8876 lines
		
	
	
		
			230 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			8876 lines
		
	
	
		
			230 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | ||
|  * Copyright 2011      INRIA Saclay
 | ||
|  * Copyright 2011      Sven Verdoolaege
 | ||
|  * Copyright 2012-2014 Ecole Normale Superieure
 | ||
|  * Copyright 2014      INRIA Rocquencourt
 | ||
|  *
 | ||
|  * Use of this software is governed by the MIT license
 | ||
|  *
 | ||
|  * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
 | ||
|  * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
 | ||
|  * 91893 Orsay, France
 | ||
|  * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
 | ||
|  * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
 | ||
|  * B.P. 105 - 78153 Le Chesnay, France
 | ||
|  */
 | ||
| 
 | ||
| #include <isl_ctx_private.h>
 | ||
| #define ISL_DIM_H
 | ||
| #include <isl_map_private.h>
 | ||
| #include <isl_union_map_private.h>
 | ||
| #include <isl_aff_private.h>
 | ||
| #include <isl_space_private.h>
 | ||
| #include <isl_local_space_private.h>
 | ||
| #include <isl_vec_private.h>
 | ||
| #include <isl_mat_private.h>
 | ||
| #include <isl/constraint.h>
 | ||
| #include <isl_seq.h>
 | ||
| #include <isl/set.h>
 | ||
| #include <isl_val_private.h>
 | ||
| #include <isl/deprecated/aff_int.h>
 | ||
| #include <isl_config.h>
 | ||
| 
 | ||
| #undef BASE
 | ||
| #define BASE aff
 | ||
| 
 | ||
| #include <isl_list_templ.c>
 | ||
| 
 | ||
| #undef BASE
 | ||
| #define BASE pw_aff
 | ||
| 
 | ||
| #include <isl_list_templ.c>
 | ||
| 
 | ||
| #undef BASE
 | ||
| #define BASE union_pw_aff
 | ||
| 
 | ||
| #include <isl_list_templ.c>
 | ||
| 
 | ||
| #undef BASE
 | ||
| #define BASE union_pw_multi_aff
 | ||
| 
 | ||
| #include <isl_list_templ.c>
 | ||
| 
 | ||
| __isl_give isl_aff *isl_aff_alloc_vec(__isl_take isl_local_space *ls,
 | ||
| 	__isl_take isl_vec *v)
 | ||
| {
 | ||
| 	isl_aff *aff;
 | ||
| 
 | ||
| 	if (!ls || !v)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	aff = isl_calloc_type(v->ctx, struct isl_aff);
 | ||
| 	if (!aff)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	aff->ref = 1;
 | ||
| 	aff->ls = ls;
 | ||
| 	aff->v = v;
 | ||
| 
 | ||
| 	return aff;
 | ||
| error:
 | ||
| 	isl_local_space_free(ls);
 | ||
| 	isl_vec_free(v);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| __isl_give isl_aff *isl_aff_alloc(__isl_take isl_local_space *ls)
 | ||
| {
 | ||
| 	isl_ctx *ctx;
 | ||
| 	isl_vec *v;
 | ||
| 	unsigned total;
 | ||
| 
 | ||
| 	if (!ls)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	ctx = isl_local_space_get_ctx(ls);
 | ||
| 	if (!isl_local_space_divs_known(ls))
 | ||
| 		isl_die(ctx, isl_error_invalid, "local space has unknown divs",
 | ||
| 			goto error);
 | ||
| 	if (!isl_local_space_is_set(ls))
 | ||
| 		isl_die(ctx, isl_error_invalid,
 | ||
| 			"domain of affine expression should be a set",
 | ||
| 			goto error);
 | ||
| 
 | ||
| 	total = isl_local_space_dim(ls, isl_dim_all);
 | ||
| 	v = isl_vec_alloc(ctx, 1 + 1 + total);
 | ||
| 	return isl_aff_alloc_vec(ls, v);
 | ||
| error:
 | ||
| 	isl_local_space_free(ls);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| __isl_give isl_aff *isl_aff_zero_on_domain(__isl_take isl_local_space *ls)
 | ||
| {
 | ||
| 	isl_aff *aff;
 | ||
| 
 | ||
| 	aff = isl_aff_alloc(ls);
 | ||
| 	if (!aff)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	isl_int_set_si(aff->v->el[0], 1);
 | ||
| 	isl_seq_clr(aff->v->el + 1, aff->v->size - 1);
 | ||
| 
 | ||
| 	return aff;
 | ||
| }
 | ||
| 
 | ||
| /* Return a piecewise affine expression defined on the specified domain
 | ||
|  * that is equal to zero.
 | ||
|  */
 | ||
| __isl_give isl_pw_aff *isl_pw_aff_zero_on_domain(__isl_take isl_local_space *ls)
 | ||
| {
 | ||
| 	return isl_pw_aff_from_aff(isl_aff_zero_on_domain(ls));
 | ||
| }
 | ||
| 
 | ||
| /* Return an affine expression defined on the specified domain
 | ||
|  * that represents NaN.
 | ||
|  */
 | ||
| __isl_give isl_aff *isl_aff_nan_on_domain(__isl_take isl_local_space *ls)
 | ||
| {
 | ||
| 	isl_aff *aff;
 | ||
| 
 | ||
| 	aff = isl_aff_alloc(ls);
 | ||
| 	if (!aff)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	isl_seq_clr(aff->v->el, aff->v->size);
 | ||
| 
 | ||
| 	return aff;
 | ||
| }
 | ||
| 
 | ||
| /* Return a piecewise affine expression defined on the specified domain
 | ||
|  * that represents NaN.
 | ||
|  */
 | ||
| __isl_give isl_pw_aff *isl_pw_aff_nan_on_domain(__isl_take isl_local_space *ls)
 | ||
| {
 | ||
| 	return isl_pw_aff_from_aff(isl_aff_nan_on_domain(ls));
 | ||
| }
 | ||
| 
 | ||
| /* Return an affine expression that is equal to "val" on
 | ||
|  * domain local space "ls".
 | ||
|  */
 | ||
| __isl_give isl_aff *isl_aff_val_on_domain(__isl_take isl_local_space *ls,
 | ||
| 	__isl_take isl_val *val)
 | ||
| {
 | ||
| 	isl_aff *aff;
 | ||
| 
 | ||
| 	if (!ls || !val)
 | ||
| 		goto error;
 | ||
| 	if (!isl_val_is_rat(val))
 | ||
| 		isl_die(isl_val_get_ctx(val), isl_error_invalid,
 | ||
| 			"expecting rational value", goto error);
 | ||
| 
 | ||
| 	aff = isl_aff_alloc(isl_local_space_copy(ls));
 | ||
| 	if (!aff)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	isl_seq_clr(aff->v->el + 2, aff->v->size - 2);
 | ||
| 	isl_int_set(aff->v->el[1], val->n);
 | ||
| 	isl_int_set(aff->v->el[0], val->d);
 | ||
| 
 | ||
| 	isl_local_space_free(ls);
 | ||
| 	isl_val_free(val);
 | ||
| 	return aff;
 | ||
| error:
 | ||
| 	isl_local_space_free(ls);
 | ||
| 	isl_val_free(val);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Return an affine expression that is equal to the specified dimension
 | ||
|  * in "ls".
 | ||
|  */
 | ||
| __isl_give isl_aff *isl_aff_var_on_domain(__isl_take isl_local_space *ls,
 | ||
| 	enum isl_dim_type type, unsigned pos)
 | ||
| {
 | ||
| 	isl_space *space;
 | ||
| 	isl_aff *aff;
 | ||
| 
 | ||
| 	if (!ls)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	space = isl_local_space_get_space(ls);
 | ||
| 	if (!space)
 | ||
| 		goto error;
 | ||
| 	if (isl_space_is_map(space))
 | ||
| 		isl_die(isl_space_get_ctx(space), isl_error_invalid,
 | ||
| 			"expecting (parameter) set space", goto error);
 | ||
| 	if (pos >= isl_local_space_dim(ls, type))
 | ||
| 		isl_die(isl_space_get_ctx(space), isl_error_invalid,
 | ||
| 			"position out of bounds", goto error);
 | ||
| 
 | ||
| 	isl_space_free(space);
 | ||
| 	aff = isl_aff_alloc(ls);
 | ||
| 	if (!aff)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	pos += isl_local_space_offset(aff->ls, type);
 | ||
| 
 | ||
| 	isl_int_set_si(aff->v->el[0], 1);
 | ||
| 	isl_seq_clr(aff->v->el + 1, aff->v->size - 1);
 | ||
| 	isl_int_set_si(aff->v->el[1 + pos], 1);
 | ||
| 
 | ||
| 	return aff;
 | ||
| error:
 | ||
| 	isl_local_space_free(ls);
 | ||
| 	isl_space_free(space);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Return a piecewise affine expression that is equal to
 | ||
|  * the specified dimension in "ls".
 | ||
|  */
 | ||
| __isl_give isl_pw_aff *isl_pw_aff_var_on_domain(__isl_take isl_local_space *ls,
 | ||
| 	enum isl_dim_type type, unsigned pos)
 | ||
| {
 | ||
| 	return isl_pw_aff_from_aff(isl_aff_var_on_domain(ls, type, pos));
 | ||
| }
 | ||
| 
 | ||
| __isl_give isl_aff *isl_aff_copy(__isl_keep isl_aff *aff)
 | ||
| {
 | ||
| 	if (!aff)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	aff->ref++;
 | ||
| 	return aff;
 | ||
| }
 | ||
| 
 | ||
| __isl_give isl_aff *isl_aff_dup(__isl_keep isl_aff *aff)
 | ||
| {
 | ||
| 	if (!aff)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	return isl_aff_alloc_vec(isl_local_space_copy(aff->ls),
 | ||
| 				 isl_vec_copy(aff->v));
 | ||
| }
 | ||
| 
 | ||
| __isl_give isl_aff *isl_aff_cow(__isl_take isl_aff *aff)
 | ||
| {
 | ||
| 	if (!aff)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	if (aff->ref == 1)
 | ||
| 		return aff;
 | ||
| 	aff->ref--;
 | ||
| 	return isl_aff_dup(aff);
 | ||
| }
 | ||
| 
 | ||
| __isl_null isl_aff *isl_aff_free(__isl_take isl_aff *aff)
 | ||
| {
 | ||
| 	if (!aff)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	if (--aff->ref > 0)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	isl_local_space_free(aff->ls);
 | ||
| 	isl_vec_free(aff->v);
 | ||
| 
 | ||
| 	free(aff);
 | ||
| 
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| isl_ctx *isl_aff_get_ctx(__isl_keep isl_aff *aff)
 | ||
| {
 | ||
| 	return aff ? isl_local_space_get_ctx(aff->ls) : NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Return a hash value that digests "aff".
 | ||
|  */
 | ||
| uint32_t isl_aff_get_hash(__isl_keep isl_aff *aff)
 | ||
| {
 | ||
| 	uint32_t hash, ls_hash, v_hash;
 | ||
| 
 | ||
| 	if (!aff)
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	hash = isl_hash_init();
 | ||
| 	ls_hash = isl_local_space_get_hash(aff->ls);
 | ||
| 	isl_hash_hash(hash, ls_hash);
 | ||
| 	v_hash = isl_vec_get_hash(aff->v);
 | ||
| 	isl_hash_hash(hash, v_hash);
 | ||
| 
 | ||
| 	return hash;
 | ||
| }
 | ||
| 
 | ||
| /* Externally, an isl_aff has a map space, but internally, the
 | ||
|  * ls field corresponds to the domain of that space.
 | ||
|  */
 | ||
| int isl_aff_dim(__isl_keep isl_aff *aff, enum isl_dim_type type)
 | ||
| {
 | ||
| 	if (!aff)
 | ||
| 		return 0;
 | ||
| 	if (type == isl_dim_out)
 | ||
| 		return 1;
 | ||
| 	if (type == isl_dim_in)
 | ||
| 		type = isl_dim_set;
 | ||
| 	return isl_local_space_dim(aff->ls, type);
 | ||
| }
 | ||
| 
 | ||
| /* Return the position of the dimension of the given type and name
 | ||
|  * in "aff".
 | ||
|  * Return -1 if no such dimension can be found.
 | ||
|  */
 | ||
| int isl_aff_find_dim_by_name(__isl_keep isl_aff *aff, enum isl_dim_type type,
 | ||
| 	const char *name)
 | ||
| {
 | ||
| 	if (!aff)
 | ||
| 		return -1;
 | ||
| 	if (type == isl_dim_out)
 | ||
| 		return -1;
 | ||
| 	if (type == isl_dim_in)
 | ||
| 		type = isl_dim_set;
 | ||
| 	return isl_local_space_find_dim_by_name(aff->ls, type, name);
 | ||
| }
 | ||
| 
 | ||
| __isl_give isl_space *isl_aff_get_domain_space(__isl_keep isl_aff *aff)
 | ||
| {
 | ||
| 	return aff ? isl_local_space_get_space(aff->ls) : NULL;
 | ||
| }
 | ||
| 
 | ||
| __isl_give isl_space *isl_aff_get_space(__isl_keep isl_aff *aff)
 | ||
| {
 | ||
| 	isl_space *space;
 | ||
| 	if (!aff)
 | ||
| 		return NULL;
 | ||
| 	space = isl_local_space_get_space(aff->ls);
 | ||
| 	space = isl_space_from_domain(space);
 | ||
| 	space = isl_space_add_dims(space, isl_dim_out, 1);
 | ||
| 	return space;
 | ||
| }
 | ||
| 
 | ||
| __isl_give isl_local_space *isl_aff_get_domain_local_space(
 | ||
| 	__isl_keep isl_aff *aff)
 | ||
| {
 | ||
| 	return aff ? isl_local_space_copy(aff->ls) : NULL;
 | ||
| }
 | ||
| 
 | ||
| __isl_give isl_local_space *isl_aff_get_local_space(__isl_keep isl_aff *aff)
 | ||
| {
 | ||
| 	isl_local_space *ls;
 | ||
| 	if (!aff)
 | ||
| 		return NULL;
 | ||
| 	ls = isl_local_space_copy(aff->ls);
 | ||
| 	ls = isl_local_space_from_domain(ls);
 | ||
| 	ls = isl_local_space_add_dims(ls, isl_dim_out, 1);
 | ||
| 	return ls;
 | ||
| }
 | ||
| 
 | ||
| /* Externally, an isl_aff has a map space, but internally, the
 | ||
|  * ls field corresponds to the domain of that space.
 | ||
|  */
 | ||
| const char *isl_aff_get_dim_name(__isl_keep isl_aff *aff,
 | ||
| 	enum isl_dim_type type, unsigned pos)
 | ||
| {
 | ||
| 	if (!aff)
 | ||
| 		return NULL;
 | ||
| 	if (type == isl_dim_out)
 | ||
| 		return NULL;
 | ||
| 	if (type == isl_dim_in)
 | ||
| 		type = isl_dim_set;
 | ||
| 	return isl_local_space_get_dim_name(aff->ls, type, pos);
 | ||
| }
 | ||
| 
 | ||
| __isl_give isl_aff *isl_aff_reset_domain_space(__isl_take isl_aff *aff,
 | ||
| 	__isl_take isl_space *dim)
 | ||
| {
 | ||
| 	aff = isl_aff_cow(aff);
 | ||
| 	if (!aff || !dim)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	aff->ls = isl_local_space_reset_space(aff->ls, dim);
 | ||
| 	if (!aff->ls)
 | ||
| 		return isl_aff_free(aff);
 | ||
| 
 | ||
| 	return aff;
 | ||
| error:
 | ||
| 	isl_aff_free(aff);
 | ||
| 	isl_space_free(dim);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Reset the space of "aff".  This function is called from isl_pw_templ.c
 | ||
|  * and doesn't know if the space of an element object is represented
 | ||
|  * directly or through its domain.  It therefore passes along both.
 | ||
|  */
 | ||
| __isl_give isl_aff *isl_aff_reset_space_and_domain(__isl_take isl_aff *aff,
 | ||
| 	__isl_take isl_space *space, __isl_take isl_space *domain)
 | ||
| {
 | ||
| 	isl_space_free(space);
 | ||
| 	return isl_aff_reset_domain_space(aff, domain);
 | ||
| }
 | ||
| 
 | ||
| /* Reorder the coefficients of the affine expression based
 | ||
|  * on the given reordering.
 | ||
|  * The reordering r is assumed to have been extended with the local
 | ||
|  * variables.
 | ||
|  */
 | ||
| static __isl_give isl_vec *vec_reorder(__isl_take isl_vec *vec,
 | ||
| 	__isl_take isl_reordering *r, int n_div)
 | ||
| {
 | ||
| 	isl_vec *res;
 | ||
| 	int i;
 | ||
| 
 | ||
| 	if (!vec || !r)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	res = isl_vec_alloc(vec->ctx,
 | ||
| 			    2 + isl_space_dim(r->dim, isl_dim_all) + n_div);
 | ||
| 	if (!res)
 | ||
| 		goto error;
 | ||
| 	isl_seq_cpy(res->el, vec->el, 2);
 | ||
| 	isl_seq_clr(res->el + 2, res->size - 2);
 | ||
| 	for (i = 0; i < r->len; ++i)
 | ||
| 		isl_int_set(res->el[2 + r->pos[i]], vec->el[2 + i]);
 | ||
| 
 | ||
| 	isl_reordering_free(r);
 | ||
| 	isl_vec_free(vec);
 | ||
| 	return res;
 | ||
| error:
 | ||
| 	isl_vec_free(vec);
 | ||
| 	isl_reordering_free(r);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Reorder the dimensions of the domain of "aff" according
 | ||
|  * to the given reordering.
 | ||
|  */
 | ||
| __isl_give isl_aff *isl_aff_realign_domain(__isl_take isl_aff *aff,
 | ||
| 	__isl_take isl_reordering *r)
 | ||
| {
 | ||
| 	aff = isl_aff_cow(aff);
 | ||
| 	if (!aff)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	r = isl_reordering_extend(r, aff->ls->div->n_row);
 | ||
| 	aff->v = vec_reorder(aff->v, isl_reordering_copy(r),
 | ||
| 				aff->ls->div->n_row);
 | ||
| 	aff->ls = isl_local_space_realign(aff->ls, r);
 | ||
| 
 | ||
| 	if (!aff->v || !aff->ls)
 | ||
| 		return isl_aff_free(aff);
 | ||
| 
 | ||
| 	return aff;
 | ||
| error:
 | ||
| 	isl_aff_free(aff);
 | ||
| 	isl_reordering_free(r);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| __isl_give isl_aff *isl_aff_align_params(__isl_take isl_aff *aff,
 | ||
| 	__isl_take isl_space *model)
 | ||
| {
 | ||
| 	isl_bool equal_params;
 | ||
| 
 | ||
| 	if (!aff || !model)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	equal_params = isl_space_has_equal_params(aff->ls->dim, model);
 | ||
| 	if (equal_params < 0)
 | ||
| 		goto error;
 | ||
| 	if (!equal_params) {
 | ||
| 		isl_reordering *exp;
 | ||
| 
 | ||
| 		model = isl_space_drop_dims(model, isl_dim_in,
 | ||
| 					0, isl_space_dim(model, isl_dim_in));
 | ||
| 		model = isl_space_drop_dims(model, isl_dim_out,
 | ||
| 					0, isl_space_dim(model, isl_dim_out));
 | ||
| 		exp = isl_parameter_alignment_reordering(aff->ls->dim, model);
 | ||
| 		exp = isl_reordering_extend_space(exp,
 | ||
| 					isl_aff_get_domain_space(aff));
 | ||
| 		aff = isl_aff_realign_domain(aff, exp);
 | ||
| 	}
 | ||
| 
 | ||
| 	isl_space_free(model);
 | ||
| 	return aff;
 | ||
| error:
 | ||
| 	isl_space_free(model);
 | ||
| 	isl_aff_free(aff);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Is "aff" obviously equal to zero?
 | ||
|  *
 | ||
|  * If the denominator is zero, then "aff" is not equal to zero.
 | ||
|  */
 | ||
| isl_bool isl_aff_plain_is_zero(__isl_keep isl_aff *aff)
 | ||
| {
 | ||
| 	if (!aff)
 | ||
| 		return isl_bool_error;
 | ||
| 
 | ||
| 	if (isl_int_is_zero(aff->v->el[0]))
 | ||
| 		return isl_bool_false;
 | ||
| 	return isl_seq_first_non_zero(aff->v->el + 1, aff->v->size - 1) < 0;
 | ||
| }
 | ||
| 
 | ||
| /* Does "aff" represent NaN?
 | ||
|  */
 | ||
| isl_bool isl_aff_is_nan(__isl_keep isl_aff *aff)
 | ||
| {
 | ||
| 	if (!aff)
 | ||
| 		return isl_bool_error;
 | ||
| 
 | ||
| 	return isl_seq_first_non_zero(aff->v->el, 2) < 0;
 | ||
| }
 | ||
| 
 | ||
| /* Are "aff1" and "aff2" obviously equal?
 | ||
|  *
 | ||
|  * NaN is not equal to anything, not even to another NaN.
 | ||
|  */
 | ||
| isl_bool isl_aff_plain_is_equal(__isl_keep isl_aff *aff1,
 | ||
| 	__isl_keep isl_aff *aff2)
 | ||
| {
 | ||
| 	isl_bool equal;
 | ||
| 
 | ||
| 	if (!aff1 || !aff2)
 | ||
| 		return isl_bool_error;
 | ||
| 
 | ||
| 	if (isl_aff_is_nan(aff1) || isl_aff_is_nan(aff2))
 | ||
| 		return isl_bool_false;
 | ||
| 
 | ||
| 	equal = isl_local_space_is_equal(aff1->ls, aff2->ls);
 | ||
| 	if (equal < 0 || !equal)
 | ||
| 		return equal;
 | ||
| 
 | ||
| 	return isl_vec_is_equal(aff1->v, aff2->v);
 | ||
| }
 | ||
| 
 | ||
| /* Return the common denominator of "aff" in "v".
 | ||
|  *
 | ||
|  * We cannot return anything meaningful in case of a NaN.
 | ||
|  */
 | ||
| isl_stat isl_aff_get_denominator(__isl_keep isl_aff *aff, isl_int *v)
 | ||
| {
 | ||
| 	if (!aff)
 | ||
| 		return isl_stat_error;
 | ||
| 	if (isl_aff_is_nan(aff))
 | ||
| 		isl_die(isl_aff_get_ctx(aff), isl_error_invalid,
 | ||
| 			"cannot get denominator of NaN", return isl_stat_error);
 | ||
| 	isl_int_set(*v, aff->v->el[0]);
 | ||
| 	return isl_stat_ok;
 | ||
| }
 | ||
| 
 | ||
| /* Return the common denominator of "aff".
 | ||
|  */
 | ||
| __isl_give isl_val *isl_aff_get_denominator_val(__isl_keep isl_aff *aff)
 | ||
| {
 | ||
| 	isl_ctx *ctx;
 | ||
| 
 | ||
| 	if (!aff)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	ctx = isl_aff_get_ctx(aff);
 | ||
| 	if (isl_aff_is_nan(aff))
 | ||
| 		return isl_val_nan(ctx);
 | ||
| 	return isl_val_int_from_isl_int(ctx, aff->v->el[0]);
 | ||
| }
 | ||
| 
 | ||
| /* Return the constant term of "aff" in "v".
 | ||
|  *
 | ||
|  * We cannot return anything meaningful in case of a NaN.
 | ||
|  */
 | ||
| int isl_aff_get_constant(__isl_keep isl_aff *aff, isl_int *v)
 | ||
| {
 | ||
| 	if (!aff)
 | ||
| 		return -1;
 | ||
| 	if (isl_aff_is_nan(aff))
 | ||
| 		isl_die(isl_aff_get_ctx(aff), isl_error_invalid,
 | ||
| 			"cannot get constant term of NaN", return -1);
 | ||
| 	isl_int_set(*v, aff->v->el[1]);
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| /* Return the constant term of "aff".
 | ||
|  */
 | ||
| __isl_give isl_val *isl_aff_get_constant_val(__isl_keep isl_aff *aff)
 | ||
| {
 | ||
| 	isl_ctx *ctx;
 | ||
| 	isl_val *v;
 | ||
| 
 | ||
| 	if (!aff)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	ctx = isl_aff_get_ctx(aff);
 | ||
| 	if (isl_aff_is_nan(aff))
 | ||
| 		return isl_val_nan(ctx);
 | ||
| 	v = isl_val_rat_from_isl_int(ctx, aff->v->el[1], aff->v->el[0]);
 | ||
| 	return isl_val_normalize(v);
 | ||
| }
 | ||
| 
 | ||
| /* Return the coefficient of the variable of type "type" at position "pos"
 | ||
|  * of "aff" in "v".
 | ||
|  *
 | ||
|  * We cannot return anything meaningful in case of a NaN.
 | ||
|  */
 | ||
| int isl_aff_get_coefficient(__isl_keep isl_aff *aff,
 | ||
| 	enum isl_dim_type type, int pos, isl_int *v)
 | ||
| {
 | ||
| 	if (!aff)
 | ||
| 		return -1;
 | ||
| 
 | ||
| 	if (type == isl_dim_out)
 | ||
| 		isl_die(aff->v->ctx, isl_error_invalid,
 | ||
| 			"output/set dimension does not have a coefficient",
 | ||
| 			return -1);
 | ||
| 	if (type == isl_dim_in)
 | ||
| 		type = isl_dim_set;
 | ||
| 
 | ||
| 	if (pos >= isl_local_space_dim(aff->ls, type))
 | ||
| 		isl_die(aff->v->ctx, isl_error_invalid,
 | ||
| 			"position out of bounds", return -1);
 | ||
| 
 | ||
| 	if (isl_aff_is_nan(aff))
 | ||
| 		isl_die(isl_aff_get_ctx(aff), isl_error_invalid,
 | ||
| 			"cannot get coefficient of NaN", return -1);
 | ||
| 	pos += isl_local_space_offset(aff->ls, type);
 | ||
| 	isl_int_set(*v, aff->v->el[1 + pos]);
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| /* Return the coefficient of the variable of type "type" at position "pos"
 | ||
|  * of "aff".
 | ||
|  */
 | ||
| __isl_give isl_val *isl_aff_get_coefficient_val(__isl_keep isl_aff *aff,
 | ||
| 	enum isl_dim_type type, int pos)
 | ||
| {
 | ||
| 	isl_ctx *ctx;
 | ||
| 	isl_val *v;
 | ||
| 
 | ||
| 	if (!aff)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	ctx = isl_aff_get_ctx(aff);
 | ||
| 	if (type == isl_dim_out)
 | ||
| 		isl_die(ctx, isl_error_invalid,
 | ||
| 			"output/set dimension does not have a coefficient",
 | ||
| 			return NULL);
 | ||
| 	if (type == isl_dim_in)
 | ||
| 		type = isl_dim_set;
 | ||
| 
 | ||
| 	if (pos >= isl_local_space_dim(aff->ls, type))
 | ||
| 		isl_die(ctx, isl_error_invalid,
 | ||
| 			"position out of bounds", return NULL);
 | ||
| 
 | ||
| 	if (isl_aff_is_nan(aff))
 | ||
| 		return isl_val_nan(ctx);
 | ||
| 	pos += isl_local_space_offset(aff->ls, type);
 | ||
| 	v = isl_val_rat_from_isl_int(ctx, aff->v->el[1 + pos], aff->v->el[0]);
 | ||
| 	return isl_val_normalize(v);
 | ||
| }
 | ||
| 
 | ||
| /* Return the sign of the coefficient of the variable of type "type"
 | ||
|  * at position "pos" of "aff".
 | ||
|  */
 | ||
| int isl_aff_coefficient_sgn(__isl_keep isl_aff *aff, enum isl_dim_type type,
 | ||
| 	int pos)
 | ||
| {
 | ||
| 	isl_ctx *ctx;
 | ||
| 
 | ||
| 	if (!aff)
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	ctx = isl_aff_get_ctx(aff);
 | ||
| 	if (type == isl_dim_out)
 | ||
| 		isl_die(ctx, isl_error_invalid,
 | ||
| 			"output/set dimension does not have a coefficient",
 | ||
| 			return 0);
 | ||
| 	if (type == isl_dim_in)
 | ||
| 		type = isl_dim_set;
 | ||
| 
 | ||
| 	if (pos >= isl_local_space_dim(aff->ls, type))
 | ||
| 		isl_die(ctx, isl_error_invalid,
 | ||
| 			"position out of bounds", return 0);
 | ||
| 
 | ||
| 	pos += isl_local_space_offset(aff->ls, type);
 | ||
| 	return isl_int_sgn(aff->v->el[1 + pos]);
 | ||
| }
 | ||
| 
 | ||
| /* Replace the denominator of "aff" by "v".
 | ||
|  *
 | ||
|  * A NaN is unaffected by this operation.
