviewers: jfb, t.p.northover
Subscribers: aemerson, llvm-commits
Differential Revision: http://reviews.llvm.org/D5474
llvm-svn: 219957
This patch changes the fast-math implementation for calculating sqrt(x) from:
y = 1 / (1 / sqrt(x))
to:
y = x * (1 / sqrt(x))
This has 2 benefits: less code / faster code and one less estimate instruction
that may lose precision.
The only target that will be affected (until http://reviews.llvm.org/D5658 is approved)
is PPC. The difference in codegen for PPC is 2 less flops for a single-precision sqrtf
or vector sqrtf and 4 less flops for a double-precision sqrt.
We also eliminate a constant load and extra register usage.
Differential Revision: http://reviews.llvm.org/D5682
llvm-svn: 219445
thing we do inside selection dag. This code needs to be
migrated to queries on the function rather than global
data, but this organizes things before we start grabbing
the subtarget.
llvm-svn: 219271
The patch's author points out that, despite the function's documentation,
getSetCCResultType is only used to get the SETCC result type (with one
here-removed problematic exception). In one case, getSetCCResultType was being
used to get the predicate type to use for a SELECT node, and then
SIGN_EXTENDing (or truncating) to get the input predicate to match that type.
Unfortunately, this was happening inside visitSIGN_EXTEND, and creating new
SIGN_EXTEND nodes was causing an infinite loop. In addition, this behavior was
wrong if a target was not using ZeroOrNegativeOneBooleanContent. Lastly, the
extension/truncation seems unnecessary here: SELECT is defined as:
Select(COND, TRUEVAL, FALSEVAL). If the type of the boolean COND is not i1
then the high bits must conform to getBooleanContents.
So here we remove this use of getSetCCResultType and update
getSetCCResultType's documentation to reflect its actual uses.
Patch by deadal nix!
llvm-svn: 219141
that are unused.
This allows the combiner to delete math feeding shuffles where the math
isn't actually necessary. This improves some of the vperm2x128 tests
that regressed when the vector shuffle lowering started actually
generating vperm instructions rather than forcibly decomposing them.
Sadly, this isn't enough to get this *really* right because we still
form a completely unnecessary permutation. To fix that, we also need to
fold shuffles which just rearrange concatenated or inserted subvectors.
llvm-svn: 219086
In the X86 backend, matching an address is initiated by the 'addr' complex
pattern and its friends. During this process we may reassociate and-of-shift
into shift-of-and (FoldMaskedShiftToScaledMask) to allow folding of the
shift into the scale of the address.
However as demonstrated by the testcase, this can trigger CSE of not only the
shift and the AND which the code is prepared for but also the underlying load
node. In the testcase this node is sitting in the RecordedNode and MatchScope
data structures of the matcher and becomes a deleted node upon CSE. Returning
from the complex pattern function, we try to access it again hitting an assert
because the node is no longer a load even though this was checked before.
Now obviously changing the DAG this late is bending the rules but I think it
makes sense somewhat. Outside of addresses we prefer and-of-shift because it
may lead to smaller immediates (FoldMaskAndShiftToScale is an even better
example because it create a non-canonical node). We currently don't recognize
addresses during DAGCombiner where arguably this canonicalization should be
performed. On the other hand, having this in the matcher allows us to cover
all the cases where an address can be used in an instruction.
I've also talked a little bit to Dan Gohman on llvm-dev who added the RAUW for
the new shift node in FoldMaskedShiftToScaledMask. This RAUW is responsible
for initiating the recursive CSE on users
(http://lists.cs.uiuc.edu/pipermail/llvmdev/2014-September/076903.html) but it
is not strictly necessary since the shift is hooked into the visited user. Of
course it's safer to keep the DAG consistent at all times (e.g. for accurate
number of uses, etc.).
So rather than changing the fundamentals, I've decided to continue along the
previous patches and detect the CSE. This patch installs a very targeted
DAGUpdateListener for the duration of a complex-pattern match and updates the
matching state accordingly. (Previous patches used HandleSDNode to detect the
CSE but that's not practical here). The listener is only installed on X86.
I tested that there is no measurable overhead due to this while running
through the spec2k BC files with llc. The only thing we pay for is the
creation of the listener. The callback never ever triggers in spec2k since
this is a corner case.
Fixes rdar://problem/18206171
llvm-svn: 219009
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.
Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.
By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.
The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)
This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.
What this patch doesn't do:
This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.
http://reviews.llvm.org/D4919
rdar://problem/17994491
Thanks to dblaikie and dexonsmith for reviewing this patch!
Note: I accidentally committed a bogus older version of this patch previously.
llvm-svn: 218787
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.
Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.
By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.
The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)
This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.
What this patch doesn't do:
This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.
http://reviews.llvm.org/D4919
rdar://problem/17994491
Thanks to dblaikie and dexonsmith for reviewing this patch!
llvm-svn: 218778
It was hacky to use an opcode as a switch because it won't always match
(rsqrte != sqrte), and it looks like we'll need to add more special casing
per arch than I had hoped for. Eg, x86 will prefer a different NR estimate
implementation. ARM will want to use it's 'step' instructions. There also
don't appear to be any new estimate instructions in any arch in a long,
long time. Altivec vloge and vexpte may have been the first and last in
that field...
llvm-svn: 218698
Currently, the DAG Combiner only tries to convert type-legal build_vector nodes
into shuffles. This patch simply moves the logic that checks if a
build_vector has a legal value type up before we even start analyzing the
operands. This allows to early exit immediately from method
'visitBUILD_VECTOR' if the node type is known to be illegal.
No functional change intended.
llvm-svn: 218677
If there is a store followed by a store with the same value to the same location, then the store is dead/noop. It can be removed.
This problem is found in spec2006-197.parser.
For example,
stur w10, [x11, #-4]
stur w10, [x11, #-4]
Then one of the two stur instructions can be removed.
Patch by David Xu!
llvm-svn: 218569
This is purely refactoring. No functional changes intended. PowerPC is the only target
that is currently using this interface.
The ultimate goal is to allow targets other than PowerPC (certainly X86 and Aarch64) to turn this:
z = y / sqrt(x)
into:
z = y * rsqrte(x)
And:
z = y / x
into:
z = y * rcpe(x)
using whatever HW magic they can use. See http://llvm.org/bugs/show_bug.cgi?id=20900 .
There is one hook in TargetLowering to get the target-specific opcode for an estimate instruction
along with the number of refinement steps needed to make the estimate usable.
Differential Revision: http://reviews.llvm.org/D5484
llvm-svn: 218553
The InstrEmitter will skip the check of MI.hasPostISelHook()
before calling AdjustInstrPostInstrSelection() when NDEBUG
is not defined.
This was added in r140228, and I'm not sure if it is intentional or not,
but it is a likely source for bugs, because it means with
Release+Asserts builds you can forget to set the hasPostISelHook
flag on TableGen definitions and AdjustInstrPostInstrSelection() will
still be called.
llvm-svn: 218458
This is purely a plumbing patch. No functional changes intended.
The ultimate goal is to allow targets other than PowerPC (certainly X86 and Aarch64) to turn this:
z = y / sqrt(x)
into:
z = y * rsqrte(x)
using whatever HW magic they can use. See http://llvm.org/bugs/show_bug.cgi?id=20900 .
The first step is to add a target hook for RSQRTE, take the already target-independent code selfishly hoarded by PPC, and put it into DAGCombiner.
Next steps:
The code in DAGCombiner::BuildRSQRTE() should be refactored further; tests that exercise that logic need to be added.
Logic in PPCTargetLowering::BuildRSQRTE() should be hoisted into DAGCombiner.
X86 and AArch64 overrides for TargetLowering.BuildRSQRTE() should be added.
Differential Revision: http://reviews.llvm.org/D5425
llvm-svn: 218219
The heuristic used by DAGCombine to form FMAs checks that the FMUL has only one
use, but this is overly-conservative on some systems. Specifically, if the FMA
and the FADD have the same latency (and the FMA does not compete for resources
with the FMUL any more than the FADD does), there is no need for the
restriction, and furthermore, forming the FMA leaving the FMUL can still allow
for higher overall throughput and decreased critical-path length.
Here we add a new TLI callback, enableAggressiveFMAFusion, false by default, to
elide the hasOneUse check. This is enabled for PowerPC by default, as most
PowerPC systems will benefit.
Patch by Olivier Sallenave, thanks!
llvm-svn: 218120
With this optimization, we will not always insert zext for values crossing
basic blocks, but insert sext if the users of a value crossing basic block
has preference of sign predicate.
llvm-svn: 218101
Do
(shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
This is already done for multiplies, but since multiplies
by powers of two are turned into shifts, we also need
to handle it here.
This might want checks for isLegalAddImmediate to avoid
transforming an add of a legal immediate with one that isn't.
llvm-svn: 217610
This is an extension of the change made with r215820:
http://llvm.org/viewvc/llvm-project?view=revision&revision=215820
That patch allowed combining of splatted vector FP constants that are multiplied.
This patch allows combining non-uniform vector FP constants too by relaxing the
check on the type of vector. Also, canonicalize a vector fmul in the
same way that we already do for scalars - if only one operand of the fmul is a
constant, make it operand 1. Otherwise, we miss potential folds.
This fold is also done by -instcombine, but it's possible that extra
fmuls may have been generated during lowering.
Differential Revision: http://reviews.llvm.org/D5254
llvm-svn: 217599
Previously, fast-isel would not clean up after failing to select a call
instruction, because it would have called flushLocalValueMap() which moves
the insertion point, making SavedInsertPt in selectInstruction() invalid.
Fixing this by making SavedInsertPt a member variable, and having
flushLocalValueMap() update it.
This removes some redundant code at -O0, and more importantly fixes PR20863.
Differential Revision: http://reviews.llvm.org/D5249
llvm-svn: 217401
This problem is bigger than just fsub, but this is the minimum fix to solve
fneg for PR20556 ( http://llvm.org/bugs/show_bug.cgi?id=20556 ), and we solve
zero subtraction with the same change.
llvm-svn: 217286
This is the final round of renaming. This changes tblgen to emit lower-case
function names for FastEmitInst_* and FastEmit_*, and updates all its uses
in the source code.
Reviewed by Eric
llvm-svn: 217075
Things got a little bit messy over the years and it is time for a little bit
spring cleaning.
This first commit is focused on the FastISel base class itself. It doxyfies all
comments, C++11fies the code where it makes sense, renames internal methods to
adhere to the coding standard, and clang-formats the files.
Reviewed by Eric
llvm-svn: 217060
This allows the target to disable target-independent instruction selection and
jump directly into the target-dependent instruction selection code.
This can be beneficial for targets, such as AArch64, which could emit much
better code, but never got a chance to do so, because the target-independent
instruction selector was able to find an instruction sequence.
llvm-svn: 216947
If an fmul was introduced by lowering, it wouldn't be folded
into a multiply by a constant since the earlier combine would
have replaced the fmul with the fadd.
llvm-svn: 216932
This removes static initializers from the backends which generate this data, and also makes this struct match the other Tablegen generated structs in behaviour
Reviewed by Andy Trick and Chandler C
llvm-svn: 216919
When I recommitted r208640 (in r216898) I added an exclusion for TargetConstant
offsets, as there is no guarantee that a backend can handle them on generic
ADDs (even if it generates them during address-mode matching) -- and,
specifically, applying this transformation directly with TargetConstants caused
a self-hosting failure on PPC64. Ignoring all TargetConstants, however, is less
than ideal. Instead, for non-opaque constants, we can convert them into regular
constants for use with the generated ADD (or SUB).
llvm-svn: 216908
I reverted r208640 in r209747 because r208640 broke self-hosting on PPC64. The
underlying cause of the failure is that pre-inc loads with increments
represented by ISD::TargetConstants were being transformed into ISD:::ADDs with
ISD::TargetConstant operands. PPC doesn't have a pattern for those, and so they
were selected as invalid r+r adds.
This recommits r208640, rebased and with an exclusion for ISD::TargetConstant
increments. This behavior seems correct, although in the future we might want
to ask the target to split out the indexing that uses ISD::TargetConstants.
Unfortunately, I don't yet have small test case where the relevant invalid
'add' instruction is not itself dead (and thus eliminated by
DeadMachineInstructionElim -- sometimes bugpoint is too good at removing things)
Original commit message (by Adam Nemet):
Right now the load may not get DCE'd because of the side-effect of updating
the base pointer.
This can happen if we lower a read-modify-write of an illegal larger type
(e.g. i48) such that the modification only affects one of the subparts (the
lower i32 part but not the higher i16 part). See the testcase.
In order to spot the dead load we need to revisit it when SimplifyDemandedBits
decided that the value of the load is masked off. This is the
CommitTargetLoweringOpt piece.
I checked compile time with ARM64 by sending SPEC bitcode files through llc.
No measurable change.
Fixes <rdar://problem/16031651>
llvm-svn: 216898
Summary:
If a variadic function body contains a musttail call, then we copy all
of the remaining register parameters into virtual registers in the
function prologue. We track the virtual registers through the function
body, and add them as additional registers to pass to the call. Because
this is all done in virtual registers, the register allocator usually
gives us good code. If the function does a call, however, it will have
to spill and reload all argument registers (ew).
Forwarding regparms on x86_32 is not implemented because most compilers
don't support varargs in 32-bit with regparms.
Reviewers: majnemer
Subscribers: aemerson, llvm-commits
Differential Revision: http://reviews.llvm.org/D5060
llvm-svn: 216780
The code in SelectionDAG::getMemset for some reason assumes the value passed to
memset is an i32. This breaks the generated code for targets that only have
registers smaller than 32 bits because the value might get split into multiple
registers by the calling convention. See the test for the MSP430 target included
in the patch for an example.
This patch ensures that nothing is assumed about the type of the value. Instead,
the type is taken from the selected overload of the llvm.memset intrinsic.
llvm-svn: 216716
was marked custom. The target independent DAG combine has no way to know if
the shuffles it is introducing are ones that the target could support or not.
llvm-svn: 216678
The included test case would fail, because the MI PHI node would have two
operands from the same predecessor.
This problem occurs when a switch instruction couldn't be selected. This happens
always, because there is no default switch support for FastISel to begin with.
The problem was that FastISel would first add the operand to the PHI nodes and
then fall-back to SelectionDAG, which would then in turn add the same operands
to the PHI nodes again.
This fix removes these duplicate PHI node operands by reseting the
PHINodesToUpdate to its original state before FastISel tried to select the
instruction.
This fixes <rdar://problem/18155224>.
llvm-svn: 216640
Currently instructions are folded very aggressively for AArch64 into the memory
operation, which can lead to the use of killed operands:
%vreg1<def> = ADDXri %vreg0<kill>, 2
%vreg2<def> = LDRBBui %vreg0, 2
... = ... %vreg1 ...
This usually happens when the result is also used by another non-memory
instruction in the same basic block, or any instruction in another basic block.
This fix teaches hasTrivialKill to not only check the LLVM IR that the value has
a single use, but also to check if the register that represents that value has
already been used. This can happen when the instruction with the use was folded
into another instruction (in this particular case a load instruction).
