- Add AllocatorList, a non-intrusive list that owns an LLVM-style
allocator and provides a std::list-like interface (trivially built on
top of simple_ilist),
- add a typedef (and unit tests) for BumpPtrList, and
- use BumpPtrList for the list of llvm::yaml::Token (i.e., TokenQueueT).
TokenQueueT has no need for the complexity of an intrusive list. The
only reason to inherit from ilist was to customize the allocator.
TokenQueueT was the only example in-tree of using ilist<> in a truly
non-intrusive way.
Moreover, this removes the final use of the non-intrusive
ilist_traits<>::createNode (after r280573, r281177, and r281181). I
have a WIP patch that removes this customization point (and the API that
relies on it) that I plan to commit soon.
Note: AllocatorList owns the allocator, which limits the viable API
(e.g., splicing must be on the same list). For now I've left out
any problematic API. It wouldn't be hard to split AllocatorList into
two layers: an Impl class that calls DerivedT::getAlloc (via CRTP), and
derived classes that handle Allocator ownership/reference/etc semantics;
and then implement splice with appropriate assertions; but TBH we should
probably just customize the std::list allocators at that point.
llvm-svn: 281182
Now that MachineBasicBlock::reverse_instr_iterator knows when it's at
the end (since r281168 and r281170), implement
MachineBasicBlock::reverse_iterator directly on top of an
ilist::reverse_iterator by adding an IsReverse template parameter to
MachineInstrBundleIterator. This replaces another hard-to-reason-about
use of std::reverse_iterator on list iterators, matching the changes for
ilist::reverse_iterator from r280032 (see the "out of scope" section at
the end of that commit message). MachineBasicBlock::reverse_iterator
now has a handle to the current node and has obvious invalidation
semantics.
r280032 has a more detailed explanation of how list-style reverse
iterators (invalidated when the pointed-at node is deleted) are
different from vector-style reverse iterators like std::reverse_iterator
(invalidated on every operation). A great motivating example is this
commit's changes to lib/CodeGen/DeadMachineInstructionElim.cpp.
Note: If your out-of-tree backend deletes instructions while iterating
on a MachineBasicBlock::reverse_iterator or converts between
MachineBasicBlock::iterator and MachineBasicBlock::reverse_iterator,
you'll need to update your code in similar ways to r280032. The
following table might help:
[Old] ==> [New]
delete &*RI, RE = end() delete &*RI++
RI->erase(), RE = end() RI++->erase()
reverse_iterator(I) std::prev(I).getReverse()
reverse_iterator(I) ++I.getReverse()
--reverse_iterator(I) I.getReverse()
reverse_iterator(std::next(I)) I.getReverse()
RI.base() std::prev(RI).getReverse()
RI.base() ++RI.getReverse()
--RI.base() RI.getReverse()
std::next(RI).base() RI.getReverse()
(For more details, have a look at r280032.)
llvm-svn: 281172
This is a prep commit before fixing MachineBasicBlock::reverse_iterator
invalidation semantics, ala r281167 for ilist::reverse_iterator. This
changes MachineBasicBlock::Instructions to track which node is the
sentinel regardless of LLVM_ENABLE_ABI_BREAKING_CHECKS.
There's almost no functionality change (aside from ABI). However, in
the rare configuration:
#if !defined(NDEBUG) && !defined(LLVM_ENABLE_ABI_BREAKING_CHECKS)
the isKnownSentinel() assertions in ilist_iterator<>::operator* suddenly
have teeth for MachineInstr. If these assertions start firing for your
out-of-tree backend, have a look at the suggestions in the commit
message for r279314, and at some of the commits leading up to it that
avoid dereferencing the end() iterator.
llvm-svn: 281168
This should *actually* fix PR30244. This cranks up the workaround for PR30188 so that we never sink loads or stores of allocas.
The idea is that these should be removed by SROA/Mem2Reg, and any movement of them may well confuse SROA or just cause unwanted code churn. It's not ideal that the midend should be crippled like this, but that unwanted churn can really cause significant regressions in important workloads (tsan).
llvm-svn: 281162
Exposed by PR30244, we will split a block currently if we think we can sink at least one instruction. However this isn't right - the reason we split predecessors is so that we can sink instructions that otherwise couldn't be sunk because it isn't safe to do so - stores, for example.