 | ||
|  */
 | ||
| __isl_give isl_aff *isl_aff_set_denominator(__isl_take isl_aff *aff, isl_int v)
 | ||
| {
 | ||
| 	if (!aff)
 | ||
| 		return NULL;
 | ||
| 	if (isl_aff_is_nan(aff))
 | ||
| 		return aff;
 | ||
| 	aff = isl_aff_cow(aff);
 | ||
| 	if (!aff)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	aff->v = isl_vec_cow(aff->v);
 | ||
| 	if (!aff->v)
 | ||
| 		return isl_aff_free(aff);
 | ||
| 
 | ||
| 	isl_int_set(aff->v->el[0], v);
 | ||
| 
 | ||
| 	return aff;
 | ||
| }
 | ||
| 
 | ||
| /* Replace the numerator of the constant term of "aff" by "v".
 | ||
|  *
 | ||
|  * A NaN is unaffected by this operation.
 | ||
|  */
 | ||
| __isl_give isl_aff *isl_aff_set_constant(__isl_take isl_aff *aff, isl_int v)
 | ||
| {
 | ||
| 	if (!aff)
 | ||
| 		return NULL;
 | ||
| 	if (isl_aff_is_nan(aff))
 | ||
| 		return aff;
 | ||
| 	aff = isl_aff_cow(aff);
 | ||
| 	if (!aff)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	aff->v = isl_vec_cow(aff->v);
 | ||
| 	if (!aff->v)
 | ||
| 		return isl_aff_free(aff);
 | ||
| 
 | ||
| 	isl_int_set(aff->v->el[1], v);
 | ||
| 
 | ||
| 	return aff;
 | ||
| }
 | ||
| 
 | ||
| /* Replace the constant term of "aff" by "v".
 | ||
|  *
 | ||
|  * A NaN is unaffected by this operation.
 | ||
|  */
 | ||
| __isl_give isl_aff *isl_aff_set_constant_val(__isl_take isl_aff *aff,
 | ||
| 	__isl_take isl_val *v)
 | ||
| {
 | ||
| 	if (!aff || !v)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	if (isl_aff_is_nan(aff)) {
 | ||
| 		isl_val_free(v);
 | ||
| 		return aff;
 | ||
| 	}
 | ||
| 
 | ||
| 	if (!isl_val_is_rat(v))
 | ||
| 		isl_die(isl_aff_get_ctx(aff), isl_error_invalid,
 | ||
| 			"expecting rational value", goto error);
 | ||
| 
 | ||
| 	if (isl_int_eq(aff->v->el[1], v->n) &&
 | ||
| 	    isl_int_eq(aff->v->el[0], v->d)) {
 | ||
| 		isl_val_free(v);
 | ||
| 		return aff;
 | ||
| 	}
 | ||
| 
 | ||
| 	aff = isl_aff_cow(aff);
 | ||
| 	if (!aff)
 | ||
| 		goto error;
 | ||
| 	aff->v = isl_vec_cow(aff->v);
 | ||
| 	if (!aff->v)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	if (isl_int_eq(aff->v->el[0], v->d)) {
 | ||
| 		isl_int_set(aff->v->el[1], v->n);
 | ||
| 	} else if (isl_int_is_one(v->d)) {
 | ||
| 		isl_int_mul(aff->v->el[1], aff->v->el[0], v->n);
 | ||
| 	} else {
 | ||
| 		isl_seq_scale(aff->v->el + 1,
 | ||
| 				aff->v->el + 1, v->d, aff->v->size - 1);
 | ||
| 		isl_int_mul(aff->v->el[1], aff->v->el[0], v->n);
 | ||
| 		isl_int_mul(aff->v->el[0], aff->v->el[0], v->d);
 | ||
| 		aff->v = isl_vec_normalize(aff->v);
 | ||
| 		if (!aff->v)
 | ||
| 			goto error;
 | ||
| 	}
 | ||
| 
 | ||
| 	isl_val_free(v);
 | ||
| 	return aff;
 | ||
| error:
 | ||
| 	isl_aff_free(aff);
 | ||
| 	isl_val_free(v);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Add "v" to the constant term of "aff".
 | ||
|  *
 | ||
|  * A NaN is unaffected by this operation.
 | ||
|  */
 | ||
| __isl_give isl_aff *isl_aff_add_constant(__isl_take isl_aff *aff, isl_int v)
 | ||
| {
 | ||
| 	if (isl_int_is_zero(v))
 | ||
| 		return aff;
 | ||
| 
 | ||
| 	if (!aff)
 | ||
| 		return NULL;
 | ||
| 	if (isl_aff_is_nan(aff))
 | ||
| 		return aff;
 | ||
| 	aff = isl_aff_cow(aff);
 | ||
| 	if (!aff)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	aff->v = isl_vec_cow(aff->v);
 | ||
| 	if (!aff->v)
 | ||
| 		return isl_aff_free(aff);
 | ||
| 
 | ||
| 	isl_int_addmul(aff->v->el[1], aff->v->el[0], v);
 | ||
| 
 | ||
| 	return aff;
 | ||
| }
 | ||
| 
 | ||
| /* Add "v" to the constant term of "aff".
 | ||
|  *
 | ||
|  * A NaN is unaffected by this operation.
 | ||
|  */
 | ||
| __isl_give isl_aff *isl_aff_add_constant_val(__isl_take isl_aff *aff,
 | ||
| 	__isl_take isl_val *v)
 | ||
| {
 | ||
| 	if (!aff || !v)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	if (isl_aff_is_nan(aff) || isl_val_is_zero(v)) {
 | ||
| 		isl_val_free(v);
 | ||
| 		return aff;
 | ||
| 	}
 | ||
| 
 | ||
| 	if (!isl_val_is_rat(v))
 | ||
| 		isl_die(isl_aff_get_ctx(aff), isl_error_invalid,
 | ||
| 			"expecting rational value", goto error);
 | ||
| 
 | ||
| 	aff = isl_aff_cow(aff);
 | ||
| 	if (!aff)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	aff->v = isl_vec_cow(aff->v);
 | ||
| 	if (!aff->v)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	if (isl_int_is_one(v->d)) {
 | ||
| 		isl_int_addmul(aff->v->el[1], aff->v->el[0], v->n);
 | ||
| 	} else if (isl_int_eq(aff->v->el[0], v->d)) {
 | ||
| 		isl_int_add(aff->v->el[1], aff->v->el[1], v->n);
 | ||
| 		aff->v = isl_vec_normalize(aff->v);
 | ||
| 		if (!aff->v)
 | ||
| 			goto error;
 | ||
| 	} else {
 | ||
| 		isl_seq_scale(aff->v->el + 1,
 | ||
| 				aff->v->el + 1, v->d, aff->v->size - 1);
 | ||
| 		isl_int_addmul(aff->v->el[1], aff->v->el[0], v->n);
 | ||
| 		isl_int_mul(aff->v->el[0], aff->v->el[0], v->d);
 | ||
| 		aff->v = isl_vec_normalize(aff->v);
 | ||
| 		if (!aff->v)
 | ||
| 			goto error;
 | ||
| 	}
 | ||
| 
 | ||
| 	isl_val_free(v);
 | ||
| 	return aff;
 | ||
| error:
 | ||
| 	isl_aff_free(aff);
 | ||
| 	isl_val_free(v);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| __isl_give isl_aff *isl_aff_add_constant_si(__isl_take isl_aff *aff, int v)
 | ||
| {
 | ||
| 	isl_int t;
 | ||
| 
 | ||
| 	isl_int_init(t);
 | ||
| 	isl_int_set_si(t, v);
 | ||
| 	aff = isl_aff_add_constant(aff, t);
 | ||
| 	isl_int_clear(t);
 | ||
| 
 | ||
| 	return aff;
 | ||
| }
 | ||
| 
 | ||
| /* Add "v" to the numerator of the constant term of "aff".
 | ||
|  *
 | ||
|  * A NaN is unaffected by this operation.
 | ||
|  */
 | ||
| __isl_give isl_aff *isl_aff_add_constant_num(__isl_take isl_aff *aff, isl_int v)
 | ||
| {
 | ||
| 	if (isl_int_is_zero(v))
 | ||
| 		return aff;
 | ||
| 
 | ||
| 	if (!aff)
 | ||
| 		return NULL;
 | ||
| 	if (isl_aff_is_nan(aff))
 | ||
| 		return aff;
 | ||
| 	aff = isl_aff_cow(aff);
 | ||
| 	if (!aff)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	aff->v = isl_vec_cow(aff->v);
 | ||
| 	if (!aff->v)
 | ||
| 		return isl_aff_free(aff);
 | ||
| 
 | ||
| 	isl_int_add(aff->v->el[1], aff->v->el[1], v);
 | ||
| 
 | ||
| 	return aff;
 | ||
| }
 | ||
| 
 | ||
| /* Add "v" to the numerator of the constant term of "aff".
 | ||
|  *
 | ||
|  * A NaN is unaffected by this operation.
 | ||
|  */
 | ||
| __isl_give isl_aff *isl_aff_add_constant_num_si(__isl_take isl_aff *aff, int v)
 | ||
| {
 | ||
| 	isl_int t;
 | ||
| 
 | ||
| 	if (v == 0)
 | ||
| 		return aff;
 | ||
| 
 | ||
| 	isl_int_init(t);
 | ||
| 	isl_int_set_si(t, v);
 | ||
| 	aff = isl_aff_add_constant_num(aff, t);
 | ||
| 	isl_int_clear(t);
 | ||
| 
 | ||
| 	return aff;
 | ||
| }
 | ||
| 
 | ||
| /* Replace the numerator of the constant term of "aff" by "v".
 | ||
|  *
 | ||
|  * A NaN is unaffected by this operation.
 | ||
|  */
 | ||
| __isl_give isl_aff *isl_aff_set_constant_si(__isl_take isl_aff *aff, int v)
 | ||
| {
 | ||
| 	if (!aff)
 | ||
| 		return NULL;
 | ||
| 	if (isl_aff_is_nan(aff))
 | ||
| 		return aff;
 | ||
| 	aff = isl_aff_cow(aff);
 | ||
| 	if (!aff)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	aff->v = isl_vec_cow(aff->v);
 | ||
| 	if (!aff->v)
 | ||
| 		return isl_aff_free(aff);
 | ||
| 
 | ||
| 	isl_int_set_si(aff->v->el[1], v);
 | ||
| 
 | ||
| 	return aff;
 | ||
| }
 | ||
| 
 | ||
| /* Replace the numerator of the coefficient of the variable of type "type"
 | ||
|  * at position "pos" of "aff" by "v".
 | ||
|  *
 | ||
|  * A NaN is unaffected by this operation.
 | ||
|  */
 | ||
| __isl_give isl_aff *isl_aff_set_coefficient(__isl_take isl_aff *aff,
 | ||
| 	enum isl_dim_type type, int pos, isl_int v)
 | ||
| {
 | ||
| 	if (!aff)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	if (type == isl_dim_out)
 | ||
| 		isl_die(aff->v->ctx, isl_error_invalid,
 | ||
| 			"output/set dimension does not have a coefficient",
 | ||
| 			return isl_aff_free(aff));
 | ||
| 	if (type == isl_dim_in)
 | ||
| 		type = isl_dim_set;
 | ||
| 
 | ||
| 	if (pos >= isl_local_space_dim(aff->ls, type))
 | ||
| 		isl_die(aff->v->ctx, isl_error_invalid,
 | ||
| 			"position out of bounds", return isl_aff_free(aff));
 | ||
| 
 | ||
| 	if (isl_aff_is_nan(aff))
 | ||
| 		return aff;
 | ||
| 	aff = isl_aff_cow(aff);
 | ||
| 	if (!aff)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	aff->v = isl_vec_cow(aff->v);
 | ||
| 	if (!aff->v)
 | ||
| 		return isl_aff_free(aff);
 | ||
| 
 | ||
| 	pos += isl_local_space_offset(aff->ls, type);
 | ||
| 	isl_int_set(aff->v->el[1 + pos], v);
 | ||
| 
 | ||
| 	return aff;
 | ||
| }
 | ||
| 
 | ||
| /* Replace the numerator of the coefficient of the variable of type "type"
 | ||
|  * at position "pos" of "aff" by "v".
 | ||
|  *
 | ||
|  * A NaN is unaffected by this operation.
 | ||
|  */
 | ||
| __isl_give isl_aff *isl_aff_set_coefficient_si(__isl_take isl_aff *aff,
 | ||
| 	enum isl_dim_type type, int pos, int v)
 | ||
| {
 | ||
| 	if (!aff)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	if (type == isl_dim_out)
 | ||
| 		isl_die(aff->v->ctx, isl_error_invalid,
 | ||
| 			"output/set dimension does not have a coefficient",
 | ||
| 			return isl_aff_free(aff));
 | ||
| 	if (type == isl_dim_in)
 | ||
| 		type = isl_dim_set;
 | ||
| 
 | ||
| 	if (pos < 0 || pos >= isl_local_space_dim(aff->ls, type))
 | ||
| 		isl_die(aff->v->ctx, isl_error_invalid,
 | ||
| 			"position out of bounds", return isl_aff_free(aff));
 | ||
| 
 | ||
| 	if (isl_aff_is_nan(aff))
 | ||
| 		return aff;
 | ||
| 	pos += isl_local_space_offset(aff->ls, type);
 | ||
| 	if (isl_int_cmp_si(aff->v->el[1 + pos], v) == 0)
 | ||
| 		return aff;
 | ||
| 
 | ||
| 	aff = isl_aff_cow(aff);
 | ||
| 	if (!aff)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	aff->v = isl_vec_cow(aff->v);
 | ||
| 	if (!aff->v)
 | ||
| 		return isl_aff_free(aff);
 | ||
| 
 | ||
| 	isl_int_set_si(aff->v->el[1 + pos], v);
 | ||
| 
 | ||
| 	return aff;
 | ||
| }
 | ||
| 
 | ||
| /* Replace the coefficient of the variable of type "type" at position "pos"
 | ||
|  * of "aff" by "v".
 | ||
|  *
 | ||
|  * A NaN is unaffected by this operation.
 | ||
|  */
 | ||
| __isl_give isl_aff *isl_aff_set_coefficient_val(__isl_take isl_aff *aff,
 | ||
| 	enum isl_dim_type type, int pos, __isl_take isl_val *v)
 | ||
| {
 | ||
| 	if (!aff || !v)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	if (type == isl_dim_out)
 | ||
| 		isl_die(aff->v->ctx, isl_error_invalid,
 | ||
| 			"output/set dimension does not have a coefficient",
 | ||
| 			goto error);
 | ||
| 	if (type == isl_dim_in)
 | ||
| 		type = isl_dim_set;
 | ||
| 
 | ||
| 	if (pos >= isl_local_space_dim(aff->ls, type))
 | ||
| 		isl_die(aff->v->ctx, isl_error_invalid,
 | ||
| 			"position out of bounds", goto error);
 | ||
| 
 | ||
| 	if (isl_aff_is_nan(aff)) {
 | ||
| 		isl_val_free(v);
 | ||
| 		return aff;
 | ||
| 	}
 | ||
| 	if (!isl_val_is_rat(v))
 | ||
| 		isl_die(isl_aff_get_ctx(aff), isl_error_invalid,
 | ||
| 			"expecting rational value", goto error);
 | ||
| 
 | ||
| 	pos += isl_local_space_offset(aff->ls, type);
 | ||
| 	if (isl_int_eq(aff->v->el[1 + pos], v->n) &&
 | ||
| 	    isl_int_eq(aff->v->el[0], v->d)) {
 | ||
| 		isl_val_free(v);
 | ||
| 		return aff;
 | ||
| 	}
 | ||
| 
 | ||
| 	aff = isl_aff_cow(aff);
 | ||
| 	if (!aff)
 | ||
| 		goto error;
 | ||
| 	aff->v = isl_vec_cow(aff->v);
 | ||
| 	if (!aff->v)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	if (isl_int_eq(aff->v->el[0], v->d)) {
 | ||
| 		isl_int_set(aff->v->el[1 + pos], v->n);
 | ||
| 	} else if (isl_int_is_one(v->d)) {
 | ||
| 		isl_int_mul(aff->v->el[1 + pos], aff->v->el[0], v->n);
 | ||
| 	} else {
 | ||
| 		isl_seq_scale(aff->v->el + 1,
 | ||
| 				aff->v->el + 1, v->d, aff->v->size - 1);
 | ||
| 		isl_int_mul(aff->v->el[1 + pos], aff->v->el[0], v->n);
 | ||
| 		isl_int_mul(aff->v->el[0], aff->v->el[0], v->d);
 | ||
| 		aff->v = isl_vec_normalize(aff->v);
 | ||
| 		if (!aff->v)
 | ||
| 			goto error;
 | ||
| 	}
 | ||
| 
 | ||
| 	isl_val_free(v);
 | ||
| 	return aff;
 | ||
| error:
 | ||
| 	isl_aff_free(aff);
 | ||
| 	isl_val_free(v);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Add "v" to the coefficient of the variable of type "type"
 | ||
|  * at position "pos" of "aff".
 | ||
|  *
 | ||
|  * A NaN is unaffected by this operation.
 | ||
|  */
 | ||
| __isl_give isl_aff *isl_aff_add_coefficient(__isl_take isl_aff *aff,
 | ||
| 	enum isl_dim_type type, int pos, isl_int v)
 | ||
| {
 | ||
| 	if (!aff)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	if (type == isl_dim_out)
 | ||
| 		isl_die(aff->v->ctx, isl_error_invalid,
 | ||
| 			"output/set dimension does not have a coefficient",
 | ||
| 			return isl_aff_free(aff));
 | ||
| 	if (type == isl_dim_in)
 | ||
| 		type = isl_dim_set;
 | ||
| 
 | ||
| 	if (pos >= isl_local_space_dim(aff->ls, type))
 | ||
| 		isl_die(aff->v->ctx, isl_error_invalid,
 | ||
| 			"position out of bounds", return isl_aff_free(aff));
 | ||
| 
 | ||
| 	if (isl_aff_is_nan(aff))
 | ||
| 		return aff;
 | ||
| 	aff = isl_aff_cow(aff);
 | ||
| 	if (!aff)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	aff->v = isl_vec_cow(aff->v);
 | ||
| 	if (!aff->v)
 | ||
| 		return isl_aff_free(aff);
 | ||
| 
 | ||
| 	pos += isl_local_space_offset(aff->ls, type);
 | ||
| 	isl_int_addmul(aff->v->el[1 + pos], aff->v->el[0], v);
 | ||
| 
 | ||
| 	return aff;
 | ||
| }
 | ||
| 
 | ||
| /* Add "v" to the coefficient of the variable of type "type"
 | ||
|  * at position "pos" of "aff".
 | ||
|  *
 | ||
|  * A NaN is unaffected by this operation.
 | ||
|  */
 | ||
| __isl_give isl_aff *isl_aff_add_coefficient_val(__isl_take isl_aff *aff,
 | ||
| 	enum isl_dim_type type, int pos, __isl_take isl_val *v)
 | ||
| {
 | ||
| 	if (!aff || !v)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	if (isl_val_is_zero(v)) {
 | ||
| 		isl_val_free(v);
 | ||
| 		return aff;
 | ||
| 	}
 | ||
| 
 | ||
| 	if (type == isl_dim_out)
 | ||
| 		isl_die(aff->v->ctx, isl_error_invalid,
 | ||
| 			"output/set dimension does not have a coefficient",
 | ||
| 			goto error);
 | ||
| 	if (type == isl_dim_in)
 | ||
| 		type = isl_dim_set;
 | ||
| 
 | ||
| 	if (pos >= isl_local_space_dim(aff->ls, type))
 | ||
| 		isl_die(aff->v->ctx, isl_error_invalid,
 | ||
| 			"position out of bounds", goto error);
 | ||
| 
 | ||
| 	if (isl_aff_is_nan(aff)) {
 | ||
| 		isl_val_free(v);
 | ||
| 		return aff;
 | ||
| 	}
 | ||
| 	if (!isl_val_is_rat(v))
 | ||
| 		isl_die(isl_aff_get_ctx(aff), isl_error_invalid,
 | ||
| 			"expecting rational value", goto error);
 | ||
| 
 | ||
| 	aff = isl_aff_cow(aff);
 | ||
| 	if (!aff)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	aff->v = isl_vec_cow(aff->v);
 | ||
| 	if (!aff->v)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	pos += isl_local_space_offset(aff->ls, type);
 | ||
| 	if (isl_int_is_one(v->d)) {
 | ||
| 		isl_int_addmul(aff->v->el[1 + pos], aff->v->el[0], v->n);
 | ||
| 	} else if (isl_int_eq(aff->v->el[0], v->d)) {
 | ||
| 		isl_int_add(aff->v->el[1 + pos], aff->v->el[1 + pos], v->n);
 | ||
| 		aff->v = isl_vec_normalize(aff->v);
 | ||
| 		if (!aff->v)
 | ||
| 			goto error;
 | ||
| 	} else {
 | ||
| 		isl_seq_scale(aff->v->el + 1,
 | ||
| 				aff->v->el + 1, v->d, aff->v->size - 1);
 | ||
| 		isl_int_addmul(aff->v->el[1 + pos], aff->v->el[0], v->n);
 | ||
| 		isl_int_mul(aff->v->el[0], aff->v->el[0], v->d);
 | ||
| 		aff->v = isl_vec_normalize(aff->v);
 | ||
| 		if (!aff->v)
 | ||
| 			goto error;
 | ||
| 	}
 | ||
| 
 | ||
| 	isl_val_free(v);
 | ||
| 	return aff;
 | ||
| error:
 | ||
| 	isl_aff_free(aff);
 | ||
| 	isl_val_free(v);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| __isl_give isl_aff *isl_aff_add_coefficient_si(__isl_take isl_aff *aff,
 | ||
| 	enum isl_dim_type type, int pos, int v)
 | ||
| {
 | ||
| 	isl_int t;
 | ||
| 
 | ||
| 	isl_int_init(t);
 | ||
| 	isl_int_set_si(t, v);
 | ||
| 	aff = isl_aff_add_coefficient(aff, type, pos, t);
 | ||
| 	isl_int_clear(t);
 | ||
| 
 | ||
| 	return aff;
 | ||
| }
 | ||
| 
 | ||
| __isl_give isl_aff *isl_aff_get_div(__isl_keep isl_aff *aff, int pos)
 | ||
| {
 | ||
| 	if (!aff)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	return isl_local_space_get_div(aff->ls, pos);
 | ||
| }
 | ||
| 
 | ||
| /* Return the negation of "aff".
 | ||
|  *
 | ||
|  * As a special case, -NaN = NaN.
 | ||
|  */
 | ||
| __isl_give isl_aff *isl_aff_neg(__isl_take isl_aff *aff)
 | ||
| {
 | ||
| 	if (!aff)
 | ||
| 		return NULL;
 | ||
| 	if (isl_aff_is_nan(aff))
 | ||
| 		return aff;
 | ||
| 	aff = isl_aff_cow(aff);
 | ||
| 	if (!aff)
 | ||
| 		return NULL;
 | ||
| 	aff->v = isl_vec_cow(aff->v);
 | ||
| 	if (!aff->v)
 | ||
| 		return isl_aff_free(aff);
 | ||
| 
 | ||
| 	isl_seq_neg(aff->v->el + 1, aff->v->el + 1, aff->v->size - 1);
 | ||
| 
 | ||
| 	return aff;
 | ||
| }
 | ||
| 
 | ||
| /* Remove divs from the local space that do not appear in the affine
 | ||
|  * expression.
 | ||
|  * We currently only remove divs at the end.
 | ||
|  * Some intermediate divs may also not appear directly in the affine
 | ||
|  * expression, but we would also need to check that no other divs are
 | ||
|  * defined in terms of them.
 | ||
|  */
 | ||
| __isl_give isl_aff *isl_aff_remove_unused_divs(__isl_take isl_aff *aff)
 | ||
| {
 | ||
| 	int pos;
 | ||
| 	int off;
 | ||
| 	int n;
 | ||
| 
 | ||
| 	if (!aff)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	n = isl_local_space_dim(aff->ls, isl_dim_div);
 | ||
| 	off = isl_local_space_offset(aff->ls, isl_dim_div);
 | ||
| 
 | ||
| 	pos = isl_seq_last_non_zero(aff->v->el + 1 + off, n) + 1;
 | ||
| 	if (pos == n)
 | ||
| 		return aff;
 | ||
| 
 | ||
| 	aff = isl_aff_cow(aff);
 | ||
| 	if (!aff)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	aff->ls = isl_local_space_drop_dims(aff->ls, isl_dim_div, pos, n - pos);
 | ||
| 	aff->v = isl_vec_drop_els(aff->v, 1 + off + pos, n - pos);
 | ||
| 	if (!aff->ls || !aff->v)
 | ||
| 		return isl_aff_free(aff);
 | ||
| 
 | ||
| 	return aff;
 | ||
| }
 | ||
| 
 | ||
| /* Look for any divs in the aff->ls with a denominator equal to one
 | ||
|  * and plug them into the affine expression and any subsequent divs
 | ||
|  * that may reference the div.
 | ||
|  */
 | ||
| static __isl_give isl_aff *plug_in_integral_divs(__isl_take isl_aff *aff)
 | ||
| {
 | ||
| 	int i, n;
 | ||
| 	int len;
 | ||
| 	isl_int v;
 | ||
| 	isl_vec *vec;
 | ||
| 	isl_local_space *ls;
 | ||
| 	unsigned pos;
 | ||
| 
 | ||
| 	if (!aff)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	n = isl_local_space_dim(aff->ls, isl_dim_div);
 | ||
| 	len = aff->v->size;
 | ||
| 	for (i = 0; i < n; ++i) {
 | ||
| 		if (!isl_int_is_one(aff->ls->div->row[i][0]))
 | ||
| 			continue;
 | ||
| 		ls = isl_local_space_copy(aff->ls);
 | ||
| 		ls = isl_local_space_substitute_seq(ls, isl_dim_div, i,
 | ||
| 				aff->ls->div->row[i], len, i + 1, n - (i + 1));
 | ||
| 		vec = isl_vec_copy(aff->v);
 | ||
| 		vec = isl_vec_cow(vec);
 | ||
| 		if (!ls || !vec)
 | ||
| 			goto error;
 | ||
| 
 | ||
| 		isl_int_init(v);
 | ||
| 
 | ||
| 		pos = isl_local_space_offset(aff->ls, isl_dim_div) + i;
 | ||
| 		isl_seq_substitute(vec->el, pos, aff->ls->div->row[i],
 | ||
| 					len, len, v);
 | ||
| 
 | ||
| 		isl_int_clear(v);
 | ||
| 
 | ||
| 		isl_vec_free(aff->v);
 | ||
| 		aff->v = vec;
 | ||
| 		isl_local_space_free(aff->ls);
 | ||
| 		aff->ls = ls;
 | ||
| 	}
 | ||
| 
 | ||
| 	return aff;
 | ||
| error:
 | ||
| 	isl_vec_free(vec);
 | ||
| 	isl_local_space_free(ls);
 | ||
| 	return isl_aff_free(aff);
 | ||
| }
 | ||
| 
 | ||
| /* Look for any divs j that appear with a unit coefficient inside
 | ||
|  * the definitions of other divs i and plug them into the definitions
 | ||
|  * of the divs i.
 | ||
|  *
 | ||
|  * In particular, an expression of the form
 | ||
|  *
 | ||
|  *	floor((f(..) + floor(g(..)/n))/m)
 | ||
|  *
 | ||
|  * is simplified to
 | ||
|  *
 | ||
|  *	floor((n * f(..) + g(..))/(n * m))
 | ||
|  *
 | ||
|  * This simplification is correct because we can move the expression
 | ||
|  * f(..) into the inner floor in the original expression to obtain
 | ||
|  *
 | ||
|  *	floor(floor((n * f(..) + g(..))/n)/m)
 | ||
|  *
 | ||
|  * from which we can derive the simplified expression.
 | ||
|  */
 | ||
| static __isl_give isl_aff *plug_in_unit_divs(__isl_take isl_aff *aff)
 | ||
| {
 | ||
| 	int i, j, n;
 | ||
| 	int off;
 | ||
| 
 | ||
| 	if (!aff)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	n = isl_local_space_dim(aff->ls, isl_dim_div);
 | ||
| 	off = isl_local_space_offset(aff->ls, isl_dim_div);
 | ||
| 	for (i = 1; i < n; ++i) {
 | ||
| 		for (j = 0; j < i; ++j) {
 | ||
| 			if (!isl_int_is_one(aff->ls->div->row[i][1 + off + j]))
 | ||
| 				continue;
 | ||
| 			aff->ls = isl_local_space_substitute_seq(aff->ls,
 | ||
| 				isl_dim_div, j, aff->ls->div->row[j],
 | ||
| 				aff->v->size, i, 1);
 | ||
| 			if (!aff->ls)
 | ||
| 				return isl_aff_free(aff);
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	return aff;
 | ||
| }
 | ||
| 
 | ||
| /* Swap divs "a" and "b" in "aff", which is assumed to be non-NULL.
 | ||
|  *
 | ||
|  * Even though this function is only called on isl_affs with a single
 | ||
|  * reference, we are careful to only change aff->v and aff->ls together.