This fixes rdar://problem/18142857.
llvm-svn: 216634
FastEmitInst_ri was constraining the first operand without checking if it is
a virtual register. Use constrainOperandRegClass as all the other
FastEmitInst_* functions.
llvm-svn: 216613
This teaches the AArch64 backend to deal with the operations required
to deal with the operations on v4f16 and v8f16 which are exposed by
NEON intrinsics, plus the add, sub, mul and div operations.
llvm-svn: 216555
This combine is essentially combining target-specific nodes back into target
independent nodes that it "knows" will be combined yet again by a target
independent DAG combine into a different set of target-independent nodes that
are legal (not custom though!) and thus "ok". This seems... deeply flawed. The
crux of the problem is that we don't combine un-legalized shuffles that are
introduced by legalizing other operations, and thus we don't see a very
profitable combine opportunity. So the backend just forces the input to that
combine to re-appear.
However, for this to work, the conditions detected to re-form the unlegalized
nodes must be *exactly* right. Previously, failing this would have caused poor
code (if you're lucky) or a crasher when we failed to select instructions.
After r215611 we would fall back into the legalizer. In some cases, this just
"fixed" the crasher by produces bad code. But in the test case added it caused
the legalizer and the dag combiner to iterate forever.
The fix is to make the alignment checking in the x86 side of things match the
alignment checking in the generic DAG combine exactly. This isn't really a
satisfying or principled fix, but it at least make the code work as intended.
It also highlights that it would be nice to detect the availability of under
aligned loads for a given type rather than bailing on this optimization. I've
left a FIXME to document this.
Original commit message for r215611 which covers the rest of the chang:
[SDAG] Fix a case where we would iteratively legalize a node during
combining by replacing it with something else but not re-process the
node afterward to remove it.
In a truly remarkable stroke of bad luck, this would (in the test case
attached) end up getting some other node combined into it without ever
getting re-processed. By adding it back on to the worklist, in addition
to deleting the dead nodes more quickly we also ensure that if it
*stops* being dead for any reason it makes it back through the
legalizer. Without this, the test case will end up failing during
instruction selection due to an and node with a type we don't have an
instruction pattern for.
It took many million runs of the shuffle fuzz tester to find this.
llvm-svn: 216537
There's no need to do this if the user doesn't call va_start. In the
future, we're going to have thunks that forward these register
parameters with musttail calls, and they won't need these spills for
handling va_start.
Most of the test suite changes are adding va_start calls to existing
tests to keep things working.
llvm-svn: 216294
isPow2DivCheap
That name doesn't specify signed or unsigned.
Lazy as I am, I eventually read the function and variable comments. It turns out that this is strictly about signed div. But I discovered that the comments are wrong:
srl/add/sra
is not the general sequence for signed integer division by power-of-2. We need one more 'sra':
sra/srl/add/sra
That's the sequence produced in DAGCombiner. The first 'sra' may be removed when dividing by exactly '2', but that's a special case.
This patch corrects the comments, changes the name of the flag bit, and changes the name of the accessor methods.
No functional change intended.
Differential Revision: http://reviews.llvm.org/D5010
llvm-svn: 216237
The FPv4-SP floating-point unit is generally referred to as
single-precision only, but it does have double-precision registers and
load, store and GPR<->DPR move instructions which operate on them.
This patch enables the use of these registers, the main advantage of
which is that we now comply with the AAPCS-VFP calling convention.
This partially reverts r209650, which added some AAPCS-VFP support,
but did not handle return values or alignment of double arguments in
registers.
This patch also adds tests for Thumb2 code generation for
floating-point instructions and intrinsics, which previously only
existed for ARM.
llvm-svn: 216172
Store TargetSelectionDAGInfo as a pointer instead of a reference:
getSelectionDAGInfo() may not be implemented for certain backends
(e.g. it's not currently implemented for R600).
This bug is reported by UBSan.
llvm-svn: 216129
legalization stage. With those two optimizations, fewer signed/zero extension
instructions can be inserted, and then we can expose more opportunities to
Machine CSE pass in back-end.
llvm-svn: 216066
Note: This was originally reverted to track down a buildbot error. This commit
exposed a latent bug that was fixed in r215753. Therefore it is reapplied
without any modifications.
I run it through SPEC2k and SPEC2k6 for AArch64 and it didn't introduce any new
regeressions.
Original commit message:
This changes the order in which FastISel tries to materialize a constant.
Originally it would try to use a simple target-independent approach, which
can lead to the generation of inefficient code.
On X86 this would result in the use of movabsq to materialize any 64bit
integer constant - even for simple and small values such as 0 and 1. Also
some very funny floating-point materialization could be observed too.
On AArch64 it would materialize the constant 0 in a register even the
architecture has an actual "zero" register.
On ARM it would generate unnecessary mov instructions or not use mvn.
This change simply changes the order and always asks the target first if it
likes to materialize the constant. This doesn't fix all the issues
mentioned above, but it enables the targets to implement such
optimizations.
Related to <rdar://problem/17420988>.
llvm-svn: 216006
When combining a pair of shuffle nodes, check if the combined shuffle mask is
trivially Undef. In case, immediately fold that pair of shuffles to Undef.
The lack of checks for undef masks was the root-cause of a poor-codegen bug
in the dag combiner.
Example:
%1 = shufflevector <4 x i32> %A, <4 x i32> %B, <4 x i32> <i32 4, i32 1, i32 1, i32 6>
%2 = shufflevector <4 x i32> %1, <4 x i32> undef, <4 x i32> <i32 0, i32 4, i32 1, i32 6>
%3 = shufflevector <4 x i32> %2, <4 x i32> undef, <4 x i32> <i32 1, i32 5, i32 3, i32 3>
Before this patch, on x86 (with -mcpu=corei7) we failed to fold the entire
sequence to Undef value and therefore we generated:
shufps $-123, %xmm1, $xmm0
pshufd $-46, %xmm0, %xmm0
With this patch, the entire shuffle sequence is folded to Undef and no
shuffles are generated in the output assembly.
Added new test cases to test 'combine-vec-shuffle-5.ll'.
llvm-svn: 215797
As Jim pointed out this assert isn't really needed to test for correctness,
because the code right afterwards does the same check and falls-back to
SelectionDAG - as intended.
llvm-svn: 215735
This reverts:
r215595 "[FastISel][X86] Add large code model support for materializing floating-point constants."
r215594 "[FastISel][X86] Use XOR to materialize the "0" value."
r215593 "[FastISel][X86] Emit more efficient instructions for integer constant materialization."
r215591 "[FastISel][AArch64] Make use of the zero register when possible."
r215588 "[FastISel] Let the target decide first if it wants to materialize a constant."
r215582 "[FastISel][AArch64] Cleanup constant materialization code. NFCI."
llvm-svn: 215673
This patch allows a vector fneg of a bitcasted integer value to be optimized in the same way that we already optimize a scalar fneg. If the integer variable is a constant, we can precompute the result and not require any logic ops.
This patch is very similar to a fabs patch committed at r214892.
Differential Revision: http://reviews.llvm.org/D4852
llvm-svn: 215646
input node after manually adding it to the worklist and using CombineTo.
Once we use CombineTo the input node may have been deleted. Despite this
being *completely confusing* and somewhat broken, the only way to
"correctly" return from a DAG combine after potentially deleting the
input node is to return *that exact node*....
But really, this code should just never have used CombineTo. It won't do
what it wants (returning the node as mentioned above just causes the
combine to infloop). The correct way to combine away a casted load to
a load of the correct type is to RAUW the chain directly and then return
the loaded value to replace the actual value node.
I managed to find this with the vector shuffle fuzzer even though it
clearly has nothing at all to do with vector shuffles and rather those
happen to trigger a load of a constant pool that hits this combine *just
right*. I've included the test as it is small and a nice stress test
that the infrastructure isn't asserting.
llvm-svn: 215622
combining by replacing it with something else but not re-process the
node afterward to remove it.
In a truly remarkable stroke of bad luck, this would (in the test case
attached) end up getting some other node combined into it without ever
getting re-processed. By adding it back on to the worklist, in addition
to deleting the dead nodes more quickly we also ensure that if it
*stops* being dead for any reason it makes it back through the
legalizer. Without this, the test case will end up failing during
instruction selection due to an and node with a type we don't have an
instruction pattern for.
It took many million runs of the shuffle fuzz tester to find this.
llvm-svn: 215611
This changes the order in which FastISel tries to materialize a constant.
Originally it would try to use a simple target-independent approach, which
can lead to the generation of inefficient code.
On X86 this would result in the use of movabsq to materialize any 64bit
integer constant - even for simple and small values such as 0 and 1. Also
some very funny floating-point materialization could be observed too.
On AArch64 it would materialize the constant 0 in a register even the
architecture has an actual "zero" register.
On ARM it would generate unnecessary mov instructions or not use mvn.
This change simply changes the order and always asks the target first if it
likes to materialize the constant. This doesn't fix all the issues
mentioned above, but it enables the targets to implement such
optimizations.
Related to <rdar://problem/17420988>.
llvm-svn: 215588
Add header guards to files that were missing guards. Remove #endif comments
as they don't seem common in LLVM (we can easily add them back if we decide
they're useful)
Changes made by clang-tidy with minor tweaks.
llvm-svn: 215558
This patch improves the existing algorithm in DAGCombiner that
attempts to fold shuffles according to rule:
shuffle(shuffle(x, y, M1), undef, M2) -> shuffle(y, undef, M3)
Before this change, there were cases where the DAGCombiner conservatively
avoided folding shuffles even if the resulting mask would have been legal.
That is because the algorithm wrongly assumed that commuting
an illegal shuffle mask would always produce an illegal mask.
With this change, we now correctly compute the commuted shuffle mask before
calling method 'isShuffleMaskLegal' on it.
On X86, this improves for example the codegen for the following function:
define <4 x i32> @test(<4 x i32> %A, <4 x i32> %B) {
%1 = shufflevector <4 x i32> %B, <4 x i32> %A, <4 x i32> <i32 1, i32 2, i32 6, i32 7>
%2 = shufflevector <4 x i32> %1, <4 x i32> undef, <4 x i32> <i32 2, i32 3, i32 2, i32 3>
ret <4 x i32> %2
}
Before this change the X86 backend (-mcpu=corei7) generated
the following assembly code for function @test:
shufps $-23, %xmm0, %xmm1 # xmm1 = xmm1[1,2],xmm0[2,3]
movhlps %xmm1, %xmm1 # xmm1 = xmm1[1,1]
movaps %xmm1, %xmm0
Now we produce:
movhlps %xmm0, %xmm0 # xmm0 = xmm0[1,1]
Added extra test cases in combine-vec-shuffle-2.ll to verify that we correctly
fold according to the above-mentioned rule.
llvm-svn: 215555
This implements PPCTargetLowering::getTgtMemIntrinsic for Altivec load/store
intrinsics. As with the construction of the MachineMemOperands for the
intrinsic calls used for unaligned load/store lowering, the only slight
complication is that we need to represent a larger memory range than the
loaded/stored value-type size (because the address is rounded down to an
aligned address, and we need to conservatively represent the entire possible
range of the actual access). This required adding an extra size field to
TargetLowering::IntrinsicInfo, and this was done in a way that required no
modifications to other targets (the size defaults to the store size of the
provided memory data type).
This fixes test/CodeGen/PowerPC/unal-altivec-wint.ll (so it can be un-XFAILed).
llvm-svn: 215512
Follow up to r214266. Add missing case in ScalarizeVectorResult() for
cttz_zero_undef.
Differential Revision: http://reviews.llvm.org/D4813
llvm-svn: 215330
floating point exceptions, added use of flag to fold potentially exception
raising floating point math in selection DAG. No functionality change, as
targets have to explicitly ask for this behavior and none does today.
llvm-svn: 215222
__stack_chk_guard.
Handle the case where the pointer operand of the load instruction that loads the
stack guard is not a global variable but instead a bitcast.
%StackGuard = load i8** bitcast (i64** @__stack_chk_guard to i8**)
call void @llvm.stackprotector(i8* %StackGuard, i8** %StackGuardSlot)
Original test case provided by Ana Pazos.
This fixes PR20558.
llvm-svn: 215167
be deleted. This will be reapplied as soon as possible and before
the 3.6 branch date at any rate.
Approved by Jim Grosbach, Lang Hames, Rafael Espindola.
This reverts commits r215111, 215115, 215116, 215117, 215136.
llvm-svn: 215154
I am sure we will be finding bits and pieces of dead code for years to
come, but this is a good start.
Thanks to Lang Hames for making MCJIT a good replacement!
llvm-svn: 215111
Allow vector fabs operations on bitcasted constant integer values to be optimized
in the same way that we already optimize scalar fabs.
So for code like this:
%bitcast = bitcast i64 18446744069414584320 to <2 x float> ; 0xFFFF_FFFF_0000_0000
%fabs = call <2 x float> @llvm.fabs.v2f32(<2 x float> %bitcast)
%ret = bitcast <2 x float> %fabs to i64
Instead of generating something like this:
movabsq (constant pool loadi of mask for sign bits)
vmovq (move from integer register to vector/fp register)
vandps (mask off sign bits)
vmovq (move vector/fp register back to integer return register)
We should generate:
mov (put constant value in return register)
I have also removed a redundant clause in the first 'if' statement:
N0.getOperand(0).getValueType().isInteger()
is the same thing as:
IntVT.isInteger()
Testcases for x86 and ARM added to existing files that deal with vector fabs.
One existing testcase for x86 removed because it is no longer ideal.
For more background, please see:
http://reviews.llvm.org/D4770
And:
http://llvm.org/bugs/show_bug.cgi?id=20354
Differential Revision: http://reviews.llvm.org/D4785
llvm-svn: 214892
shorter/easier and have the DAG use that to do the same lookup. This
can be used in the future for TargetMachine based caching lookups from
the MachineFunction easily.
Update the MIPS subtarget switching machinery to update this pointer
at the same time it runs.
llvm-svn: 214838
This code is completely wrong. It is also dead, as if it were to *ever*
run, it would crash. Fortunately, after my work to the combiner, it is
at least *possible* to reach the code, and llvm-stress has found a test
case. Thanks to Patrick for reporting.
It would be really good if anyone who remembers how this code works and
what it was intended to do could add some more obvious test coverage
instead of my completely contrived and reduced test case. My test case
was so brittle I left a bread crumb comment in it to help the next
person to stumble on it and not know what it was actually testing for.
llvm-svn: 214785
combines) until they are legal.
Doing it the old way could, when the stars align *just* right, cause
a node to get into the combine set prior to being legalized. Then, when
the same node showed up as an operand to another node later on (but not
so much later on that it had been deleted as dead) we would fail to add
it back to the worklist thinking it had already been combined. This
would in turn cause it to not be legalized. Fortunately, we can also
walk the operands looking for uncombined (and thus potentially
un-legalized) nodes late. It will still ensure that we walk all operands
of all nodes and send all of them through both the legalizer without
changes and the combiner at least once. (Which was the original goal of
this).