So, change the heuristic to only split if it thinks it can sink at least one non-speculatable instruction.
Should fix PR30244.
llvm-svn: 281160
Summary:
This will let e.g. the load/store vectorizer propagate this metadata
appropriately.
Reviewers: arsenm
Subscribers: tra, jholewinski, hfinkel, mzolotukhin
Differential Revision: https://reviews.llvm.org/D23479
llvm-svn: 281153
Summary:
With this change (plus some changes to prevent !invariant from being
clobbered within llvm), clang will be able to model the __ldg CUDA
builtin as an invariant load, rather than as a target-specific llvm
intrinsic. This will let the optimizer play with these loads --
specifically, we should be able to vectorize them in the load-store
vectorizer.
Reviewers: tra
Subscribers: jholewinski, hfinkel, llvm-commits, chandlerc
Differential Revision: https://reviews.llvm.org/D23477
llvm-svn: 281152
Summary:
An IR load can be invariant, dereferenceable, neither, or both. But
currently, MI's notion of invariance is IR-invariant &&
IR-dereferenceable.
This patch splits up the notions of invariance and dereferenceability at
the MI level. It's NFC, so adds some probably-unnecessary
"is-dereferenceable" checks, which we can remove later if desired.
Reviewers: chandlerc, tstellarAMD
Subscribers: jholewinski, arsenm, nemanjai, llvm-commits
Differential Revision: https://reviews.llvm.org/D23371
llvm-svn: 281151
Everything under foldICmpInstWithConstant() should now be working for
splat vectors via m_APInt matchers. Ie, I've removed all of the FIXMEs
that I added while cleaning that section up. Note that not all of the
associated FIXMEs in the regression tests are gone though, because some
of the tests require earlier folds that are still scalar-only.
llvm-svn: 281139
Summary:
Could be useful for comparison when we suspect that alloca was skipped
because of this.
Reviewers: eugenis
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D24437
llvm-svn: 281126
Summary:
I want to separate out the notions of invariance and dereferenceability
at the MI level, so that they correspond to the equivalent concepts at
the IR level. (Currently an MI load is MI-invariant iff it's
IR-invariant and IR-dereferenceable.)
First step is renaming this function.
Reviewers: chandlerc
Subscribers: MatzeB, jfb, llvm-commits
Differential Revision: https://reviews.llvm.org/D23370
llvm-svn: 281125
If the literal is being folded into src0, it doesn't matter
if it's an SGPR because it's being replaced with the literal.
Also fixes initially selecting 32-bit versions of some instructions
which also confused commuting.
llvm-svn: 281117
This would create a bitcast use which fails the verifier: swifterror values may
only be used by loads, stores, and as function arguments.
rdar://28233244
llvm-svn: 281114
This extends the optimization in r280832 to also work for 64-bit. The only
quirk is that we can't do this for 64-bit Windows (yet).
Differential Revision: https://reviews.llvm.org/D24423
llvm-svn: 281113
Summary:
Previously these only worked via NVPTX-specific intrinsics.
This change will allow us to convert these target-specific intrinsics
into the general LLVM versions, allowing existing LLVM passes to reason
about their behavior.
It also gets us some minor codegen improvements as-is, from situations
where we canonicalize code into one of these llvm intrinsics.
Reviewers: majnemer
Subscribers: llvm-commits, jholewinski, tra
Differential Revision: https://reviews.llvm.org/D24300
llvm-svn: 281092
Move the target specific setup into the target specific lowering setup. As
pointed out by Anton, the initial change was moving this too high up the stack
resulting in a violation of the layering (the target generic code path setup
target specific bits). Sink this into the ARM specific setup. NFC.
llvm-svn: 281088
SmallVectors are convenient, but they don't cover every use case.
In particular, they are fairly large (3 pointers + one element) and
there is no way to take ownership of the buffer to put it somewhere
else. This patch then adds a lower lever interface that works with
any buffer.
llvm-svn: 281082
We have various command line options that print the type of a
stream, the size of a stream, etc but nowhere that it can all be
viewed together.