 | ||
|  */
 | ||
| static __isl_give isl_aff *swap_div(__isl_take isl_aff *aff, int a, int b)
 | ||
| {
 | ||
| 	unsigned off = isl_local_space_offset(aff->ls, isl_dim_div);
 | ||
| 	isl_local_space *ls;
 | ||
| 	isl_vec *v;
 | ||
| 
 | ||
| 	ls = isl_local_space_copy(aff->ls);
 | ||
| 	ls = isl_local_space_swap_div(ls, a, b);
 | ||
| 	v = isl_vec_copy(aff->v);
 | ||
| 	v = isl_vec_cow(v);
 | ||
| 	if (!ls || !v)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	isl_int_swap(v->el[1 + off + a], v->el[1 + off + b]);
 | ||
| 	isl_vec_free(aff->v);
 | ||
| 	aff->v = v;
 | ||
| 	isl_local_space_free(aff->ls);
 | ||
| 	aff->ls = ls;
 | ||
| 
 | ||
| 	return aff;
 | ||
| error:
 | ||
| 	isl_vec_free(v);
 | ||
| 	isl_local_space_free(ls);
 | ||
| 	return isl_aff_free(aff);
 | ||
| }
 | ||
| 
 | ||
| /* Merge divs "a" and "b" in "aff", which is assumed to be non-NULL.
 | ||
|  *
 | ||
|  * We currently do not actually remove div "b", but simply add its
 | ||
|  * coefficient to that of "a" and then zero it out.
 | ||
|  */
 | ||
| static __isl_give isl_aff *merge_divs(__isl_take isl_aff *aff, int a, int b)
 | ||
| {
 | ||
| 	unsigned off = isl_local_space_offset(aff->ls, isl_dim_div);
 | ||
| 
 | ||
| 	if (isl_int_is_zero(aff->v->el[1 + off + b]))
 | ||
| 		return aff;
 | ||
| 
 | ||
| 	aff->v = isl_vec_cow(aff->v);
 | ||
| 	if (!aff->v)
 | ||
| 		return isl_aff_free(aff);
 | ||
| 
 | ||
| 	isl_int_add(aff->v->el[1 + off + a],
 | ||
| 		    aff->v->el[1 + off + a], aff->v->el[1 + off + b]);
 | ||
| 	isl_int_set_si(aff->v->el[1 + off + b], 0);
 | ||
| 
 | ||
| 	return aff;
 | ||
| }
 | ||
| 
 | ||
| /* Sort the divs in the local space of "aff" according to
 | ||
|  * the comparison function "cmp_row" in isl_local_space.c,
 | ||
|  * combining the coefficients of identical divs.
 | ||
|  *
 | ||
|  * Reordering divs does not change the semantics of "aff",
 | ||
|  * so there is no need to call isl_aff_cow.
 | ||
|  * Moreover, this function is currently only called on isl_affs
 | ||
|  * with a single reference.
 | ||
|  */
 | ||
| static __isl_give isl_aff *sort_divs(__isl_take isl_aff *aff)
 | ||
| {
 | ||
| 	int i, j, n;
 | ||
| 
 | ||
| 	if (!aff)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	n = isl_aff_dim(aff, isl_dim_div);
 | ||
| 	for (i = 1; i < n; ++i) {
 | ||
| 		for (j = i - 1; j >= 0; --j) {
 | ||
| 			int cmp = isl_mat_cmp_div(aff->ls->div, j, j + 1);
 | ||
| 			if (cmp < 0)
 | ||
| 				break;
 | ||
| 			if (cmp == 0)
 | ||
| 				aff = merge_divs(aff, j, j + 1);
 | ||
| 			else
 | ||
| 				aff = swap_div(aff, j, j + 1);
 | ||
| 			if (!aff)
 | ||
| 				return NULL;
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	return aff;
 | ||
| }
 | ||
| 
 | ||
| /* Normalize the representation of "aff".
 | ||
|  *
 | ||
|  * This function should only be called of "new" isl_affs, i.e.,
 | ||
|  * with only a single reference.  We therefore do not need to
 | ||
|  * worry about affecting other instances.
 | ||
|  */
 | ||
| __isl_give isl_aff *isl_aff_normalize(__isl_take isl_aff *aff)
 | ||
| {
 | ||
| 	if (!aff)
 | ||
| 		return NULL;
 | ||
| 	aff->v = isl_vec_normalize(aff->v);
 | ||
| 	if (!aff->v)
 | ||
| 		return isl_aff_free(aff);
 | ||
| 	aff = plug_in_integral_divs(aff);
 | ||
| 	aff = plug_in_unit_divs(aff);
 | ||
| 	aff = sort_divs(aff);
 | ||
| 	aff = isl_aff_remove_unused_divs(aff);
 | ||
| 	return aff;
 | ||
| }
 | ||
| 
 | ||
| /* Given f, return floor(f).
 | ||
|  * If f is an integer expression, then just return f.
 | ||
|  * If f is a constant, then return the constant floor(f).
 | ||
|  * Otherwise, if f = g/m, write g = q m + r,
 | ||
|  * create a new div d = [r/m] and return the expression q + d.
 | ||
|  * The coefficients in r are taken to lie between -m/2 and m/2.
 | ||
|  *
 | ||
|  * reduce_div_coefficients performs the same normalization.
 | ||
|  *
 | ||
|  * As a special case, floor(NaN) = NaN.
 | ||
|  */
 | ||
| __isl_give isl_aff *isl_aff_floor(__isl_take isl_aff *aff)
 | ||
| {
 | ||
| 	int i;
 | ||
| 	int size;
 | ||
| 	isl_ctx *ctx;
 | ||
| 	isl_vec *div;
 | ||
| 
 | ||
| 	if (!aff)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	if (isl_aff_is_nan(aff))
 | ||
| 		return aff;
 | ||
| 	if (isl_int_is_one(aff->v->el[0]))
 | ||
| 		return aff;
 | ||
| 
 | ||
| 	aff = isl_aff_cow(aff);
 | ||
| 	if (!aff)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	aff->v = isl_vec_cow(aff->v);
 | ||
| 	if (!aff->v)
 | ||
| 		return isl_aff_free(aff);
 | ||
| 
 | ||
| 	if (isl_aff_is_cst(aff)) {
 | ||
| 		isl_int_fdiv_q(aff->v->el[1], aff->v->el[1], aff->v->el[0]);
 | ||
| 		isl_int_set_si(aff->v->el[0], 1);
 | ||
| 		return aff;
 | ||
| 	}
 | ||
| 
 | ||
| 	div = isl_vec_copy(aff->v);
 | ||
| 	div = isl_vec_cow(div);
 | ||
| 	if (!div)
 | ||
| 		return isl_aff_free(aff);
 | ||
| 
 | ||
| 	ctx = isl_aff_get_ctx(aff);
 | ||
| 	isl_int_fdiv_q(aff->v->el[0], aff->v->el[0], ctx->two);
 | ||
| 	for (i = 1; i < aff->v->size; ++i) {
 | ||
| 		isl_int_fdiv_r(div->el[i], div->el[i], div->el[0]);
 | ||
| 		isl_int_fdiv_q(aff->v->el[i], aff->v->el[i], div->el[0]);
 | ||
| 		if (isl_int_gt(div->el[i], aff->v->el[0])) {
 | ||
| 			isl_int_sub(div->el[i], div->el[i], div->el[0]);
 | ||
| 			isl_int_add_ui(aff->v->el[i], aff->v->el[i], 1);
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	aff->ls = isl_local_space_add_div(aff->ls, div);
 | ||
| 	if (!aff->ls)
 | ||
| 		return isl_aff_free(aff);
 | ||
| 
 | ||
| 	size = aff->v->size;
 | ||
| 	aff->v = isl_vec_extend(aff->v, size + 1);
 | ||
| 	if (!aff->v)
 | ||
| 		return isl_aff_free(aff);
 | ||
| 	isl_int_set_si(aff->v->el[0], 1);
 | ||
| 	isl_int_set_si(aff->v->el[size], 1);
 | ||
| 
 | ||
| 	aff = isl_aff_normalize(aff);
 | ||
| 
 | ||
| 	return aff;
 | ||
| }
 | ||
| 
 | ||
| /* Compute
 | ||
|  *
 | ||
|  *	aff mod m = aff - m * floor(aff/m)
 | ||
|  */
 | ||
| __isl_give isl_aff *isl_aff_mod(__isl_take isl_aff *aff, isl_int m)
 | ||
| {
 | ||
| 	isl_aff *res;
 | ||
| 
 | ||
| 	res = isl_aff_copy(aff);
 | ||
| 	aff = isl_aff_scale_down(aff, m);
 | ||
| 	aff = isl_aff_floor(aff);
 | ||
| 	aff = isl_aff_scale(aff, m);
 | ||
| 	res = isl_aff_sub(res, aff);
 | ||
| 
 | ||
| 	return res;
 | ||
| }
 | ||
| 
 | ||
| /* Compute
 | ||
|  *
 | ||
|  *	aff mod m = aff - m * floor(aff/m)
 | ||
|  *
 | ||
|  * with m an integer value.
 | ||
|  */
 | ||
| __isl_give isl_aff *isl_aff_mod_val(__isl_take isl_aff *aff,
 | ||
| 	__isl_take isl_val *m)
 | ||
| {
 | ||
| 	isl_aff *res;
 | ||
| 
 | ||
| 	if (!aff || !m)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	if (!isl_val_is_int(m))
 | ||
| 		isl_die(isl_val_get_ctx(m), isl_error_invalid,
 | ||
| 			"expecting integer modulo", goto error);
 | ||
| 
 | ||
| 	res = isl_aff_copy(aff);
 | ||
| 	aff = isl_aff_scale_down_val(aff, isl_val_copy(m));
 | ||
| 	aff = isl_aff_floor(aff);
 | ||
| 	aff = isl_aff_scale_val(aff, m);
 | ||
| 	res = isl_aff_sub(res, aff);
 | ||
| 
 | ||
| 	return res;
 | ||
| error:
 | ||
| 	isl_aff_free(aff);
 | ||
| 	isl_val_free(m);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Compute
 | ||
|  *
 | ||
|  *	pwaff mod m = pwaff - m * floor(pwaff/m)
 | ||
|  */
 | ||
| __isl_give isl_pw_aff *isl_pw_aff_mod(__isl_take isl_pw_aff *pwaff, isl_int m)
 | ||
| {
 | ||
| 	isl_pw_aff *res;
 | ||
| 
 | ||
| 	res = isl_pw_aff_copy(pwaff);
 | ||
| 	pwaff = isl_pw_aff_scale_down(pwaff, m);
 | ||
| 	pwaff = isl_pw_aff_floor(pwaff);
 | ||
| 	pwaff = isl_pw_aff_scale(pwaff, m);
 | ||
| 	res = isl_pw_aff_sub(res, pwaff);
 | ||
| 
 | ||
| 	return res;
 | ||
| }
 | ||
| 
 | ||
| /* Compute
 | ||
|  *
 | ||
|  *	pa mod m = pa - m * floor(pa/m)
 | ||
|  *
 | ||
|  * with m an integer value.
 | ||
|  */
 | ||
| __isl_give isl_pw_aff *isl_pw_aff_mod_val(__isl_take isl_pw_aff *pa,
 | ||
| 	__isl_take isl_val *m)
 | ||
| {
 | ||
| 	if (!pa || !m)
 | ||
| 		goto error;
 | ||
| 	if (!isl_val_is_int(m))
 | ||
| 		isl_die(isl_pw_aff_get_ctx(pa), isl_error_invalid,
 | ||
| 			"expecting integer modulo", goto error);
 | ||
| 	pa = isl_pw_aff_mod(pa, m->n);
 | ||
| 	isl_val_free(m);
 | ||
| 	return pa;
 | ||
| error:
 | ||
| 	isl_pw_aff_free(pa);
 | ||
| 	isl_val_free(m);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Given f, return ceil(f).
 | ||
|  * If f is an integer expression, then just return f.
 | ||
|  * Otherwise, let f be the expression
 | ||
|  *
 | ||
|  *	e/m
 | ||
|  *
 | ||
|  * then return
 | ||
|  *
 | ||
|  *	floor((e + m - 1)/m)
 | ||
|  *
 | ||
|  * As a special case, ceil(NaN) = NaN.
 | ||
|  */
 | ||
| __isl_give isl_aff *isl_aff_ceil(__isl_take isl_aff *aff)
 | ||
| {
 | ||
| 	if (!aff)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	if (isl_aff_is_nan(aff))
 | ||
| 		return aff;
 | ||
| 	if (isl_int_is_one(aff->v->el[0]))
 | ||
| 		return aff;
 | ||
| 
 | ||
| 	aff = isl_aff_cow(aff);
 | ||
| 	if (!aff)
 | ||
| 		return NULL;
 | ||
| 	aff->v = isl_vec_cow(aff->v);
 | ||
| 	if (!aff->v)
 | ||
| 		return isl_aff_free(aff);
 | ||
| 
 | ||
| 	isl_int_add(aff->v->el[1], aff->v->el[1], aff->v->el[0]);
 | ||
| 	isl_int_sub_ui(aff->v->el[1], aff->v->el[1], 1);
 | ||
| 	aff = isl_aff_floor(aff);
 | ||
| 
 | ||
| 	return aff;
 | ||
| }
 | ||
| 
 | ||
| /* Apply the expansion computed by isl_merge_divs.
 | ||
|  * The expansion itself is given by "exp" while the resulting
 | ||
|  * list of divs is given by "div".
 | ||
|  */
 | ||
| __isl_give isl_aff *isl_aff_expand_divs(__isl_take isl_aff *aff,
 | ||
| 	__isl_take isl_mat *div, int *exp)
 | ||
| {
 | ||
| 	int old_n_div;
 | ||
| 	int new_n_div;
 | ||
| 	int offset;
 | ||
| 
 | ||
| 	aff = isl_aff_cow(aff);
 | ||
| 	if (!aff || !div)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	old_n_div = isl_local_space_dim(aff->ls, isl_dim_div);
 | ||
| 	new_n_div = isl_mat_rows(div);
 | ||
| 	offset = 1 + isl_local_space_offset(aff->ls, isl_dim_div);
 | ||
| 
 | ||
| 	aff->v = isl_vec_expand(aff->v, offset, old_n_div, exp, new_n_div);
 | ||
| 	aff->ls = isl_local_space_replace_divs(aff->ls, div);
 | ||
| 	if (!aff->v || !aff->ls)
 | ||
| 		return isl_aff_free(aff);
 | ||
| 	return aff;
 | ||
| error:
 | ||
| 	isl_aff_free(aff);
 | ||
| 	isl_mat_free(div);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Add two affine expressions that live in the same local space.
 | ||
|  */
 | ||
| static __isl_give isl_aff *add_expanded(__isl_take isl_aff *aff1,
 | ||
| 	__isl_take isl_aff *aff2)
 | ||
| {
 | ||
| 	isl_int gcd, f;
 | ||
| 
 | ||
| 	aff1 = isl_aff_cow(aff1);
 | ||
| 	if (!aff1 || !aff2)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	aff1->v = isl_vec_cow(aff1->v);
 | ||
| 	if (!aff1->v)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	isl_int_init(gcd);
 | ||
| 	isl_int_init(f);
 | ||
| 	isl_int_gcd(gcd, aff1->v->el[0], aff2->v->el[0]);
 | ||
| 	isl_int_divexact(f, aff2->v->el[0], gcd);
 | ||
| 	isl_seq_scale(aff1->v->el + 1, aff1->v->el + 1, f, aff1->v->size - 1);
 | ||
| 	isl_int_divexact(f, aff1->v->el[0], gcd);
 | ||
| 	isl_seq_addmul(aff1->v->el + 1, f, aff2->v->el + 1, aff1->v->size - 1);
 | ||
| 	isl_int_divexact(f, aff2->v->el[0], gcd);
 | ||
| 	isl_int_mul(aff1->v->el[0], aff1->v->el[0], f);
 | ||
| 	isl_int_clear(f);
 | ||
| 	isl_int_clear(gcd);
 | ||
| 
 | ||
| 	isl_aff_free(aff2);
 | ||
| 	return aff1;
 | ||
| error:
 | ||
| 	isl_aff_free(aff1);
 | ||
| 	isl_aff_free(aff2);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Return the sum of "aff1" and "aff2".
 | ||
|  *
 | ||
|  * If either of the two is NaN, then the result is NaN.
 | ||
|  */
 | ||
| __isl_give isl_aff *isl_aff_add(__isl_take isl_aff *aff1,
 | ||
| 	__isl_take isl_aff *aff2)
 | ||
| {
 | ||
| 	isl_ctx *ctx;
 | ||
| 	int *exp1 = NULL;
 | ||
| 	int *exp2 = NULL;
 | ||
| 	isl_mat *div;
 | ||
| 	int n_div1, n_div2;
 | ||
| 
 | ||
| 	if (!aff1 || !aff2)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	ctx = isl_aff_get_ctx(aff1);
 | ||
| 	if (!isl_space_is_equal(aff1->ls->dim, aff2->ls->dim))
 | ||
| 		isl_die(ctx, isl_error_invalid,
 | ||
| 			"spaces don't match", goto error);
 | ||
| 
 | ||
| 	if (isl_aff_is_nan(aff1)) {
 | ||
| 		isl_aff_free(aff2);
 | ||
| 		return aff1;
 | ||
| 	}
 | ||
| 	if (isl_aff_is_nan(aff2)) {
 | ||
| 		isl_aff_free(aff1);
 | ||
| 		return aff2;
 | ||
| 	}
 | ||
| 
 | ||
| 	n_div1 = isl_aff_dim(aff1, isl_dim_div);
 | ||
| 	n_div2 = isl_aff_dim(aff2, isl_dim_div);
 | ||
| 	if (n_div1 == 0 && n_div2 == 0)
 | ||
| 		return add_expanded(aff1, aff2);
 | ||
| 
 | ||
| 	exp1 = isl_alloc_array(ctx, int, n_div1);
 | ||
| 	exp2 = isl_alloc_array(ctx, int, n_div2);
 | ||
| 	if ((n_div1 && !exp1) || (n_div2 && !exp2))
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	div = isl_merge_divs(aff1->ls->div, aff2->ls->div, exp1, exp2);
 | ||
| 	aff1 = isl_aff_expand_divs(aff1, isl_mat_copy(div), exp1);
 | ||
| 	aff2 = isl_aff_expand_divs(aff2, div, exp2);
 | ||
| 	free(exp1);
 | ||
| 	free(exp2);
 | ||
| 
 | ||
| 	return add_expanded(aff1, aff2);
 | ||
| error:
 | ||
| 	free(exp1);
 | ||
| 	free(exp2);
 | ||
| 	isl_aff_free(aff1);
 | ||
| 	isl_aff_free(aff2);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| __isl_give isl_aff *isl_aff_sub(__isl_take isl_aff *aff1,
 | ||
| 	__isl_take isl_aff *aff2)
 | ||
| {
 | ||
| 	return isl_aff_add(aff1, isl_aff_neg(aff2));
 | ||
| }
 | ||
| 
 | ||
| /* Return the result of scaling "aff" by a factor of "f".
 | ||
|  *
 | ||
|  * As a special case, f * NaN = NaN.
 | ||
|  */
 | ||
| __isl_give isl_aff *isl_aff_scale(__isl_take isl_aff *aff, isl_int f)
 | ||
| {
 | ||
| 	isl_int gcd;
 | ||
| 
 | ||
| 	if (!aff)
 | ||
| 		return NULL;
 | ||
| 	if (isl_aff_is_nan(aff))
 | ||
| 		return aff;
 | ||
| 
 | ||
| 	if (isl_int_is_one(f))
 | ||
| 		return aff;
 | ||
| 
 | ||
| 	aff = isl_aff_cow(aff);
 | ||
| 	if (!aff)
 | ||
| 		return NULL;
 | ||
| 	aff->v = isl_vec_cow(aff->v);
 | ||
| 	if (!aff->v)
 | ||
| 		return isl_aff_free(aff);
 | ||
| 
 | ||
| 	if (isl_int_is_pos(f) && isl_int_is_divisible_by(aff->v->el[0], f)) {
 | ||
| 		isl_int_divexact(aff->v->el[0], aff->v->el[0], f);
 | ||
| 		return aff;
 | ||
| 	}
 | ||
| 
 | ||
| 	isl_int_init(gcd);
 | ||
| 	isl_int_gcd(gcd, aff->v->el[0], f);
 | ||
| 	isl_int_divexact(aff->v->el[0], aff->v->el[0], gcd);
 | ||
| 	isl_int_divexact(gcd, f, gcd);
 | ||
| 	isl_seq_scale(aff->v->el + 1, aff->v->el + 1, gcd, aff->v->size - 1);
 | ||
| 	isl_int_clear(gcd);
 | ||
| 
 | ||
| 	return aff;
 | ||
| }
 | ||
| 
 | ||
| /* Multiple "aff" by "v".
 | ||
|  */
 | ||
| __isl_give isl_aff *isl_aff_scale_val(__isl_take isl_aff *aff,
 | ||
| 	__isl_take isl_val *v)
 | ||
| {
 | ||
| 	if (!aff || !v)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	if (isl_val_is_one(v)) {
 | ||
| 		isl_val_free(v);
 | ||
| 		return aff;
 | ||
| 	}
 | ||
| 
 | ||
| 	if (!isl_val_is_rat(v))
 | ||
| 		isl_die(isl_aff_get_ctx(aff), isl_error_invalid,
 | ||
| 			"expecting rational factor", goto error);
 | ||
| 
 | ||
| 	aff = isl_aff_scale(aff, v->n);
 | ||
| 	aff = isl_aff_scale_down(aff, v->d);
 | ||
| 
 | ||
| 	isl_val_free(v);
 | ||
| 	return aff;
 | ||
| error:
 | ||
| 	isl_aff_free(aff);
 | ||
| 	isl_val_free(v);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Return the result of scaling "aff" down by a factor of "f".
 | ||
|  *
 | ||
|  * As a special case, NaN/f = NaN.
 | ||
|  */
 | ||
| __isl_give isl_aff *isl_aff_scale_down(__isl_take isl_aff *aff, isl_int f)
 | ||
| {
 | ||
| 	isl_int gcd;
 | ||
| 
 | ||
| 	if (!aff)
 | ||
| 		return NULL;
 | ||
| 	if (isl_aff_is_nan(aff))
 | ||
| 		return aff;
 | ||
| 
 | ||
| 	if (isl_int_is_one(f))
 | ||
| 		return aff;
 | ||
| 
 | ||
| 	aff = isl_aff_cow(aff);
 | ||
| 	if (!aff)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	if (isl_int_is_zero(f))
 | ||
| 		isl_die(isl_aff_get_ctx(aff), isl_error_invalid,
 | ||
| 			"cannot scale down by zero", return isl_aff_free(aff));
 | ||
| 
 | ||
| 	aff->v = isl_vec_cow(aff->v);
 | ||
| 	if (!aff->v)
 | ||
| 		return isl_aff_free(aff);
 | ||
| 
 | ||
| 	isl_int_init(gcd);
 | ||
| 	isl_seq_gcd(aff->v->el + 1, aff->v->size - 1, &gcd);
 | ||
| 	isl_int_gcd(gcd, gcd, f);
 | ||
| 	isl_seq_scale_down(aff->v->el + 1, aff->v->el + 1, gcd, aff->v->size - 1);
 | ||
| 	isl_int_divexact(gcd, f, gcd);
 | ||
| 	isl_int_mul(aff->v->el[0], aff->v->el[0], gcd);
 | ||
| 	isl_int_clear(gcd);
 | ||
| 
 | ||
| 	return aff;
 | ||
| }
 | ||
| 
 | ||
| /* Divide "aff" by "v".
 | ||
|  */
 | ||
| __isl_give isl_aff *isl_aff_scale_down_val(__isl_take isl_aff *aff,
 | ||
| 	__isl_take isl_val *v)
 | ||
| {
 | ||
| 	if (!aff || !v)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	if (isl_val_is_one(v)) {
 | ||
| 		isl_val_free(v);
 | ||
| 		return aff;
 | ||
| 	}
 | ||
| 
 | ||
| 	if (!isl_val_is_rat(v))
 | ||
| 		isl_die(isl_aff_get_ctx(aff), isl_error_invalid,
 | ||
| 			"expecting rational factor", goto error);
 | ||
| 	if (!isl_val_is_pos(v))
 | ||
| 		isl_die(isl_aff_get_ctx(aff), isl_error_invalid,
 | ||
| 			"factor needs to be positive", goto error);
 | ||
| 
 | ||
| 	aff = isl_aff_scale(aff, v->d);
 | ||
| 	aff = isl_aff_scale_down(aff, v->n);
 | ||
| 
 | ||
| 	isl_val_free(v);
 | ||
| 	return aff;
 | ||
| error:
 | ||
| 	isl_aff_free(aff);
 | ||
| 	isl_val_free(v);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| __isl_give isl_aff *isl_aff_scale_down_ui(__isl_take isl_aff *aff, unsigned f)
 | ||
| {
 | ||
| 	isl_int v;
 | ||
| 
 | ||
| 	if (f == 1)
 | ||
| 		return aff;
 | ||
| 
 | ||
| 	isl_int_init(v);
 | ||
| 	isl_int_set_ui(v, f);
 | ||
| 	aff = isl_aff_scale_down(aff, v);
 | ||
| 	isl_int_clear(v);
 | ||
| 
 | ||
| 	return aff;
 | ||
| }
 | ||
| 
 | ||
| __isl_give isl_aff *isl_aff_set_dim_name(__isl_take isl_aff *aff,
 | ||
| 	enum isl_dim_type type, unsigned pos, const char *s)
 | ||
| {
 | ||
| 	aff = isl_aff_cow(aff);
 | ||
| 	if (!aff)
 | ||
| 		return NULL;
 | ||
| 	if (type == isl_dim_out)
 | ||
| 		isl_die(aff->v->ctx, isl_error_invalid,
 | ||
| 			"cannot set name of output/set dimension",
 | ||
| 			return isl_aff_free(aff));
 | ||
| 	if (type == isl_dim_in)
 | ||
| 		type = isl_dim_set;
 | ||
| 	aff->ls = isl_local_space_set_dim_name(aff->ls, type, pos, s);
 | ||
| 	if (!aff->ls)
 | ||
| 		return isl_aff_free(aff);
 | ||
| 
 | ||
| 	return aff;
 | ||
| }
 | ||
| 
 | ||
| __isl_give isl_aff *isl_aff_set_dim_id(__isl_take isl_aff *aff,
 | ||
| 	enum isl_dim_type type, unsigned pos, __isl_take isl_id *id)
 | ||
| {
 | ||
| 	aff = isl_aff_cow(aff);
 | ||
| 	if (!aff)
 | ||
| 		goto error;
 | ||
| 	if (type == isl_dim_out)
 | ||
| 		isl_die(aff->v->ctx, isl_error_invalid,
 | ||
| 			"cannot set name of output/set dimension",
 | ||
| 			goto error);
 | ||
| 	if (type == isl_dim_in)
 | ||
| 		type = isl_dim_set;
 | ||
| 	aff->ls = isl_local_space_set_dim_id(aff->ls, type, pos, id);
 | ||
| 	if (!aff->ls)
 | ||
| 		return isl_aff_free(aff);
 | ||
| 
 | ||
| 	return aff;
 | ||
| error:
 | ||
| 	isl_id_free(id);
 | ||
| 	isl_aff_free(aff);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Replace the identifier of the input tuple of "aff" by "id".
 | ||
|  * type is currently required to be equal to isl_dim_in
 | ||
|  */
 | ||
| __isl_give isl_aff *isl_aff_set_tuple_id(__isl_take isl_aff *aff,
 | ||
| 	enum isl_dim_type type, __isl_take isl_id *id)
 | ||
| {
 | ||
| 	aff = isl_aff_cow(aff);
 | ||
| 	if (!aff)
 | ||
| 		goto error;
 | ||
| 	if (type != isl_dim_out)
 | ||
| 		isl_die(aff->v->ctx, isl_error_invalid,
 | ||
| 			"cannot only set id of input tuple", goto error);
 | ||
| 	aff->ls = isl_local_space_set_tuple_id(aff->ls, isl_dim_set, id);
 | ||
| 	if (!aff->ls)
 | ||
| 		return isl_aff_free(aff);
 | ||
| 
 | ||
| 	return aff;
 | ||
| error:
 | ||
| 	isl_id_free(id);
 | ||
| 	isl_aff_free(aff);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Exploit the equalities in "eq" to simplify the affine expression
 | ||
|  * and the expressions of the integer divisions in the local space.
 | ||
|  * The integer divisions in this local space are assumed to appear
 | ||
|  * as regular dimensions in "eq".