I have a test case for this bug, but it is terribly brittle. For
example, it will stop finding the bug the moment I enable the new
shuffle lowering. I don't yet have any test case that reliably exercises
this bug, and it isn't clear that it will be possible to craft one. It
is entirely possible that with the new shuffle lowering the two forms of
doing this are precisely equivalent. That doesn't mean we shouldn't take
the more conservative approach of insisting on things in the combined
set having survived the legalizer.
llvm-svn: 214673
This is intended to be the minimal change needed to fix PR20354 ( http://llvm.org/bugs/show_bug.cgi?id=20354 ). The check for a vector operation was wrong; we need to check that the fabs itself is not a vector operation.
This patch will not generate the optimal code. A constant pool load and 'and' op will be generated instead of just returning a value that we can calculate in advance (as we do for the scalar case). I've put a 'TODO' comment for that here and expect to have that patch ready soon.
There is a very similar optimization that we can do in visitFNEG, so I've put another 'TODO' there and expect to have another patch for that too.
llvm-svn: 214670
so using a single helper which adds operands back onto the worklist.
Several places didn't rigorously do this but a couple already did.
Factoring them together and doing it rigorously is important to delete
things recursively early on in the combiner and get a chance to see
accurate hasOneUse values. While no existing test cases change, an
upcoming patch to add DAG combining logic for PSHUFB requires this to
work correctly.
llvm-svn: 214623
during DAGCombine in certain circumstances. Unfortunately, the circumstances required
to trigger the issue seem to require a pretty specific interaction of DAGCombines,
and I haven't been able to find a testcase that reproduces on X86, ARM, or AArch64.
The functionality added here is replicated in essentially every other DAG combine,
so it seems pretty obviously correct.
llvm-svn: 214622
fromulation of the node, which isn't really the desired behavior from
within the combiner or legalizer, but is necessary within ISel. I've
added a hopefully helpful comment and fixed the only two places where
this took place.
Yet another step toward the combiner and legalizer not needing to use
update listeners with virtual calls to manage the worklists behind
legalization and combining.
llvm-svn: 214574
This lifts the (very few) places the legalizer would delete dead nodes
into the outer loop around the legalizer. This is significantly simpler
because it doesn't require the legalizer itself to manage the iterator
validity, and it doesn't require the legalizer to be a DAG update
listener in order to remove things from the legalized set. It also makes
the interface much less contrived for the case of the legalizer running
inside the last phase of DAG combining.
I'm working on centralizing the deletion of nodes during both legalizing
and combining as much as possible. My hope is to remove the need for DAG
update listeners from the combiner next, which would remove a costly
virtual dispatch chain on every deletion. This in turn should allow us
to more aggressively delete DAG nodes during combining which will in
turn allow us to combine more aggressively by exposing the actual nodes
which have single users to the combine phases.
llvm-svn: 214546
Altivec vector loads on PowerPC have an interesting property: They always load
from an aligned address (by rounding down the address actually provided if
necessary). In order to generate an actual unaligned load, you can generate two
load instructions, one with the original address, one offset by one vector
length, and use a special permutation to extract the bytes desired.
When this was originally implemented, I generated these two loads using regular
ISD::LOAD nodes, now marked as aligned. Unfortunately, there is a problem with
this:
The alignment of a load does not contribute to its identity, and SDNodes
are uniqued. So, imagine that we have some unaligned load, L1, that is not
aligned. The routine will create two loads, L1(aligned) and (L1+16)(aligned).
Further imagine that there had already existed a load (L1+16)(unaligned) with
the same chain operand as the load L1. When (L1+16)(aligned) is created as part
of the lowering of L1, this load *is* also the (L1+16)(unaligned) node, just
now marked as aligned (because the new alignment overwrites the old). But the
original users of (L1+16)(unaligned) now get the data intended for the
permutation yielding the data for L1, and (L1+16)(unaligned) no longer exists
to get its own permutation-based expansion. This was PR19991.
A second potential problem has to do with the MMOs on these loads, which can be
used by AA during instruction scheduling to break chain-based dependencies. If
the new "aligned" loads get the MMO from the original unaligned load, this does
not represent the fact that it will load data from below the original address.
Normally, this would not matter, but this load might be combined with another
load pair for a previous vector, and then the dependency on the otherwise-
ignored lower bytes can matter.
To fix both problems, instead of generating the necessary loads using regular
ISD::LOAD instructions, ppc_altivec_lvx intrinsics are used instead. These are
provided with MMOs with a conservative address range.
Unfortunately, I no longer have a failing test case (since PR19991 was
reported, other changes in CodeGen have forced this bug back into hiding it
again). Nevertheless, this should fix the underlying problem.
llvm-svn: 214481
Currently when DAGCombine converts loads feeding a switch into a switch of
addresses feeding a load the new load inherits the isInvariant flag of the left
side. This is incorrect since invariant loads can be reordered in cases where it
is illegal to reoarder normal loads.
This patch adds an isInvariant parameter to getExtLoad() and updates all call
sites to pass in the data if they have it or false if they don't. It also
changes the DAGCombine to use that data to make the right decision when
creating the new load.
llvm-svn: 214449
This fixes a mistake where I accidentially dropped the upper 32bit of a
64bit pointer during FastISel lowering of the patchpoint intrinsic.
llvm-svn: 214367
DAGCombine may choose to rewrite graphs where two loads feed a select into
graphs where a select of two addresses feed a load. While it sanity checks the
loads to make sure they are broadly equivalent it currently just uses the
alignment restriction of the left node. In cases where the right node has
stronger alignment requiresment this may lead to bad codegen, such as generating
an aligned load where an unaligned load is required. This patch makes the
combine generate a load with an alignment that is the same as whichever is more
restrictive of the two alignments.
Tests included.
rdar://17762530
llvm-svn: 214322
Fix the missing case in ScalarizeVectorResult() that was exposed with
libclcore.bc in Android.
Differential Revision: http://reviews.llvm.org/D4645
llvm-svn: 214266
We need to make sure we use the softened version of all appropriate operands in
the libcall, or things go horribly wrong. This may entail actually executing a
1-stage softening.
llvm-svn: 214175
inspection in the proccess, and shuffle the logging in the DAG combiner
around a bit.
With this it is much easier to follow what the legalizer is doing. It
should even accurately present most of the strange legalization
operations where a single node is replaced by multiple nodes, etc. There
is still some information lost (we log SDNodes not SDValues so we don't
log which result is used for which thing), but I think this is much
closer to a usable system. Notably, this will make it *much* more
apparant when legalization is actually happening inside the combiner, or
when there is a cycle caused by interactions of the legalizer and the
combiner.
The "bug" I fixed here I'm not sure is remotely possible to trigger. We
were only adding one of the nodes in a replacement to the updated set
rather than all of the nodes in the replacement. Realistically, the
worst result of this are nodes not getting back onto the worklist in the
DAG combiner. I doubt it is possible to trigger this today, and
I certainly don't have any ideas about how, but this at least brings the
code into alignment with the principled operation of the routine.
llvm-svn: 214105
Rename to allowsMisalignedMemoryAccess.
On R600, 8 and 16 byte accesses are mostly OK with 4-byte alignment,
and don't need to be split into multiple accesses. Vector loads with
an alignment of the element type are not uncommon in OpenCL code.
llvm-svn: 214055
over each node in the worklist prior to combining.
This allows the combiner to produce new nodes which need to go back
through legalization. This is particularly useful when generating
operands to target specific nodes in a post-legalize DAG combine where
the operands are significantly easier to express as pre-legalized
operations. My immediate use case will be PSHUFB formation where we need
to build a constant shuffle mask with a build_vector node.
This also refactors the relevant functionality in the legalizer to
support this, and updates relevant tests. I've spoken to the R600 folks
and these changes look like improvements to them. The avx512 change
needs to be investigated, I suspect there is a disagreement between the
legalizer and the DAG combiner there, but it seems a minor issue so
leaving it to be re-evaluated after this patch.
Differential Revision: http://reviews.llvm.org/D4564
llvm-svn: 214020
This is the first commit in a series that add an @llvm.assume intrinsic which
can be used to provide the optimizer with a condition it may assume to be true
(when the control flow would hit the intrinsic call). Some basic properties are added here:
- llvm.invariant(true) is dead.
- llvm.invariant(false) is unreachable (this directly corresponds to the
documented behavior of MSVC's __assume(0)), so is llvm.invariant(undef).
The intrinsic is tagged as writing arbitrarily, in order to maintain control
dependencies. BasicAA has been updated, however, to return NoModRef for any
particular location-based query so that we don't unnecessarily block code
motion.
llvm-svn: 213973
address of the stack guard was being spilled to the stack.
Previously the address of the stack guard would get spilled to the stack if it
was impossible to keep it in a register. This patch introduces a new target
independent node and pseudo instruction which gets expanded post-RA to a
sequence of instructions that load the stack guard value. Register allocator
can now just remat the value when it can't keep it in a register.
<rdar://problem/12475629>
llvm-svn: 213967
with a result number outside the range of results for the node.
I don't know how we managed to not really check this very basic
invariant for so long, but the code is *very* broken at this point.
I have over 270 test failures with the assert enabled. I'm committing it
disabled so that others can join in the cleanup effort and reproduce the
issues. I've also included one of the obvious fixes that I already
found. More fixes to come.
llvm-svn: 213926
which have successfully round-tripped through the combine phase, and use
this to ensure all operands to DAG nodes are visited by the combiner,
even if they are only added during the combine phase.
This is critical to have the combiner reach nodes that are *introduced*
during combining. Previously these would sometimes be visited and
sometimes not be visited based on whether they happened to end up on the
worklist or not. Now we always run them through the combiner.
This fixes quite a few bad codegen test cases lurking in the suite while
also being more principled. Among these, the TLS codegeneration is
particularly exciting for programs that have this in the critical path
like TSan-instrumented binaries (although I think they engineer to use
a different TLS that is faster anyways).
I've tried to check for compile-time regressions here by running llc
over a merged (but not LTO-ed) clang bitcode file and observed at most
a 3% slowdown in llc. Given that this is essentially a worst case (none
of opt or clang are running at this phase) I think this is tolerable.
The actual LTO case should be even less costly, and the cost in normal
compilation should be negligible.
With this combining logic, it is possible to re-legalize as we combine
which is necessary to implement PSHUFB formation on x86 as
a post-legalize DAG combine (my ultimate goal).
Differential Revision: http://reviews.llvm.org/D4638
llvm-svn: 213898
vector operation legalization with support for custom target lowering
and fallback to expand when it fails, and use this to implement sext and
anyext load lowering for x86 in a more principled way.
Previously, the x86 backend relied on a target DAG combine to "combine
away" sextload and extload nodes prior to legalization, or would expand
them during legalization with terrible code. This is particularly
problematic because the DAG combine relies on running over non-canonical
DAG nodes at just the right time to match several common and important
patterns. It used a combine rather than lowering because we didn't have
good lowering support, and to expose some tricks being employed to more
combine phases.
With this change it becomes a proper lowering operation, the backend
marks that it can lower these nodes, and I've added support for handling
the canonical forms that don't have direct legal representations such as
sextload of a v4i8 -> v4i64 on AVX1. With this change, our test cases
for this behavior continue to pass even after the DAG combiner beigns
running more systematically over every node.
There is some noise caused by this in the test suite where we actually
use vector extends instead of subregister extraction. This doesn't
really seem like the right thing to do, but is unlikely to be a critical
regression. We do regress in one case where by lowering to the
target-specific patterns early we were able to combine away extraneous
legal math nodes. However, this regression is completely addressed by
switching to a widening based legalization which is what I'm working
toward anyways, so I've just switched the test to that mode.
Differential Revision: http://reviews.llvm.org/D4654
llvm-svn: 213897
In order to enable the preservation of noalias function parameter information
after inlining, and the representation of block-level __restrict__ pointer
information (etc.), additional kinds of aliasing metadata will be introduced.
This metadata needs to be carried around in AliasAnalysis::Location objects
(and MMOs at the SDAG level), and so we need to generalize the current scheme
(which is hard-coded to just one TBAA MDNode*).
This commit introduces only the necessary refactoring to allow for the
introduction of other aliasing metadata types, but does not actually introduce
any (that will come in a follow-up commit). What it does introduce is a new
AAMDNodes structure to hold all of the aliasing metadata nodes associated with
a particular memory-accessing instruction, and uses that structure instead of
the raw MDNode* in AliasAnalysis::Location, etc.
No functionality change intended.
llvm-svn: 213859
Constant fold the lanes of the input constant build_vector individually
so we correctly handle when the vector elements are not all the same
constant value.
PR20394
llvm-svn: 213798
The target-independent DAGcombiner will generate:
asr w1, X, #31 w1 = splat sign bit.
add X, X, w1, lsr #28 X = X + 0 or pow2-1
asr w0, X, asr #4 w0 = X/pow2
However, the add + shifts is expensive, so generate:
add w0, X, 15 w0 = X + pow2-1
cmp X, wzr X - 0
csel X, w0, X, lt X = (X < 0) ? X + pow2-1 : X;
asr w0, X, asr 4 w0 = X/pow2
llvm-svn: 213758
insertions.
The old behavior could cause arbitrarily bad memory usage in the DAG
combiner if there was heavy traffic of adding nodes already on the
worklist to it. This commit switches the DAG combine worklist to work
the same way as the instcombine worklist where we null-out removed
entries and only add new entries to the worklist. My measurements of
codegen time shows slight improvement. The memory utilization is
unsurprisingly dominated by other factors (the IR and DAG itself
I suspect).
This change results in subtle, frustrating churn in the particular order
in which DAG combines are applied which causes a number of minor
regressions where we fail to match a pattern previously matched by
accident. AFAICT, all of these should be using AddToWorklist to directly
or should be written in a less brittle way. None of the changes seem
drastically bad, and a few of the changes seem distinctly better.
A major change required to make this work is to significantly harden the
way in which the DAG combiner handle nodes which become dead
(zero-uses). Previously, we relied on the ability to "priority-bump"
them on the combine worklist to achieve recursive deletion of these
nodes and ensure that the frontier of remaining live nodes all were
added to the worklist. Instead, I've introduced a routine to just
implement that precise logic with no indirection. It is a significantly
simpler operation than that of the combiner worklist proper. I suspect
this will also fix some other problems with the combiner.
I think the x86 changes are really minor and uninteresting, but the
avx512 change at least is hiding a "regression" (despite the test case
being just noise, not testing some performance invariant) that might be
looked into. Not sure if any of the others impact specific "important"
code paths, but they didn't look terribly interesting to me, or the
changes were really minor. The consensus in review is to fix any
regressions that show up after the fact here.
Thanks to the other reviewers for checking the output on other
architectures. There is a specific regression on ARM that Tim already
has a fix prepped to commit.
Differential Revision: http://reviews.llvm.org/D4616
llvm-svn: 213727
DAG into a helper function.
This adds a trip through the (very minimal) verification logic in
a bunch of places that were missing it, but shouldn't have any other
impact outside of refactoring. I'm hoping to use this to do more clever
things when DAG nodes are inserted into the graph.
llvm-svn: 213612
a bug in 2010 when they were added but are adding no value today.