Since a previous patch introduced the ability to dump the bytes
of a stream, this seems like a good place to present a full view
of the stream's properties including its size, what kind of data
it represents, and the blocks it occupies. So I added the
ability to print that information to the -stream-data command
line option.
llvm-svn: 281077
This simplifies a lot of code, and will actually be necessary for
an upcoming patch to serialize TPI record hash values.
The idea before was that visitors should be examining records, not
modifying them. But this is no longer true with a visitor that
constructs a CVRecord from Yaml. To handle this until now, we
were doing some fixups on CVRecord objects at a higher level, but
the code is really awkward, and it makes sense to just have the
visitor write the bytes into the CVRecord. In doing so I uncovered
a few bugs related to `Data` and `RawData` and fixed those.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D24362
llvm-svn: 281067
This writes the full sequence of type records described in
Yaml to the TPI stream of the PDB file.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D24316
llvm-svn: 281063
This can happen when the frontend knows the debug info will be emitted
somewhere else. Usually this happens for dynamic classes with out of
line constructors or key functions, but it can also happen when modules
are enabled.
llvm-svn: 281060
Summary:
Prevously assembler parsed all literals as either 32-bit integers or 32-bit floating-point values. Because of this we couldn't support f64 literals.
E.g. in instruction "v_fract_f64 v[0:1], 0.5", literal 0.5 was encoded as 32-bit literal 0x3f000000, which is incorrect and will be interpreted as 3.0517578125E-5 instead of 0.5. Correct encoding is inline constant 240 (optimal) or 32-bit literal 0x3FE00000 at least.
With this change the way immediate literals are parsed is changed. All literals are always parsed as 64-bit values either integer or floating-point. Then we convert parsed literals to correct form based on information about type of operand parsed (was literal floating or binary) and type of expected instruction operands (is this f32/64 or b32/64 instruction).
Here are rules how we convert literals:
- We parsed fp literal:
- Instruction expects 64-bit operand:
- If parsed literal is inlinable (e.g. v_fract_f64_e32 v[0:1], 0.5)
- then we do nothing this literal
- Else if literal is not-inlinable but instruction requires to inline it (e.g. this is e64 encoding, v_fract_f64_e64 v[0:1], 1.5)
- report error
- Else literal is not-inlinable but we can encode it as additional 32-bit literal constant
- If instruction expect fp operand type (f64)
- Check if low 32 bits of literal are zeroes (e.g. v_fract_f64 v[0:1], 1.5)
- If so then do nothing
- Else (e.g. v_fract_f64 v[0:1], 3.1415)
- report warning that low 32 bits will be set to zeroes and precision will be lost
- set low 32 bits of literal to zeroes
- Instruction expects integer operand type (e.g. s_mov_b64_e32 s[0:1], 1.5)
- report error as it is unclear how to encode this literal
- Instruction expects 32-bit operand:
- Convert parsed 64 bit fp literal to 32 bit fp. Allow lose of precision but not overflow or underflow
- Is this literal inlinable and are we required to inline literal (e.g. v_trunc_f32_e64 v0, 0.5)
- do nothing
- Else report error
- Do nothing. We can encode any other 32-bit fp literal (e.g. v_trunc_f32 v0, 10000000.0)
- Parsed binary literal:
- Is this literal inlinable (e.g. v_trunc_f32_e32 v0, 35)
- do nothing
- Else, are we required to inline this literal (e.g. v_trunc_f32_e64 v0, 35)
- report error
- Else, literal is not-inlinable and we are not required to inline it
- Are high 32 bit of literal zeroes or same as sign bit (32 bit)
- do nothing (e.g. v_trunc_f32 v0, 0xdeadbeef)
- Else
- report error (e.g. v_trunc_f32 v0, 0x123456789abcdef0)
For this change it is required that we know operand types of instruction (are they f32/64 or b32/64). I added several new register operands (they extend previous register operands) and set operand types to corresponding types:
'''
enum OperandType {
OPERAND_REG_IMM32_INT,
OPERAND_REG_IMM32_FP,
OPERAND_REG_INLINE_C_INT,
OPERAND_REG_INLINE_C_FP,
}
'''
This is not working yet:
- Several tests are failing
- Problems with predicate methods for inline immediates
- LLVM generated assembler parts try to select e64 encoding before e32.