 | ||
|  */
 | ||
| static __isl_give isl_aff *isl_aff_substitute_equalities_lifted(
 | ||
| 	__isl_take isl_aff *aff, __isl_take isl_basic_set *eq)
 | ||
| {
 | ||
| 	int i, j;
 | ||
| 	unsigned total;
 | ||
| 	unsigned n_div;
 | ||
| 
 | ||
| 	if (!eq)
 | ||
| 		goto error;
 | ||
| 	if (eq->n_eq == 0) {
 | ||
| 		isl_basic_set_free(eq);
 | ||
| 		return aff;
 | ||
| 	}
 | ||
| 
 | ||
| 	aff = isl_aff_cow(aff);
 | ||
| 	if (!aff)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	aff->ls = isl_local_space_substitute_equalities(aff->ls,
 | ||
| 							isl_basic_set_copy(eq));
 | ||
| 	aff->v = isl_vec_cow(aff->v);
 | ||
| 	if (!aff->ls || !aff->v)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	total = 1 + isl_space_dim(eq->dim, isl_dim_all);
 | ||
| 	n_div = eq->n_div;
 | ||
| 	for (i = 0; i < eq->n_eq; ++i) {
 | ||
| 		j = isl_seq_last_non_zero(eq->eq[i], total + n_div);
 | ||
| 		if (j < 0 || j == 0 || j >= total)
 | ||
| 			continue;
 | ||
| 
 | ||
| 		isl_seq_elim(aff->v->el + 1, eq->eq[i], j, total,
 | ||
| 				&aff->v->el[0]);
 | ||
| 	}
 | ||
| 
 | ||
| 	isl_basic_set_free(eq);
 | ||
| 	aff = isl_aff_normalize(aff);
 | ||
| 	return aff;
 | ||
| error:
 | ||
| 	isl_basic_set_free(eq);
 | ||
| 	isl_aff_free(aff);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Exploit the equalities in "eq" to simplify the affine expression
 | ||
|  * and the expressions of the integer divisions in the local space.
 | ||
|  */
 | ||
| __isl_give isl_aff *isl_aff_substitute_equalities(__isl_take isl_aff *aff,
 | ||
| 	__isl_take isl_basic_set *eq)
 | ||
| {
 | ||
| 	int n_div;
 | ||
| 
 | ||
| 	if (!aff || !eq)
 | ||
| 		goto error;
 | ||
| 	n_div = isl_local_space_dim(aff->ls, isl_dim_div);
 | ||
| 	if (n_div > 0)
 | ||
| 		eq = isl_basic_set_add_dims(eq, isl_dim_set, n_div);
 | ||
| 	return isl_aff_substitute_equalities_lifted(aff, eq);
 | ||
| error:
 | ||
| 	isl_basic_set_free(eq);
 | ||
| 	isl_aff_free(aff);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Look for equalities among the variables shared by context and aff
 | ||
|  * and the integer divisions of aff, if any.
 | ||
|  * The equalities are then used to eliminate coefficients and/or integer
 | ||
|  * divisions from aff.
 | ||
|  */
 | ||
| __isl_give isl_aff *isl_aff_gist(__isl_take isl_aff *aff,
 | ||
| 	__isl_take isl_set *context)
 | ||
| {
 | ||
| 	isl_basic_set *hull;
 | ||
| 	int n_div;
 | ||
| 
 | ||
| 	if (!aff)
 | ||
| 		goto error;
 | ||
| 	n_div = isl_local_space_dim(aff->ls, isl_dim_div);
 | ||
| 	if (n_div > 0) {
 | ||
| 		isl_basic_set *bset;
 | ||
| 		isl_local_space *ls;
 | ||
| 		context = isl_set_add_dims(context, isl_dim_set, n_div);
 | ||
| 		ls = isl_aff_get_domain_local_space(aff);
 | ||
| 		bset = isl_basic_set_from_local_space(ls);
 | ||
| 		bset = isl_basic_set_lift(bset);
 | ||
| 		bset = isl_basic_set_flatten(bset);
 | ||
| 		context = isl_set_intersect(context,
 | ||
| 					    isl_set_from_basic_set(bset));
 | ||
| 	}
 | ||
| 
 | ||
| 	hull = isl_set_affine_hull(context);
 | ||
| 	return isl_aff_substitute_equalities_lifted(aff, hull);
 | ||
| error:
 | ||
| 	isl_aff_free(aff);
 | ||
| 	isl_set_free(context);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| __isl_give isl_aff *isl_aff_gist_params(__isl_take isl_aff *aff,
 | ||
| 	__isl_take isl_set *context)
 | ||
| {
 | ||
| 	isl_set *dom_context = isl_set_universe(isl_aff_get_domain_space(aff));
 | ||
| 	dom_context = isl_set_intersect_params(dom_context, context);
 | ||
| 	return isl_aff_gist(aff, dom_context);
 | ||
| }
 | ||
| 
 | ||
| /* Return a basic set containing those elements in the space
 | ||
|  * of aff where it is positive.  "rational" should not be set.
 | ||
|  *
 | ||
|  * If "aff" is NaN, then it is not positive.
 | ||
|  */
 | ||
| static __isl_give isl_basic_set *aff_pos_basic_set(__isl_take isl_aff *aff,
 | ||
| 	int rational)
 | ||
| {
 | ||
| 	isl_constraint *ineq;
 | ||
| 	isl_basic_set *bset;
 | ||
| 	isl_val *c;
 | ||
| 
 | ||
| 	if (!aff)
 | ||
| 		return NULL;
 | ||
| 	if (isl_aff_is_nan(aff)) {
 | ||
| 		isl_space *space = isl_aff_get_domain_space(aff);
 | ||
| 		isl_aff_free(aff);
 | ||
| 		return isl_basic_set_empty(space);
 | ||
| 	}
 | ||
| 	if (rational)
 | ||
| 		isl_die(isl_aff_get_ctx(aff), isl_error_unsupported,
 | ||
| 			"rational sets not supported", goto error);
 | ||
| 
 | ||
| 	ineq = isl_inequality_from_aff(aff);
 | ||
| 	c = isl_constraint_get_constant_val(ineq);
 | ||
| 	c = isl_val_sub_ui(c, 1);
 | ||
| 	ineq = isl_constraint_set_constant_val(ineq, c);
 | ||
| 
 | ||
| 	bset = isl_basic_set_from_constraint(ineq);
 | ||
| 	bset = isl_basic_set_simplify(bset);
 | ||
| 	return bset;
 | ||
| error:
 | ||
| 	isl_aff_free(aff);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Return a basic set containing those elements in the space
 | ||
|  * of aff where it is non-negative.
 | ||
|  * If "rational" is set, then return a rational basic set.
 | ||
|  *
 | ||
|  * If "aff" is NaN, then it is not non-negative (it's not negative either).
 | ||
|  */
 | ||
| static __isl_give isl_basic_set *aff_nonneg_basic_set(
 | ||
| 	__isl_take isl_aff *aff, int rational)
 | ||
| {
 | ||
| 	isl_constraint *ineq;
 | ||
| 	isl_basic_set *bset;
 | ||
| 
 | ||
| 	if (!aff)
 | ||
| 		return NULL;
 | ||
| 	if (isl_aff_is_nan(aff)) {
 | ||
| 		isl_space *space = isl_aff_get_domain_space(aff);
 | ||
| 		isl_aff_free(aff);
 | ||
| 		return isl_basic_set_empty(space);
 | ||
| 	}
 | ||
| 
 | ||
| 	ineq = isl_inequality_from_aff(aff);
 | ||
| 
 | ||
| 	bset = isl_basic_set_from_constraint(ineq);
 | ||
| 	if (rational)
 | ||
| 		bset = isl_basic_set_set_rational(bset);
 | ||
| 	bset = isl_basic_set_simplify(bset);
 | ||
| 	return bset;
 | ||
| }
 | ||
| 
 | ||
| /* Return a basic set containing those elements in the space
 | ||
|  * of aff where it is non-negative.
 | ||
|  */
 | ||
| __isl_give isl_basic_set *isl_aff_nonneg_basic_set(__isl_take isl_aff *aff)
 | ||
| {
 | ||
| 	return aff_nonneg_basic_set(aff, 0);
 | ||
| }
 | ||
| 
 | ||
| /* Return a basic set containing those elements in the domain space
 | ||
|  * of "aff" where it is positive.
 | ||
|  */
 | ||
| __isl_give isl_basic_set *isl_aff_pos_basic_set(__isl_take isl_aff *aff)
 | ||
| {
 | ||
| 	aff = isl_aff_add_constant_num_si(aff, -1);
 | ||
| 	return isl_aff_nonneg_basic_set(aff);
 | ||
| }
 | ||
| 
 | ||
| /* Return a basic set containing those elements in the domain space
 | ||
|  * of aff where it is negative.
 | ||
|  */
 | ||
| __isl_give isl_basic_set *isl_aff_neg_basic_set(__isl_take isl_aff *aff)
 | ||
| {
 | ||
| 	aff = isl_aff_neg(aff);
 | ||
| 	return isl_aff_pos_basic_set(aff);
 | ||
| }
 | ||
| 
 | ||
| /* Return a basic set containing those elements in the space
 | ||
|  * of aff where it is zero.
 | ||
|  * If "rational" is set, then return a rational basic set.
 | ||
|  *
 | ||
|  * If "aff" is NaN, then it is not zero.
 | ||
|  */
 | ||
| static __isl_give isl_basic_set *aff_zero_basic_set(__isl_take isl_aff *aff,
 | ||
| 	int rational)
 | ||
| {
 | ||
| 	isl_constraint *ineq;
 | ||
| 	isl_basic_set *bset;
 | ||
| 
 | ||
| 	if (!aff)
 | ||
| 		return NULL;
 | ||
| 	if (isl_aff_is_nan(aff)) {
 | ||
| 		isl_space *space = isl_aff_get_domain_space(aff);
 | ||
| 		isl_aff_free(aff);
 | ||
| 		return isl_basic_set_empty(space);
 | ||
| 	}
 | ||
| 
 | ||
| 	ineq = isl_equality_from_aff(aff);
 | ||
| 
 | ||
| 	bset = isl_basic_set_from_constraint(ineq);
 | ||
| 	if (rational)
 | ||
| 		bset = isl_basic_set_set_rational(bset);
 | ||
| 	bset = isl_basic_set_simplify(bset);
 | ||
| 	return bset;
 | ||
| }
 | ||
| 
 | ||
| /* Return a basic set containing those elements in the space
 | ||
|  * of aff where it is zero.
 | ||
|  */
 | ||
| __isl_give isl_basic_set *isl_aff_zero_basic_set(__isl_take isl_aff *aff)
 | ||
| {
 | ||
| 	return aff_zero_basic_set(aff, 0);
 | ||
| }
 | ||
| 
 | ||
| /* Return a basic set containing those elements in the shared space
 | ||
|  * of aff1 and aff2 where aff1 is greater than or equal to aff2.
 | ||
|  */
 | ||
| __isl_give isl_basic_set *isl_aff_ge_basic_set(__isl_take isl_aff *aff1,
 | ||
| 	__isl_take isl_aff *aff2)
 | ||
| {
 | ||
| 	aff1 = isl_aff_sub(aff1, aff2);
 | ||
| 
 | ||
| 	return isl_aff_nonneg_basic_set(aff1);
 | ||
| }
 | ||
| 
 | ||
| /* Return a basic set containing those elements in the shared domain space
 | ||
|  * of "aff1" and "aff2" where "aff1" is greater than "aff2".
 | ||
|  */
 | ||
| __isl_give isl_basic_set *isl_aff_gt_basic_set(__isl_take isl_aff *aff1,
 | ||
| 	__isl_take isl_aff *aff2)
 | ||
| {
 | ||
| 	aff1 = isl_aff_sub(aff1, aff2);
 | ||
| 
 | ||
| 	return isl_aff_pos_basic_set(aff1);
 | ||
| }
 | ||
| 
 | ||
| /* Return a set containing those elements in the shared space
 | ||
|  * of aff1 and aff2 where aff1 is greater than or equal to aff2.
 | ||
|  */
 | ||
| __isl_give isl_set *isl_aff_ge_set(__isl_take isl_aff *aff1,
 | ||
| 	__isl_take isl_aff *aff2)
 | ||
| {
 | ||
| 	return isl_set_from_basic_set(isl_aff_ge_basic_set(aff1, aff2));
 | ||
| }
 | ||
| 
 | ||
| /* Return a basic set containing those elements in the shared space
 | ||
|  * of aff1 and aff2 where aff1 is smaller than or equal to aff2.
 | ||
|  */
 | ||
| __isl_give isl_basic_set *isl_aff_le_basic_set(__isl_take isl_aff *aff1,
 | ||
| 	__isl_take isl_aff *aff2)
 | ||
| {
 | ||
| 	return isl_aff_ge_basic_set(aff2, aff1);
 | ||
| }
 | ||
| 
 | ||
| /* Return a basic set containing those elements in the shared domain space
 | ||
|  * of "aff1" and "aff2" where "aff1" is smaller than "aff2".
 | ||
|  */
 | ||
| __isl_give isl_basic_set *isl_aff_lt_basic_set(__isl_take isl_aff *aff1,
 | ||
| 	__isl_take isl_aff *aff2)
 | ||
| {
 | ||
| 	return isl_aff_gt_basic_set(aff2, aff1);
 | ||
| }
 | ||
| 
 | ||
| /* Return a set containing those elements in the shared space
 | ||
|  * of aff1 and aff2 where aff1 is smaller than or equal to aff2.
 | ||
|  */
 | ||
| __isl_give isl_set *isl_aff_le_set(__isl_take isl_aff *aff1,
 | ||
| 	__isl_take isl_aff *aff2)
 | ||
| {
 | ||
| 	return isl_aff_ge_set(aff2, aff1);
 | ||
| }
 | ||
| 
 | ||
| /* Return a set containing those elements in the shared domain space
 | ||
|  * of "aff1" and "aff2" where "aff1" is smaller than "aff2".
 | ||
|  */
 | ||
| __isl_give isl_set *isl_aff_lt_set(__isl_take isl_aff *aff1,
 | ||
| 	__isl_take isl_aff *aff2)
 | ||
| {
 | ||
| 	return isl_set_from_basic_set(isl_aff_lt_basic_set(aff1, aff2));
 | ||
| }
 | ||
| 
 | ||
| /* Return a basic set containing those elements in the shared space
 | ||
|  * of aff1 and aff2 where aff1 and aff2 are equal.
 | ||
|  */
 | ||
| __isl_give isl_basic_set *isl_aff_eq_basic_set(__isl_take isl_aff *aff1,
 | ||
| 	__isl_take isl_aff *aff2)
 | ||
| {
 | ||
| 	aff1 = isl_aff_sub(aff1, aff2);
 | ||
| 
 | ||
| 	return isl_aff_zero_basic_set(aff1);
 | ||
| }
 | ||
| 
 | ||
| /* Return a set containing those elements in the shared space
 | ||
|  * of aff1 and aff2 where aff1 and aff2 are equal.
 | ||
|  */
 | ||
| __isl_give isl_set *isl_aff_eq_set(__isl_take isl_aff *aff1,
 | ||
| 	__isl_take isl_aff *aff2)
 | ||
| {
 | ||
| 	return isl_set_from_basic_set(isl_aff_eq_basic_set(aff1, aff2));
 | ||
| }
 | ||
| 
 | ||
| __isl_give isl_aff *isl_aff_add_on_domain(__isl_keep isl_set *dom,
 | ||
| 	__isl_take isl_aff *aff1, __isl_take isl_aff *aff2)
 | ||
| {
 | ||
| 	aff1 = isl_aff_add(aff1, aff2);
 | ||
| 	aff1 = isl_aff_gist(aff1, isl_set_copy(dom));
 | ||
| 	return aff1;
 | ||
| }
 | ||
| 
 | ||
| int isl_aff_is_empty(__isl_keep isl_aff *aff)
 | ||
| {
 | ||
| 	if (!aff)
 | ||
| 		return -1;
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| /* Check whether the given affine expression has non-zero coefficient
 | ||
|  * for any dimension in the given range or if any of these dimensions
 | ||
|  * appear with non-zero coefficients in any of the integer divisions
 | ||
|  * involved in the affine expression.
 | ||
|  */
 | ||
| isl_bool isl_aff_involves_dims(__isl_keep isl_aff *aff,
 | ||
| 	enum isl_dim_type type, unsigned first, unsigned n)
 | ||
| {
 | ||
| 	int i;
 | ||
| 	isl_ctx *ctx;
 | ||
| 	int *active = NULL;
 | ||
| 	isl_bool involves = isl_bool_false;
 | ||
| 
 | ||
| 	if (!aff)
 | ||
| 		return isl_bool_error;
 | ||
| 	if (n == 0)
 | ||
| 		return isl_bool_false;
 | ||
| 
 | ||
| 	ctx = isl_aff_get_ctx(aff);
 | ||
| 	if (first + n > isl_aff_dim(aff, type))
 | ||
| 		isl_die(ctx, isl_error_invalid,
 | ||
| 			"range out of bounds", return isl_bool_error);
 | ||
| 
 | ||
| 	active = isl_local_space_get_active(aff->ls, aff->v->el + 2);
 | ||
| 	if (!active)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	first += isl_local_space_offset(aff->ls, type) - 1;
 | ||
| 	for (i = 0; i < n; ++i)
 | ||
| 		if (active[first + i]) {
 | ||
| 			involves = isl_bool_true;
 | ||
| 			break;
 | ||
| 		}
 | ||
| 
 | ||
| 	free(active);
 | ||
| 
 | ||
| 	return involves;
 | ||
| error:
 | ||
| 	free(active);
 | ||
| 	return isl_bool_error;
 | ||
| }
 | ||
| 
 | ||
| __isl_give isl_aff *isl_aff_drop_dims(__isl_take isl_aff *aff,
 | ||
| 	enum isl_dim_type type, unsigned first, unsigned n)
 | ||
| {
 | ||
| 	isl_ctx *ctx;
 | ||
| 
 | ||
| 	if (!aff)
 | ||
| 		return NULL;
 | ||
| 	if (type == isl_dim_out)
 | ||
| 		isl_die(aff->v->ctx, isl_error_invalid,
 | ||
| 			"cannot drop output/set dimension",
 | ||
| 			return isl_aff_free(aff));
 | ||
| 	if (type == isl_dim_in)
 | ||
| 		type = isl_dim_set;
 | ||
| 	if (n == 0 && !isl_local_space_is_named_or_nested(aff->ls, type))
 | ||
| 		return aff;
 | ||
| 
 | ||
| 	ctx = isl_aff_get_ctx(aff);
 | ||
| 	if (first + n > isl_local_space_dim(aff->ls, type))
 | ||
| 		isl_die(ctx, isl_error_invalid, "range out of bounds",
 | ||
| 			return isl_aff_free(aff));
 | ||
| 
 | ||
| 	aff = isl_aff_cow(aff);
 | ||
| 	if (!aff)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	aff->ls = isl_local_space_drop_dims(aff->ls, type, first, n);
 | ||
| 	if (!aff->ls)
 | ||
| 		return isl_aff_free(aff);
 | ||
| 
 | ||
| 	first += 1 + isl_local_space_offset(aff->ls, type);
 | ||
| 	aff->v = isl_vec_drop_els(aff->v, first, n);
 | ||
| 	if (!aff->v)
 | ||
| 		return isl_aff_free(aff);
 | ||
| 
 | ||
| 	return aff;
 | ||
| }
 | ||
| 
 | ||
| /* Project the domain of the affine expression onto its parameter space.
 | ||
|  * The affine expression may not involve any of the domain dimensions.
 | ||
|  */
 | ||
| __isl_give isl_aff *isl_aff_project_domain_on_params(__isl_take isl_aff *aff)
 | ||
| {
 | ||
| 	isl_space *space;
 | ||
| 	unsigned n;
 | ||
| 	int involves;
 | ||
| 
 | ||
| 	n = isl_aff_dim(aff, isl_dim_in);
 | ||
| 	involves = isl_aff_involves_dims(aff, isl_dim_in, 0, n);
 | ||
| 	if (involves < 0)
 | ||
| 		return isl_aff_free(aff);
 | ||
| 	if (involves)
 | ||
| 		isl_die(isl_aff_get_ctx(aff), isl_error_invalid,
 | ||
| 		    "affine expression involves some of the domain dimensions",
 | ||
| 		    return isl_aff_free(aff));
 | ||
| 	aff = isl_aff_drop_dims(aff, isl_dim_in, 0, n);
 | ||
| 	space = isl_aff_get_domain_space(aff);
 | ||
| 	space = isl_space_params(space);
 | ||
| 	aff = isl_aff_reset_domain_space(aff, space);
 | ||
| 	return aff;
 | ||
| }
 | ||
| 
 | ||
| __isl_give isl_aff *isl_aff_insert_dims(__isl_take isl_aff *aff,
 | ||
| 	enum isl_dim_type type, unsigned first, unsigned n)
 | ||
| {
 | ||
| 	isl_ctx *ctx;
 | ||
| 
 | ||
| 	if (!aff)
 | ||
| 		return NULL;
 | ||
| 	if (type == isl_dim_out)
 | ||
| 		isl_die(aff->v->ctx, isl_error_invalid,
 | ||
| 			"cannot insert output/set dimensions",
 | ||
| 			return isl_aff_free(aff));
 | ||
| 	if (type == isl_dim_in)
 | ||
| 		type = isl_dim_set;
 | ||
| 	if (n == 0 && !isl_local_space_is_named_or_nested(aff->ls, type))
 | ||
| 		return aff;
 | ||
| 
 | ||
| 	ctx = isl_aff_get_ctx(aff);
 | ||
| 	if (first > isl_local_space_dim(aff->ls, type))
 | ||
| 		isl_die(ctx, isl_error_invalid, "position out of bounds",
 | ||
| 			return isl_aff_free(aff));
 | ||
| 
 | ||
| 	aff = isl_aff_cow(aff);
 | ||
| 	if (!aff)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	aff->ls = isl_local_space_insert_dims(aff->ls, type, first, n);
 | ||
| 	if (!aff->ls)
 | ||
| 		return isl_aff_free(aff);
 | ||
| 
 | ||
| 	first += 1 + isl_local_space_offset(aff->ls, type);
 | ||
| 	aff->v = isl_vec_insert_zero_els(aff->v, first, n);
 | ||
| 	if (!aff->v)
 | ||
| 		return isl_aff_free(aff);
 | ||
| 
 | ||
| 	return aff;
 | ||
| }
 | ||
| 
 | ||
| __isl_give isl_aff *isl_aff_add_dims(__isl_take isl_aff *aff,
 | ||
| 	enum isl_dim_type type, unsigned n)
 | ||
| {
 | ||
| 	unsigned pos;
 | ||
| 
 | ||
| 	pos = isl_aff_dim(aff, type);
 | ||
| 
 | ||
| 	return isl_aff_insert_dims(aff, type, pos, n);
 | ||
| }
 | ||
| 
 | ||
| __isl_give isl_pw_aff *isl_pw_aff_add_dims(__isl_take isl_pw_aff *pwaff,
 | ||
| 	enum isl_dim_type type, unsigned n)
 | ||
| {
 | ||
| 	unsigned pos;
 | ||
| 
 | ||
| 	pos = isl_pw_aff_dim(pwaff, type);
 | ||
| 
 | ||
| 	return isl_pw_aff_insert_dims(pwaff, type, pos, n);
 | ||
| }
 | ||
| 
 | ||
| /* Move the "n" dimensions of "src_type" starting at "src_pos" of "aff"
 | ||
|  * to dimensions of "dst_type" at "dst_pos".
 | ||
|  *
 | ||
|  * We only support moving input dimensions to parameters and vice versa.
 | ||
|  */
 | ||
| __isl_give isl_aff *isl_aff_move_dims(__isl_take isl_aff *aff,
 | ||
| 	enum isl_dim_type dst_type, unsigned dst_pos,
 | ||
| 	enum isl_dim_type src_type, unsigned src_pos, unsigned n)
 | ||
| {
 | ||
| 	unsigned g_dst_pos;
 | ||
| 	unsigned g_src_pos;
 | ||
| 
 | ||
| 	if (!aff)
 | ||
| 		return NULL;
 | ||
| 	if (n == 0 &&
 | ||
| 	    !isl_local_space_is_named_or_nested(aff->ls, src_type) &&
 | ||
| 	    !isl_local_space_is_named_or_nested(aff->ls, dst_type))
 | ||
| 		return aff;
 | ||
| 
 | ||
| 	if (dst_type == isl_dim_out || src_type == isl_dim_out)
 | ||
| 		isl_die(isl_aff_get_ctx(aff), isl_error_invalid,
 | ||
| 			"cannot move output/set dimension",
 | ||
| 			return isl_aff_free(aff));
 | ||
| 	if (dst_type == isl_dim_div || src_type == isl_dim_div)
 | ||
| 		isl_die(isl_aff_get_ctx(aff), isl_error_invalid,
 | ||
| 			"cannot move divs", return isl_aff_free(aff));
 | ||
| 	if (dst_type == isl_dim_in)
 | ||
| 		dst_type = isl_dim_set;
 | ||
| 	if (src_type == isl_dim_in)
 | ||
| 		src_type = isl_dim_set;
 | ||
| 
 | ||
| 	if (src_pos + n > isl_local_space_dim(aff->ls, src_type))
 | ||
| 		isl_die(isl_aff_get_ctx(aff), isl_error_invalid,
 | ||
| 			"range out of bounds", return isl_aff_free(aff));
 | ||
| 	if (dst_type == src_type)
 | ||
| 		isl_die(isl_aff_get_ctx(aff), isl_error_unsupported,
 | ||
| 			"moving dims within the same type not supported",
 | ||
| 			return isl_aff_free(aff));
 | ||
| 
 | ||
| 	aff = isl_aff_cow(aff);
 | ||
| 	if (!aff)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	g_src_pos = 1 + isl_local_space_offset(aff->ls, src_type) + src_pos;
 | ||
| 	g_dst_pos = 1 + isl_local_space_offset(aff->ls, dst_type) + dst_pos;
 | ||
| 	if (dst_type > src_type)
 | ||
| 		g_dst_pos -= n;
 | ||
| 
 | ||
| 	aff->v = isl_vec_move_els(aff->v, g_dst_pos, g_src_pos, n);
 | ||
| 	aff->ls = isl_local_space_move_dims(aff->ls, dst_type, dst_pos,
 | ||
| 						src_type, src_pos, n);
 | ||
| 	if (!aff->v || !aff->ls)
 | ||
| 		return isl_aff_free(aff);
 | ||
| 
 | ||
| 	aff = sort_divs(aff);
 | ||
| 
 | ||
| 	return aff;
 | ||
| }
 | ||
| 
 | ||
| __isl_give isl_pw_aff *isl_pw_aff_from_aff(__isl_take isl_aff *aff)
 | ||
| {
 | ||
| 	isl_set *dom = isl_set_universe(isl_aff_get_domain_space(aff));
 | ||
| 	return isl_pw_aff_alloc(dom, aff);
 | ||
| }
 | ||
| 
 | ||
| #define isl_aff_involves_nan isl_aff_is_nan
 | ||
| 
 | ||
| #undef PW
 | ||
| #define PW isl_pw_aff
 | ||
| #undef EL
 | ||
| #define EL isl_aff
 | ||
| #undef EL_IS_ZERO
 | ||
| #define EL_IS_ZERO is_empty
 | ||
| #undef ZERO
 | ||
| #define ZERO empty
 | ||
| #undef IS_ZERO
 | ||
| #define IS_ZERO is_empty
 | ||
| #undef FIELD
 | ||
| #define FIELD aff
 | ||
| #undef DEFAULT_IS_ZERO
 | ||
| #define DEFAULT_IS_ZERO 0
 | ||
| 
 | ||
| #define NO_EVAL
 | ||
| #define NO_OPT
 | ||
| #define NO_LIFT
 | ||
| #define NO_MORPH
 | ||
| 
 | ||
| #include <isl_pw_templ.c>
 | ||
| #include <isl_pw_hash.c>
 | ||
| #include <isl_pw_union_opt.c>
 | ||
| 
 | ||
| #undef UNION
 | ||
| #define UNION isl_union_pw_aff
 | ||
| #undef PART
 | ||
| #define PART isl_pw_aff
 | ||
| #undef PARTS
 | ||
| #define PARTS pw_aff
 | ||
| 
 | ||
| #include <isl_union_single.c>
 | ||
| #include <isl_union_neg.c>
 | ||
| 
 | ||
| static __isl_give isl_set *align_params_pw_pw_set_and(
 | ||
| 	__isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2,
 | ||
| 	__isl_give isl_set *(*fn)(__isl_take isl_pw_aff *pwaff1,
 | ||
| 				    __isl_take isl_pw_aff *pwaff2))
 | ||
| {
 | ||
| 	isl_bool equal_params;
 | ||
| 
 | ||
| 	if (!pwaff1 || !pwaff2)
 | ||
| 		goto error;
 | ||
| 	equal_params = isl_space_has_equal_params(pwaff1->dim, pwaff2->dim);
 | ||
| 	if (equal_params < 0)
 | ||
| 		goto error;
 | ||
| 	if (equal_params)
 | ||
| 		return fn(pwaff1, pwaff2);
 | ||
| 	if (!isl_space_has_named_params(pwaff1->dim) ||
 | ||
| 	    !isl_space_has_named_params(pwaff2->dim))
 | ||
| 		isl_die(isl_pw_aff_get_ctx(pwaff1), isl_error_invalid,
 | ||
| 			"unaligned unnamed parameters", goto error);
 | ||
| 	pwaff1 = isl_pw_aff_align_params(pwaff1, isl_pw_aff_get_space(pwaff2));
 | ||
| 	pwaff2 = isl_pw_aff_align_params(pwaff2, isl_pw_aff_get_space(pwaff1));
 | ||
| 	return fn(pwaff1, pwaff2);
 | ||
| error:
 | ||
| 	isl_pw_aff_free(pwaff1);
 | ||
| 	isl_pw_aff_free(pwaff2);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Align the parameters of the to isl_pw_aff arguments and
 | ||
|  * then apply a function "fn" on them that returns an isl_map.