In fact, they are utter lies. NodeAllocator is used to allocate almost
all of these node types. I don't know what we were trying to assert
here, and the docs don't give any answer. Until we once again stumble
upon a bug needing help, let's clear the path for improvements.
llvm-svn: 213610
We should update the usages to all of the results;
otherwise, we might get assertion failure or SEGV during
the type legalization of ATOMIC_CMP_SWAP_WITH_SUCCESS
with two or more illegal types.
For example, in the following sequence, both i8 and i1
might be illegal in some target, e.g. armv5, mipsel, mips64el,
%0 = cmpxchg i8* %ptr, i8 %desire, i8 %new monotonic monotonic
%1 = extractvalue { i8, i1 } %0, 1
Since both i8 and i1 should be legalized, the corresponding
ATOMIC_CMP_SWAP_WITH_SUCCESS dag will be checked/replaced/updated
twice.
If we don't update the usage to *ALL* of the results in the
first round, the DAG for extractvalue might be processed earlier.
The GetPromotedInteger() will result in assertion failure,
because its operand (i.e. the success bit of cmpxchg) is not
promoted beforehand.
llvm-svn: 213569
This makes the first stage DAG for @llvm.convert.to.fp16 an fptrunc,
and correspondingly @llvm.convert.from.fp16 an fpext. The legalisation
path is now uniform, regardless of the input IR:
fptrunc -> FP_TO_FP16 (if f16 illegal) -> libcall
fpext -> FP16_TO_FP (if f16 illegal) -> libcall
Each target should be able to select the version that best matches its
operations and not be required to duplicate patterns for both fptrunc
and FP_TO_FP16 (for example).
As a result we can remove some redundant AArch64 patterns.
llvm-svn: 213507
'Worklist' consistently rather than a deeply confusing mixture of
'WorkList' and 'Worklist'.
Notably, the very 'WorkList' of the DAG combiner was exposed to target
specific DAG combines under an interface 'AddToWorklist' which was
implemented by in turn calling 'AddToWorkList' in the combiner. This has
sent me circling with the wrong case in grep one too many times.
I chose to normalize on 'Worklist' because that one won the grep-vote
for llvm/lib/... by a hundered hits or so, and it is used in places
relatively "canonical" such as InstCombine's Worklist. Let's all jsut
pick this casing, whether "correct", "good", or "bad" and be
consistent...
llvm-svn: 213506
stack, filter all handle nodes from the DAG combiner worklist.
This will also handle cases where other handle nodes might be
(erroneously) added to the worklist and then cause bugs and explosions
when deleted. For example, when running the legalizer within the DAG
combiner, there are times when other handle nodes are used and can end
up here.
llvm-svn: 213505
Canonicalize shuffles according to rules:
* shuffle(A, shuffle(A, B)) -> shuffle(shuffle(A,B), A)
* shuffle(B, shuffle(A, B)) -> shuffle(shuffle(A,B), B)
* shuffle(B, shuffle(A, Undef)) -> shuffle(shuffle(A, Undef), B)
This patch helps identifying more shuffle pairs that could be combined reusing
the already existing rules in the DAGCombiner.
Added new test 'combine-vec-shuffle-5.ll' to verify that the canonicalized
shuffles are now folded into a single shuffle node by the DAGCombiner.
Added more test cases to 'combine-vec-shuffle-4.ll'.
llvm-svn: 213504
This patch removes function 'CommuteVectorShuffle' from X86ISelLowering.cpp
and moves its logic into SelectionDAG.cpp as method 'getCommutedVectorShuffles'.
This refactoring is in preperation of an upcoming change to the DAGCombiner.
llvm-svn: 213503
Summary: This patch introduces two new iterator ranges and updates existing code to use it. No functional change intended.
Test Plan: All tests (make check-all) still pass.
Reviewers: dblaikie
Reviewed By: dblaikie
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D4481
llvm-svn: 213474
Since the result of a SETCC for AArch64 is 0 or -1 in each lane, we can
move unary operations, in this case [su]int_to_fp through the mask
operation and constant fold the operation away. Generally speaking:
UNARYOP(AND(VECTOR_CMP(x,y), constant))
--> AND(VECTOR_CMP(x,y), constant2)
where constant2 is UNARYOP(constant).
This implements the transform where UNARYOP is [su]int_to_fp.
For example, consider the simple function:
define <4 x float> @foo(<4 x float> %val, <4 x float> %test) nounwind {
%cmp = fcmp oeq <4 x float> %val, %test
%ext = zext <4 x i1> %cmp to <4 x i32>
%result = sitofp <4 x i32> %ext to <4 x float>
ret <4 x float> %result
}
Before this change, the code is generated as:
fcmeq.4s v0, v0, v1
movi.4s v1, #0x1 // Integer splat value.
and.16b v0, v0, v1 // Mask lanes based on the comparison.
scvtf.4s v0, v0 // Convert each lane to f32.
ret
After, the code is improved to:
fcmeq.4s v0, v0, v1
fmov.4s v1, #1.00000000 // f32 splat value.
and.16b v0, v0, v1 // Mask lanes based on the comparison.
ret
The svvtf.4s has been constant folded away and the floating point 1.0f
vector lanes are materialized directly via fmov.4s.
Rather than do the folding manually in the target code, teach getNode()
in the generic SelectionDAG to handle folding constant operands of
vector [su]int_to_fp nodes. It is reasonable (as noted in a FIXME) to do
additional constant folding there as well, but I don't have test cases
for those operations, so leaving them for another time when it becomes
appropriate.
rdar://17693791
llvm-svn: 213341
Previously we asserted on this code. Currently compiler-rt doesn't
actually implement any of these new libcalls, but external help is
pretty much the only viable option for LLVM.
I've followed the much more generic "__truncST2" naming, as opposed to
the odd name for f32 -> f16 truncation. This can obviously be changed
later, or overridden by any targets that need to.
llvm-svn: 213252
This makes the two intrinsics @llvm.convert.from.f16 and
@llvm.convert.to.f16 accept types other than simple "float". This is
only strictly needed for the truncate operation, since otherwise
double rounding occurs and there's no way to represent the strict IEEE
conversion. However, for symmetry we allow larger types in the extend
too.
During legalization, we can expand an "fp16_to_double" operation into
two extends for convenience, but abort when the truncate isn't legal. A new
libcall is probably needed here.
Even after this commit, various target tweaks are needed to actually use the
extended intrinsics. I've put these into separate commits for clarity, so there
are no actual tests of f64 conversion here.
llvm-svn: 213248
This fixes an issue where a local value is defined before and used after an
inline asm call with side effects.
This fix simply flushes the local value map, which updates the insertion point
for the inline asm call to be above any previously defined local values.
This fixes <rdar://problem/17694203>
llvm-svn: 213203
It turns out that in most cases (the main exception being i1-related
types) once these operations are formed we cannot separate them and
the targets end up having to deal with them whether they want to or
not.
This is not a good situation, and a more reasonable default can be
formed by ackowledging this and having targets leave them as Legal.
Only x86 seems to be affected (other targets don't even try marking
the operation Expand).
Mostly there's no visible change here yet, but it will be useful to
have truly expanded EXTLOADS for MVT::f16 softening support.
llvm-svn: 213162
There is no need to pass on TLI separately to the function. As Eric pointed out
the Target Machine already provides everything we need.
llvm-svn: 213108
This patch adds two new rules to the DAGCombiner:
1. shuffle (shuffle A, Undef, M0), B, M1 -> shuffle A, B, M2
2. shuffle (shuffle A, Undef, M0), A, M1 -> shuffle A, Undef, M2
We only do this if the combined shuffle is legal for the target.
Example:
;;
define <4 x float> @test(<4 x float> %a, <4 x float> %b) {
%1 = shufflevector <4 x float> %a, <4 x float> undef, <4 x i32><i32 6, i32 0, i32 1, i32 7>
%2 = shufflevector <4 x float> %1, <4 x float> %b, <4 x i32><i32 1, i32 2, i32 4, i32 5>
ret <4 x i32> %2
}
;;
(using llc -mcpu=corei7 -march=x86-64)
Before, the x86 backend generated:
pshufd $120, %xmm0, %xmm0
shufps $-108, %xmm0, %xmm1
movaps %xmm1, %xmm0
Now the x86 backend generates:
movsd %xmm1, %xmm0
llvm-svn: 213069
The patchpoint instruction should have been inserted before the target
generated call instruction to be inside the ADJSTACKDOWN/ADJSTACKUP call
sequence window.
llvm-svn: 213034
Always update the value map with the result register (if there is one), for the
patchpoint instruction we created to replace the target-specific call
instruction.
llvm-svn: 213033
This patch fixes a crasher in method 'DAGCombiner::visitOR' due to an invalid
call to method 'isShuffleMaskLegal'. On x86, method 'isShuffleMaskLegal'
always expects a legal vector value type in input.
With this patch, we immediately check if the input OR dag node has a legal
vector type; we only try to fold a OR dag node into a single shufflevector
if we know that the resulting shuffle will have a legal type.
This is to avoid calling method 'isShuffleMaskLegal' on a potentially
illegal vector value type.
Added a new test-case to file 'CodeGen/X86/combine-or.ll' to verify that
DAGCombiner doesn't crash in the attempt to check/combine an OR between shuffles
with illegal types.
llvm-svn: 213020
This patch teaches the DAGCombiner how to fold a pair of shuffles
according to rules:
1. shuffle(shuffle A, B, M0), B, M1) -> shuffle(A, B, M2)
2. shuffle(shuffle A, B, M0), A, M1) -> shuffle(A, B, M3)
The new rules would only trigger if the resulting shuffle has legal type and
legal mask.
Added test 'combine-vec-shuffle-3.ll' to verify that DAGCombiner correctly
folds shuffles on x86 when the resulting mask is legal. Also added some negative
cases to verify that we avoid introducing illegal shuffles.
llvm-svn: 213001
Verify that DAGCombiner does not crash when trying to fold a pair of shuffles
according to rule (added at r212539):
(shuffle (shuffle A, Undef, M0), Undef, M1) -> (shuffle A, Undef, M2)
The DAGCombiner avoids folding shuffles if the resulting shuffle dag node
is not legal for the target. That means, the resulting shuffle must have
legal type and legal mask.
Before, the DAGCombiner only called method
'TargetLowering::isShuffleMaskLegal' to check if it was "safe" to fold according
to the above-mentioned rule. However, this caused a crash in the x86 backend
since method 'isShuffleMaskLegal' always expects to be called on a
legal vector type.
llvm-svn: 212915
This implements the target-independent lowering for the patchpoint
intrinsic. Targets have to implement the FastLowerCall
hook to support this intrinsic.
Related to <rdar://problem/17427052>
llvm-svn: 212849
The infrastructure mimics the call lowering we have already in place for
SelectionDAG, but with limitations. For example structure return demotion and
non-simple types are not supported (yet).
Currently every backend has its own implementation and duplicated code for call
lowering. There is also no specified interface that could be called from
target-independent code. The target-hook is opt-in and doesn't affect current
implementations.
llvm-svn: 212848
Create a separate helper function for target-independent intrinsic lowering. Also
add an target-hook that allows to directly call into a target-sepcific intrinsic
lowering method. Currently the implementation is opt-in and doesn't affect
existing target implementations.
llvm-svn: 212843
Move the code to a helper function to allow calls from TypeLegalizer.
No functionality change intended
Signed-off-by: Jan Vesely <jan.vesely@rutgers.edu>
Reviewed-by: Tom Stellard <tom@stellard.net>
Reviewed-by: Owen Anderson <resistor@mac.com>
llvm-svn: 212772
This patch teaches the DAGCombiner how to fold shuffles according to the
following new rules:
1. shuffle(shuffle(x, y), undef) -> x
2. shuffle(shuffle(x, y), undef) -> y
3. shuffle(shuffle(x, y), undef) -> shuffle(x, undef)
4. shuffle(shuffle(x, y), undef) -> shuffle(y, undef)
The backend avoids to combine shuffles according to rules 3. and 4. if
the resulting shuffle does not have a legal mask. This is to avoid introducing
illegal shuffles that are potentially expanded into a sub-optimal sequence of
target specific dag nodes during vector legalization.
Added test case combine-vec-shuffle-2.ll to verify that we correctly triggers
the new rules when combining shuffles.
llvm-svn: 212748
to the zero-extend-vector-inreg node introduced previously for the same
purpose: manage the type legalization of widened extend operations,
especially to support the experimental widening mode for x86.
I'm adding both because sign-extend is expanded in terms of any-extend
with shifts to propagate the sign bit. This removes the last
fundamental scalarization from vec_cast2.ll (a test case that hit many
really bad edge cases for widening legalization), although the trunc
tests in that file still appear scalarized because the the shuffle
legalization is scalarizing. Funny thing, I've been working on that.
Some initial experiments with this and SSE2 scenarios is showing
moderately good behavior already for sign extension. Still some work to
do on the shuffle combining on X86 before we're generating optimal
sequences, but avoiding scalarization is a huge step forward.
llvm-svn: 212714
Summary:
On MIPS32r6/MIPS64r6, floating point comparisons return 0 or -1 but integer
comparisons return 0 or 1.
Updated the various uses of getBooleanContents. Two simplifications had to be
disabled when float and int boolean contents differ:
- ScalarizeVecRes_VSELECT except when the kind of boolean contents is trivially
discoverable (i.e. when the condition of the VSELECT is a SETCC node).
- visitVSELECT (select C, 0, 1) -> (xor C, 1).
Come to think of it, this one could test for the common case of 'C'
being a SETCC too.
Preserved existing behaviour for all other targets and updated the affected
MIPS32r6/MIPS64r6 tests. This also fixes the pi benchmark where the 'low'
variable was counting in the wrong direction because it thought it could simply
add the result of the comparison.
Reviewers: hfinkel
Reviewed By: hfinkel
Subscribers: hfinkel, jholewinski, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D4389
llvm-svn: 212697
not widening the input type to the node sufficiently to let the ext take
place in a register.
This would in turn result in a mysterious bitcast assertion failure
downstream. First change here is to add back the helpful assert I had in
an earlier version of the code to catch this immediately.
Next change is to add support to the type legalization to detect when we
have widened the operand either too little or too much (for whatever
reason) and find a size-matched legal vector type to convert it to
first. This can also fail so we get a new fallback path, but that seems
OK.
With this, we no longer crash on vec_cast2.ll when using widening. I've
also added the CHECK lines for the zero-extend cases here. We still need
to support sign-extend and trunc (or something) to get plausible code
for the other two thirds of this test which is one of the regression
tests that showed the most scalarization when widening was
force-enabled. Slowly closing in on widening being a viable legalization
strategy without it resorting to scalarization at every turn. =]
llvm-svn: 212614
vector types to be legal and a ZERO_EXTEND node is encountered.
When we use widening to legalize vector types, extend nodes are a real
challenge. Either the input or output is likely to be legal, but in many
cases not both. As a consequence, we don't really have any way to
represent this situation and the prior code in the widening legalization
framework would just scalarize the extend operation completely.