More changes are required for several AsmOperands.
Reviewers: vpykhtin, tstellarAMD
Subscribers: arsenm, kzhuravl, artem.tamazov
Differential Revision: https://reviews.llvm.org/D22922
llvm-svn: 281050
The CMPZ #0 disappears during peepholing, leaving just a tADDi3, tADDi8 or t2ADDri. This avoids having to materialize the expensive negative constant in Thumb-1, and allows a shrinking from a 32-bit CMN to a 16-bit ADDS in Thumb-2.
llvm-svn: 281040
These instructions were only necessary when type information was stored in the
MachineInstr (because only generic MachineInstrs possessed a type). Now that
it's in MachineRegisterInfo, COPY and PHI work fine.
llvm-svn: 281037
We want each register to have a canonical type, which means the best place to
store this is in MachineRegisterInfo rather than on every MachineInstr that
happens to use or define that register.
Most changes following from this are pretty simple (you need an MRI anyway if
you're going to be doing any transformations, so just check the type there).
But legalization doesn't really want to check redundant operands (when, for
example, a G_ADD only ever has one type) so I've made use of MCInstrDesc's
operand type field to encode these constraints and limit legalization's work.
As an added bonus, more validation is possible, both in MachineVerifier and
MachineIRBuilder (coming soon).
llvm-svn: 281035
Summary:
Also removed duplicate code from AMDGPUTargetAsmStreamer.
This change only change how amd_kernel_code_t is parsed and printed. No variable names are changed.
Reviewers: vpykhtin, tstellarAMD
Subscribers: arsenm, wdng, nhaehnle
Differential Revision: https://reviews.llvm.org/D24296
llvm-svn: 281028
This avoids us doing a completely unneeded "cmp r0, #0" after a flag-setting instruction if we only care about the Z or C flags.
Add LSL/LSR to the whitelist while we're here and add testing. This code could really do with a spring clean.
llvm-svn: 281027
As part of this effort, remove MipsFCmp nodes and use tablegen
patterns rather than custom lowering through C++.
Unexpectedly, this improves codesize for microMIPS as previous floating
point setcc expansions would materialize 0 and 1 into GPRs before using
the relevant mov[tf].[sd] instruction. Now $zero is used directly.
Reviewers: dsanders, vkalintiris, zoran.jovanovic
Differential Review: https://reviews.llvm.org/D23118
llvm-svn: 281022
Summary:
If one of the uses of the value is a single edge PHINode, handle it.
Original:
%val = something
<suspend>
%p = PHINode [%val]
After Spill + Part13:
%val = something
%slot = gep val.spill.slot
store %val, %slot
<suspend>
%p = load %slot
Plus tiny fixes/changes:
* use correct index for coro.free in CoroCleanup
* fixup id parameter in coro.free to allow authoring coroutine in plain C with __builtins
Reviewers: majnemer
Subscribers: mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D24242
llvm-svn: 281020
Summary:
While woring on mapping attributes in the C API, it clearly appeared that the recent changes in the API on the C++ side left Function and Call/Invoke with an attribute API that grew in an ad hoc manner. This makes it difficult to work with it, because one doesn't know which overloads exists and which do not.
Make sure that getter/setter function exists for both enum and string version. Remove inconsistent getter/setter, unless they have many callsites.
This should make it easier to work with attributes in the future.
This doesn't change how attribute works.
Reviewers: bkramer, whitequark, mehdi_amini, void
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D21514
llvm-svn: 281019
The x64 ABI has two major function types:
- frame functions
- leaf functions
A frame function is one which requires a stack frame. A leaf function
is one which does not. A frame function may or may not have a frame
pointer.
A leaf function does not require a stack frame and may never modify SP
except via a return (RET, tail call via JMP).
A frame function which has a frame pointer is permitted to use the LEA
instruction in the epilogue, a frame function without which doesn't
establish a frame pointer must use ADD to adjust the stack pointer epilogue.
Fun fact: Leaf functions don't require a function table entry
(associated PDATA/XDATA).
llvm-svn: 281006
The REX prefix should be used on indirect jmps, but not direct ones.