 | ||
|  */
 | ||
| static __isl_give isl_map *align_params_pw_pw_map_and(
 | ||
| 	__isl_take isl_pw_aff *pa1, __isl_take isl_pw_aff *pa2,
 | ||
| 	__isl_give isl_map *(*fn)(__isl_take isl_pw_aff *pa1,
 | ||
| 				    __isl_take isl_pw_aff *pa2))
 | ||
| {
 | ||
| 	isl_bool equal_params;
 | ||
| 
 | ||
| 	if (!pa1 || !pa2)
 | ||
| 		goto error;
 | ||
| 	equal_params = isl_space_has_equal_params(pa1->dim, pa2->dim);
 | ||
| 	if (equal_params < 0)
 | ||
| 		goto error;
 | ||
| 	if (equal_params)
 | ||
| 		return fn(pa1, pa2);
 | ||
| 	if (!isl_space_has_named_params(pa1->dim) ||
 | ||
| 	    !isl_space_has_named_params(pa2->dim))
 | ||
| 		isl_die(isl_pw_aff_get_ctx(pa1), isl_error_invalid,
 | ||
| 			"unaligned unnamed parameters", goto error);
 | ||
| 	pa1 = isl_pw_aff_align_params(pa1, isl_pw_aff_get_space(pa2));
 | ||
| 	pa2 = isl_pw_aff_align_params(pa2, isl_pw_aff_get_space(pa1));
 | ||
| 	return fn(pa1, pa2);
 | ||
| error:
 | ||
| 	isl_pw_aff_free(pa1);
 | ||
| 	isl_pw_aff_free(pa2);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Compute a piecewise quasi-affine expression with a domain that
 | ||
|  * is the union of those of pwaff1 and pwaff2 and such that on each
 | ||
|  * cell, the quasi-affine expression is the maximum of those of pwaff1
 | ||
|  * and pwaff2.  If only one of pwaff1 or pwaff2 is defined on a given
 | ||
|  * cell, then the associated expression is the defined one.
 | ||
|  */
 | ||
| static __isl_give isl_pw_aff *pw_aff_union_max(__isl_take isl_pw_aff *pwaff1,
 | ||
| 	__isl_take isl_pw_aff *pwaff2)
 | ||
| {
 | ||
| 	return isl_pw_aff_union_opt_cmp(pwaff1, pwaff2, &isl_aff_ge_set);
 | ||
| }
 | ||
| 
 | ||
| __isl_give isl_pw_aff *isl_pw_aff_union_max(__isl_take isl_pw_aff *pwaff1,
 | ||
| 	__isl_take isl_pw_aff *pwaff2)
 | ||
| {
 | ||
| 	return isl_pw_aff_align_params_pw_pw_and(pwaff1, pwaff2,
 | ||
| 							&pw_aff_union_max);
 | ||
| }
 | ||
| 
 | ||
| /* Compute a piecewise quasi-affine expression with a domain that
 | ||
|  * is the union of those of pwaff1 and pwaff2 and such that on each
 | ||
|  * cell, the quasi-affine expression is the minimum of those of pwaff1
 | ||
|  * and pwaff2.  If only one of pwaff1 or pwaff2 is defined on a given
 | ||
|  * cell, then the associated expression is the defined one.
 | ||
|  */
 | ||
| static __isl_give isl_pw_aff *pw_aff_union_min(__isl_take isl_pw_aff *pwaff1,
 | ||
| 	__isl_take isl_pw_aff *pwaff2)
 | ||
| {
 | ||
| 	return isl_pw_aff_union_opt_cmp(pwaff1, pwaff2, &isl_aff_le_set);
 | ||
| }
 | ||
| 
 | ||
| __isl_give isl_pw_aff *isl_pw_aff_union_min(__isl_take isl_pw_aff *pwaff1,
 | ||
| 	__isl_take isl_pw_aff *pwaff2)
 | ||
| {
 | ||
| 	return isl_pw_aff_align_params_pw_pw_and(pwaff1, pwaff2,
 | ||
| 							&pw_aff_union_min);
 | ||
| }
 | ||
| 
 | ||
| __isl_give isl_pw_aff *isl_pw_aff_union_opt(__isl_take isl_pw_aff *pwaff1,
 | ||
| 	__isl_take isl_pw_aff *pwaff2, int max)
 | ||
| {
 | ||
| 	if (max)
 | ||
| 		return isl_pw_aff_union_max(pwaff1, pwaff2);
 | ||
| 	else
 | ||
| 		return isl_pw_aff_union_min(pwaff1, pwaff2);
 | ||
| }
 | ||
| 
 | ||
| /* Construct a map with as domain the domain of pwaff and
 | ||
|  * one-dimensional range corresponding to the affine expressions.
 | ||
|  */
 | ||
| static __isl_give isl_map *map_from_pw_aff(__isl_take isl_pw_aff *pwaff)
 | ||
| {
 | ||
| 	int i;
 | ||
| 	isl_space *dim;
 | ||
| 	isl_map *map;
 | ||
| 
 | ||
| 	if (!pwaff)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	dim = isl_pw_aff_get_space(pwaff);
 | ||
| 	map = isl_map_empty(dim);
 | ||
| 
 | ||
| 	for (i = 0; i < pwaff->n; ++i) {
 | ||
| 		isl_basic_map *bmap;
 | ||
| 		isl_map *map_i;
 | ||
| 
 | ||
| 		bmap = isl_basic_map_from_aff(isl_aff_copy(pwaff->p[i].aff));
 | ||
| 		map_i = isl_map_from_basic_map(bmap);
 | ||
| 		map_i = isl_map_intersect_domain(map_i,
 | ||
| 						isl_set_copy(pwaff->p[i].set));
 | ||
| 		map = isl_map_union_disjoint(map, map_i);
 | ||
| 	}
 | ||
| 
 | ||
| 	isl_pw_aff_free(pwaff);
 | ||
| 
 | ||
| 	return map;
 | ||
| }
 | ||
| 
 | ||
| /* Construct a map with as domain the domain of pwaff and
 | ||
|  * one-dimensional range corresponding to the affine expressions.
 | ||
|  */
 | ||
| __isl_give isl_map *isl_map_from_pw_aff(__isl_take isl_pw_aff *pwaff)
 | ||
| {
 | ||
| 	if (!pwaff)
 | ||
| 		return NULL;
 | ||
| 	if (isl_space_is_set(pwaff->dim))
 | ||
| 		isl_die(isl_pw_aff_get_ctx(pwaff), isl_error_invalid,
 | ||
| 			"space of input is not a map", goto error);
 | ||
| 	return map_from_pw_aff(pwaff);
 | ||
| error:
 | ||
| 	isl_pw_aff_free(pwaff);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Construct a one-dimensional set with as parameter domain
 | ||
|  * the domain of pwaff and the single set dimension
 | ||
|  * corresponding to the affine expressions.
 | ||
|  */
 | ||
| __isl_give isl_set *isl_set_from_pw_aff(__isl_take isl_pw_aff *pwaff)
 | ||
| {
 | ||
| 	if (!pwaff)
 | ||
| 		return NULL;
 | ||
| 	if (!isl_space_is_set(pwaff->dim))
 | ||
| 		isl_die(isl_pw_aff_get_ctx(pwaff), isl_error_invalid,
 | ||
| 			"space of input is not a set", goto error);
 | ||
| 	return map_from_pw_aff(pwaff);
 | ||
| error:
 | ||
| 	isl_pw_aff_free(pwaff);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Return a set containing those elements in the domain
 | ||
|  * of "pwaff" where it satisfies "fn" (if complement is 0) or
 | ||
|  * does not satisfy "fn" (if complement is 1).
 | ||
|  *
 | ||
|  * The pieces with a NaN never belong to the result since
 | ||
|  * NaN does not satisfy any property.
 | ||
|  */
 | ||
| static __isl_give isl_set *pw_aff_locus(__isl_take isl_pw_aff *pwaff,
 | ||
| 	__isl_give isl_basic_set *(*fn)(__isl_take isl_aff *aff, int rational),
 | ||
| 	int complement)
 | ||
| {
 | ||
| 	int i;
 | ||
| 	isl_set *set;
 | ||
| 
 | ||
| 	if (!pwaff)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	set = isl_set_empty(isl_pw_aff_get_domain_space(pwaff));
 | ||
| 
 | ||
| 	for (i = 0; i < pwaff->n; ++i) {
 | ||
| 		isl_basic_set *bset;
 | ||
| 		isl_set *set_i, *locus;
 | ||
| 		isl_bool rational;
 | ||
| 
 | ||
| 		if (isl_aff_is_nan(pwaff->p[i].aff))
 | ||
| 			continue;
 | ||
| 
 | ||
| 		rational = isl_set_has_rational(pwaff->p[i].set);
 | ||
| 		bset = fn(isl_aff_copy(pwaff->p[i].aff), rational);
 | ||
| 		locus = isl_set_from_basic_set(bset);
 | ||
| 		set_i = isl_set_copy(pwaff->p[i].set);
 | ||
| 		if (complement)
 | ||
| 			set_i = isl_set_subtract(set_i, locus);
 | ||
| 		else
 | ||
| 			set_i = isl_set_intersect(set_i, locus);
 | ||
| 		set = isl_set_union_disjoint(set, set_i);
 | ||
| 	}
 | ||
| 
 | ||
| 	isl_pw_aff_free(pwaff);
 | ||
| 
 | ||
| 	return set;
 | ||
| }
 | ||
| 
 | ||
| /* Return a set containing those elements in the domain
 | ||
|  * of "pa" where it is positive.
 | ||
|  */
 | ||
| __isl_give isl_set *isl_pw_aff_pos_set(__isl_take isl_pw_aff *pa)
 | ||
| {
 | ||
| 	return pw_aff_locus(pa, &aff_pos_basic_set, 0);
 | ||
| }
 | ||
| 
 | ||
| /* Return a set containing those elements in the domain
 | ||
|  * of pwaff where it is non-negative.
 | ||
|  */
 | ||
| __isl_give isl_set *isl_pw_aff_nonneg_set(__isl_take isl_pw_aff *pwaff)
 | ||
| {
 | ||
| 	return pw_aff_locus(pwaff, &aff_nonneg_basic_set, 0);
 | ||
| }
 | ||
| 
 | ||
| /* Return a set containing those elements in the domain
 | ||
|  * of pwaff where it is zero.
 | ||
|  */
 | ||
| __isl_give isl_set *isl_pw_aff_zero_set(__isl_take isl_pw_aff *pwaff)
 | ||
| {
 | ||
| 	return pw_aff_locus(pwaff, &aff_zero_basic_set, 0);
 | ||
| }
 | ||
| 
 | ||
| /* Return a set containing those elements in the domain
 | ||
|  * of pwaff where it is not zero.
 | ||
|  */
 | ||
| __isl_give isl_set *isl_pw_aff_non_zero_set(__isl_take isl_pw_aff *pwaff)
 | ||
| {
 | ||
| 	return pw_aff_locus(pwaff, &aff_zero_basic_set, 1);
 | ||
| }
 | ||
| 
 | ||
| /* Return a set containing those elements in the shared domain
 | ||
|  * of pwaff1 and pwaff2 where pwaff1 is greater than (or equal) to pwaff2.
 | ||
|  *
 | ||
|  * We compute the difference on the shared domain and then construct
 | ||
|  * the set of values where this difference is non-negative.
 | ||
|  * If strict is set, we first subtract 1 from the difference.
 | ||
|  * If equal is set, we only return the elements where pwaff1 and pwaff2
 | ||
|  * are equal.
 | ||
|  */
 | ||
| static __isl_give isl_set *pw_aff_gte_set(__isl_take isl_pw_aff *pwaff1,
 | ||
| 	__isl_take isl_pw_aff *pwaff2, int strict, int equal)
 | ||
| {
 | ||
| 	isl_set *set1, *set2;
 | ||
| 
 | ||
| 	set1 = isl_pw_aff_domain(isl_pw_aff_copy(pwaff1));
 | ||
| 	set2 = isl_pw_aff_domain(isl_pw_aff_copy(pwaff2));
 | ||
| 	set1 = isl_set_intersect(set1, set2);
 | ||
| 	pwaff1 = isl_pw_aff_intersect_domain(pwaff1, isl_set_copy(set1));
 | ||
| 	pwaff2 = isl_pw_aff_intersect_domain(pwaff2, isl_set_copy(set1));
 | ||
| 	pwaff1 = isl_pw_aff_add(pwaff1, isl_pw_aff_neg(pwaff2));
 | ||
| 
 | ||
| 	if (strict) {
 | ||
| 		isl_space *dim = isl_set_get_space(set1);
 | ||
| 		isl_aff *aff;
 | ||
| 		aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
 | ||
| 		aff = isl_aff_add_constant_si(aff, -1);
 | ||
| 		pwaff1 = isl_pw_aff_add(pwaff1, isl_pw_aff_alloc(set1, aff));
 | ||
| 	} else
 | ||
| 		isl_set_free(set1);
 | ||
| 
 | ||
| 	if (equal)
 | ||
| 		return isl_pw_aff_zero_set(pwaff1);
 | ||
| 	return isl_pw_aff_nonneg_set(pwaff1);
 | ||
| }
 | ||
| 
 | ||
| /* Return a set containing those elements in the shared domain
 | ||
|  * of pwaff1 and pwaff2 where pwaff1 is equal to pwaff2.
 | ||
|  */
 | ||
| static __isl_give isl_set *pw_aff_eq_set(__isl_take isl_pw_aff *pwaff1,
 | ||
| 	__isl_take isl_pw_aff *pwaff2)
 | ||
| {
 | ||
| 	return pw_aff_gte_set(pwaff1, pwaff2, 0, 1);
 | ||
| }
 | ||
| 
 | ||
| __isl_give isl_set *isl_pw_aff_eq_set(__isl_take isl_pw_aff *pwaff1,
 | ||
| 	__isl_take isl_pw_aff *pwaff2)
 | ||
| {
 | ||
| 	return align_params_pw_pw_set_and(pwaff1, pwaff2, &pw_aff_eq_set);
 | ||
| }
 | ||
| 
 | ||
| /* Return a set containing those elements in the shared domain
 | ||
|  * of pwaff1 and pwaff2 where pwaff1 is greater than or equal to pwaff2.
 | ||
|  */
 | ||
| static __isl_give isl_set *pw_aff_ge_set(__isl_take isl_pw_aff *pwaff1,
 | ||
| 	__isl_take isl_pw_aff *pwaff2)
 | ||
| {
 | ||
| 	return pw_aff_gte_set(pwaff1, pwaff2, 0, 0);
 | ||
| }
 | ||
| 
 | ||
| __isl_give isl_set *isl_pw_aff_ge_set(__isl_take isl_pw_aff *pwaff1,
 | ||
| 	__isl_take isl_pw_aff *pwaff2)
 | ||
| {
 | ||
| 	return align_params_pw_pw_set_and(pwaff1, pwaff2, &pw_aff_ge_set);
 | ||
| }
 | ||
| 
 | ||
| /* Return a set containing those elements in the shared domain
 | ||
|  * of pwaff1 and pwaff2 where pwaff1 is strictly greater than pwaff2.
 | ||
|  */
 | ||
| static __isl_give isl_set *pw_aff_gt_set(__isl_take isl_pw_aff *pwaff1,
 | ||
| 	__isl_take isl_pw_aff *pwaff2)
 | ||
| {
 | ||
| 	return pw_aff_gte_set(pwaff1, pwaff2, 1, 0);
 | ||
| }
 | ||
| 
 | ||
| __isl_give isl_set *isl_pw_aff_gt_set(__isl_take isl_pw_aff *pwaff1,
 | ||
| 	__isl_take isl_pw_aff *pwaff2)
 | ||
| {
 | ||
| 	return align_params_pw_pw_set_and(pwaff1, pwaff2, &pw_aff_gt_set);
 | ||
| }
 | ||
| 
 | ||
| __isl_give isl_set *isl_pw_aff_le_set(__isl_take isl_pw_aff *pwaff1,
 | ||
| 	__isl_take isl_pw_aff *pwaff2)
 | ||
| {
 | ||
| 	return isl_pw_aff_ge_set(pwaff2, pwaff1);
 | ||
| }
 | ||
| 
 | ||
| __isl_give isl_set *isl_pw_aff_lt_set(__isl_take isl_pw_aff *pwaff1,
 | ||
| 	__isl_take isl_pw_aff *pwaff2)
 | ||
| {
 | ||
| 	return isl_pw_aff_gt_set(pwaff2, pwaff1);
 | ||
| }
 | ||
| 
 | ||
| /* Return a map containing pairs of elements in the domains of "pa1" and "pa2"
 | ||
|  * where the function values are ordered in the same way as "order",
 | ||
|  * which returns a set in the shared domain of its two arguments.
 | ||
|  * The parameters of "pa1" and "pa2" are assumed to have been aligned.
 | ||
|  *
 | ||
|  * Let "pa1" and "pa2" be defined on domains A and B respectively.
 | ||
|  * We first pull back the two functions such that they are defined on
 | ||
|  * the domain [A -> B].  Then we apply "order", resulting in a set
 | ||
|  * in the space [A -> B].  Finally, we unwrap this set to obtain
 | ||
|  * a map in the space A -> B.
 | ||
|  */
 | ||
| static __isl_give isl_map *isl_pw_aff_order_map_aligned(
 | ||
| 	__isl_take isl_pw_aff *pa1, __isl_take isl_pw_aff *pa2,
 | ||
| 	__isl_give isl_set *(*order)(__isl_take isl_pw_aff *pa1,
 | ||
| 		__isl_take isl_pw_aff *pa2))
 | ||
| {
 | ||
| 	isl_space *space1, *space2;
 | ||
| 	isl_multi_aff *ma;
 | ||
| 	isl_set *set;
 | ||
| 
 | ||
| 	space1 = isl_space_domain(isl_pw_aff_get_space(pa1));
 | ||
| 	space2 = isl_space_domain(isl_pw_aff_get_space(pa2));
 | ||
| 	space1 = isl_space_map_from_domain_and_range(space1, space2);
 | ||
| 	ma = isl_multi_aff_domain_map(isl_space_copy(space1));
 | ||
| 	pa1 = isl_pw_aff_pullback_multi_aff(pa1, ma);
 | ||
| 	ma = isl_multi_aff_range_map(space1);
 | ||
| 	pa2 = isl_pw_aff_pullback_multi_aff(pa2, ma);
 | ||
| 	set = order(pa1, pa2);
 | ||
| 
 | ||
| 	return isl_set_unwrap(set);
 | ||
| }
 | ||
| 
 | ||
| /* Return a map containing pairs of elements in the domains of "pa1" and "pa2"
 | ||
|  * where the function values are equal.
 | ||
|  * The parameters of "pa1" and "pa2" are assumed to have been aligned.
 | ||
|  */
 | ||
| static __isl_give isl_map *isl_pw_aff_eq_map_aligned(__isl_take isl_pw_aff *pa1,
 | ||
| 	__isl_take isl_pw_aff *pa2)
 | ||
| {
 | ||
| 	return isl_pw_aff_order_map_aligned(pa1, pa2, &isl_pw_aff_eq_set);
 | ||
| }
 | ||
| 
 | ||
| /* Return a map containing pairs of elements in the domains of "pa1" and "pa2"
 | ||
|  * where the function values are equal.
 | ||
|  */
 | ||
| __isl_give isl_map *isl_pw_aff_eq_map(__isl_take isl_pw_aff *pa1,
 | ||
| 	__isl_take isl_pw_aff *pa2)
 | ||
| {
 | ||
| 	return align_params_pw_pw_map_and(pa1, pa2, &isl_pw_aff_eq_map_aligned);
 | ||
| }
 | ||
| 
 | ||
| /* Return a map containing pairs of elements in the domains of "pa1" and "pa2"
 | ||
|  * where the function value of "pa1" is less than the function value of "pa2".
 | ||
|  * The parameters of "pa1" and "pa2" are assumed to have been aligned.
 | ||
|  */
 | ||
| static __isl_give isl_map *isl_pw_aff_lt_map_aligned(__isl_take isl_pw_aff *pa1,
 | ||
| 	__isl_take isl_pw_aff *pa2)
 | ||
| {
 | ||
| 	return isl_pw_aff_order_map_aligned(pa1, pa2, &isl_pw_aff_lt_set);
 | ||
| }
 | ||
| 
 | ||
| /* Return a map containing pairs of elements in the domains of "pa1" and "pa2"
 | ||
|  * where the function value of "pa1" is less than the function value of "pa2".
 | ||
|  */
 | ||
| __isl_give isl_map *isl_pw_aff_lt_map(__isl_take isl_pw_aff *pa1,
 | ||
| 	__isl_take isl_pw_aff *pa2)
 | ||
| {
 | ||
| 	return align_params_pw_pw_map_and(pa1, pa2, &isl_pw_aff_lt_map_aligned);
 | ||
| }
 | ||
| 
 | ||
| /* Return a map containing pairs of elements in the domains of "pa1" and "pa2"
 | ||
|  * where the function value of "pa1" is greater than the function value
 | ||
|  * of "pa2".
 | ||
|  * The parameters of "pa1" and "pa2" are assumed to have been aligned.
 | ||
|  */
 | ||
| static __isl_give isl_map *isl_pw_aff_gt_map_aligned(__isl_take isl_pw_aff *pa1,
 | ||
| 	__isl_take isl_pw_aff *pa2)
 | ||
| {
 | ||
| 	return isl_pw_aff_order_map_aligned(pa1, pa2, &isl_pw_aff_gt_set);
 | ||
| }
 | ||
| 
 | ||
| /* Return a map containing pairs of elements in the domains of "pa1" and "pa2"
 | ||
|  * where the function value of "pa1" is greater than the function value
 | ||
|  * of "pa2".
 | ||
|  */
 | ||
| __isl_give isl_map *isl_pw_aff_gt_map(__isl_take isl_pw_aff *pa1,
 | ||
| 	__isl_take isl_pw_aff *pa2)
 | ||
| {
 | ||
| 	return align_params_pw_pw_map_and(pa1, pa2, &isl_pw_aff_gt_map_aligned);
 | ||
| }
 | ||
| 
 | ||
| /* Return a set containing those elements in the shared domain
 | ||
|  * of the elements of list1 and list2 where each element in list1
 | ||
|  * has the relation specified by "fn" with each element in list2.
 | ||
|  */
 | ||
| static __isl_give isl_set *pw_aff_list_set(__isl_take isl_pw_aff_list *list1,
 | ||
| 	__isl_take isl_pw_aff_list *list2,
 | ||
| 	__isl_give isl_set *(*fn)(__isl_take isl_pw_aff *pwaff1,
 | ||
| 				    __isl_take isl_pw_aff *pwaff2))
 | ||
| {
 | ||
| 	int i, j;
 | ||
| 	isl_ctx *ctx;
 | ||
| 	isl_set *set;
 | ||
| 
 | ||
| 	if (!list1 || !list2)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	ctx = isl_pw_aff_list_get_ctx(list1);
 | ||
| 	if (list1->n < 1 || list2->n < 1)
 | ||
| 		isl_die(ctx, isl_error_invalid,
 | ||
| 			"list should contain at least one element", goto error);
 | ||
| 
 | ||
| 	set = isl_set_universe(isl_pw_aff_get_domain_space(list1->p[0]));
 | ||
| 	for (i = 0; i < list1->n; ++i)
 | ||
| 		for (j = 0; j < list2->n; ++j) {
 | ||
| 			isl_set *set_ij;
 | ||
| 
 | ||
| 			set_ij = fn(isl_pw_aff_copy(list1->p[i]),
 | ||
| 				    isl_pw_aff_copy(list2->p[j]));
 | ||
| 			set = isl_set_intersect(set, set_ij);
 | ||
| 		}
 | ||
| 
 | ||
| 	isl_pw_aff_list_free(list1);
 | ||
| 	isl_pw_aff_list_free(list2);
 | ||
| 	return set;
 | ||
| error:
 | ||
| 	isl_pw_aff_list_free(list1);
 | ||
| 	isl_pw_aff_list_free(list2);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Return a set containing those elements in the shared domain
 | ||
|  * of the elements of list1 and list2 where each element in list1
 | ||
|  * is equal to each element in list2.
 | ||
|  */
 | ||
| __isl_give isl_set *isl_pw_aff_list_eq_set(__isl_take isl_pw_aff_list *list1,
 | ||
| 	__isl_take isl_pw_aff_list *list2)
 | ||
| {
 | ||
| 	return pw_aff_list_set(list1, list2, &isl_pw_aff_eq_set);
 | ||
| }
 | ||
| 
 | ||
| __isl_give isl_set *isl_pw_aff_list_ne_set(__isl_take isl_pw_aff_list *list1,
 | ||
| 	__isl_take isl_pw_aff_list *list2)
 | ||
| {
 | ||
| 	return pw_aff_list_set(list1, list2, &isl_pw_aff_ne_set);
 | ||
| }
 | ||
| 
 | ||
| /* Return a set containing those elements in the shared domain
 | ||
|  * of the elements of list1 and list2 where each element in list1
 | ||
|  * is less than or equal to each element in list2.
 | ||
|  */
 | ||
| __isl_give isl_set *isl_pw_aff_list_le_set(__isl_take isl_pw_aff_list *list1,
 | ||
| 	__isl_take isl_pw_aff_list *list2)
 | ||
| {
 | ||
| 	return pw_aff_list_set(list1, list2, &isl_pw_aff_le_set);
 | ||
| }
 | ||
| 
 | ||
| __isl_give isl_set *isl_pw_aff_list_lt_set(__isl_take isl_pw_aff_list *list1,
 | ||
| 	__isl_take isl_pw_aff_list *list2)
 | ||
| {
 | ||
| 	return pw_aff_list_set(list1, list2, &isl_pw_aff_lt_set);
 | ||
| }
 | ||
| 
 | ||
| __isl_give isl_set *isl_pw_aff_list_ge_set(__isl_take isl_pw_aff_list *list1,
 | ||
| 	__isl_take isl_pw_aff_list *list2)
 | ||
| {
 | ||
| 	return pw_aff_list_set(list1, list2, &isl_pw_aff_ge_set);
 | ||
| }
 | ||
| 
 | ||
| __isl_give isl_set *isl_pw_aff_list_gt_set(__isl_take isl_pw_aff_list *list1,
 | ||
| 	__isl_take isl_pw_aff_list *list2)
 | ||
| {
 | ||
| 	return pw_aff_list_set(list1, list2, &isl_pw_aff_gt_set);
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /* Return a set containing those elements in the shared domain
 | ||
|  * of pwaff1 and pwaff2 where pwaff1 is not equal to pwaff2.
