Clang's support for weakref is now better than llvm-gcc's :-)
We don't introduce a new symbol and we correctly mark undefined references weak only if there is no
definition or regular undefined references in the same file.
llvm-svn: 97733
- This fixes many many more places than the test case, but my feeling is we need to audit alignment systematically so I'm not inclined to try hard to test the individual fixes in this patch. If this bothers you, patches welcome!
PR6240.
llvm-svn: 95648
follows (as conservatively as possible) gcc's current behavior: attributes
written on return types that don't apply there are applied to the function
instead, etc. Only parse CC attributes as type attributes, not as decl attributes;
don't accepet noreturn as a decl attribute on ValueDecls, either (it still
needs to apply to other decls, like blocks). Consistently consume CC/noreturn
information throughout codegen; enforce this by removing their default values
in CodeGenTypes::getFunctionInfo().
llvm-svn: 95436
need to deal with aggregates specially; this is consistent with the rest of IRgen.
Also, simplify EmitParmDecl and don't worry about using Decl::getNameAsString.
llvm-svn: 95393
With this fix, and the other fixes committed today a make check-all with a clang-built LLVM now gives:
Expected Passes : 6933
Expected Failures : 46
Unsupported Tests : 40
Unexpected Failures: 27
which means that we pass 99.96% of all tests :) The resulting 27 tests are all LLVMC tests and seem to be because of differences in the clang and gcc drivers.
llvm-svn: 95313
"ASTContext::getTypeSize() / 8". Replace [u]int64_t variables with CharUnits
ones as appropriate.
Also rename RawType, fromRaw(), and getRaw() in CharUnits to QuantityType,
fromQuantity(), and getQuantity() for clarity.
llvm-svn: 93153
non-existing 'isa' field of a non-existing struct type
all related to legacy type definition for 'id' which we have
dropped in clang in favor of a built-in type.
(fixes radar 7470820).
llvm-svn: 91455
This implements a new flag -fcatch-undefined-behavior. The flag turns
on additional runtime checks for:
T a[I];
a[i] abort when i < 0 or i >= I.
Future stuff includes shifts by >= bitwidth amounts.
llvm-svn: 91198
All statements that involve conditions can now hold on to a separate
condition declaration (a VarDecl), and will use a DeclRefExpr
referring to that VarDecl for the condition expression. ForStmts now
have such a VarDecl (I'd missed those in previous commits).
Also, since this change reworks the Action interface for
if/while/switch/for, use FullExprArg for the full expressions in those
expressions, to ensure that we're emitting
Note that we are (still) not generating the right cleanups for
condition variables in for statements. That will be a follow-on
commit.
llvm-svn: 89817
qualified reference to a declaration that is not a non-static data
member or non-static member function, e.g.,
namespace N { int i; }
int j = N::i;
Instead, extend DeclRefExpr to optionally store the qualifier. Most
clients won't see or care about the difference (since
QualifierDeclRefExpr inherited DeclRefExpr). However, this reduces the
number of top-level expression types that clients need to cope with,
brings the implementation of DeclRefExpr into line with MemberExpr,
and simplifies and unifies our handling of declaration references.
Extended DeclRefExpr to (optionally) store explicitly-specified
template arguments. This occurs when naming a declaration via a
template-id (which will be stored in a TemplateIdRefExpr) that,
following template argument deduction and (possibly) overload
resolution, is replaced with a DeclRefExpr that refers to a template
specialization but maintains the template arguments as written.
llvm-svn: 84962
struct A { };
struct B : A { };
void f() {
const A& a = B();
}
correctly. (This now does the offset conversion if necessary and calls the destructor when a goes out of scope).
llvm-svn: 84162
Type hierarchy. Demote 'volatile' to extended-qualifier status. Audit our
use of qualifiers and fix a few places that weren't dealing with qualifiers
quite right; many more remain.
llvm-svn: 82705
Several of the existing methods were identical to their respective
specializations, and so have been removed entirely. Several more 'leaf'
optimizations were introduced.
The getAsFoo() methods which imposed extra conditions, like
getAsObjCInterfacePointerType(), have been left in place.
llvm-svn: 82501
expressions, e.g.,
p->~T()
when p is a pointer to a scalar type.
We don't currently diagnose errors when pseudo-destructor expressions
are used in any way other than by forming a call.
llvm-svn: 81009
space within the MemberExpr for the nested-name-specifier and its
source range. We'll do the same thing with explicitly-specified
template arguments, assuming I don't flip-flop again.
llvm-svn: 80642
name, e.g.,
x->Base::f()
retain the qualifier (and its source range information) in a new
subclass of MemberExpr called CXXQualifiedMemberExpr. Provide
construction, transformation, profiling, printing, etc., for this new
expression type.