For direct jumps, the unwinder looks at the offset to determine if
it's inside the current function.
Differential Revision: https://reviews.llvm.org/D24359
llvm-svn: 281003
Summary: The hoisted instruction is executed speculatively. It could affect the debugging experience as user would see gdb go into code that may not be expected to execute. It will also affect sample profile accuracy by assigning incorrect frequency to source within then/else branch.
Reviewers: davidxl, dblaikie, chandlerc, kcc, echristo
Subscribers: mehdi_amini, probinson, eric_niebler, andreadb, llvm-commits
Differential Revision: https://reviews.llvm.org/D24164
llvm-svn: 280995
The test case included in r280979 wasn't checking what it was supposed to be
checking for the predicated store case. Fixing the test revealed that the
multi-use case (when a pointer is used by both vectorized and scalarized memory
accesses) wasn't being handled properly. We can't skip over
non-consecutive-like pointers since they may have looked consecutive-like with
a different memory access.
llvm-svn: 280992
Previously, all consecutive pointers were marked uniform after vectorization.
However, if a consecutive pointer is used by a memory access that is eventually
scalarized, the pointer won't remain uniform after all. An example is
predicated stores. Even though a predicated store may be consecutive, it will
still be scalarized, making it's pointer operand non-uniform.
This patch updates the logic in collectLoopUniforms to consider the cases where
a memory access may be scalarized. If a memory access may be scalarized, its
pointer operand is not marked uniform. The determination of whether a given
memory instruction will be scalarized or not has been moved into a common
function that is used by the vectorizer, cost model, and legality analysis.
Differential Revision: https://reviews.llvm.org/D24271
llvm-svn: 280979
mapping a yaml field to an object in code has always been
a stateless operation. You could still pass state by using the
`setContext` function of the YAMLIO object, but this represented
global state for the entire yaml input. In order to have
context-sensitive state, it is necessary to pass this state in
at the granularity of an individual mapping.
This patch adds support for this type of context-sensitive state.
You simply pass an additional argument of type T to the
`mapRequired` or `mapOptional` functions, and provided you have
specialized a `MappingContextTraits<U, T>` class with the
appropriate mapping function, you can pass this context into
the mapping function.
Reviewed By: chandlerc
Differential Revision: https://reviews.llvm.org/D24162
llvm-svn: 280977
Fix the .arch asm parser to use the full set of features for the architecture
and any extensions on the command line. Add and update testcases accordingly
as well as add an extension that was used but not supported.
llvm-svn: 280971
And associated commits, as they broke the Thumb bots.
This reverts commit r280935.
This reverts commit r280891.
This reverts commit r280888.
llvm-svn: 280967
I introduced this potential bug by missing this diff in:
https://reviews.llvm.org/rL280873
...however, I'm not sure how to reach this code path with a regression test.
We may be able to remove this code and assume that the transform to a constant
is always handled by InstSimplify?
llvm-svn: 280964
Refactor replaceDominatedUsesWith to have a flag to control whether to replace uses in BB itself.
Summary: This is in preparation for LoopSink pass which calls replaceDominatedUsesWith to update after sinking.
llvm-svn: 280949
I mised the check that it had to support ARM to work. This commit tries
to fix that, to make sure we don't emit ARM code in Thumb-only mode.
llvm-svn: 280935
Materializing something like "-3" can be done as 2 instructions:
MOV r0, #3
MVN r0, r0
This has a cost of 2, not 3. It looks like we were already trying to detect this pattern in TII::getIntImmCost(), but were taking the complement of the zero-extended value instead of the sign-extended value which is unlikely to ever produce a number < 256.
There were no tests failing after changing this... :/
llvm-svn: 280928
Add the ability to computeKnownBits and SimplifyDemandedBits to extract the known zero/one bits from BUILD_VECTOR, returning the known bits that are shared by every vector element.
This is an initial step towards determining the sign bits of a vector (PR29079).
Differential Revision: https://reviews.llvm.org/D24253
llvm-svn: 280927
This reverts commit r280808.
It is possible that this change results in an infinite loop. This
is causing timeouts in some tests on ARM, and a Chromebook bot is
failing.
llvm-svn: 280918