 | ||
|  */
 | ||
| static __isl_give isl_set *pw_aff_ne_set(__isl_take isl_pw_aff *pwaff1,
 | ||
| 	__isl_take isl_pw_aff *pwaff2)
 | ||
| {
 | ||
| 	isl_set *set_lt, *set_gt;
 | ||
| 
 | ||
| 	set_lt = isl_pw_aff_lt_set(isl_pw_aff_copy(pwaff1),
 | ||
| 				   isl_pw_aff_copy(pwaff2));
 | ||
| 	set_gt = isl_pw_aff_gt_set(pwaff1, pwaff2);
 | ||
| 	return isl_set_union_disjoint(set_lt, set_gt);
 | ||
| }
 | ||
| 
 | ||
| __isl_give isl_set *isl_pw_aff_ne_set(__isl_take isl_pw_aff *pwaff1,
 | ||
| 	__isl_take isl_pw_aff *pwaff2)
 | ||
| {
 | ||
| 	return align_params_pw_pw_set_and(pwaff1, pwaff2, &pw_aff_ne_set);
 | ||
| }
 | ||
| 
 | ||
| __isl_give isl_pw_aff *isl_pw_aff_scale_down(__isl_take isl_pw_aff *pwaff,
 | ||
| 	isl_int v)
 | ||
| {
 | ||
| 	int i;
 | ||
| 
 | ||
| 	if (isl_int_is_one(v))
 | ||
| 		return pwaff;
 | ||
| 	if (!isl_int_is_pos(v))
 | ||
| 		isl_die(isl_pw_aff_get_ctx(pwaff), isl_error_invalid,
 | ||
| 			"factor needs to be positive",
 | ||
| 			return isl_pw_aff_free(pwaff));
 | ||
| 	pwaff = isl_pw_aff_cow(pwaff);
 | ||
| 	if (!pwaff)
 | ||
| 		return NULL;
 | ||
| 	if (pwaff->n == 0)
 | ||
| 		return pwaff;
 | ||
| 
 | ||
| 	for (i = 0; i < pwaff->n; ++i) {
 | ||
| 		pwaff->p[i].aff = isl_aff_scale_down(pwaff->p[i].aff, v);
 | ||
| 		if (!pwaff->p[i].aff)
 | ||
| 			return isl_pw_aff_free(pwaff);
 | ||
| 	}
 | ||
| 
 | ||
| 	return pwaff;
 | ||
| }
 | ||
| 
 | ||
| __isl_give isl_pw_aff *isl_pw_aff_floor(__isl_take isl_pw_aff *pwaff)
 | ||
| {
 | ||
| 	int i;
 | ||
| 
 | ||
| 	pwaff = isl_pw_aff_cow(pwaff);
 | ||
| 	if (!pwaff)
 | ||
| 		return NULL;
 | ||
| 	if (pwaff->n == 0)
 | ||
| 		return pwaff;
 | ||
| 
 | ||
| 	for (i = 0; i < pwaff->n; ++i) {
 | ||
| 		pwaff->p[i].aff = isl_aff_floor(pwaff->p[i].aff);
 | ||
| 		if (!pwaff->p[i].aff)
 | ||
| 			return isl_pw_aff_free(pwaff);
 | ||
| 	}
 | ||
| 
 | ||
| 	return pwaff;
 | ||
| }
 | ||
| 
 | ||
| __isl_give isl_pw_aff *isl_pw_aff_ceil(__isl_take isl_pw_aff *pwaff)
 | ||
| {
 | ||
| 	int i;
 | ||
| 
 | ||
| 	pwaff = isl_pw_aff_cow(pwaff);
 | ||
| 	if (!pwaff)
 | ||
| 		return NULL;
 | ||
| 	if (pwaff->n == 0)
 | ||
| 		return pwaff;
 | ||
| 
 | ||
| 	for (i = 0; i < pwaff->n; ++i) {
 | ||
| 		pwaff->p[i].aff = isl_aff_ceil(pwaff->p[i].aff);
 | ||
| 		if (!pwaff->p[i].aff)
 | ||
| 			return isl_pw_aff_free(pwaff);
 | ||
| 	}
 | ||
| 
 | ||
| 	return pwaff;
 | ||
| }
 | ||
| 
 | ||
| /* Assuming that "cond1" and "cond2" are disjoint,
 | ||
|  * return an affine expression that is equal to pwaff1 on cond1
 | ||
|  * and to pwaff2 on cond2.
 | ||
|  */
 | ||
| static __isl_give isl_pw_aff *isl_pw_aff_select(
 | ||
| 	__isl_take isl_set *cond1, __isl_take isl_pw_aff *pwaff1,
 | ||
| 	__isl_take isl_set *cond2, __isl_take isl_pw_aff *pwaff2)
 | ||
| {
 | ||
| 	pwaff1 = isl_pw_aff_intersect_domain(pwaff1, cond1);
 | ||
| 	pwaff2 = isl_pw_aff_intersect_domain(pwaff2, cond2);
 | ||
| 
 | ||
| 	return isl_pw_aff_add_disjoint(pwaff1, pwaff2);
 | ||
| }
 | ||
| 
 | ||
| /* Return an affine expression that is equal to pwaff_true for elements
 | ||
|  * where "cond" is non-zero and to pwaff_false for elements where "cond"
 | ||
|  * is zero.
 | ||
|  * That is, return cond ? pwaff_true : pwaff_false;
 | ||
|  *
 | ||
|  * If "cond" involves and NaN, then we conservatively return a NaN
 | ||
|  * on its entire domain.  In principle, we could consider the pieces
 | ||
|  * where it is NaN separately from those where it is not.
 | ||
|  *
 | ||
|  * If "pwaff_true" and "pwaff_false" are obviously equal to each other,
 | ||
|  * then only use the domain of "cond" to restrict the domain.
 | ||
|  */
 | ||
| __isl_give isl_pw_aff *isl_pw_aff_cond(__isl_take isl_pw_aff *cond,
 | ||
| 	__isl_take isl_pw_aff *pwaff_true, __isl_take isl_pw_aff *pwaff_false)
 | ||
| {
 | ||
| 	isl_set *cond_true, *cond_false;
 | ||
| 	isl_bool equal;
 | ||
| 
 | ||
| 	if (!cond)
 | ||
| 		goto error;
 | ||
| 	if (isl_pw_aff_involves_nan(cond)) {
 | ||
| 		isl_space *space = isl_pw_aff_get_domain_space(cond);
 | ||
| 		isl_local_space *ls = isl_local_space_from_space(space);
 | ||
| 		isl_pw_aff_free(cond);
 | ||
| 		isl_pw_aff_free(pwaff_true);
 | ||
| 		isl_pw_aff_free(pwaff_false);
 | ||
| 		return isl_pw_aff_nan_on_domain(ls);
 | ||
| 	}
 | ||
| 
 | ||
| 	pwaff_true = isl_pw_aff_align_params(pwaff_true,
 | ||
| 					    isl_pw_aff_get_space(pwaff_false));
 | ||
| 	pwaff_false = isl_pw_aff_align_params(pwaff_false,
 | ||
| 					    isl_pw_aff_get_space(pwaff_true));
 | ||
| 	equal = isl_pw_aff_plain_is_equal(pwaff_true, pwaff_false);
 | ||
| 	if (equal < 0)
 | ||
| 		goto error;
 | ||
| 	if (equal) {
 | ||
| 		isl_set *dom;
 | ||
| 
 | ||
| 		dom = isl_set_coalesce(isl_pw_aff_domain(cond));
 | ||
| 		isl_pw_aff_free(pwaff_false);
 | ||
| 		return isl_pw_aff_intersect_domain(pwaff_true, dom);
 | ||
| 	}
 | ||
| 
 | ||
| 	cond_true = isl_pw_aff_non_zero_set(isl_pw_aff_copy(cond));
 | ||
| 	cond_false = isl_pw_aff_zero_set(cond);
 | ||
| 	return isl_pw_aff_select(cond_true, pwaff_true,
 | ||
| 				 cond_false, pwaff_false);
 | ||
| error:
 | ||
| 	isl_pw_aff_free(cond);
 | ||
| 	isl_pw_aff_free(pwaff_true);
 | ||
| 	isl_pw_aff_free(pwaff_false);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| isl_bool isl_aff_is_cst(__isl_keep isl_aff *aff)
 | ||
| {
 | ||
| 	if (!aff)
 | ||
| 		return isl_bool_error;
 | ||
| 
 | ||
| 	return isl_seq_first_non_zero(aff->v->el + 2, aff->v->size - 2) == -1;
 | ||
| }
 | ||
| 
 | ||
| /* Check whether pwaff is a piecewise constant.
 | ||
|  */
 | ||
| isl_bool isl_pw_aff_is_cst(__isl_keep isl_pw_aff *pwaff)
 | ||
| {
 | ||
| 	int i;
 | ||
| 
 | ||
| 	if (!pwaff)
 | ||
| 		return isl_bool_error;
 | ||
| 
 | ||
| 	for (i = 0; i < pwaff->n; ++i) {
 | ||
| 		isl_bool is_cst = isl_aff_is_cst(pwaff->p[i].aff);
 | ||
| 		if (is_cst < 0 || !is_cst)
 | ||
| 			return is_cst;
 | ||
| 	}
 | ||
| 
 | ||
| 	return isl_bool_true;
 | ||
| }
 | ||
| 
 | ||
| /* Are all elements of "mpa" piecewise constants?
 | ||
|  */
 | ||
| isl_bool isl_multi_pw_aff_is_cst(__isl_keep isl_multi_pw_aff *mpa)
 | ||
| {
 | ||
| 	int i;
 | ||
| 
 | ||
| 	if (!mpa)
 | ||
| 		return isl_bool_error;
 | ||
| 
 | ||
| 	for (i = 0; i < mpa->n; ++i) {
 | ||
| 		isl_bool is_cst = isl_pw_aff_is_cst(mpa->p[i]);
 | ||
| 		if (is_cst < 0 || !is_cst)
 | ||
| 			return is_cst;
 | ||
| 	}
 | ||
| 
 | ||
| 	return isl_bool_true;
 | ||
| }
 | ||
| 
 | ||
| /* Return the product of "aff1" and "aff2".
 | ||
|  *
 | ||
|  * If either of the two is NaN, then the result is NaN.
 | ||
|  *
 | ||
|  * Otherwise, at least one of "aff1" or "aff2" needs to be a constant.
 | ||
|  */
 | ||
| __isl_give isl_aff *isl_aff_mul(__isl_take isl_aff *aff1,
 | ||
| 	__isl_take isl_aff *aff2)
 | ||
| {
 | ||
| 	if (!aff1 || !aff2)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	if (isl_aff_is_nan(aff1)) {
 | ||
| 		isl_aff_free(aff2);
 | ||
| 		return aff1;
 | ||
| 	}
 | ||
| 	if (isl_aff_is_nan(aff2)) {
 | ||
| 		isl_aff_free(aff1);
 | ||
| 		return aff2;
 | ||
| 	}
 | ||
| 
 | ||
| 	if (!isl_aff_is_cst(aff2) && isl_aff_is_cst(aff1))
 | ||
| 		return isl_aff_mul(aff2, aff1);
 | ||
| 
 | ||
| 	if (!isl_aff_is_cst(aff2))
 | ||
| 		isl_die(isl_aff_get_ctx(aff1), isl_error_invalid,
 | ||
| 			"at least one affine expression should be constant",
 | ||
| 			goto error);
 | ||
| 
 | ||
| 	aff1 = isl_aff_cow(aff1);
 | ||
| 	if (!aff1 || !aff2)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	aff1 = isl_aff_scale(aff1, aff2->v->el[1]);
 | ||
| 	aff1 = isl_aff_scale_down(aff1, aff2->v->el[0]);
 | ||
| 
 | ||
| 	isl_aff_free(aff2);
 | ||
| 	return aff1;
 | ||
| error:
 | ||
| 	isl_aff_free(aff1);
 | ||
| 	isl_aff_free(aff2);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Divide "aff1" by "aff2", assuming "aff2" is a constant.
 | ||
|  *
 | ||
|  * If either of the two is NaN, then the result is NaN.
 | ||
|  */
 | ||
| __isl_give isl_aff *isl_aff_div(__isl_take isl_aff *aff1,
 | ||
| 	__isl_take isl_aff *aff2)
 | ||
| {
 | ||
| 	int is_cst;
 | ||
| 	int neg;
 | ||
| 
 | ||
| 	if (!aff1 || !aff2)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	if (isl_aff_is_nan(aff1)) {
 | ||
| 		isl_aff_free(aff2);
 | ||
| 		return aff1;
 | ||
| 	}
 | ||
| 	if (isl_aff_is_nan(aff2)) {
 | ||
| 		isl_aff_free(aff1);
 | ||
| 		return aff2;
 | ||
| 	}
 | ||
| 
 | ||
| 	is_cst = isl_aff_is_cst(aff2);
 | ||
| 	if (is_cst < 0)
 | ||
| 		goto error;
 | ||
| 	if (!is_cst)
 | ||
| 		isl_die(isl_aff_get_ctx(aff2), isl_error_invalid,
 | ||
| 			"second argument should be a constant", goto error);
 | ||
| 
 | ||
| 	if (!aff2)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	neg = isl_int_is_neg(aff2->v->el[1]);
 | ||
| 	if (neg) {
 | ||
| 		isl_int_neg(aff2->v->el[0], aff2->v->el[0]);
 | ||
| 		isl_int_neg(aff2->v->el[1], aff2->v->el[1]);
 | ||
| 	}
 | ||
| 
 | ||
| 	aff1 = isl_aff_scale(aff1, aff2->v->el[0]);
 | ||
| 	aff1 = isl_aff_scale_down(aff1, aff2->v->el[1]);
 | ||
| 
 | ||
| 	if (neg) {
 | ||
| 		isl_int_neg(aff2->v->el[0], aff2->v->el[0]);
 | ||
| 		isl_int_neg(aff2->v->el[1], aff2->v->el[1]);
 | ||
| 	}
 | ||
| 
 | ||
| 	isl_aff_free(aff2);
 | ||
| 	return aff1;
 | ||
| error:
 | ||
| 	isl_aff_free(aff1);
 | ||
| 	isl_aff_free(aff2);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| static __isl_give isl_pw_aff *pw_aff_add(__isl_take isl_pw_aff *pwaff1,
 | ||
| 	__isl_take isl_pw_aff *pwaff2)
 | ||
| {
 | ||
| 	return isl_pw_aff_on_shared_domain(pwaff1, pwaff2, &isl_aff_add);
 | ||
| }
 | ||
| 
 | ||
| __isl_give isl_pw_aff *isl_pw_aff_add(__isl_take isl_pw_aff *pwaff1,
 | ||
| 	__isl_take isl_pw_aff *pwaff2)
 | ||
| {
 | ||
| 	return isl_pw_aff_align_params_pw_pw_and(pwaff1, pwaff2, &pw_aff_add);
 | ||
| }
 | ||
| 
 | ||
| __isl_give isl_pw_aff *isl_pw_aff_union_add(__isl_take isl_pw_aff *pwaff1,
 | ||
| 	__isl_take isl_pw_aff *pwaff2)
 | ||
| {
 | ||
| 	return isl_pw_aff_union_add_(pwaff1, pwaff2);
 | ||
| }
 | ||
| 
 | ||
| static __isl_give isl_pw_aff *pw_aff_mul(__isl_take isl_pw_aff *pwaff1,
 | ||
| 	__isl_take isl_pw_aff *pwaff2)
 | ||
| {
 | ||
| 	return isl_pw_aff_on_shared_domain(pwaff1, pwaff2, &isl_aff_mul);
 | ||
| }
 | ||
| 
 | ||
| __isl_give isl_pw_aff *isl_pw_aff_mul(__isl_take isl_pw_aff *pwaff1,
 | ||
| 	__isl_take isl_pw_aff *pwaff2)
 | ||
| {
 | ||
| 	return isl_pw_aff_align_params_pw_pw_and(pwaff1, pwaff2, &pw_aff_mul);
 | ||
| }
 | ||
| 
 | ||
| static __isl_give isl_pw_aff *pw_aff_div(__isl_take isl_pw_aff *pa1,
 | ||
| 	__isl_take isl_pw_aff *pa2)
 | ||
| {
 | ||
| 	return isl_pw_aff_on_shared_domain(pa1, pa2, &isl_aff_div);
 | ||
| }
 | ||
| 
 | ||
| /* Divide "pa1" by "pa2", assuming "pa2" is a piecewise constant.
 | ||
|  */
 | ||
| __isl_give isl_pw_aff *isl_pw_aff_div(__isl_take isl_pw_aff *pa1,
 | ||
| 	__isl_take isl_pw_aff *pa2)
 | ||
| {
 | ||
| 	int is_cst;
 | ||
| 
 | ||
| 	is_cst = isl_pw_aff_is_cst(pa2);
 | ||
| 	if (is_cst < 0)
 | ||
| 		goto error;
 | ||
| 	if (!is_cst)
 | ||
| 		isl_die(isl_pw_aff_get_ctx(pa2), isl_error_invalid,
 | ||
| 			"second argument should be a piecewise constant",
 | ||
| 			goto error);
 | ||
| 	return isl_pw_aff_align_params_pw_pw_and(pa1, pa2, &pw_aff_div);
 | ||
| error:
 | ||
| 	isl_pw_aff_free(pa1);
 | ||
| 	isl_pw_aff_free(pa2);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Compute the quotient of the integer division of "pa1" by "pa2"
 | ||
|  * with rounding towards zero.
 | ||
|  * "pa2" is assumed to be a piecewise constant.
 | ||
|  *
 | ||
|  * In particular, return
 | ||
|  *
 | ||
|  *	pa1 >= 0 ? floor(pa1/pa2) : ceil(pa1/pa2)
 | ||
|  *
 | ||
|  */
 | ||
| __isl_give isl_pw_aff *isl_pw_aff_tdiv_q(__isl_take isl_pw_aff *pa1,
 | ||
| 	__isl_take isl_pw_aff *pa2)
 | ||
| {
 | ||
| 	int is_cst;
 | ||
| 	isl_set *cond;
 | ||
| 	isl_pw_aff *f, *c;
 | ||
| 
 | ||
| 	is_cst = isl_pw_aff_is_cst(pa2);
 | ||
| 	if (is_cst < 0)
 | ||
| 		goto error;
 | ||
| 	if (!is_cst)
 | ||
| 		isl_die(isl_pw_aff_get_ctx(pa2), isl_error_invalid,
 | ||
| 			"second argument should be a piecewise constant",
 | ||
| 			goto error);
 | ||
| 
 | ||
| 	pa1 = isl_pw_aff_div(pa1, pa2);
 | ||
| 
 | ||
| 	cond = isl_pw_aff_nonneg_set(isl_pw_aff_copy(pa1));
 | ||
| 	f = isl_pw_aff_floor(isl_pw_aff_copy(pa1));
 | ||
| 	c = isl_pw_aff_ceil(pa1);
 | ||
| 	return isl_pw_aff_cond(isl_set_indicator_function(cond), f, c);
 | ||
| error:
 | ||
| 	isl_pw_aff_free(pa1);
 | ||
| 	isl_pw_aff_free(pa2);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Compute the remainder of the integer division of "pa1" by "pa2"
 | ||
|  * with rounding towards zero.
 | ||
|  * "pa2" is assumed to be a piecewise constant.
 | ||
|  *
 | ||
|  * In particular, return
 | ||
|  *
 | ||
|  *	pa1 - pa2 * (pa1 >= 0 ? floor(pa1/pa2) : ceil(pa1/pa2))
 | ||
|  *
 | ||
|  */
 | ||
| __isl_give isl_pw_aff *isl_pw_aff_tdiv_r(__isl_take isl_pw_aff *pa1,
 | ||
| 	__isl_take isl_pw_aff *pa2)
 | ||
| {
 | ||
| 	int is_cst;
 | ||
| 	isl_pw_aff *res;
 | ||
| 
 | ||
| 	is_cst = isl_pw_aff_is_cst(pa2);
 | ||
| 	if (is_cst < 0)
 | ||
| 		goto error;
 | ||
| 	if (!is_cst)
 | ||
| 		isl_die(isl_pw_aff_get_ctx(pa2), isl_error_invalid,
 | ||
| 			"second argument should be a piecewise constant",
 | ||
| 			goto error);
 | ||
| 	res = isl_pw_aff_tdiv_q(isl_pw_aff_copy(pa1), isl_pw_aff_copy(pa2));
 | ||
| 	res = isl_pw_aff_mul(pa2, res);
 | ||
| 	res = isl_pw_aff_sub(pa1, res);
 | ||
| 	return res;
 | ||
| error:
 | ||
| 	isl_pw_aff_free(pa1);
 | ||
| 	isl_pw_aff_free(pa2);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Does either of "pa1" or "pa2" involve any NaN2?
 | ||
|  */
 | ||
| static isl_bool either_involves_nan(__isl_keep isl_pw_aff *pa1,
 | ||
| 	__isl_keep isl_pw_aff *pa2)
 | ||
| {
 | ||
| 	isl_bool has_nan;
 | ||
| 
 | ||
| 	has_nan = isl_pw_aff_involves_nan(pa1);
 | ||
| 	if (has_nan < 0 || has_nan)
 | ||
| 		return has_nan;
 | ||
| 	return isl_pw_aff_involves_nan(pa2);
 | ||
| }
 | ||
| 
 | ||
| /* Replace "pa1" and "pa2" (at least one of which involves a NaN)
 | ||
|  * by a NaN on their shared domain.
 | ||
|  *
 | ||
|  * In principle, the result could be refined to only being NaN
 | ||
|  * on the parts of this domain where at least one of "pa1" or "pa2" is NaN.
 | ||
|  */
 | ||
| static __isl_give isl_pw_aff *replace_by_nan(__isl_take isl_pw_aff *pa1,
 | ||
| 	__isl_take isl_pw_aff *pa2)
 | ||
| {
 | ||
| 	isl_local_space *ls;
 | ||
| 	isl_set *dom;
 | ||
| 	isl_pw_aff *pa;
 | ||
| 
 | ||
| 	dom = isl_set_intersect(isl_pw_aff_domain(pa1), isl_pw_aff_domain(pa2));
 | ||
| 	ls = isl_local_space_from_space(isl_set_get_space(dom));
 | ||
| 	pa = isl_pw_aff_nan_on_domain(ls);
 | ||
| 	pa = isl_pw_aff_intersect_domain(pa, dom);
 | ||
| 
 | ||
| 	return pa;
 | ||
| }
 | ||
| 
 | ||
| static __isl_give isl_pw_aff *pw_aff_min(__isl_take isl_pw_aff *pwaff1,
 | ||
| 	__isl_take isl_pw_aff *pwaff2)
 | ||
| {
 | ||
| 	isl_set *le;
 | ||
| 	isl_set *dom;
 | ||
| 
 | ||
| 	dom = isl_set_intersect(isl_pw_aff_domain(isl_pw_aff_copy(pwaff1)),
 | ||
| 				isl_pw_aff_domain(isl_pw_aff_copy(pwaff2)));
 | ||
| 	le = isl_pw_aff_le_set(isl_pw_aff_copy(pwaff1),
 | ||
| 				isl_pw_aff_copy(pwaff2));
 | ||
| 	dom = isl_set_subtract(dom, isl_set_copy(le));
 | ||
| 	return isl_pw_aff_select(le, pwaff1, dom, pwaff2);
 | ||
| }
 | ||
| 
 | ||
| static __isl_give isl_pw_aff *pw_aff_max(__isl_take isl_pw_aff *pwaff1,
 | ||
| 	__isl_take isl_pw_aff *pwaff2)
 | ||
| {
 | ||
| 	isl_set *ge;
 | ||
| 	isl_set *dom;
 | ||
| 
 | ||
| 	dom = isl_set_intersect(isl_pw_aff_domain(isl_pw_aff_copy(pwaff1)),
 | ||
| 				isl_pw_aff_domain(isl_pw_aff_copy(pwaff2)));
 | ||
| 	ge = isl_pw_aff_ge_set(isl_pw_aff_copy(pwaff1),
 | ||
| 				isl_pw_aff_copy(pwaff2));
 | ||
| 	dom = isl_set_subtract(dom, isl_set_copy(ge));
 | ||
| 	return isl_pw_aff_select(ge, pwaff1, dom, pwaff2);
 | ||
| }
 | ||
| 
 | ||
| /* Return an expression for the minimum (if "max" is not set) or
 | ||
|  * the maximum (if "max" is set) of "pa1" and "pa2".
 | ||
|  * If either expression involves any NaN, then return a NaN
 | ||
|  * on the shared domain as result.
 | ||
|  */
 | ||
| static __isl_give isl_pw_aff *pw_aff_min_max(__isl_take isl_pw_aff *pa1,
 | ||
| 	__isl_take isl_pw_aff *pa2, int max)
 | ||
| {
 | ||
| 	isl_bool has_nan;
 | ||
| 
 | ||
| 	has_nan = either_involves_nan(pa1, pa2);
 | ||
| 	if (has_nan < 0)
 | ||
| 		pa1 = isl_pw_aff_free(pa1);
 | ||
| 	else if (has_nan)
 | ||
| 		return replace_by_nan(pa1, pa2);
 | ||
| 
 | ||
| 	if (max)
 | ||
| 		return isl_pw_aff_align_params_pw_pw_and(pa1, pa2, &pw_aff_max);
 | ||
| 	else
 | ||
| 		return isl_pw_aff_align_params_pw_pw_and(pa1, pa2, &pw_aff_min);
 | ||
| }
 | ||
| 
 | ||
| /* Return an expression for the minimum of "pwaff1" and "pwaff2".
 | ||
|  */
 | ||
| __isl_give isl_pw_aff *isl_pw_aff_min(__isl_take isl_pw_aff *pwaff1,
 | ||
| 	__isl_take isl_pw_aff *pwaff2)
 | ||
| {
 | ||
| 	return pw_aff_min_max(pwaff1, pwaff2, 0);
 | ||
| }
 | ||
| 
 | ||
| /* Return an expression for the maximum of "pwaff1" and "pwaff2".
 | ||
|  */
 | ||
| __isl_give isl_pw_aff *isl_pw_aff_max(__isl_take isl_pw_aff *pwaff1,
 | ||
| 	__isl_take isl_pw_aff *pwaff2)
 | ||
| {
 | ||
| 	return pw_aff_min_max(pwaff1, pwaff2, 1);
 | ||
| }
 | ||
| 
 | ||
| static __isl_give isl_pw_aff *pw_aff_list_reduce(
 | ||
| 	__isl_take isl_pw_aff_list *list,
 | ||
| 	__isl_give isl_pw_aff *(*fn)(__isl_take isl_pw_aff *pwaff1,
 | ||
| 					__isl_take isl_pw_aff *pwaff2))
 | ||
| {
 | ||
| 	int i;
 | ||
| 	isl_ctx *ctx;
 | ||
| 	isl_pw_aff *res;
 | ||
| 
 | ||
| 	if (!list)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	ctx = isl_pw_aff_list_get_ctx(list);
 | ||
| 	if (list->n < 1)
 | ||
| 		isl_die(ctx, isl_error_invalid,
 | ||
| 			"list should contain at least one element", goto error);
 | ||
| 
 | ||
| 	res = isl_pw_aff_copy(list->p[0]);
 | ||
| 	for (i = 1; i < list->n; ++i)
 | ||
| 		res = fn(res, isl_pw_aff_copy(list->p[i]));
 | ||
| 
 | ||
| 	isl_pw_aff_list_free(list);
 | ||
| 	return res;
 | ||
| error:
 | ||
| 	isl_pw_aff_list_free(list);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Return an isl_pw_aff that maps each element in the intersection of the
 | ||
|  * domains of the elements of list to the minimal corresponding affine
 | ||
|  * expression.
 | ||
|  */
 | ||
| __isl_give isl_pw_aff *isl_pw_aff_list_min(__isl_take isl_pw_aff_list *list)
 | ||
| {
 | ||
| 	return pw_aff_list_reduce(list, &isl_pw_aff_min);
 | ||
| }
 | ||
| 
 | ||
| /* Return an isl_pw_aff that maps each element in the intersection of the
 | ||
|  * domains of the elements of list to the maximal corresponding affine
 | ||
|  * expression.
 | ||
|  */
 | ||
| __isl_give isl_pw_aff *isl_pw_aff_list_max(__isl_take isl_pw_aff_list *list)
 | ||
| {
 | ||
| 	return pw_aff_list_reduce(list, &isl_pw_aff_max);
 | ||
| }
 | ||
| 
 | ||
| /* Mark the domains of "pwaff" as rational.
 | ||
|  */
 | ||
| __isl_give isl_pw_aff *isl_pw_aff_set_rational(__isl_take isl_pw_aff *pwaff)
 | ||
| {
 | ||
| 	int i;
 | ||
| 
 | ||
| 	pwaff = isl_pw_aff_cow(pwaff);
 | ||
| 	if (!pwaff)
 | ||
| 		return NULL;
 | ||
| 	if (pwaff->n == 0)
 | ||
| 		return pwaff;
 | ||
| 
 | ||
| 	for (i = 0; i < pwaff->n; ++i) {
 | ||
| 		pwaff->p[i].set = isl_set_set_rational(pwaff->p[i].set);
 | ||
| 		if (!pwaff->p[i].set)
 | ||
| 			return isl_pw_aff_free(pwaff);
 | ||
| 	}
 | ||
| 
 | ||
| 	return pwaff;
 | ||
| }
 | ||
| 
 | ||
| /* Mark the domains of the elements of "list" as rational.
 | ||
|  */
 | ||
| __isl_give isl_pw_aff_list *isl_pw_aff_list_set_rational(
 | ||
| 	__isl_take isl_pw_aff_list *list)
 | ||
| {
 | ||
| 	int i, n;
 | ||
| 
 | ||
| 	if (!list)
 | ||
| 		return NULL;
 | ||
| 	if (list->n == 0)
 | ||
| 		return list;
 | ||
| 
 | ||
| 	n = list->n;
 | ||
| 	for (i = 0; i < n; ++i) {
 | ||
| 		isl_pw_aff *pa;
 | ||
| 
 | ||
| 		pa = isl_pw_aff_list_get_pw_aff(list, i);
 | ||
| 		pa = isl_pw_aff_set_rational(pa);
 | ||
| 		list = isl_pw_aff_list_set_pw_aff(list, i, pa);
 | ||
| 	}
 | ||
| 
 | ||
| 	return list;
 | ||
| }
 | ||
| 
 | ||
| /* Do the parameters of "aff" match those of "space"?