This patch introduces a new DAG node to represent doing a zero extend of
a vector "in register". The core of the idea is to allow legal but
different vector types in the input and output. The output vector must
have fewer lanes but wider elements. The operation is defined to zero
extend the low elements of the input to the size of the output elements,
and drop all of the high elements which don't have a corresponding lane
in the output vector.
It also includes generic expansion of this node in terms of blending
a zero vector into the high elements of the vector and bitcasting
across. This in turn yields extremely nice code for x86 SSE2 when we use
the new widening legalization logic in conjunction with the new shuffle
lowering logic.
There is still more to do here. We need to support sign extension, any
extension, and potentially int-to-float conversions. My current plan is
to continue using similar synthetic nodes to model each of these
transitions with generic lowering code for each one.
However, with this patch LLVM already reaches performance parity with
GCC for the core C loops of the x264 code (assuming you disable the
hand-written assembly versions) when compiling for SSE2 and SSE3
architectures and enabling the new widening and lowering logic for
vectors.
Differential Revision: http://reviews.llvm.org/D4405
llvm-svn: 212610
tracks which elements of the build vector are in fact undef.
This should make actually inpsecting them (likely in my next patch)
reasonably pretty. Also makes the output parameter optional as it is
clear now that *most* users are happy with undefs in their splats.
llvm-svn: 212581
This patch teaches how to fold a shuffle according to rule:
shuffle (shuffle (x, undef, M0), undef, M1) -> shuffle(x, undef, M2)
We do this only if the resulting mask M2 is legal; this is to avoid introducing
illegal shuffles that are potentially expanded into a sub-optimal sequence
of target specific dag nodes.
This patch has the advantage of being target independent, since it works on ISD
nodes. Therefore, all targets (not only x86) can take advantage of this rule.
The idea behind this patch is that most shuffle pairs can be safely combined
before we run the legalizer on vector operations. This allows us to
combine/simplify dag nodes earlier in the process and not only immediately
before instruction selection stage.
That said. This patch is not meant to replace any existing target specific
combine rules; backends might still introduce new shuffles during legalization
stage. Also, this rule is very simple and avoids to aggressively optimize
shuffles.
llvm-svn: 212539
aggressively from the x86 shuffle lowering to the generic SDAG vector
shuffle formation code.
This code already tried to fold away shuffles of splats! It just had
lots of bugs and couldn't handle the case my new x86 shuffle lowering
needed.
First, it failed to correctly compute whether N2 was undef because it
pre-computed this, then did transformations which could *make* N2 undef,
then failed to ever re-consider the precomputed state.
Second, it didn't look through bitcasts at all, even in the safe cases
where they are just element-type bitcasts with no change to the number
of elements.
Third, it didn't handle all-zero bit casts nicely the way my code in the
x86 side of things did, which is essential to getting good zext-shuffle
lowerings.
But all of these are generic. I just ported the code down to this layer
and fixed the surrounding bugs. Tests exercising this in the x86 backend
still pass and some silly code in widen_cast-6.ll gets better. I updated
that test to be a bit more precise but it's still pretty unclear what
the value of the test is in this day and age.
llvm-svn: 212517
around the handling of UNDEF lanes in boolean vector content analysis.
The code before my changes here also failed to check for non-constant
splats in a buildvector. I have no idea how to trigger this, I just
spotted by inspection when trying to understand the code. It seems
extremely unlikely to be worth the trouble to teach the only caller of
this code (DAG combining setcc patterns) how to cleverly handle undef
lanes, so I've just commented more thoroughly that we're giving up
there.
llvm-svn: 212515
nodes about whether they are splats. This is factored out and improved
from r212324 which got reverted as it was far too aggressive. The new
API should help more conservatively handle buildvectors that are
a mixture of splatted and undef values.
No functionality change at this point. The hope is to slowly
re-introduce the undef-tolerant optimization of splats, but each time
being forced to make a concious decision about how to handle the undefs
in a way that doesn't lead to contradicting assumptions about the
collapsed value.
Hal has pointed out in discussions that this may not end up being the
desired API and instead it may be more convenient to get a mask of the
undef elements or something similar. I'm starting simple and will expand
the API as I adapt actual callers and see exactly what they need.
llvm-svn: 212514
lanes in vector splats.
The core problem here is that undef lanes can't *unilaterally* be
considered to contribute to splats. Their handling needs to be more
cautious. There is also a reported failure of the nightly testers
(thanks Tobias!) that may well stem from the same core issue. I'm going
to fix this theoretical issue, factor the APIs a bit better, and then
verify that I don't see anything bad with Tobias's reduction from the
test suite before recommitting.
Original commit message for r212324:
[x86] Generalize BuildVectorSDNode::getConstantSplatValue to work for
any constant, constant FP, or undef splat and to tolerate any undef
lanes in a splat, then replace all uses of isSplatVector in X86's
lowering with it.
This fixes issues where undef lanes in an otherwise splat vector would
prevent the splat logic from firing. It is a touch more awkward to use
this interface, but it is much more accurate. Suggestions for better
interface structuring welcome.
With this fix, the code generated with the widening legalization
strategy for widen_cast-4.ll is *dramatically* improved as the special
lowering strategies for a v16i8 SRA kick in even though the high lanes
are undef.
We also get a slightly different choice for broadcasting an aligned
memory location, and use vpshufd instead of vbroadcastss. This looks
like a minor win for pipelining and domain crossing, but a minor loss
for the number of micro-ops. I suspect its a wash, but folks can
easily tweak the lowering if they want.
llvm-svn: 212475
any constant, constant FP, or undef splat and to tolerate any undef
lanes in a splat, then replace all uses of isSplatVector in X86's
lowering with it.
This fixes issues where undef lanes in an otherwise splat vector would
prevent the splat logic from firing. It is a touch more awkward to use
this interface, but it is much more accurate. Suggestions for better
interface structuring welcome.
With this fix, the code generated with the widening legalization
strategy for widen_cast-4.ll is *dramatically* improved as the special
lowering strategies for a v16i8 SRA kick in even though the high lanes
are undef.
We also get a slightly different choice for broadcasting an aligned
memory location, and use vpshufd instead of vbroadcastss. This looks
like a minor win for pipelining and domain crossing, but a minor loss
for the number of micro-ops. I suspect its a wash, but folks can easily
tweak the lowering if they want.
llvm-svn: 212324
subtarget. This involved having the movt predicate take the current
function - since we care about size in instruction selection for
whether or not to use movw/movt take the function so we can check
the attributes. This required adding the current MachineFunction to
FastISel and propagating through.
llvm-svn: 212309
The PowerPC 128-bit long double data type (ppcf128 in LLVM) is in fact a
pair of two doubles, where one is considered the "high" or
more-significant part, and the other is considered the "low" or
less-significant part. When a ppcf128 value is stored in memory or a
register pair, the high part always comes first, i.e. at the lower
memory address or in the lower-numbered register, and the low part
always comes second. This is true both on big-endian and little-endian
PowerPC systems. (Similar to how with a complex number, the real part
always comes first and the imaginary part second, no matter the byte
order of the system.)
This was implemented incorrectly for little-endian systems in LLVM.
This commit fixes three related issues:
- When printing an immediate ppcf128 constant to assembler output
in emitGlobalConstantFP, emit the high part first on both big-
and little-endian systems.
- When lowering a ppcf128 type to a pair of f64 types in SelectionDAG
(which is used e.g. when generating code to load an argument into a
register pair), use correct low/high part ordering on little-endian
systems.
- In a related issue, because lowering ppcf128 into a pair of f64 must
operate differently from lowering an int128 into a pair of i64,
bitcasts between ppcf128 and int128 must not be optimized away by the
DAG combiner on little-endian systems, but must effect a word-swap.
Reviewed by Hal Finkel.
llvm-svn: 212274
This operation was classified as a binary operation in the widening
logic for some reason (clearly, untested). It is in fact a unary
operation. Add a RUN line to a test to exercise this for x86.
Note that again the vector widening strategy doesn't regress anything
and in one case removes a totally unecessary instruction that we
couldn't avoid when promoting the element type.
llvm-svn: 212257
switches) into a switch, and sink them into a dispatch function that can
return the result rather than awkward variable setting with breaks.
llvm-svn: 212166
The argument list vector is never used after it has been passed to the
CallLoweringInfo and moving it to the CallLoweringInfo is cleaner and
pretty much as cheap as keeping a pointer to it.
llvm-svn: 212135
string_ostream is a safe and efficient string builder that combines opaque
stack storage with a built-in ostream interface.
small_string_ostream<bytes> additionally permits an explicit stack storage size
other than the default 128 bytes to be provided. Beyond that, storage is
transferred to the heap.
This convenient class can be used in most places an
std::string+raw_string_ostream pair or SmallString<>+raw_svector_ostream pair
would previously have been used, in order to guarantee consistent access
without byte truncation.
The patch also converts much of LLVM to use the new facility. These changes
include several probable bug fixes for truncated output, a programming error
that's no longer possible with the new interface.
llvm-svn: 211749
We handle this by spilling the whole thing to the stack and doing the
insertion as a store.
PR19492. This happens in real code because the vectorizer creates v2i128 when AVX is enabled.
llvm-svn: 211435
Summary:
With this patch, range metadata can be added to call/invoke including
IntrinsicInst. Previously, it could only be added to load.
Rename computeKnownBitsLoad to computeKnownBitsFromRangeMetadata because
range metadata is not only used by load.
Update the language reference to reflect this change.
Test Plan:
Add several tests in range-2.ll to confirm the verifier is happy with
having range metadata on call/invoke.
Add two tests in AddOverFlow.ll to confirm annotating range metadata to
call/invoke can benefit InstCombine.
Reviewers: meheff, nlewycky, reames, hfinkel, eliben
Reviewed By: eliben
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D4187
llvm-svn: 211281
It looks like there are two versions of LowerCallTo here: the
SelectionDAGBuilder one is designed to operate on LLVM IR, and the
TargetLowering one in the case where everything is at DAG level.
Previously, only the SelectionDAGBuilder variant could handle demoting
an impossible return to sret semantics (before delegating to the
TargetLowering version), but this functionality is also useful for
certain libcalls (e.g. 128-bit operations on 32-bit x86). So this
commit moves the sret handling down a level.
rdar://problem/17242889
llvm-svn: 211155
It's valid to use FP_TO_SINT when asking for a smaller type (e.g. all
"unsigned int16" values fit into a "signed int32"), but the reverse
isn't true.
Unfortunately, I'm not actually aware of any architecture with
asymmetric FP_TO_SINT and FP_TO_UINT handling and the logic happens to
work in the symmetric case, so I can't actually write a test for this.
llvm-svn: 210986
This commit adds a weak variant of the cmpxchg operation, as described
in C++11. A cmpxchg instruction with this modifier is permitted to
fail to store, even if the comparison indicated it should.
As a result, cmpxchg instructions must return a flag indicating
success in addition to their original iN value loaded. Thus, for
uniformity *all* cmpxchg instructions now return "{ iN, i1 }". The
second flag is 1 when the store succeeded.
At the DAG level, a new ATOMIC_CMP_SWAP_WITH_SUCCESS node has been
added as the natural representation for the new cmpxchg instructions.
It is a strong cmpxchg.
By default this gets Expanded to the existing ATOMIC_CMP_SWAP during
Legalization, so existing backends should see no change in behaviour.
If they wish to deal with the enhanced node instead, they can call
setOperationAction on it. Beware: as a node with 2 results, it cannot
be selected from TableGen.
Currently, no use is made of the extra information provided in this
patch. Test updates are almost entirely adapting the input IR to the
new scheme.
Summary for out of tree users:
------------------------------
+ Legacy Bitcode files are upgraded during read.
+ Legacy assembly IR files will be invalid.
+ Front-ends must adapt to different type for "cmpxchg".
+ Backends should be unaffected by default.
llvm-svn: 210903
This commit adds MachineMemOperands to load and store instructions. This allows
the peephole optimizer to fold load instructions. Unfortunatelly the peephole
optimizer currently doesn't run at -O0.
llvm-svn: 210858
The SelectionDAG bad a special case for ISD::SELECT_CC, where it would
allow targets to specify:
setOperationAction(ISD::SELECT_CC, MVT::Other, Expand);
to indicate that they wanted to expand ISD::SELECT_CC for all types.
This wasn't applied correctly everywhere, and it makes writing new
DAG patterns with ISD::SELECT_CC difficult.
llvm-svn: 210541
This patch adds new target specific combine rules to identify horizontal
add/sub idioms from BUILD_VECTOR dag nodes.
This patch also teaches the DAGCombiner how to canonicalize sequences of
insert_vector_elt dag nodes according to the following rule:
(insert_vector_elt (insert_vector_elt A, I0), I1) ->
(insert_vecto_elt (insert_vector_elt A, I1), I0)
This new canonicalization rule only triggers if the inner insert_vector
dag node has exactly one use; also, both indices must be known constants,
and I1 < I0.
This last rule made it possible to write a simpler algorithm to identify
horizontal add/sub patterns because now we don't have to worry about the
ordering of insert_vector_elt dag nodes.
llvm-svn: 210477
This patch modifies SelectionDAGBuilder to construct SDNodes with associated
NoSignedWrap, NoUnsignedWrap and Exact flags coming from IR BinaryOperator
instructions.
Added a new SDNode type called 'BinaryWithFlagsSDNode' to allow accessing
nsw/nuw/exact flags during codegen.
Patch by Marcello Maggioni.
llvm-svn: 210467
DAG cycle detection is only enabled with ENABLE_EXPENSIVE_CHECKS. However we
can run it just before we would crash in order to provide more informative
diagnostics.
Now in addition to the "Overran sorted position" message we also get the Node
printed if a cycle was detected.
Tested by building several configs: Debug+Assert, Debug+Assert+Check (this is
ENABLE_EXPENSIVE_CHECKS), Release+Assert and Release. Also tried that the
AssignTopologicalOrder assert produces the expected results.
llvm-svn: 209977
Pass the DAG down to checkForCycles from all callers where we have it. This
allows target-specific nodes to be printed properly.
Also print some missing newlines.
llvm-svn: 209976
This patch teaches the backend how to simplify/canonicalize dag node
sequences normally introduced by the backend when promoting certain dag nodes
with illegal vector type.
This patch adds two new combine rules:
1) fold (shuffle (bitcast (BINOP A, B)), Undef, <Mask>) ->
(shuffle (BINOP (bitcast A), (bitcast B)), Undef, <Mask>)
2) fold (BINOP (shuffle (A, Undef, <Mask>)), (shuffle (B, Undef, <Mask>))) ->
(shuffle (BINOP A, B), Undef, <Mask>).
Both rules are only triggered on the type-legalized DAG.
In particular, rule 1. is a target specific combine rule that attempts
to sink a bitconvert into the operands of a binary operation.
Rule 2. is a target independet rule that attempts to move a shuffle
immediately after a binary operation.
llvm-svn: 209930
Summary:
If both vector args to vselect are concat_vectors and the condition is
constant and picks half a vector from each argument, convert the vselect
into a concat_vectors.
Added a test.
The ConvertSelectToConcatVector is assuming it doesn't get vselects with
arguments of, for example, <undef, undef, true, true>. Those get taken
care of in the checks above its call.
