Summary: This fixes some OpenCV tests that were broken by libclc commit r276443.
Reviewers: arsenm, jvesely
Subscribers: arsenm, wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D24051
llvm-svn: 280274
On modern Intel processors hardware SQRT in many cases is faster than RSQRT
followed by Newton-Raphson refinement. The patch introduces a simple heuristic
to choose between hardware SQRT instruction and Newton-Raphson software
estimation.
The patch treats scalars and vectors differently. The heuristic is that for
scalars the compiler should optimize for latency while for vectors it should
optimize for throughput. It is based on the assumption that throughput bound
code is likely to be vectorized.
Basically, the patch disables scalar NR for big cores and disables NR completely
for Skylake. Firstly, scalar SQRT has shorter latency than NR code in big cores.
Secondly, vector SQRT has been greatly improved in Skylake and has better
throughput compared to NR.
Differential Revision: https://reviews.llvm.org/D21379
llvm-svn: 277725
ABIArgOffset is a problem because properly fsetting the
KernArgSize requires that the reserved area before the
real kernel arguments be correctly aligned, which requires
fixing clover.
llvm-svn: 276766
Only if the value is negative or positive is what matters,
so use a constant that doesn't require an instruction to
materialize.
These should really just emit the write exec directly,
but for stick with the kill pseudo-terminator.
llvm-svn: 275988
Summary:
Instead, we take a single flags arg (a bitset).
Also add a default 0 alignment, and change the order of arguments so the
alignment comes before the flags.
This greatly simplifies many callsites, and fixes a bug in
AMDGPUISelLowering, wherein the order of the args to getLoad was
inverted. It also greatly simplifies the process of adding another flag
to getLoad.
Reviewers: chandlerc, tstellarAMD
Subscribers: jholewinski, arsenm, jyknight, dsanders, nemanjai, llvm-commits
Differential Revision: http://reviews.llvm.org/D22249
llvm-svn: 275592
Due to visit order problems, in the case of an unaligned copy
the legalized DAG fails to eliminate extra instructions introduced
by the expansion of both unaligned parts.
llvm-svn: 274397
There was a combine before to handle the simple copy case.
Split this into handling loads and stores separately.
We might want to change how this handles some of the vector
extloads, since this can result in large code size increases.
llvm-svn: 274394
Split AMDGPUSubtarget into amdgcn/r600 specific subclasses.
This removes most of the static_casting of the basic codegen
classes everywhere, and tries to restrict the features
visible on the wrong target.
llvm-svn: 273652
The exit-on-error flag was necessary in order to avoid an assertion when
handling DYNAMIC_STACKALLOC nodes in SelectionDAGLegalize.
We can avoid the assertion by creating some dummy nodes. This enables us to
remove the exit-on-error flag on the first 2 run lines (SI), but on the third
run line (R600) we would run into another assertion when trying to reserve
indirect registers. This patch also replaces that assertion with an early exit
from the function.
Fixes PR27761.
Differential Revision: http://reviews.llvm.org/D20852
llvm-svn: 273550
The main sin this was committing was using terminator
instructions in the middle of the block, and then
not updating the block successors / predecessors.
Split the blocks up to avoid this and introduce new
pseudo instructions for branches taken with exec masking.
Also use a pseudo instead of emitting s_endpgm and erasing
it in the special case of a non-void return.
llvm-svn: 273467
Don't use AllocateStack because kernel arguments have nothing
to do with the stack. The ensureMaxAlignment call was still
changing the stack alignment.
llvm-svn: 273080
Summary:
We now use a standard fixup type applying the pc-relative address of
constant address space variables, and we have the GlobalAddress lowering
code add the required 4 byte offset to the global address rather than
doing it as part of the fixup.
This refactoring will make it easier to use the same code for global
address space variables and also simplifies the code.
Re-commit this after fixing a bug where we were trying to use a
reference to a Triple object that had already been destroyed.
Reviewers: arsenm, kzhuravl
Subscribers: arsenm, kzhuravl, llvm-commits
Differential Revision: http://reviews.llvm.org/D21154
llvm-svn: 272705
Summary:
We now use a standard fixup type applying the pc-relative address of
constant address space variables, and we have the GlobalAddress lowering
code add the required 4 byte offset to the global address rather than
doing it as part of the fixup.
This refactoring will make it easier to use the same code for global
address space variables and also simplifies the code.
Reviewers: arsenm, kzhuravl
Subscribers: arsenm, kzhuravl, llvm-commits
Differential Revision: http://reviews.llvm.org/D21154
llvm-svn: 272675
This used to be free, copying and moving DebugLocs became expensive
after the metadata rewrite. Passing by reference eliminates a ton of
track/untrack operations. No functionality change intended.
llvm-svn: 272512
f32 vectors would use a sequence of BFI instructions instead
of unrolled cmp + select. This was better in the case of a VALU
select with SGPR inputs, but we don't have a way of dealing with that
in the DAG.
llvm-svn: 270731
Summary:
Implement BUFFER_ATOMIC_CMPSWAP{,_X2} instructions on all GCN targets, and FLAT_ATOMIC_CMPSWAP{,_X2} on CI+.
32-bit instruction variants tested manually on Kabini and Bonaire. Tests and parts of code provided by Jan Veselý.
Patch by: Vedran Miletić
Reviewers: arsenm, tstellarAMD, nhaehnle
Subscribers: jvesely, scchan, kanarayan, arsenm
Differential Revision: http://reviews.llvm.org/D17280
llvm-svn: 265170
Technically you aren't supposed to emit these after type legalization
for some reason, and we use vector extracts of bitcasted integers
as the canonical way to do this.
llvm-svn: 262298