 | ||
|  */
 | ||
| isl_bool isl_aff_matching_params(__isl_keep isl_aff *aff,
 | ||
| 	__isl_keep isl_space *space)
 | ||
| {
 | ||
| 	isl_space *aff_space;
 | ||
| 	isl_bool match;
 | ||
| 
 | ||
| 	if (!aff || !space)
 | ||
| 		return isl_bool_error;
 | ||
| 
 | ||
| 	aff_space = isl_aff_get_domain_space(aff);
 | ||
| 
 | ||
| 	match = isl_space_has_equal_params(space, aff_space);
 | ||
| 
 | ||
| 	isl_space_free(aff_space);
 | ||
| 	return match;
 | ||
| }
 | ||
| 
 | ||
| /* Check that the domain space of "aff" matches "space".
 | ||
|  */
 | ||
| isl_stat isl_aff_check_match_domain_space(__isl_keep isl_aff *aff,
 | ||
| 	__isl_keep isl_space *space)
 | ||
| {
 | ||
| 	isl_space *aff_space;
 | ||
| 	isl_bool match;
 | ||
| 
 | ||
| 	if (!aff || !space)
 | ||
| 		return isl_stat_error;
 | ||
| 
 | ||
| 	aff_space = isl_aff_get_domain_space(aff);
 | ||
| 
 | ||
| 	match = isl_space_has_equal_params(space, aff_space);
 | ||
| 	if (match < 0)
 | ||
| 		goto error;
 | ||
| 	if (!match)
 | ||
| 		isl_die(isl_aff_get_ctx(aff), isl_error_invalid,
 | ||
| 			"parameters don't match", goto error);
 | ||
| 	match = isl_space_tuple_is_equal(space, isl_dim_in,
 | ||
| 					aff_space, isl_dim_set);
 | ||
| 	if (match < 0)
 | ||
| 		goto error;
 | ||
| 	if (!match)
 | ||
| 		isl_die(isl_aff_get_ctx(aff), isl_error_invalid,
 | ||
| 			"domains don't match", goto error);
 | ||
| 	isl_space_free(aff_space);
 | ||
| 	return isl_stat_ok;
 | ||
| error:
 | ||
| 	isl_space_free(aff_space);
 | ||
| 	return isl_stat_error;
 | ||
| }
 | ||
| 
 | ||
| #undef BASE
 | ||
| #define BASE aff
 | ||
| #undef DOMBASE
 | ||
| #define DOMBASE set
 | ||
| #define NO_DOMAIN
 | ||
| 
 | ||
| #include <isl_multi_templ.c>
 | ||
| #include <isl_multi_apply_set.c>
 | ||
| #include <isl_multi_cmp.c>
 | ||
| #include <isl_multi_floor.c>
 | ||
| #include <isl_multi_gist.c>
 | ||
| 
 | ||
| #undef NO_DOMAIN
 | ||
| 
 | ||
| /* Remove any internal structure of the domain of "ma".
 | ||
|  * If there is any such internal structure in the input,
 | ||
|  * then the name of the corresponding space is also removed.
 | ||
|  */
 | ||
| __isl_give isl_multi_aff *isl_multi_aff_flatten_domain(
 | ||
| 	__isl_take isl_multi_aff *ma)
 | ||
| {
 | ||
| 	isl_space *space;
 | ||
| 
 | ||
| 	if (!ma)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	if (!ma->space->nested[0])
 | ||
| 		return ma;
 | ||
| 
 | ||
| 	space = isl_multi_aff_get_space(ma);
 | ||
| 	space = isl_space_flatten_domain(space);
 | ||
| 	ma = isl_multi_aff_reset_space(ma, space);
 | ||
| 
 | ||
| 	return ma;
 | ||
| }
 | ||
| 
 | ||
| /* Given a map space, return an isl_multi_aff that maps a wrapped copy
 | ||
|  * of the space to its domain.
 | ||
|  */
 | ||
| __isl_give isl_multi_aff *isl_multi_aff_domain_map(__isl_take isl_space *space)
 | ||
| {
 | ||
| 	int i, n_in;
 | ||
| 	isl_local_space *ls;
 | ||
| 	isl_multi_aff *ma;
 | ||
| 
 | ||
| 	if (!space)
 | ||
| 		return NULL;
 | ||
| 	if (!isl_space_is_map(space))
 | ||
| 		isl_die(isl_space_get_ctx(space), isl_error_invalid,
 | ||
| 			"not a map space", goto error);
 | ||
| 
 | ||
| 	n_in = isl_space_dim(space, isl_dim_in);
 | ||
| 	space = isl_space_domain_map(space);
 | ||
| 
 | ||
| 	ma = isl_multi_aff_alloc(isl_space_copy(space));
 | ||
| 	if (n_in == 0) {
 | ||
| 		isl_space_free(space);
 | ||
| 		return ma;
 | ||
| 	}
 | ||
| 
 | ||
| 	space = isl_space_domain(space);
 | ||
| 	ls = isl_local_space_from_space(space);
 | ||
| 	for (i = 0; i < n_in; ++i) {
 | ||
| 		isl_aff *aff;
 | ||
| 
 | ||
| 		aff = isl_aff_var_on_domain(isl_local_space_copy(ls),
 | ||
| 						isl_dim_set, i);
 | ||
| 		ma = isl_multi_aff_set_aff(ma, i, aff);
 | ||
| 	}
 | ||
| 	isl_local_space_free(ls);
 | ||
| 	return ma;
 | ||
| error:
 | ||
| 	isl_space_free(space);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Given a map space, return an isl_multi_aff that maps a wrapped copy
 | ||
|  * of the space to its range.
 | ||
|  */
 | ||
| __isl_give isl_multi_aff *isl_multi_aff_range_map(__isl_take isl_space *space)
 | ||
| {
 | ||
| 	int i, n_in, n_out;
 | ||
| 	isl_local_space *ls;
 | ||
| 	isl_multi_aff *ma;
 | ||
| 
 | ||
| 	if (!space)
 | ||
| 		return NULL;
 | ||
| 	if (!isl_space_is_map(space))
 | ||
| 		isl_die(isl_space_get_ctx(space), isl_error_invalid,
 | ||
| 			"not a map space", goto error);
 | ||
| 
 | ||
| 	n_in = isl_space_dim(space, isl_dim_in);
 | ||
| 	n_out = isl_space_dim(space, isl_dim_out);
 | ||
| 	space = isl_space_range_map(space);
 | ||
| 
 | ||
| 	ma = isl_multi_aff_alloc(isl_space_copy(space));
 | ||
| 	if (n_out == 0) {
 | ||
| 		isl_space_free(space);
 | ||
| 		return ma;
 | ||
| 	}
 | ||
| 
 | ||
| 	space = isl_space_domain(space);
 | ||
| 	ls = isl_local_space_from_space(space);
 | ||
| 	for (i = 0; i < n_out; ++i) {
 | ||
| 		isl_aff *aff;
 | ||
| 
 | ||
| 		aff = isl_aff_var_on_domain(isl_local_space_copy(ls),
 | ||
| 						isl_dim_set, n_in + i);
 | ||
| 		ma = isl_multi_aff_set_aff(ma, i, aff);
 | ||
| 	}
 | ||
| 	isl_local_space_free(ls);
 | ||
| 	return ma;
 | ||
| error:
 | ||
| 	isl_space_free(space);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Given a map space, return an isl_pw_multi_aff that maps a wrapped copy
 | ||
|  * of the space to its range.
 | ||
|  */
 | ||
| __isl_give isl_pw_multi_aff *isl_pw_multi_aff_range_map(
 | ||
| 	__isl_take isl_space *space)
 | ||
| {
 | ||
| 	return isl_pw_multi_aff_from_multi_aff(isl_multi_aff_range_map(space));
 | ||
| }
 | ||
| 
 | ||
| /* Given the space of a set and a range of set dimensions,
 | ||
|  * construct an isl_multi_aff that projects out those dimensions.
 | ||
|  */
 | ||
| __isl_give isl_multi_aff *isl_multi_aff_project_out_map(
 | ||
| 	__isl_take isl_space *space, enum isl_dim_type type,
 | ||
| 	unsigned first, unsigned n)
 | ||
| {
 | ||
| 	int i, dim;
 | ||
| 	isl_local_space *ls;
 | ||
| 	isl_multi_aff *ma;
 | ||
| 
 | ||
| 	if (!space)
 | ||
| 		return NULL;
 | ||
| 	if (!isl_space_is_set(space))
 | ||
| 		isl_die(isl_space_get_ctx(space), isl_error_unsupported,
 | ||
| 			"expecting set space", goto error);
 | ||
| 	if (type != isl_dim_set)
 | ||
| 		isl_die(isl_space_get_ctx(space), isl_error_invalid,
 | ||
| 			"only set dimensions can be projected out", goto error);
 | ||
| 
 | ||
| 	dim = isl_space_dim(space, isl_dim_set);
 | ||
| 	if (first + n > dim)
 | ||
| 		isl_die(isl_space_get_ctx(space), isl_error_invalid,
 | ||
| 			"range out of bounds", goto error);
 | ||
| 
 | ||
| 	space = isl_space_from_domain(space);
 | ||
| 	space = isl_space_add_dims(space, isl_dim_out, dim - n);
 | ||
| 
 | ||
| 	if (dim == n)
 | ||
| 		return isl_multi_aff_alloc(space);
 | ||
| 
 | ||
| 	ma = isl_multi_aff_alloc(isl_space_copy(space));
 | ||
| 	space = isl_space_domain(space);
 | ||
| 	ls = isl_local_space_from_space(space);
 | ||
| 
 | ||
| 	for (i = 0; i < first; ++i) {
 | ||
| 		isl_aff *aff;
 | ||
| 
 | ||
| 		aff = isl_aff_var_on_domain(isl_local_space_copy(ls),
 | ||
| 						isl_dim_set, i);
 | ||
| 		ma = isl_multi_aff_set_aff(ma, i, aff);
 | ||
| 	}
 | ||
| 
 | ||
| 	for (i = 0; i < dim - (first + n); ++i) {
 | ||
| 		isl_aff *aff;
 | ||
| 
 | ||
| 		aff = isl_aff_var_on_domain(isl_local_space_copy(ls),
 | ||
| 						isl_dim_set, first + n + i);
 | ||
| 		ma = isl_multi_aff_set_aff(ma, first + i, aff);
 | ||
| 	}
 | ||
| 
 | ||
| 	isl_local_space_free(ls);
 | ||
| 	return ma;
 | ||
| error:
 | ||
| 	isl_space_free(space);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Given the space of a set and a range of set dimensions,
 | ||
|  * construct an isl_pw_multi_aff that projects out those dimensions.
 | ||
|  */
 | ||
| __isl_give isl_pw_multi_aff *isl_pw_multi_aff_project_out_map(
 | ||
| 	__isl_take isl_space *space, enum isl_dim_type type,
 | ||
| 	unsigned first, unsigned n)
 | ||
| {
 | ||
| 	isl_multi_aff *ma;
 | ||
| 
 | ||
| 	ma = isl_multi_aff_project_out_map(space, type, first, n);
 | ||
| 	return isl_pw_multi_aff_from_multi_aff(ma);
 | ||
| }
 | ||
| 
 | ||
| /* Create an isl_pw_multi_aff with the given isl_multi_aff on a universe
 | ||
|  * domain.
 | ||
|  */
 | ||
| __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_multi_aff(
 | ||
| 	__isl_take isl_multi_aff *ma)
 | ||
| {
 | ||
| 	isl_set *dom = isl_set_universe(isl_multi_aff_get_domain_space(ma));
 | ||
| 	return isl_pw_multi_aff_alloc(dom, ma);
 | ||
| }
 | ||
| 
 | ||
| /* Create a piecewise multi-affine expression in the given space that maps each
 | ||
|  * input dimension to the corresponding output dimension.
 | ||
|  */
 | ||
| __isl_give isl_pw_multi_aff *isl_pw_multi_aff_identity(
 | ||
| 	__isl_take isl_space *space)
 | ||
| {
 | ||
| 	return isl_pw_multi_aff_from_multi_aff(isl_multi_aff_identity(space));
 | ||
| }
 | ||
| 
 | ||
| /* Exploit the equalities in "eq" to simplify the affine expressions.
 | ||
|  */
 | ||
| static __isl_give isl_multi_aff *isl_multi_aff_substitute_equalities(
 | ||
| 	__isl_take isl_multi_aff *maff, __isl_take isl_basic_set *eq)
 | ||
| {
 | ||
| 	int i;
 | ||
| 
 | ||
| 	maff = isl_multi_aff_cow(maff);
 | ||
| 	if (!maff || !eq)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	for (i = 0; i < maff->n; ++i) {
 | ||
| 		maff->p[i] = isl_aff_substitute_equalities(maff->p[i],
 | ||
| 						    isl_basic_set_copy(eq));
 | ||
| 		if (!maff->p[i])
 | ||
| 			goto error;
 | ||
| 	}
 | ||
| 
 | ||
| 	isl_basic_set_free(eq);
 | ||
| 	return maff;
 | ||
| error:
 | ||
| 	isl_basic_set_free(eq);
 | ||
| 	isl_multi_aff_free(maff);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| __isl_give isl_multi_aff *isl_multi_aff_scale(__isl_take isl_multi_aff *maff,
 | ||
| 	isl_int f)
 | ||
| {
 | ||
| 	int i;
 | ||
| 
 | ||
| 	maff = isl_multi_aff_cow(maff);
 | ||
| 	if (!maff)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	for (i = 0; i < maff->n; ++i) {
 | ||
| 		maff->p[i] = isl_aff_scale(maff->p[i], f);
 | ||
| 		if (!maff->p[i])
 | ||
| 			return isl_multi_aff_free(maff);
 | ||
| 	}
 | ||
| 
 | ||
| 	return maff;
 | ||
| }
 | ||
| 
 | ||
| __isl_give isl_multi_aff *isl_multi_aff_add_on_domain(__isl_keep isl_set *dom,
 | ||
| 	__isl_take isl_multi_aff *maff1, __isl_take isl_multi_aff *maff2)
 | ||
| {
 | ||
| 	maff1 = isl_multi_aff_add(maff1, maff2);
 | ||
| 	maff1 = isl_multi_aff_gist(maff1, isl_set_copy(dom));
 | ||
| 	return maff1;
 | ||
| }
 | ||
| 
 | ||
| int isl_multi_aff_is_empty(__isl_keep isl_multi_aff *maff)
 | ||
| {
 | ||
| 	if (!maff)
 | ||
| 		return -1;
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| /* Return the set of domain elements where "ma1" is lexicographically
 | ||
|  * smaller than or equal to "ma2".
 | ||
|  */
 | ||
| __isl_give isl_set *isl_multi_aff_lex_le_set(__isl_take isl_multi_aff *ma1,
 | ||
| 	__isl_take isl_multi_aff *ma2)
 | ||
| {
 | ||
| 	return isl_multi_aff_lex_ge_set(ma2, ma1);
 | ||
| }
 | ||
| 
 | ||
| /* Return the set of domain elements where "ma1" is lexicographically
 | ||
|  * smaller than "ma2".
 | ||
|  */
 | ||
| __isl_give isl_set *isl_multi_aff_lex_lt_set(__isl_take isl_multi_aff *ma1,
 | ||
| 	__isl_take isl_multi_aff *ma2)
 | ||
| {
 | ||
| 	return isl_multi_aff_lex_gt_set(ma2, ma1);
 | ||
| }
 | ||
| 
 | ||
| /* Return the set of domain elements where "ma1" and "ma2"
 | ||
|  * satisfy "order".
 | ||
|  */
 | ||
| static __isl_give isl_set *isl_multi_aff_order_set(
 | ||
| 	__isl_take isl_multi_aff *ma1, __isl_take isl_multi_aff *ma2,
 | ||
| 	__isl_give isl_map *order(__isl_take isl_space *set_space))
 | ||
| {
 | ||
| 	isl_space *space;
 | ||
| 	isl_map *map1, *map2;
 | ||
| 	isl_map *map, *ge;
 | ||
| 
 | ||
| 	map1 = isl_map_from_multi_aff(ma1);
 | ||
| 	map2 = isl_map_from_multi_aff(ma2);
 | ||
| 	map = isl_map_range_product(map1, map2);
 | ||
| 	space = isl_space_range(isl_map_get_space(map));
 | ||
| 	space = isl_space_domain(isl_space_unwrap(space));
 | ||
| 	ge = order(space);
 | ||
| 	map = isl_map_intersect_range(map, isl_map_wrap(ge));
 | ||
| 
 | ||
| 	return isl_map_domain(map);
 | ||
| }
 | ||
| 
 | ||
| /* Return the set of domain elements where "ma1" is lexicographically
 | ||
|  * greater than or equal to "ma2".
 | ||
|  */
 | ||
| __isl_give isl_set *isl_multi_aff_lex_ge_set(__isl_take isl_multi_aff *ma1,
 | ||
| 	__isl_take isl_multi_aff *ma2)
 | ||
| {
 | ||
| 	return isl_multi_aff_order_set(ma1, ma2, &isl_map_lex_ge);
 | ||
| }
 | ||
| 
 | ||
| /* Return the set of domain elements where "ma1" is lexicographically
 | ||
|  * greater than "ma2".
 | ||
|  */
 | ||
| __isl_give isl_set *isl_multi_aff_lex_gt_set(__isl_take isl_multi_aff *ma1,
 | ||
| 	__isl_take isl_multi_aff *ma2)
 | ||
| {
 | ||
| 	return isl_multi_aff_order_set(ma1, ma2, &isl_map_lex_gt);
 | ||
| }
 | ||
| 
 | ||
| #undef PW
 | ||
| #define PW isl_pw_multi_aff
 | ||
| #undef EL
 | ||
| #define EL isl_multi_aff
 | ||
| #undef EL_IS_ZERO
 | ||
| #define EL_IS_ZERO is_empty
 | ||
| #undef ZERO
 | ||
| #define ZERO empty
 | ||
| #undef IS_ZERO
 | ||
| #define IS_ZERO is_empty
 | ||
| #undef FIELD
 | ||
| #define FIELD maff
 | ||
| #undef DEFAULT_IS_ZERO
 | ||
| #define DEFAULT_IS_ZERO 0
 | ||
| 
 | ||
| #define NO_SUB
 | ||
| #define NO_EVAL
 | ||
| #define NO_OPT
 | ||
| #define NO_INVOLVES_DIMS
 | ||
| #define NO_INSERT_DIMS
 | ||
| #define NO_LIFT
 | ||
| #define NO_MORPH
 | ||
| 
 | ||
| #include <isl_pw_templ.c>
 | ||
| #include <isl_pw_union_opt.c>
 | ||
| 
 | ||
| #undef NO_SUB
 | ||
| 
 | ||
| #undef UNION
 | ||
| #define UNION isl_union_pw_multi_aff
 | ||
| #undef PART
 | ||
| #define PART isl_pw_multi_aff
 | ||
| #undef PARTS
 | ||
| #define PARTS pw_multi_aff
 | ||
| 
 | ||
| #include <isl_union_multi.c>
 | ||
| #include <isl_union_neg.c>
 | ||
| 
 | ||
| static __isl_give isl_pw_multi_aff *pw_multi_aff_union_lexmax(
 | ||
| 	__isl_take isl_pw_multi_aff *pma1,
 | ||
| 	__isl_take isl_pw_multi_aff *pma2)
 | ||
| {
 | ||
| 	return isl_pw_multi_aff_union_opt_cmp(pma1, pma2,
 | ||
| 					    &isl_multi_aff_lex_ge_set);
 | ||
| }
 | ||
| 
 | ||
| /* Given two piecewise multi affine expressions, return a piecewise
 | ||
|  * multi-affine expression defined on the union of the definition domains
 | ||
|  * of the inputs that is equal to the lexicographic maximum of the two
 | ||
|  * inputs on each cell.  If only one of the two inputs is defined on
 | ||
|  * a given cell, then it is considered to be the maximum.
 | ||
|  */
 | ||
| __isl_give isl_pw_multi_aff *isl_pw_multi_aff_union_lexmax(
 | ||
| 	__isl_take isl_pw_multi_aff *pma1,
 | ||
| 	__isl_take isl_pw_multi_aff *pma2)
 | ||
| {
 | ||
| 	return isl_pw_multi_aff_align_params_pw_pw_and(pma1, pma2,
 | ||
| 						    &pw_multi_aff_union_lexmax);
 | ||
| }
 | ||
| 
 | ||
| static __isl_give isl_pw_multi_aff *pw_multi_aff_union_lexmin(
 | ||
| 	__isl_take isl_pw_multi_aff *pma1,
 | ||
| 	__isl_take isl_pw_multi_aff *pma2)
 | ||
| {
 | ||
| 	return isl_pw_multi_aff_union_opt_cmp(pma1, pma2,
 | ||
| 					    &isl_multi_aff_lex_le_set);
 | ||
| }
 | ||
| 
 | ||
| /* Given two piecewise multi affine expressions, return a piecewise
 | ||
|  * multi-affine expression defined on the union of the definition domains
 | ||
|  * of the inputs that is equal to the lexicographic minimum of the two
 | ||
|  * inputs on each cell.  If only one of the two inputs is defined on
 | ||
|  * a given cell, then it is considered to be the minimum.
 | ||
|  */
 | ||
| __isl_give isl_pw_multi_aff *isl_pw_multi_aff_union_lexmin(
 | ||
| 	__isl_take isl_pw_multi_aff *pma1,
 | ||
| 	__isl_take isl_pw_multi_aff *pma2)
 | ||
| {
 | ||
| 	return isl_pw_multi_aff_align_params_pw_pw_and(pma1, pma2,
 | ||
| 						    &pw_multi_aff_union_lexmin);
 | ||
| }
 | ||
| 
 | ||
| static __isl_give isl_pw_multi_aff *pw_multi_aff_add(
 | ||
| 	__isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2)
 | ||
| {
 | ||
| 	return isl_pw_multi_aff_on_shared_domain(pma1, pma2,
 | ||
| 						&isl_multi_aff_add);
 | ||
| }
 | ||
| 
 | ||
| __isl_give isl_pw_multi_aff *isl_pw_multi_aff_add(
 | ||
| 	__isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2)
 | ||
| {
 | ||
| 	return isl_pw_multi_aff_align_params_pw_pw_and(pma1, pma2,
 | ||
| 						&pw_multi_aff_add);
 | ||
| }
 | ||
| 
 | ||
| static __isl_give isl_pw_multi_aff *pw_multi_aff_sub(
 | ||
| 	__isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2)
 | ||
| {
 | ||
| 	return isl_pw_multi_aff_on_shared_domain(pma1, pma2,
 | ||
| 						&isl_multi_aff_sub);
 | ||
| }
 | ||
| 
 | ||
| /* Subtract "pma2" from "pma1" and return the result.
 | ||
|  */
 | ||
| __isl_give isl_pw_multi_aff *isl_pw_multi_aff_sub(
 | ||
| 	__isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2)
 | ||
| {
 | ||
| 	return isl_pw_multi_aff_align_params_pw_pw_and(pma1, pma2,
 | ||
| 						&pw_multi_aff_sub);
 | ||
| }
 | ||
| 
 | ||
| __isl_give isl_pw_multi_aff *isl_pw_multi_aff_union_add(
 | ||
| 	__isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2)
 | ||
| {
 | ||
| 	return isl_pw_multi_aff_union_add_(pma1, pma2);
 | ||
| }
 | ||
| 
 | ||
| /* Compute the sum of "upa1" and "upa2" on the union of their domains,
 | ||
|  * with the actual sum on the shared domain and
 | ||
|  * the defined expression on the symmetric difference of the domains.
 | ||
|  */
 | ||
| __isl_give isl_union_pw_aff *isl_union_pw_aff_union_add(
 | ||
| 	__isl_take isl_union_pw_aff *upa1, __isl_take isl_union_pw_aff *upa2)
 | ||
| {
 | ||
| 	return isl_union_pw_aff_union_add_(upa1, upa2);
 | ||
| }
 | ||
| 
 | ||
| /* Compute the sum of "upma1" and "upma2" on the union of their domains,
 | ||
|  * with the actual sum on the shared domain and
 | ||
|  * the defined expression on the symmetric difference of the domains.
 | ||
|  */
 | ||
| __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_union_add(
 | ||
| 	__isl_take isl_union_pw_multi_aff *upma1,
 | ||
| 	__isl_take isl_union_pw_multi_aff *upma2)
 | ||
| {
 | ||
| 	return isl_union_pw_multi_aff_union_add_(upma1, upma2);
 | ||
| }
 | ||
| 
 | ||
| /* Given two piecewise multi-affine expressions A -> B and C -> D,
 | ||
|  * construct a piecewise multi-affine expression [A -> C] -> [B -> D].
 | ||
|  */
 | ||
| static __isl_give isl_pw_multi_aff *pw_multi_aff_product(
 | ||
| 	__isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2)
 | ||
| {
 | ||
| 	int i, j, n;
 | ||
| 	isl_space *space;
 | ||
| 	isl_pw_multi_aff *res;
 | ||
| 
 | ||
| 	if (!pma1 || !pma2)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	n = pma1->n * pma2->n;
 | ||
| 	space = isl_space_product(isl_space_copy(pma1->dim),
 | ||
| 				  isl_space_copy(pma2->dim));
 | ||
| 	res = isl_pw_multi_aff_alloc_size(space, n);
 | ||
| 
 | ||
| 	for (i = 0; i < pma1->n; ++i) {
 | ||
| 		for (j = 0; j < pma2->n; ++j) {
 | ||
| 			isl_set *domain;
 | ||
| 			isl_multi_aff *ma;
 | ||
| 
 | ||
| 			domain = isl_set_product(isl_set_copy(pma1->p[i].set),
 | ||
| 						 isl_set_copy(pma2->p[j].set));
 | ||
| 			ma = isl_multi_aff_product(
 | ||
| 					isl_multi_aff_copy(pma1->p[i].maff),
 | ||
| 					isl_multi_aff_copy(pma2->p[j].maff));
 | ||
| 			res = isl_pw_multi_aff_add_piece(res, domain, ma);
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	isl_pw_multi_aff_free(pma1);
 | ||
| 	isl_pw_multi_aff_free(pma2);
 | ||
| 	return res;
 | ||
| error:
 | ||
| 	isl_pw_multi_aff_free(pma1);
 | ||
| 	isl_pw_multi_aff_free(pma2);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| __isl_give isl_pw_multi_aff *isl_pw_multi_aff_product(
 | ||
| 	__isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2)
 | ||
| {
 | ||
| 	return isl_pw_multi_aff_align_params_pw_pw_and(pma1, pma2,
 | ||
| 						&pw_multi_aff_product);
 | ||
| }
 | ||
| 
 | ||
| /* Construct a map mapping the domain of the piecewise multi-affine expression
 | ||
|  * to its range, with each dimension in the range equated to the
 | ||
|  * corresponding affine expression on its cell.
 | ||
|  *
 | ||
|  * If the domain of "pma" is rational, then so is the constructed "map".
 | ||
|  */
 | ||
| __isl_give isl_map *isl_map_from_pw_multi_aff(__isl_take isl_pw_multi_aff *pma)
 | ||
| {
 | ||
| 	int i;
 | ||
| 	isl_map *map;
 | ||
| 
 | ||
| 	if (!pma)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	map = isl_map_empty(isl_pw_multi_aff_get_space(pma));
 | ||
| 
 | ||
| 	for (i = 0; i < pma->n; ++i) {
 | ||
| 		isl_bool rational;
 | ||
| 		isl_multi_aff *maff;
 | ||
| 		isl_basic_map *bmap;
 | ||
| 		isl_map *map_i;
 | ||
| 
 | ||
| 		rational = isl_set_is_rational(pma->p[i].set);
 | ||
| 		if (rational < 0)
 | ||
| 			map = isl_map_free(map);
 | ||
| 		maff = isl_multi_aff_copy(pma->p[i].maff);
 | ||
| 		bmap = isl_basic_map_from_multi_aff2(maff, rational);
 | ||
| 		map_i = isl_map_from_basic_map(bmap);
 | ||
| 		map_i = isl_map_intersect_domain(map_i,
 | ||
| 						isl_set_copy(pma->p[i].set));
 | ||
| 		map = isl_map_union_disjoint(map, map_i);
 | ||
| 	}
 | ||
| 
 | ||
| 	isl_pw_multi_aff_free(pma);
 | ||
| 	return map;
 | ||
| }
 | ||
| 
 | ||
| __isl_give isl_set *isl_set_from_pw_multi_aff(__isl_take isl_pw_multi_aff *pma)
 | ||
| {
 | ||
| 	if (!pma)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	if (!isl_space_is_set(pma->dim))
 | ||
| 		isl_die(isl_pw_multi_aff_get_ctx(pma), isl_error_invalid,
 | ||
| 			"isl_pw_multi_aff cannot be converted into an isl_set",
 | ||
| 			goto error);
 | ||
| 
 | ||
| 	return isl_map_from_pw_multi_aff(pma);
 | ||
| error:
 | ||
| 	isl_pw_multi_aff_free(pma);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Subtract the initial "n" elements in "ma" with coefficients in "c" and
 | ||
|  * denominator "denom".