Reviewers: nadav, delena, grosbach, hfinkel
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D3916
llvm-svn: 209929
Unordered is strictly weaker than monotonic, so if the latter doesn't have any
barriers then the former certainly shouldn't.
rdar://problem/16548260
llvm-svn: 209901
An address only use of an extract element of a load can be simplified to a
load. Without this the result of the extract element is spilled to the
stack so that an address is available.
llvm-svn: 209788
No test because no in-tree targets change the bitwidth of the
setcc type depending on the bitwidth of the compared type.
Patch by Ke Bai
llvm-svn: 209771
This matches gcc's behavior. It also seems natural given that aliases
contain other properties that govern how it is accessed (linkage,
visibility, dll storage).
Clang still has to be updated to expose this feature to C.
llvm-svn: 209759
This reverts r208640 (I've just XFAILed the test) because it broke ppc64/Linux
self-hosting. Because nearly every regression test triggers a segfault, I hope
this will be easy to fix.
llvm-svn: 209747
Cortex-M4 only has single-precision floating point support, so any LLVM
"double" type will have been split into 2 i32s by now. Fortunately, the
consecutive-register framework turns out to be precisely what's needed to
reconstruct the double and follow AAPCS-VFP correctly!
rdar://problem/17012966
llvm-svn: 209650
- On ARM/ARM64 we get a vrev because the shuffle matching code is really smart. We still unroll anything that's not v4i32 though.
- On X86 we get a pshufb with SSSE3. Required more cleverness in isShuffleMaskLegal.
- On PPC we get a vperm for v8i16 and v4i32. v2i64 is unrolled.
llvm-svn: 209123
This is mostly a mechanical change changing all the call sites to the newer
chained-function construction pattern. This removes the horrible 15-parameter
constructor for the CallLoweringInfo in favour of setting properties of the call
via chained functions. No functional change beyond the removal of the old
constructors are intended.
llvm-svn: 209082
This is a preliminary step to help ease the construction of CallLoweringInfo.
Changing the construction to a chained function pattern requires that the
parameter be nullable. However, rather than copying the vector, save a pointer
rather than the reference to permit a late binding of the arguments.
llvm-svn: 209080
The problem occurs when a non-i1 setcc is inverted. For example 'i8 = setcc' will get 'xor 0xff' to invert this. This is clearly wrong when the boolean contents are ZeroOrOne.
This patch introduces getLogicalNOT and updates SetCC legalisation to use it.
Reviewed by Hal Finkel.
llvm-svn: 208641
Right now the load may not get DCE'd because of the side-effect of updating
the base pointer.
This can happen if we lower a read-modify-write of an illegal larger type
(e.g. i48) such that the modification only affects one of the subparts (the
lower i32 part but not the higher i16 part). See the testcase.
In order to spot the dead load we need to revisit it when SimplifyDemandedBits
decided that the value of the load is masked off. This is the
CommitTargetLoweringOpt piece.
I checked compile time with ARM64 by sending SPEC bitcode files through llc.
No measurable change.
Fixes <rdar://problem/16031651>
llvm-svn: 208640
We must validate the value type in TLI::getRegisterByName, because if we
don't and the wrong type was used with the IR intrinsic, then we'll assert
(because we won't be able to find a valid register class with which to
construct the requested copy operation). For PPC64, additionally, the type
information is necessary to decide between the 64-bit register and the 32-bit
subregister.
No functionality change.
llvm-svn: 208508
When using the ARM AAPCS, HFAs (Homogeneous Floating-point Aggregates) must
be passed in a block of consecutive floating-point registers, or on the stack.
This means that unused floating-point registers cannot be back-filled with
part of an HFA, however this can currently happen. This patch, along with the
corresponding clang patch (http://reviews.llvm.org/D3083) prevents this.
llvm-svn: 208413
When reducing the bitwidth of a comparison against a constant, the
original setcc's result type was used, which was incorrect.
No test since I don't think any other in tree targets change the
bitwidth of the setcc type depending on the bitwidth of the compared
type.
llvm-svn: 208236
This patch implements the infrastructure to use named register constructs in
programs that need access to specific registers (bare metal, kernels, etc).
So far, only the stack pointer is supported as a technology preview, but as it
is, the intrinsic can already support all non-allocatable registers from any
architecture.
llvm-svn: 208104
For pattern like ((x >> C1) & Mask) << C2, DAG combiner may convert it
into (x >> (C1-C2)) & (Mask << C2), which makes pattern matching of ubfx
more difficult.
For example:
Given
%shr = lshr i64 %x, 4
%and = and i64 %shr, 15
%arrayidx = getelementptr inbounds [8 x [64 x i64]]* @arr, i64 0, %i64 2, i64 %and
%0 = load i64* %arrayidx
With current shift folding, it takes 3 instrs to compute base address:
lsr x8, x0, #1
and x8, x8, #0x78
add x8, x9, x8
If using ubfx, it only needs 2 instrs:
ubfx x8, x0, #4, #4
add x8, x9, x8, lsl #3
This fixes bug 19589
llvm-svn: 207702
Otherwise the legalizer would just scalarize everything. Support for
mulhi in the targets isn't that great yet so on most targets we get
exactly the same scalarized output. Add a test for x86 vector udiv.
I had to disable the mulhi nodes on ARM because there aren't any patterns
for it. As far as I know ARM has instructions for getting the high part of
a multiply so this should be fixed.
llvm-svn: 207315
The included test case would return the incorrect results, because the expansion
of an shift with a constant shift amount of 0 would generate undefined behavior.
This is because ExpandShiftByConstant assumes that all shifts by constants with
a value of 0 have already been optimized away. This doesn't happen for opaque
constants and usually this isn't a problem, because opaque constants won't take
this code path - they are not supposed to. In the case that the opaque constant
has to be expanded by the legalizer, the legalizer would drop the opaque flag.
In this case we hit the limitations of ExpandShiftByConstant and create incorrect
code.
This commit fixes the legalizer by not dropping the opaque flag when expanding
opaque constants and adding an assertion to ExpandShiftByConstant to catch this
not supported case in the future.
This fixes <rdar://problem/16718472>
llvm-svn: 207304
buildbot - do not insert debug intrinsics before phi nodes.
Debug info for optimized code: Support variables that are on the stack and
described by DBG_VALUEs during their lifetime.
Previously, when a variable was at a FrameIndex for any part of its
lifetime, this would shadow all other DBG_VALUEs and only a single
fbreg location would be emitted, which in fact is only valid for a small
range and not the entire lexical scope of the variable. The included
dbg-value-const-byref testcase demonstrates this.
This patch fixes this by
Local
- emitting dbg.value intrinsics for allocas that are passed by reference
- dropping all dbg.declares (they are now fully lowered to dbg.values)
SelectionDAG
- renamed constructors for SDDbgValue for better readability.
- fix UserValue::match() to handle indirect values correctly
- not inserting an MMI table entries for dbg.values that describe allocas.
- lowering dbg.values that describe allocas into *indirect* DBG_VALUEs.
CodeGenPrepare
- leaving dbg.values for an alloca were they are (see comment)
Other
- regenerated/updated instcombine.ll testcase and included source
rdar://problem/16679879
http://reviews.llvm.org/D3374
llvm-svn: 207269
AllocaInst that was missing in one location.
Debug info for optimized code: Support variables that are on the stack and
described by DBG_VALUEs during their lifetime.
Previously, when a variable was at a FrameIndex for any part of its
lifetime, this would shadow all other DBG_VALUEs and only a single
fbreg location would be emitted, which in fact is only valid for a small
range and not the entire lexical scope of the variable. The included
dbg-value-const-byref testcase demonstrates this.
This patch fixes this by
Local
- emitting dbg.value intrinsics for allocas that are passed by reference
- dropping all dbg.declares (they are now fully lowered to dbg.values)
SelectionDAG
- renamed constructors for SDDbgValue for better readability.
- fix UserValue::match() to handle indirect values correctly
- not inserting an MMI table entries for dbg.values that describe allocas.
- lowering dbg.values that describe allocas into *indirect* DBG_VALUEs.
CodeGenPrepare
- leaving dbg.values for an alloca were they are (see comment)
Other
- regenerated/updated instcombine.ll testcase and included source
rdar://problem/16679879
http://reviews.llvm.org/D3374
llvm-svn: 207235
AllocaInst that was missing in one location.
Debug info for optimized code: Support variables that are on the stack and
described by DBG_VALUEs during their lifetime.
Previously, when a variable was at a FrameIndex for any part of its
lifetime, this would shadow all other DBG_VALUEs and only a single
fbreg location would be emitted, which in fact is only valid for a small
range and not the entire lexical scope of the variable. The included
dbg-value-const-byref testcase demonstrates this.
This patch fixes this by
Local
- emitting dbg.value intrinsics for allocas that are passed by reference
- dropping all dbg.declares (they are now fully lowered to dbg.values)
SelectionDAG
- renamed constructors for SDDbgValue for better readability.
- fix UserValue::match() to handle indirect values correctly
- not inserting an MMI table entries for dbg.values that describe allocas.
- lowering dbg.values that describe allocas into *indirect* DBG_VALUEs.
CodeGenPrepare
- leaving dbg.values for an alloca were they are (see comment)
Other
- regenerated/updated instcombine.ll testcase and included source
rdar://problem/16679879
http://reviews.llvm.org/D3374
llvm-svn: 207165
described by DBG_VALUEs during their lifetime.
Previously, when a variable was at a FrameIndex for any part of its
lifetime, this would shadow all other DBG_VALUEs and only a single
fbreg location would be emitted, which in fact is only valid for a small
range and not the entire lexical scope of the variable. The included
dbg-value-const-byref testcase demonstrates this.
This patch fixes this by
Local
- emitting dbg.value intrinsics for allocas that are passed by reference
- dropping all dbg.declares (they are now fully lowered to dbg.values)
SelectionDAG
- renamed constructors for SDDbgValue for better readability.
- fix UserValue::match() to handle indirect values correctly
- not inserting an MMI table entries for dbg.values that describe allocas.
- lowering dbg.values that describe allocas into *indirect* DBG_VALUEs.
CodeGenPrepare
- leaving dbg.values for an alloca were they are (see comment)
Other
- regenerated/updated instcombine-intrinsics testcase and included source
rdar://problem/16679879
http://reviews.llvm.org/D3374
llvm-svn: 207130
define below all header includes in the lib/CodeGen/... tree. While the
current modules implementation doesn't check for this kind of ODR
violation yet, it is likely to grow support for it in the future. It
also removes one layer of macro pollution across all the included
headers.
Other sub-trees will follow.
llvm-svn: 206837
behavior based on other files defining DEBUG_TYPE, which means it cannot
define DEBUG_TYPE at all. This is actually better IMO as it forces folks
to define relevant DEBUG_TYPEs for their files. However, it requires all
files that currently use DEBUG(...) to define a DEBUG_TYPE if they don't
already. I've updated all such files in LLVM and will do the same for
other upstream projects.
This still leaves one important change in how LLVM uses the DEBUG_TYPE
macro going forward: we need to only define the macro *after* header
files have been #include-ed. Previously, this wasn't possible because
Debug.h required the macro to be pre-defined. This commit removes that.
By defining DEBUG_TYPE after the includes two things are fixed:
- Header files that need to provide a DEBUG_TYPE for some inline code
can do so by defining the macro before their inline code and undef-ing
it afterward so the macro does not escape.
- We no longer have rampant ODR violations due to including headers with
different DEBUG_TYPE definitions. This may be mostly an academic
violation today, but with modules these types of violations are easy
to check for and potentially very relevant.
Where necessary to suppor headers with DEBUG_TYPE, I have moved the
definitions below the includes in this commit. I plan to move the rest
of the DEBUG_TYPE macros in LLVM in subsequent commits; this one is big
enough.
The comments in Debug.h, which were hilariously out of date already,
have been updated to reflect the recommended practice going forward.
llvm-svn: 206822
Win64 stack unwinder gets confused when execution flow "falls through" after
a call to 'noreturn' function. This fixes the "missing epilogue" problem by
emitting a trap instruction for IR 'unreachable' on x86_x64-pc-windows.
A secondary use for it would be for anyone wanting to make double-sure that
'noreturn' functions, indeed, do not return.
llvm-svn: 206684
This particular DAG combine is designed to kick in when both ConstantFPs will
end up being loaded via a litpool, however those nodes have a semi-legal
status, dictated by isFPImmLegal so in some cases there wouldn't have been a
litpool in the first place. Don't try to be clever in those circumstances.
Picked up while merging some AArch64 tests.
llvm-svn: 206365
handles Intrinsic::trap if TargetOptions::TrapFuncName is set.
This fixes a bug in which the trap function was not taken into consideration
when a program was compiled without optimization (at -O0).
<rdar://problem/16291933>
llvm-svn: 206323
ARM64 suffered multiple -verify-machineinstr failures (principally over the
xsp/xzr issue) because FastISel was completely ignoring which subset of the
general-purpose registers each instruction required.
More fixes are coming in ARM64 specific FastISel, but this should cover the
generic problems.
llvm-svn: 206283
We had disabled use of TBAA during CodeGen (even when otherwise using AA)
because the ptrtoint/inttoptr used by CGP for address sinking caused BasicAA to
miss basic type punning that it should catch (and, thus, we'd fail to override
TBAA when we should).
However, when AA is in use during CodeGen, CGP now uses normal GEPs and
bitcasts, instead of ptrtoint/inttoptr, when doing address sinking. As a
result, BasicAA should be able to make us do the right thing in the face of
type-punning, and it seems safe to enable use of TBAA again. self-hosting seems
fine on PPC64/Linux on the P7, with TBAA enabled and -misched=shuffle.
Note: We still don't update TBAA when merging stack slots, although because
BasicAA should now catch all such cases, this is no longer a blocking issue.
Nevertheless, I plan to commit code to deal with this properly in the near
future.
llvm-svn: 206093
The TargetLowering::expandMUL() helper contains lowering code extracted
from the DAGTypeLegalizer and allows the SelectionDAGLegalizer to expand more
ISD::MUL patterns without having to use a library call.
llvm-svn: 206037
This code has been moved to a new function in the TargetLowering
class called expandMUL(). The purpose of this is to be able
to share lowering code between the SelectionDAGLegalize and
DAGTypeLegalizer classes.
No functionality changed intended.
llvm-svn: 206036
FoldConstantArithmetic() only knows how to deal with a few target independent
ISD opcodes. Bail early if it sees a target-specific ISD node. These node do
funny things with operand types which may break the assumptions of the code
that follows, and there's no actual folding that can be done anyway. For example,
non-constant 256 bit vector shifts on X86 have a shift-amount operand that's a
128-bit v4i32 vector regardless of what the first operand type is and that breaks
the assumption that the operand types must match.
rdar://16530923
llvm-svn: 205937
sign/zero/any extensions. However a few places were not checking properly the
property of the load and were turning an indexed load into a regular extended
load. Therefore the indexed value was lost during the process and this was
triggering an assertion.
<rdar://problem/16389332>
llvm-svn: 205923
Fixes PR16365 - Extremely slow compilation in -O1 and -O2.