When a virtual function is called via a qualified name, don't emit a
virtual call. Instead, call that function directly. Mike, could you
add a CodeGen test for this, too?
llvm-svn: 80167
ever trigger). Add an "unsupported" case that triggers for C++ code.
It would be nice if someone would implement this properly... it
shouldn't be too hard, but I haven't looked closely at the relevant
code.
llvm-svn: 77562
Type::getAsReferenceType() -> Type::getAs<ReferenceType>()
Type::getAsRecordType() -> Type::getAs<RecordType>()
Type::getAsPointerType() -> Type::getAs<PointerType>()
Type::getAsBlockPointerType() -> Type::getAs<BlockPointerType>()
Type::getAsLValueReferenceType() -> Type::getAs<LValueReferenceType>()
Type::getAsRValueReferenceType() -> Type::getAs<RValueReferenceType>()
Type::getAsMemberPointerType() -> Type::getAs<MemberPointerType>()
Type::getAsReferenceType() -> Type::getAs<ReferenceType>()
Type::getAsTagType() -> Type::getAs<TagType>()
And remove Type::getAsReferenceType(), etc.
This change is similar to one I made a couple weeks ago, but that was partly
reverted pending some additional design discussion. With Doug's pending smart
pointer changes for Types, it seemed natural to take this approach.
llvm-svn: 77510
until Doug Gregor's Type smart pointer code lands (or more discussion occurs).
These methods just call the new Type::getAs<XXX> methods, so we still have
reduced implementation redundancy. Having explicit getAsXXXType() methods makes
it easier to set breakpoints in the debugger.
llvm-svn: 76193
This method is intended to eventually replace the individual
Type::getAsXXXType<> methods.
The motivation behind this change is twofold:
1) Reduce redundant implementations of Type::getAsXXXType() methods. Most of
them are basically copy-and-paste.
2) By centralizing the implementation of the getAs<Type> logic we can more
smoothly move over to Doug Gregor's proposed canonical type smart pointer
scheme.
Along with this patch:
a) Removed 'Type::getAsPointerType()'; now clients use getAs<PointerType>.
b) Removed 'Type::getAsBlockPointerTypE()'; now clients use getAs<BlockPointerType>.
llvm-svn: 76098
The idea is to segregate Objective-C "object" pointers from general C pointers (utilizing the recently added ObjCObjectPointerType). The fun starts in Sema::GetTypeForDeclarator(), where "SomeInterface *" is now represented by a single AST node (rather than a PointerType whose Pointee is an ObjCInterfaceType). Since a significant amount of code assumed ObjC object pointers where based on C pointers/structs, this patch is very tedious. It should also explain why it is hard to accomplish this in smaller, self-contained patches.
This patch does most of the "heavy lifting" related to moving from PointerType->ObjCObjectPointerType. It doesn't include all potential "cleanups". The good news is additional cleanups can be done later (some are noted in the code). This patch is so large that I didn't want to include any changes that are purely aesthetic.
By making the ObjC types truly built-in, they are much easier to work with (and require fewer "hacks"). For example, there is no need for ASTContext::isObjCIdStructType() or ASTContext::isObjCClassStructType()! We believe this change (and the follow-up cleanups) will pay dividends over time.
Given the amount of code change, I do expect some fallout from this change (though it does pass all of the clang tests). If you notice any problems, please let us know asap! Thanks.
llvm-svn: 75314
The implementations of these methods can Use Decl::getASTContext() to get the ASTContext.
This commit touches a lot of files since call sites for these methods are everywhere.
I used pre-tokenized "carbon.h" and "cocoa.h" headers to do some timings, and there was no real time difference between before the commit and after it.
llvm-svn: 74501
It would be nice if someone could write an ObjC++ testcase for the case
of passing a property returning a struct to a function taking a const
reference.
llvm-svn: 72159
to allow us to support generation of deferred ctors/dtors.
It looks like codegen isn't emitting a call to the dtor in
member-functions.cpp:test2, but when it does, its body should
get emitted.
llvm-svn: 71594
types.
- I broke this in the switch to representing interfaces with opaque
types.
- <rdar://problem/6822660> clang crashes on subscript of interface in
32-bit mode
llvm-svn: 70009
the type assigned by sema (and is visible with sizeof(__func__) for
example) has nothing to do with what codegen ends up producing.
We should eventually add a method on PredefinedExpr to handle this.
In the meantime, just set up some framework and add some fixme's.
llvm-svn: 69872
- Exposed quite a few Sema issues and a CodeGen crash.
- See FIXMEs in test case, and in SemaDecl.cpp (PR3983).
I'm skeptical that __private_extern__ should actually be a storage
class value. I think that __private_extern__ basically amounts to
extern A __attribute__((visibility("hidden")))
and would be better off handled (a) as that, or (b) with an extra bit
in the VarDecl.
llvm-svn: 69020