The SD scheduler has a quadratic implementation of load clustering
which absolutely blows up compile time for large blocks with constant
pool loads. The MI scheduler has a better implementation of load
clustering. However, we have not done the work yet to completely
eliminate the SD scheduler. Some benchmarks still seem to benefit from
early load clustering, although maybe by chance.
As an intermediate term fix, I just put a nice limit on the number of
DAG users to search before finding a match. With this limit there are no
binary differences in the LLVM test suite, and the PR16365 test case
does not suffer any compile time impact from this routine.
llvm-svn: 205738
When LLVM sees something like (v1iN (vselect v1i1, v1iN, v1iN)) it can
decide that the result is OK (v1i64 is legal on AArch64, for example)
but it still need scalarising because of that v1i1. There was no code
to do this though.
AArch64 and ARM64 have DAG combines to produce efficient code and
prevent that occuring in *most* such situations, but there are edge
cases that they miss. This adds a legalization to cope with that.
llvm-svn: 205626
There were several overlapping problems here, and this solution is
closely inspired by the one adopted in AArch64 in r201381.
Firstly, scalarisation of v1i1 setcc operations simply fails if the
input types are legal. This is fixed in LegalizeVectorTypes.cpp this
time, and allows AArch64 code to be simplified slightly.
Second, vselect with such a setcc feeding into it ends up in
ScalarizeVectorOperand, where it's not handled. I experimented with an
implementation, but found that whatever DAG came out was rather
horrific. I think Hao's DAG combine approach is a good one for
quality, though there are edge cases it won't catch (to be fixed
separately).
Should fix PR19335.
llvm-svn: 205625
llc doesn't generate nodes for unconditional fall-through branches for targets
without FastISel implementation (X86 has it, but can be disabled by
"-fast-isel=false") in SelectionDAGBuilder::visitBr().
So for line 4 in the following testcase
1: void foo(int i){
2: switch(i){
3: default:
4: break;
5: }
6: return;
7: }
there is no corresponding line in .debug_line section, and a debugger
cannot set a breakpoint at line 4.
Fix this by always emitting a branch when we're not optimizing and add a
testcase to ensure that there's code on every line we'd want to break.
Patch by Daniil Fukalov.
llvm-svn: 205529
This adds the ability to expand large (meaning with more than two unique
defined values) BUILD_VECTOR nodes in terms of SCALAR_TO_VECTOR and (legal)
vector shuffles. There is now no limit of the size we are capable of expanding
this way, although we don't currently do this for vectors with many unique
values because of the default implementation of TLI's
shouldExpandBuildVectorWithShuffles function.
There is currently no functional change to any existing targets because the new
capabilities are not used unless some target overrides the TLI
shouldExpandBuildVectorWithShuffles function. As a result, I've not included a
test case for the new functionality in this commit, but regression tests will
(at least) be added soon when I commit support for the PPC QPX vector
instruction set.
The benefit of committing this now is that it makes the
shouldExpandBuildVectorWithShuffles callback, which had to be added for other
reasons regardless, fully functional. I suspect that other targets will
also benefit from tuning the heuristic.
llvm-svn: 205243
There are two general methods for expanding a BUILD_VECTOR node:
1. Use SCALAR_TO_VECTOR on the defined scalar values and then shuffle
them together.
2. Build the vector on the stack and then load it.
Currently, we use a fixed heuristic: If there are only one or two unique
defined values, then we attempt an expansion in terms of SCALAR_TO_VECTOR and
vector shuffles (provided that the required shuffle mask is legal). Otherwise,
always expand via the stack. Even when SCALAR_TO_VECTOR is not legal, this
can still be a good idea depending on what tricks the target can play when
lowering the resulting shuffle. If the target can't do anything special,
however, and if SCALAR_TO_VECTOR is expanded via the stack, this heuristic
leads to sub-optimal code (two stack loads instead of one).
Because only the target knows whether the SCALAR_TO_VECTORs and shuffles for a
build vector of a particular type are likely to be optimial, this adds a new
TLI function: shouldExpandBuildVectorWithShuffles which takes the vector type
and the count of unique defined values. If this function returns true, then
method (1) will be used, subject to the constraint that all of the necessary
shuffles are legal (as determined by isShuffleMaskLegal). If this function
returns false, then method (2) is always used.
This commit does not enhance the current code to support expanding a
build_vector with more than two unique values using shuffles, but I'll commit
an implementation of the more-general case shortly.
llvm-svn: 205230
When the loop vectorizer vectorizes code that uses the loop induction variable,
we often end up with IR like this:
%b1 = insertelement <2 x i32> undef, i32 %v, i32 0
%b2 = shufflevector <2 x i32> %b1, <2 x i32> undef, <2 x i32> zeroinitializer
%i = add <2 x i32> %b2, <i32 2, i32 3>
If the add in this example is not legal (as is the case on PPC with VSX), it
will be scalarized, and we'll end up with a number of extract_vector_elt nodes
with the vector shuffle as the input operand, and that vector shuffle is fed by
one or more build_vector nodes. By the time that vector operations are
expanded, visitEXTRACT_VECTOR_ELT will not create new extract_vector_elt by
looking through the vector shuffle (to make sure that no illegal operations are
created), and so the extract_vector_elt -> vector shuffle -> build_vector is
never simplified to an operand of the build vector.
By looking at build_vectors through a shuffle we fix this particular situation,
preventing a vector from being built, only to be deconstructed again (for the
scalarized add) -- an expensive proposition when this all needs to be done via
the stack. We probably want a more comprehensive fix here where we look back
recursively through any shuffles to any build_vectors or scalar_to_vectors,
etc. but that can come later.
llvm-svn: 205179
When expanding EXTRACT_VECTOR_ELT and EXTRACT_SUBVECTOR using
SelectionDAGLegalize::ExpandExtractFromVectorThroughStack, we store the entire
vector and then load the piece we want. This is fine in isolation, but
generating a new store (and corresponding stack slot) for each extraction ends
up producing code of poor quality. When we scalarize a vector operation (using
SelectionDAG::UnrollVectorOp for example) we generate one EXTRACT_VECTOR_ELT
for each element in the vector. This used to generate one stored copy of the
vector for each element in the vector. Now we search the uses of the vector for
a suitable store before generating a new one, which results in much more
efficient scalarization code.
llvm-svn: 205153
This adds back r204781.
Original message:
Aliases are just another name for a position in a file. As such, the
regular symbol resolutions are not applied. For example, given
define void @my_func() {
ret void
}
@my_alias = alias weak void ()* @my_func
@my_alias2 = alias void ()* @my_alias
We produce without this patch:
.weak my_alias
my_alias = my_func
.globl my_alias2
my_alias2 = my_alias
That is, in the resulting ELF file my_alias, my_func and my_alias are
just 3 names pointing to offset 0 of .text. That is *not* the
semantics of IR linking. For example, linking in a
@my_alias = alias void ()* @other_func
would require the strong my_alias to override the weak one and
my_alias2 would end up pointing to other_func.
There is no way to represent that with aliases being just another
name, so the best solution seems to be to just disallow it, converting
a miscompile into an error.
llvm-svn: 204934
Implementing the LLVM part of the call to __builtin___clear_cache
which translates into an intrinsic @llvm.clear_cache and is lowered
by each target, either to a call to __clear_cache or nothing at all
incase the caches are unified.
Updating LangRef and adding some tests for the implemented architectures.
Other archs will have to implement the method in case this builtin
has to be compiled for it, since the default behaviour is to bail
unimplemented.
A Clang patch is required for the builtin to be lowered into the
llvm intrinsic. This will be done next.
llvm-svn: 204802
This reverts commit r204781.
I will follow up to with msan folks to see what is what they
were trying to do with aliases to weak aliases.
llvm-svn: 204784
Aliases are just another name for a position in a file. As such, the
regular symbol resolutions are not applied. For example, given
define void @my_func() {
ret void
}
@my_alias = alias weak void ()* @my_func
@my_alias2 = alias void ()* @my_alias
We produce without this patch:
.weak my_alias
my_alias = my_func
.globl my_alias2
my_alias2 = my_alias
That is, in the resulting ELF file my_alias, my_func and my_alias are
just 3 names pointing to offset 0 of .text. That is *not* the
semantics of IR linking. For example, linking in a
@my_alias = alias void ()* @other_func
would require the strong my_alias to override the weak one and
my_alias2 would end up pointing to other_func.
There is no way to represent that with aliases being just another
name, so the best solution seems to be to just disallow it, converting
a miscompile into an error.
llvm-svn: 204781
Usually opaque constants shouldn't be folded, unless they are simple unary
operations that don't create new constants. Although this shouldn't drop the
opaque constant flag. This commit fixes this.
Related to <rdar://problem/14774662>
llvm-svn: 204737
If GT/UGT or LT/ULT were set to expand, a comparison
with a constant would replace it with the illegal
cond code.
There are several more places later in this function that
will have the same basic problem.
Theoretically R600 should hit this problem for a test,
but for some reason it doesn't.
llvm-svn: 204727
This patch renames method 'isConstantSplat' as 'getConstantSplatValue'
(mainly for consistency reasons), and rewrites its logic to ensure
that we always perform a legal 'cast<ConstantSDNode>'.
Added test shift-combine-crash.ll to verify that DAGCombiner no longer crashes with an assertion failure in the attempt to simplify a vector shift by a vector of all undef counts.
llvm-svn: 204536
Summary:
SLP Vectorization of intrinsics (r203707) has exposed cases where the
expansion of vector bswap is failing (PR19151).
Reviewers: hfinkel
CC: chandlerc
Differential Revision: http://llvm-reviews.chandlerc.com/D3104
llvm-svn: 204163
Rather than LegalizeAction::Expand, this needs LegalizeAction::Promote to get
promoted to fp_to_sint v8f32->v8i32. This is a legal operation on AVX.
For that to work properly, we also need to teach the legalizer about the
specific promotion required here. The default vector promotion uses
bitcasting to a vector type of the same total size. We want to promote the
vector element type, effectively widening the operation and then truncating
the result. This is analogous to the current logic of how int_to_fp is
promoted.
The change also factors out some code from the int_to_fp promotion code to
ValueType::widenIntegerVectorElementType. This is now shared between
int_to_fp and fp_to_int.
There is no longer need for the custom lowering of fp_to_sint f32->v8i16 in
X86. It can now go through the new target-independent fp_to_*int promotion
logic.
I also checked that no other target uses Promote for these ops yet, so there
shouldn't be any unexpected change in behavior.
Fixes <rdar://problem/16202247>
llvm-svn: 204058
operator* on the by-operand iterators to return a MachineOperand& rather than
a MachineInstr&. At this point they almost behave like normal iterators!
Again, this requires making some existing loops more verbose, but should pave
the way for the big range-based for-loop cleanups in the future.
llvm-svn: 203865
for use with C++11 range-based for-loops.
The gist of phase 1 is to remove the skipInstruction() and skipBundle()
methods from these iterators, instead splitting each iterator into a version
that walks operands, a version that walks instructions, and a version that
walks bundles. This has the result of making some "clever" loops in lib/CodeGen
more verbose, but also makes their iterator invalidation characteristics much
more obvious to the casual reader. (Making them concise again in the future is a
good motivating case for a pre-incrementing range adapter!)
Phase 2 of this undertaking with consist of removing the getOperand() method,
and changing operator*() of the operand-walker to return a MachineOperand&. At
that point, it should be possible to add range views for them that work as one
might expect.
llvm-svn: 203757
The syntax for "cmpxchg" should now look something like:
cmpxchg i32* %addr, i32 42, i32 3 acquire monotonic
where the second ordering argument gives the required semantics in the case
that no exchange takes place. It should be no stronger than the first ordering
constraint and cannot be either "release" or "acq_rel" (since no store will
have taken place).
rdar://problem/15996804
llvm-svn: 203559
This requires a number of steps.
1) Move value_use_iterator into the Value class as an implementation
detail
2) Change it to actually be a *Use* iterator rather than a *User*
iterator.
3) Add an adaptor which is a User iterator that always looks through the
Use to the User.
4) Wrap these in Value::use_iterator and Value::user_iterator typedefs.
5) Add the range adaptors as Value::uses() and Value::users().
6) Update *all* of the callers to correctly distinguish between whether
they wanted a use_iterator (and to explicitly dig out the User when
needed), or a user_iterator which makes the Use itself totally
opaque.
Because #6 requires churning essentially everything that walked the
Use-Def chains, I went ahead and added all of the range adaptors and
switched them to range-based loops where appropriate. Also because the
renaming requires at least churning every line of code, it didn't make
any sense to split these up into multiple commits -- all of which would
touch all of the same lies of code.
The result is still not quite optimal. The Value::use_iterator is a nice
regular iterator, but Value::user_iterator is an iterator over User*s
rather than over the User objects themselves. As a consequence, it fits
a bit awkwardly into the range-based world and it has the weird
extra-dereferencing 'operator->' that so many of our iterators have.
I think this could be fixed by providing something which transforms
a range of T&s into a range of T*s, but that *can* be separated into
another patch, and it isn't yet 100% clear whether this is the right
move.
However, this change gets us most of the benefit and cleans up
a substantial amount of code around Use and User. =]
llvm-svn: 203364
This is already done for shifts. Allow it for rotations as well. E.g.:
(rotl:i32 x, (trunc (and y, 31))) -> (rotl:i32 x, (and (trunc y), 31))
Use the newly factored-out distributeTruncateThroughAnd.
With this patch and some X86.td tweaks we should be able to remove redundant
masking of the rotation amount like in the example above. HW implicitly
performs this masking.
The testcase will be added as part of the X86 patch.
llvm-svn: 203316
This is the new idiom:
x<<(y&31) | x>>((0-y)&31)
which is recognized as:
x ROTL (y&31)
The change refines matchRotateSub. In
Neg & (OpSize - 1) == (OpSize - Pos) & (OpSize - 1), if Pos is
Pos' & (OpSize - 1) we can just use Pos' instead of Pos.
llvm-svn: 203315
Slightly change the wording in the function comment. Originally, it can be
misunderstood as we turned the input into two subsequent rotates.
Better connect the comment which talks about Mask and the code which used
LoBits. Renamed variable to MaskLoBits.
llvm-svn: 203314
be split and the result type widened.
When the condition of a vselect has to be split it makes no sense widening the
vselect and thereby widening the condition. We end up in an endless loop of
widening (vselect result type) and splitting (condition mask type) doing this.
Instead, split both the condition and the vselect and widen the result.
I ran this over the test suite with i686 and mattr=+sse and saw no regressions.
Fixes PR18036.
llvm-svn: 203311
This patch teaches the DAGCombiner how to fold a binary OR between two
shufflevector into a single shuffle vector when possible.
The rules are:
1. fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask1)
2. fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf B, A, Mask2)
The DAGCombiner can take advantage of the fact that OR is commutative and
compute two possible shuffle masks (Mask1 and Mask2) for the resulting
shuffle node.
Before folding a dag according to either rule 1 or 2, DAGCombiner verifies
that the resulting shuffle mask is legal for the target.
DAGCombiner would firstly try to fold according to 1.; If not possible
then it will try to fold according to 2.
If both Mask1 and Mask2 are illegal then we conservatively don't fold
the OR instruction.
llvm-svn: 203156
already lived there and it is where it belongs -- this is the in-memory
debug location representation.
This is just cleanup -- Modules can actually cope with this, but that
doesn't make it right. After chatting with folks that have out-of-tree
stuff, going ahead and moving the rest of the headers seems preferable.
llvm-svn: 202960
Patchpoints already did this. Doing it for stackmaps is a convenience
for the runtime in the event that it needs to scratch register to
patch or perform a runtime call thunk.
Unlike patchpoints, we just assume the AnyRegCC calling
convention. This is the only language and target independent calling
convention specific to stackmaps so makes sense. Although the calling
convention is not currently used to select the scratch registers.
llvm-svn: 202943
selection dag (PR19012)
In X86SelectionDagInfo::EmitTargetCodeForMemcpy we check with MachineFrameInfo
to make sure that ESI isn't used as a base pointer register before we choose to
emit rep movs (which clobbers esi).
The problem is that MachineFrameInfo wouldn't know about dynamic allocas or
inline asm that clobbers the stack pointer until SelectionDAGBuilder has
encountered them.
This patch fixes the problem by checking for such things when building the
FunctionLoweringInfo.
Differential Revision: http://llvm-reviews.chandlerc.com/D2954
llvm-svn: 202930
Currently this code is duplicated across visitSHL, visitSRA and visitSRL. The
plan is to add rotates as clients to this new function.
There is no functional change intended here.
llvm-svn: 202908
This extract-and-trunc vector optimization cannot work for i1 values as
currently implemented, and so I'm disabling this for now for i1 values. In the
future, this can be fixed properly.
Soon I'll commit support for i1 CR bit tracking in the PowerPC backend, and
this will be covered by one of the existing regression tests.
llvm-svn: 202449
shifted mask rather than masking and shifting separately.
The patch adds this transformation to the DAGCombiner:
(shl (and (setcc:i8v16 ...) N01C) N1C) -> (and (setcc:i8v16 ...) N01C<<N1C)
<rdar://problem/16054492>
Patch by Adam Nemet <anemet@apple.com>
llvm-svn: 201906
This fix checks the original LLVM IR node to identify opaque constants by
looking for the bitcast-constant pattern. Originally we looked at the generated
SDNode, but this might lead to incorrect results. The SDNode could have been
generated by an constant expression that was folded to a constant.
This fixes <rdar://problem/16050719>
llvm-svn: 201291
We are now no longer relying on the target-specific call lowering implementation
to lower a stackmap intrinsic call. Instead we perform the call lowering in a
target-independent way directly in the stackmap lowering code. This simplifies
the code and removes the need to fixup the code after the target-specific call
lowering.
llvm-svn: 201263
The ID type for the stackmap and patchpoint intrinsics are in both cases i64.
This fixes an zero extend in the SelectionDAGBuilder that still used i32. This
also updates the target independent instructions STACKMAP and PATCHPOINT to use
the correct type.
llvm-svn: 201262
BUILD_VECTOR nodes, e.g.:
(concat_vectors (BUILD_VECTOR a1, a2, a3, a4), (BUILD_VECTOR b1, b2, b3, b4))
->
(BUILD_VECTOR a1, a2, a3, a4, b1, b2, b3, b4)
This fixes an issue with AVX, where a sequence was not recognized as a 256-bit
vbroadcast due to the concat_vectors.
llvm-svn: 201158
During DAGCombine visitShiftByConstant assumes that certain binary operations
with only constant operands can always be folded successfully. This is no longer
true when the constant is opaque. This commit fixes visitShiftByConstant by not
performing the optimization for opaque constants. Otherwise we would end up in
an infinite DAGCombine loop.
llvm-svn: 200900
Calls with inalloca are lowered by skipping all stores for arguments
passed in memory and the initial stack adjustment to allocate argument
memory.
Now the frontend is responsible for the memory layout, and the backend
doesn't have to do any work. As a result these changes are pretty
minimal.
Reviewers: echristo
Differential Revision: http://llvm-reviews.chandlerc.com/D2637
llvm-svn: 200596
Allocas marked inalloca are never static, but we were trying to put them
into the static alloca map if they were in the entry block. Also add an
assertion in x86 fastisel.
llvm-svn: 200593
when the input is a concat_vectors and the insert replaces one of the
concat halves:
Lower half: fold (insert_subvector (concat_vectors X, Y), Z) ->
(concat_vectors Z, Y)
Upper half: fold (insert_subvector (concat_vectors X, Y), Z) ->
(concat_vectors X, Z)
This can be seen with the following IR:
define <8 x float> @lower_half(<4 x float> %v1, <4 x float> %v2, <4 x
float> %v3) {
%1 = shufflevector <4 x float> %v1, <4 x float> %v2, <8 x i32> <i32
0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
%2 = tail call <8 x float> @llvm.x86.avx.vinsertf128.ps.256(<8 x
float> %1, <4 x float> %v3, i8 0)
The vinsertf128 intrinsic is converted into an insert_subvector node
in SelectionDAGBuilder.cpp.
Using AVX, without the patch this generates two vinsertf128 instructions:
vinsertf128 $1, %xmm1, %ymm0, %ymm0
vinsertf128 $0, %xmm2, %ymm0, %ymm0
With the patch this is optimized into:
vinsertf128 $1, %xmm1, %ymm2, %ymm0
Patch by Robert Lougher.
llvm-svn: 200506
When converting from "or + br" to two branches, or converting from
"and + br" to two branches, we correctly update the edge weights of
the two branches.
The previous attempt at r200431 was reverted at r200434 because of
two testing case failures. I modified my patch a little, but forgot
to re-run "make check-all".
Testing case CodeGen/ARM/lsr-unfolded-offset.ll is updated because of
the patch's impact on branch probability which causes changes in
spill placement.
llvm-svn: 200502
When converting from "or + br" to two branches, or converting from
"and + br" to two branches, we correctly update the edge weights of
the two branches.
llvm-svn: 200431
Make sure that we don't introduce illegal build_vector dag nodes
when trying to fold a sign_extend of a build_vector.
This fixes a regression introduced by r200234.
Added test CodeGen/X86/fold-vector-sext-crash.ll
to verify that llc no longer crashes with an assertion failure
due to an illegal build_vector of type MVT::v4i64.
Thanks to Ilia Filippov for spotting this regression and for
providing a reproducible test case.
llvm-svn: 200313
Before this patch we used getIntImmCost from TargetTransformInfo to determine if
a load of a constant should be converted to just a constant, but the threshold
for this was set to an arbitrary value. This value works well for the two
targets (X86 and ARM) that implement this target-hook, but it isn't
target-independent at all.
Now targets have the possibility to decide directly if this optimization should
be performed. The default value is set to false to preserve the current
behavior. The target hook has been moved to TargetLowering, which removed the
last use and need of TargetTransformInfo in SelectionDAG.
llvm-svn: 200271
Also update the comment, since it actually produces a
select (setcc) instead of select_cc.
It was checking and using the setcc result type for the
type of the sext, instead of the type of the compared items.
In my problem case, the sext was to i32 and was used as the setcc type,
but the expected type was i64.
No test since I haven't been able to hit the problem with
this on any in-tree targets.
llvm-svn: 200249
This patch teaches the DAGCombiner how to fold a sext/aext/zext dag node when
the operand in input is a build vector of constants (or UNDEFs).
The inability to fold a sext/zext of a constant build_vector was the root
cause of some pcg bugs affecting vselect expansion on x86-64 with AVX support.
Before this change, the DAGCombiner only knew how to fold a sext/zext/aext of a
ConstantSDNode.
llvm-svn: 200234
Issue outcomes from DAGCombiner::MergeConsequtiveStores, more precisely from
mem-ops sequence sorting.
Consider, how MergeConsequtiveStores works for next example:
store i8 1, a[0]
store i8 2, a[1]
store i8 3, a[1] ; a[1] again.
return ; DAG starts here
1. Method will collect all the 3 stores.
2. It sorts them by distance from the base pointer (farthest with highest
index).
3. It takes first consecutive non-overlapping stores and (if possible) replaces
them with a single store instruction.
The point is, we can't determine here which 'store' instruction
would be the second after sorting ('store 2' or 'store 3').
It happens that 'store 3' would be the second, and 'store 2' would be the third.
So after merging we have the next result:
store i16 (1 | 3 << 8), base ; is a[0] but bit-casted to i16
store i8 2, a[1]
So actually we swapped 'store 3' and 'store 2' and got wrong contents in a[1].
Fix: In sort routine just also take into account mem-op sequence number.
llvm-svn: 200201
There are currently two issues, of which I currently know, that prevent TBAA
from being correctly usable in CodeGen:
1. Stack coloring does not update TBAA when merging allocas. This is easy
enough to fix, but is not the largest problem.
2. CGP inserts ptrtoint/inttoptr pairs when sinking address computations.
Because BasicAA does not handle inttoptr, we'll often miss basic type punning
idioms that we need to catch so we don't miscompile real-world code (like LLVM).
I don't yet have a small test case for this, but this fixes self hosting a
non-asserts build of LLVM on PPC64 when using -enable-aa-sched-mi and -misched=shuffle.
llvm-svn: 200093
This option (which is !NDEBUG only) allows restricting the use of alias
analysis in DAGCombiner to a specific function. This has proved extremely
valuable to isolating bugs related to this feature, and mirrors the
misched-only-func option provided by the new instruction scheduler.
llvm-svn: 200088
This commit caused -Woverloaded-virtual warnings. The two new
TargetTransformInfo::getIntImmCost functions were only added to the superclass,
and to the X86 subclass. The other targets were not updated, and the
warning highlighted this by pointing out that e.g. ARMTTI::getIntImmCost was
hiding the two new getIntImmCost variants.
We could pacify the warning by adding "using TargetTransformInfo::getIntImmCost"
to the various subclasses, or turning it off, but I suspect that it's wrong to
leave the functions unimplemnted in those targets. The default implementations
return TCC_Free, which I don't think is right e.g. for ARM.
llvm-svn: 200058
Retry commit r200022 with a fix for the build bot errors. Constant expressions
have (unlike instructions) module scope use lists and therefore may have users
in different functions. The fix is to simply ignore these out-of-function uses.
llvm-svn: 200034
DAGCombiner::GatherAllAliases, which is only used when AA used is enabled
during DAGCombine, had a fundamentally incorrect assumption for which this
change compensates. GatherAllAliases, which is used to find aliasing
predecessor chain nodes (so that a better chain can be selected for a load or
store to enable subsequent optimizations) assumed that walking up the chain
would always catch all possibly-aliasing loads and stores. This is not true: To
really find all aliases, we also need to search for aliases through the value
operand of a store, etc. Consider the following situation:
Token1 = ...
L1 = load Token1, %52
S1 = store Token1, L1, %51
L2 = load Token1, %52+8
S2 = store Token1, L2, %51+8
Token2 = Token(S1, S2)
L3 = load Token2, %53
S3 = store Token2, L3, %52
L4 = load Token2, %53+8
S4 = store Token2, L4, %52+8
If we search for aliases of S3 (which loads address %52), and we look only
through the chain, then we'll miss the trivial dependence on L1 (which loads
from %52). We then might change all loads and stores to use Token1 as their
chain operand, which could result in copying %53 into %52 before copying
%52 into %51 (which should happen first).
The problem is, however, that searching for such data dependencies can become
expensive, and the cost is not directly related to the chain depth. Instead,
we'll rule out such configurations by insisting that we've visited all chain
users (except for users of the original chain, which is not necessary). When
doing this, we need to look through nodes we don't care about (otherwise,
things like register copies will interfere with trivial use cases).
Unfortunately, I don't have a small test case for this problem. Creating the
underlying situation is not hard (a pair of memcpys will do it), but arranging
for the default instruction schedule to be incorrect is very fragile.
This unbreaks self hosting on PPC64 when using
-mllvm -combiner-global-alias-analysis -mllvm -combiner-alias-analysis.
llvm-svn: 200033
These transformations obviously won't work for indexed (pre/post-inc) loads and
stores. In practice, I'm not sure there is any benefit to enabling them for
indexed nodes because other transformations that these might enable likely also
won't handle indexed nodes.
I don't have an in-tree test case that hits this problem, but an upcoming bug
fix will make it much more likely.
llvm-svn: 200023
This pass identifies expensive constants to hoist and coalesces them to
better prepare it for SelectionDAG-based code generation. This works around the
limitations of the basic-block-at-a-time approach.
First it scans all instructions for integer constants and calculates its
cost. If the constant can be folded into the instruction (the cost is
TCC_Free) or the cost is just a simple operation (TCC_BASIC), then we don't
consider it expensive and leave it alone. This is the default behavior and
the default implementation of getIntImmCost will always return TCC_Free.
If the cost is more than TCC_BASIC, then the integer constant can't be folded
into the instruction and it might be beneficial to hoist the constant.
Similar constants are coalesced to reduce register pressure and
materialization code.
When a constant is hoisted, it is also hidden behind a bitcast to force it to
be live-out of the basic block. Otherwise the constant would be just
duplicated and each basic block would have its own copy in the SelectionDAG.
The SelectionDAG recognizes such constants as opaque and doesn't perform
certain transformations on them, which would create a new expensive constant.
This optimization is only applied to integer constants in instructions and
simple (this means not nested) constant cast experessions. For example:
%0 = load i64* inttoptr (i64 big_constant to i64*)
Reviewed by Eric
llvm-svn: 200022
This is a horrible bit of code. We're calling a simplification routine *in the middle* of type legalization. We tell the
simplification routine that it's running after legalization, but some of the types it will encounter will be illegal! The
fix is only to invoke the simplification if the types in question were legal, so that none of its invariants will be violated.
llvm-svn: 199847
This fixes a regression intruced by r199135.
Revision 199135 tried to simplify part of the logic in method
DAGCombiner::SimplifyVBinOp introducing calls to method BuildVectorSDNode::isConstant().
However, that revision wrongly changed the check performed by method
SimplifyVBinOp to identify dag nodes that can be folded.
Before revision 199135, that method only tried to simplify vector binary operations
if both operands were build_vector of Constant/ConstantFP/Undef only.
After revision 199135, method SimplifyVBinop tried to
simplify also vector binary operations with only one constant operand.
This fixes the problem restoring the old behavior of SimplifyVBinOp.
llvm-svn: 199328
When creating a virtual register for a def, the value type should be
used to pick the register class. If we only use the register class
constraint on the instruction, we might pick a too large register class.
Some registers can store values of different sizes. For example, the x86
xmm registers can hold f32, f64, and 128-bit vectors. The three
different value sizes are represented by register classes with identical
register sets: FR32, FR64, and VR128. These register classes have
different spill slot sizes, so it is important to use the right one.
The register class constraint on an instruction doesn't necessarily care
about the size of the value its defining. The value type determines
that.
This fixes a problem where InstrEmitter was picking 32-bit register
classes for 64-bit values on SPARC.
llvm-svn: 199187