 | ||
|  * "denom" is allowed to be negative, in which case the actual denominator
 | ||
|  * is -denom and the expressions are added instead.
 | ||
|  */
 | ||
| static __isl_give isl_aff *subtract_initial(__isl_take isl_aff *aff,
 | ||
| 	__isl_keep isl_multi_aff *ma, int n, isl_int *c, isl_int denom)
 | ||
| {
 | ||
| 	int i, first;
 | ||
| 	int sign;
 | ||
| 	isl_int d;
 | ||
| 
 | ||
| 	first = isl_seq_first_non_zero(c, n);
 | ||
| 	if (first == -1)
 | ||
| 		return aff;
 | ||
| 
 | ||
| 	sign = isl_int_sgn(denom);
 | ||
| 	isl_int_init(d);
 | ||
| 	isl_int_abs(d, denom);
 | ||
| 	for (i = first; i < n; ++i) {
 | ||
| 		isl_aff *aff_i;
 | ||
| 
 | ||
| 		if (isl_int_is_zero(c[i]))
 | ||
| 			continue;
 | ||
| 		aff_i = isl_multi_aff_get_aff(ma, i);
 | ||
| 		aff_i = isl_aff_scale(aff_i, c[i]);
 | ||
| 		aff_i = isl_aff_scale_down(aff_i, d);
 | ||
| 		if (sign >= 0)
 | ||
| 			aff = isl_aff_sub(aff, aff_i);
 | ||
| 		else
 | ||
| 			aff = isl_aff_add(aff, aff_i);
 | ||
| 	}
 | ||
| 	isl_int_clear(d);
 | ||
| 
 | ||
| 	return aff;
 | ||
| }
 | ||
| 
 | ||
| /* Extract an affine expression that expresses the output dimension "pos"
 | ||
|  * of "bmap" in terms of the parameters and input dimensions from
 | ||
|  * equality "eq".
 | ||
|  * Note that this expression may involve integer divisions defined
 | ||
|  * in terms of parameters and input dimensions.
 | ||
|  * The equality may also involve references to earlier (but not later)
 | ||
|  * output dimensions.  These are replaced by the corresponding elements
 | ||
|  * in "ma".
 | ||
|  *
 | ||
|  * If the equality is of the form
 | ||
|  *
 | ||
|  *	f(i) + h(j) + a x + g(i) = 0,
 | ||
|  *
 | ||
|  * with f(i) a linear combinations of the parameters and input dimensions,
 | ||
|  * g(i) a linear combination of integer divisions defined in terms of the same
 | ||
|  * and h(j) a linear combinations of earlier output dimensions,
 | ||
|  * then the affine expression is
 | ||
|  *
 | ||
|  *	(-f(i) - g(i))/a - h(j)/a
 | ||
|  *
 | ||
|  * If the equality is of the form
 | ||
|  *
 | ||
|  *	f(i) + h(j) - a x + g(i) = 0,
 | ||
|  *
 | ||
|  * then the affine expression is
 | ||
|  *
 | ||
|  *	(f(i) + g(i))/a - h(j)/(-a)
 | ||
|  *
 | ||
|  *
 | ||
|  * If "div" refers to an integer division (i.e., it is smaller than
 | ||
|  * the number of integer divisions), then the equality constraint
 | ||
|  * does involve an integer division (the one at position "div") that
 | ||
|  * is defined in terms of output dimensions.  However, this integer
 | ||
|  * division can be eliminated by exploiting a pair of constraints
 | ||
|  * x >= l and x <= l + n, with n smaller than the coefficient of "div"
 | ||
|  * in the equality constraint.  "ineq" refers to inequality x >= l, i.e.,
 | ||
|  * -l + x >= 0.
 | ||
|  * In particular, let
 | ||
|  *
 | ||
|  *	x = e(i) + m floor(...)
 | ||
|  *
 | ||
|  * with e(i) the expression derived above and floor(...) the integer
 | ||
|  * division involving output dimensions.
 | ||
|  * From
 | ||
|  *
 | ||
|  *	l <= x <= l + n,
 | ||
|  *
 | ||
|  * we have
 | ||
|  *
 | ||
|  *	0 <= x - l <= n
 | ||
|  *
 | ||
|  * This means
 | ||
|  *
 | ||
|  *	e(i) + m floor(...) - l = (e(i) + m floor(...) - l) mod m
 | ||
|  *	                        = (e(i) - l) mod m
 | ||
|  *
 | ||
|  * Therefore,
 | ||
|  *
 | ||
|  *	x - l = (e(i) - l) mod m
 | ||
|  *
 | ||
|  * or
 | ||
|  *
 | ||
|  *	x = ((e(i) - l) mod m) + l
 | ||
|  *
 | ||
|  * The variable "shift" below contains the expression -l, which may
 | ||
|  * also involve a linear combination of earlier output dimensions.
 | ||
|  */
 | ||
| static __isl_give isl_aff *extract_aff_from_equality(
 | ||
| 	__isl_keep isl_basic_map *bmap, int pos, int eq, int div, int ineq,
 | ||
| 	__isl_keep isl_multi_aff *ma)
 | ||
| {
 | ||
| 	unsigned o_out;
 | ||
| 	unsigned n_div, n_out;
 | ||
| 	isl_ctx *ctx;
 | ||
| 	isl_local_space *ls;
 | ||
| 	isl_aff *aff, *shift;
 | ||
| 	isl_val *mod;
 | ||
| 
 | ||
| 	ctx = isl_basic_map_get_ctx(bmap);
 | ||
| 	ls = isl_basic_map_get_local_space(bmap);
 | ||
| 	ls = isl_local_space_domain(ls);
 | ||
| 	aff = isl_aff_alloc(isl_local_space_copy(ls));
 | ||
| 	if (!aff)
 | ||
| 		goto error;
 | ||
| 	o_out = isl_basic_map_offset(bmap, isl_dim_out);
 | ||
| 	n_out = isl_basic_map_dim(bmap, isl_dim_out);
 | ||
| 	n_div = isl_basic_map_dim(bmap, isl_dim_div);
 | ||
| 	if (isl_int_is_neg(bmap->eq[eq][o_out + pos])) {
 | ||
| 		isl_seq_cpy(aff->v->el + 1, bmap->eq[eq], o_out);
 | ||
| 		isl_seq_cpy(aff->v->el + 1 + o_out,
 | ||
| 			    bmap->eq[eq] + o_out + n_out, n_div);
 | ||
| 	} else {
 | ||
| 		isl_seq_neg(aff->v->el + 1, bmap->eq[eq], o_out);
 | ||
| 		isl_seq_neg(aff->v->el + 1 + o_out,
 | ||
| 			    bmap->eq[eq] + o_out + n_out, n_div);
 | ||
| 	}
 | ||
| 	if (div < n_div)
 | ||
| 		isl_int_set_si(aff->v->el[1 + o_out + div], 0);
 | ||
| 	isl_int_abs(aff->v->el[0], bmap->eq[eq][o_out + pos]);
 | ||
| 	aff = subtract_initial(aff, ma, pos, bmap->eq[eq] + o_out,
 | ||
| 			    bmap->eq[eq][o_out + pos]);
 | ||
| 	if (div < n_div) {
 | ||
| 		shift = isl_aff_alloc(isl_local_space_copy(ls));
 | ||
| 		if (!shift)
 | ||
| 			goto error;
 | ||
| 		isl_seq_cpy(shift->v->el + 1, bmap->ineq[ineq], o_out);
 | ||
| 		isl_seq_cpy(shift->v->el + 1 + o_out,
 | ||
| 			    bmap->ineq[ineq] + o_out + n_out, n_div);
 | ||
| 		isl_int_set_si(shift->v->el[0], 1);
 | ||
| 		shift = subtract_initial(shift, ma, pos,
 | ||
| 					bmap->ineq[ineq] + o_out, ctx->negone);
 | ||
| 		aff = isl_aff_add(aff, isl_aff_copy(shift));
 | ||
| 		mod = isl_val_int_from_isl_int(ctx,
 | ||
| 					    bmap->eq[eq][o_out + n_out + div]);
 | ||
| 		mod = isl_val_abs(mod);
 | ||
| 		aff = isl_aff_mod_val(aff, mod);
 | ||
| 		aff = isl_aff_sub(aff, shift);
 | ||
| 	}
 | ||
| 
 | ||
| 	isl_local_space_free(ls);
 | ||
| 	return aff;
 | ||
| error:
 | ||
| 	isl_local_space_free(ls);
 | ||
| 	isl_aff_free(aff);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Given a basic map with output dimensions defined
 | ||
|  * in terms of the parameters input dimensions and earlier
 | ||
|  * output dimensions using an equality (and possibly a pair on inequalities),
 | ||
|  * extract an isl_aff that expresses output dimension "pos" in terms
 | ||
|  * of the parameters and input dimensions.
 | ||
|  * Note that this expression may involve integer divisions defined
 | ||
|  * in terms of parameters and input dimensions.
 | ||
|  * "ma" contains the expressions corresponding to earlier output dimensions.
 | ||
|  *
 | ||
|  * This function shares some similarities with
 | ||
|  * isl_basic_map_has_defining_equality and isl_constraint_get_bound.
 | ||
|  */
 | ||
| static __isl_give isl_aff *extract_isl_aff_from_basic_map(
 | ||
| 	__isl_keep isl_basic_map *bmap, int pos, __isl_keep isl_multi_aff *ma)
 | ||
| {
 | ||
| 	int eq, div, ineq;
 | ||
| 	isl_aff *aff;
 | ||
| 
 | ||
| 	if (!bmap)
 | ||
| 		return NULL;
 | ||
| 	eq = isl_basic_map_output_defining_equality(bmap, pos, &div, &ineq);
 | ||
| 	if (eq >= bmap->n_eq)
 | ||
| 		isl_die(isl_basic_map_get_ctx(bmap), isl_error_invalid,
 | ||
| 			"unable to find suitable equality", return NULL);
 | ||
| 	aff = extract_aff_from_equality(bmap, pos, eq, div, ineq, ma);
 | ||
| 
 | ||
| 	aff = isl_aff_remove_unused_divs(aff);
 | ||
| 	return aff;
 | ||
| }
 | ||
| 
 | ||
| /* Given a basic map where each output dimension is defined
 | ||
|  * in terms of the parameters and input dimensions using an equality,
 | ||
|  * extract an isl_multi_aff that expresses the output dimensions in terms
 | ||
|  * of the parameters and input dimensions.
 | ||
|  */
 | ||
| static __isl_give isl_multi_aff *extract_isl_multi_aff_from_basic_map(
 | ||
| 	__isl_take isl_basic_map *bmap)
 | ||
| {
 | ||
| 	int i;
 | ||
| 	unsigned n_out;
 | ||
| 	isl_multi_aff *ma;
 | ||
| 
 | ||
| 	if (!bmap)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	ma = isl_multi_aff_alloc(isl_basic_map_get_space(bmap));
 | ||
| 	n_out = isl_basic_map_dim(bmap, isl_dim_out);
 | ||
| 
 | ||
| 	for (i = 0; i < n_out; ++i) {
 | ||
| 		isl_aff *aff;
 | ||
| 
 | ||
| 		aff = extract_isl_aff_from_basic_map(bmap, i, ma);
 | ||
| 		ma = isl_multi_aff_set_aff(ma, i, aff);
 | ||
| 	}
 | ||
| 
 | ||
| 	isl_basic_map_free(bmap);
 | ||
| 
 | ||
| 	return ma;
 | ||
| }
 | ||
| 
 | ||
| /* Given a basic set where each set dimension is defined
 | ||
|  * in terms of the parameters using an equality,
 | ||
|  * extract an isl_multi_aff that expresses the set dimensions in terms
 | ||
|  * of the parameters.
 | ||
|  */
 | ||
| __isl_give isl_multi_aff *isl_multi_aff_from_basic_set_equalities(
 | ||
| 	__isl_take isl_basic_set *bset)
 | ||
| {
 | ||
| 	return extract_isl_multi_aff_from_basic_map(bset);
 | ||
| }
 | ||
| 
 | ||
| /* Create an isl_pw_multi_aff that is equivalent to
 | ||
|  * isl_map_intersect_domain(isl_map_from_basic_map(bmap), domain).
 | ||
|  * The given basic map is such that each output dimension is defined
 | ||
|  * in terms of the parameters and input dimensions using an equality.
 | ||
|  *
 | ||
|  * Since some applications expect the result of isl_pw_multi_aff_from_map
 | ||
|  * to only contain integer affine expressions, we compute the floor
 | ||
|  * of the expression before returning.
 | ||
|  *
 | ||
|  * Remove all constraints involving local variables without
 | ||
|  * an explicit representation (resulting in the removal of those
 | ||
|  * local variables) prior to the actual extraction to ensure
 | ||
|  * that the local spaces in which the resulting affine expressions
 | ||
|  * are created do not contain any unknown local variables.
 | ||
|  * Removing such constraints is safe because constraints involving
 | ||
|  * unknown local variables are not used to determine whether
 | ||
|  * a basic map is obviously single-valued.
 | ||
|  */
 | ||
| static __isl_give isl_pw_multi_aff *plain_pw_multi_aff_from_map(
 | ||
| 	__isl_take isl_set *domain, __isl_take isl_basic_map *bmap)
 | ||
| {
 | ||
| 	isl_multi_aff *ma;
 | ||
| 
 | ||
| 	bmap = isl_basic_map_drop_constraint_involving_unknown_divs(bmap);
 | ||
| 	ma = extract_isl_multi_aff_from_basic_map(bmap);
 | ||
| 	ma = isl_multi_aff_floor(ma);
 | ||
| 	return isl_pw_multi_aff_alloc(domain, ma);
 | ||
| }
 | ||
| 
 | ||
| /* Try and create an isl_pw_multi_aff that is equivalent to the given isl_map.
 | ||
|  * This obviously only works if the input "map" is single-valued.
 | ||
|  * If so, we compute the lexicographic minimum of the image in the form
 | ||
|  * of an isl_pw_multi_aff.  Since the image is unique, it is equal
 | ||
|  * to its lexicographic minimum.
 | ||
|  * If the input is not single-valued, we produce an error.
 | ||
|  */
 | ||
| static __isl_give isl_pw_multi_aff *pw_multi_aff_from_map_base(
 | ||
| 	__isl_take isl_map *map)
 | ||
| {
 | ||
| 	int i;
 | ||
| 	int sv;
 | ||
| 	isl_pw_multi_aff *pma;
 | ||
| 
 | ||
| 	sv = isl_map_is_single_valued(map);
 | ||
| 	if (sv < 0)
 | ||
| 		goto error;
 | ||
| 	if (!sv)
 | ||
| 		isl_die(isl_map_get_ctx(map), isl_error_invalid,
 | ||
| 			"map is not single-valued", goto error);
 | ||
| 	map = isl_map_make_disjoint(map);
 | ||
| 	if (!map)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	pma = isl_pw_multi_aff_empty(isl_map_get_space(map));
 | ||
| 
 | ||
| 	for (i = 0; i < map->n; ++i) {
 | ||
| 		isl_pw_multi_aff *pma_i;
 | ||
| 		isl_basic_map *bmap;
 | ||
| 		bmap = isl_basic_map_copy(map->p[i]);
 | ||
| 		pma_i = isl_basic_map_lexmin_pw_multi_aff(bmap);
 | ||
| 		pma = isl_pw_multi_aff_add_disjoint(pma, pma_i);
 | ||
| 	}
 | ||
| 
 | ||
| 	isl_map_free(map);
 | ||
| 	return pma;
 | ||
| error:
 | ||
| 	isl_map_free(map);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Try and create an isl_pw_multi_aff that is equivalent to the given isl_map,
 | ||
|  * taking into account that the output dimension at position "d"
 | ||
|  * can be represented as
 | ||
|  *
 | ||
|  *	x = floor((e(...) + c1) / m)
 | ||
|  *
 | ||
|  * given that constraint "i" is of the form
 | ||
|  *
 | ||
|  *	e(...) + c1 - m x >= 0
 | ||
|  *
 | ||
|  *
 | ||
|  * Let "map" be of the form
 | ||
|  *
 | ||
|  *	A -> B
 | ||
|  *
 | ||
|  * We construct a mapping
 | ||
|  *
 | ||
|  *	A -> [A -> x = floor(...)]
 | ||
|  *
 | ||
|  * apply that to the map, obtaining
 | ||
|  *
 | ||
|  *	[A -> x = floor(...)] -> B
 | ||
|  *
 | ||
|  * and equate dimension "d" to x.
 | ||
|  * We then compute a isl_pw_multi_aff representation of the resulting map
 | ||
|  * and plug in the mapping above.
 | ||
|  */
 | ||
| static __isl_give isl_pw_multi_aff *pw_multi_aff_from_map_div(
 | ||
| 	__isl_take isl_map *map, __isl_take isl_basic_map *hull, int d, int i)
 | ||
| {
 | ||
| 	isl_ctx *ctx;
 | ||
| 	isl_space *space;
 | ||
| 	isl_local_space *ls;
 | ||
| 	isl_multi_aff *ma;
 | ||
| 	isl_aff *aff;
 | ||
| 	isl_vec *v;
 | ||
| 	isl_map *insert;
 | ||
| 	int offset;
 | ||
| 	int n;
 | ||
| 	int n_in;
 | ||
| 	isl_pw_multi_aff *pma;
 | ||
| 	isl_bool is_set;
 | ||
| 
 | ||
| 	is_set = isl_map_is_set(map);
 | ||
| 	if (is_set < 0)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	offset = isl_basic_map_offset(hull, isl_dim_out);
 | ||
| 	ctx = isl_map_get_ctx(map);
 | ||
| 	space = isl_space_domain(isl_map_get_space(map));
 | ||
| 	n_in = isl_space_dim(space, isl_dim_set);
 | ||
| 	n = isl_space_dim(space, isl_dim_all);
 | ||
| 
 | ||
| 	v = isl_vec_alloc(ctx, 1 + 1 + n);
 | ||
| 	if (v) {
 | ||
| 		isl_int_neg(v->el[0], hull->ineq[i][offset + d]);
 | ||
| 		isl_seq_cpy(v->el + 1, hull->ineq[i], 1 + n);
 | ||
| 	}
 | ||
| 	isl_basic_map_free(hull);
 | ||
| 
 | ||
| 	ls = isl_local_space_from_space(isl_space_copy(space));
 | ||
| 	aff = isl_aff_alloc_vec(ls, v);
 | ||
| 	aff = isl_aff_floor(aff);
 | ||
| 	if (is_set) {
 | ||
| 		isl_space_free(space);
 | ||
| 		ma = isl_multi_aff_from_aff(aff);
 | ||
| 	} else {
 | ||
| 		ma = isl_multi_aff_identity(isl_space_map_from_set(space));
 | ||
| 		ma = isl_multi_aff_range_product(ma,
 | ||
| 						isl_multi_aff_from_aff(aff));
 | ||
| 	}
 | ||
| 
 | ||
| 	insert = isl_map_from_multi_aff(isl_multi_aff_copy(ma));
 | ||
| 	map = isl_map_apply_domain(map, insert);
 | ||
| 	map = isl_map_equate(map, isl_dim_in, n_in, isl_dim_out, d);
 | ||
| 	pma = isl_pw_multi_aff_from_map(map);
 | ||
| 	pma = isl_pw_multi_aff_pullback_multi_aff(pma, ma);
 | ||
| 
 | ||
| 	return pma;
 | ||
| error:
 | ||
| 	isl_map_free(map);
 | ||
| 	isl_basic_map_free(hull);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Is constraint "c" of the form
 | ||
|  *
 | ||
|  *	e(...) + c1 - m x >= 0
 | ||
|  *
 | ||
|  * or
 | ||
|  *
 | ||
|  *	-e(...) + c2 + m x >= 0
 | ||
|  *
 | ||
|  * where m > 1 and e only depends on parameters and input dimemnsions?
 | ||
|  *
 | ||
|  * "offset" is the offset of the output dimensions
 | ||
|  * "pos" is the position of output dimension x.
 | ||
|  */
 | ||
| static int is_potential_div_constraint(isl_int *c, int offset, int d, int total)
 | ||
| {
 | ||
| 	if (isl_int_is_zero(c[offset + d]))
 | ||
| 		return 0;
 | ||
| 	if (isl_int_is_one(c[offset + d]))
 | ||
| 		return 0;
 | ||
| 	if (isl_int_is_negone(c[offset + d]))
 | ||
| 		return 0;
 | ||
| 	if (isl_seq_first_non_zero(c + offset, d) != -1)
 | ||
| 		return 0;
 | ||
| 	if (isl_seq_first_non_zero(c + offset + d + 1,
 | ||
| 				    total - (offset + d + 1)) != -1)
 | ||
| 		return 0;
 | ||
| 	return 1;
 | ||
| }
 | ||
| 
 | ||
| /* Try and create an isl_pw_multi_aff that is equivalent to the given isl_map.
 | ||
|  *
 | ||
|  * As a special case, we first check if there is any pair of constraints,
 | ||
|  * shared by all the basic maps in "map" that force a given dimension
 | ||
|  * to be equal to the floor of some affine combination of the input dimensions.
 | ||
|  *
 | ||
|  * In particular, if we can find two constraints
 | ||
|  *
 | ||
|  *	e(...) + c1 - m x >= 0		i.e.,		m x <= e(...) + c1
 | ||
|  *
 | ||
|  * and
 | ||
|  *
 | ||
|  *	-e(...) + c2 + m x >= 0		i.e.,		m x >= e(...) - c2
 | ||
|  *
 | ||
|  * where m > 1 and e only depends on parameters and input dimemnsions,
 | ||
|  * and such that
 | ||
|  *
 | ||
|  *	c1 + c2 < m			i.e.,		-c2 >= c1 - (m - 1)
 | ||
|  *
 | ||
|  * then we know that we can take
 | ||
|  *
 | ||
|  *	x = floor((e(...) + c1) / m)
 | ||
|  *
 | ||
|  * without having to perform any computation.
 | ||
|  *
 | ||
|  * Note that we know that
 | ||
|  *
 | ||
|  *	c1 + c2 >= 1
 | ||
|  *
 | ||
|  * If c1 + c2 were 0, then we would have detected an equality during
 | ||
|  * simplification.  If c1 + c2 were negative, then we would have detected
 | ||
|  * a contradiction.
 | ||
|  */
 | ||
| static __isl_give isl_pw_multi_aff *pw_multi_aff_from_map_check_div(
 | ||
| 	__isl_take isl_map *map)
 | ||
| {
 | ||
| 	int d, dim;
 | ||
| 	int i, j, n;
 | ||
| 	int offset, total;
 | ||
| 	isl_int sum;
 | ||
| 	isl_basic_map *hull;
 | ||
| 
 | ||
| 	hull = isl_map_unshifted_simple_hull(isl_map_copy(map));
 | ||
| 	if (!hull)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	isl_int_init(sum);
 | ||
| 	dim = isl_map_dim(map, isl_dim_out);
 | ||
| 	offset = isl_basic_map_offset(hull, isl_dim_out);
 | ||
| 	total = 1 + isl_basic_map_total_dim(hull);
 | ||
| 	n = hull->n_ineq;
 | ||
| 	for (d = 0; d < dim; ++d) {
 | ||
| 		for (i = 0; i < n; ++i) {
 | ||
| 			if (!is_potential_div_constraint(hull->ineq[i],
 | ||
| 							offset, d, total))
 | ||
| 				continue;
 | ||
| 			for (j = i + 1; j < n; ++j) {
 | ||
| 				if (!isl_seq_is_neg(hull->ineq[i] + 1,
 | ||
| 						hull->ineq[j] + 1, total - 1))
 | ||
| 					continue;
 | ||
| 				isl_int_add(sum, hull->ineq[i][0],
 | ||
| 						hull->ineq[j][0]);
 | ||
| 				if (isl_int_abs_lt(sum,
 | ||
| 						    hull->ineq[i][offset + d]))
 | ||
| 					break;
 | ||
| 
 | ||
| 			}
 | ||
| 			if (j >= n)
 | ||
| 				continue;
 | ||
| 			isl_int_clear(sum);
 | ||
| 			if (isl_int_is_pos(hull->ineq[j][offset + d]))
 | ||
| 				j = i;
 | ||
| 			return pw_multi_aff_from_map_div(map, hull, d, j);
 | ||
| 		}
 | ||
| 	}
 | ||
| 	isl_int_clear(sum);
 | ||
| 	isl_basic_map_free(hull);
 | ||
| 	return pw_multi_aff_from_map_base(map);
 | ||
| error:
 | ||
| 	isl_map_free(map);
 | ||
| 	isl_basic_map_free(hull);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Given an affine expression
 | ||
|  *
 | ||
|  *	[A -> B] -> f(A,B)
 | ||
|  *
 | ||
|  * construct an isl_multi_aff
 | ||
|  *
 | ||
|  *	[A -> B] -> B'
 | ||
|  *
 | ||
|  * such that dimension "d" in B' is set to "aff" and the remaining
 | ||
|  * dimensions are set equal to the corresponding dimensions in B.
 | ||
|  * "n_in" is the dimension of the space A.
 | ||
|  * "n_out" is the dimension of the space B.
 | ||
|  *
 | ||
|  * If "is_set" is set, then the affine expression is of the form
 | ||
|  *
 | ||
|  *	[B] -> f(B)
 | ||
|  *
 | ||
|  * and we construct an isl_multi_aff
 | ||
|  *
 | ||
|  *	B -> B'
 | ||
|  */
 | ||
| static __isl_give isl_multi_aff *range_map(__isl_take isl_aff *aff, int d,
 | ||
| 	unsigned n_in, unsigned n_out, int is_set)
 | ||
| {
 | ||
| 	int i;
 | ||
| 	isl_multi_aff *ma;
 | ||
| 	isl_space *space, *space2;
 | ||
| 	isl_local_space *ls;
 | ||
| 
 | ||
| 	space = isl_aff_get_domain_space(aff);
 | ||
| 	ls = isl_local_space_from_space(isl_space_copy(space));
 | ||
| 	space2 = isl_space_copy(space);
 | ||
| 	if (!is_set)
 | ||
| 		space2 = isl_space_range(isl_space_unwrap(space2));
 | ||
| 	space = isl_space_map_from_domain_and_range(space, space2);
 | ||
| 	ma = isl_multi_aff_alloc(space);
 | ||
| 	ma = isl_multi_aff_set_aff(ma, d, aff);
 | ||
| 
 | ||
| 	for (i = 0; i < n_out; ++i) {
 | ||
| 		if (i == d)
 | ||
| 			continue;
 | ||
| 		aff = isl_aff_var_on_domain(isl_local_space_copy(ls),
 | ||
| 						isl_dim_set, n_in + i);
 | ||
| 		ma = isl_multi_aff_set_aff(ma, i, aff);
 | ||
| 	}
 | ||
| 
 | ||
| 	isl_local_space_free(ls);
 | ||
| 
 | ||
| 	return ma;
 | ||
| }
 | ||
| 
 | ||
| /* Try and create an isl_pw_multi_aff that is equivalent to the given isl_map,
 | ||
|  * taking into account that the dimension at position "d" can be written as
 | ||
|  *
 | ||
|  *	x = m a + f(..)						(1)
 | ||
|  *
 | ||
|  * where m is equal to "gcd".
 | ||
|  * "i" is the index of the equality in "hull" that defines f(..).
 | ||
|  * In particular, the equality is of the form
 | ||
|  *
 | ||
|  *	f(..) - x + m g(existentials) = 0
 | ||
|  *
 | ||
|  * or
 | ||
|  *
 | ||
|  *	-f(..) + x + m g(existentials) = 0
 | ||
|  *
 | ||
|  * We basically plug (1) into "map", resulting in a map with "a"
 | ||
|  * in the range instead of "x".  The corresponding isl_pw_multi_aff
 | ||
|  * defining "a" is then plugged back into (1) to obtain a definition for "x".
 | ||
|  *
 | ||
|  * Specifically, given the input map
 | ||
|  *
 | ||
|  *	A -> B
 | ||
|  *
 | ||
|  * We first wrap it into a set
 | ||
|  *
 | ||
|  *	[A -> B]
 | ||
|  *
 | ||
|  * and define (1) on top of the corresponding space, resulting in "aff".
 | ||
|  * We use this to create an isl_multi_aff that maps the output position "d"
 | ||
|  * from "a" to "x", leaving all other (intput and output) dimensions unchanged.
 | ||
|  * We plug this into the wrapped map, unwrap the result and compute the
 | ||
|  * corresponding isl_pw_multi_aff.
 | ||
|  * The result is an expression
 | ||
|  *
 | ||
|  *	A -> T(A)
 | ||
|  *
 | ||
|  * We adjust that to
 | ||
|  *
 | ||
|  *	A -> [A -> T(A)]
 | ||
|  *
 | ||
|  * so that we can plug that into "aff", after extending the latter to
 | ||
|  * a mapping
 | ||
|  *
 | ||
|  *	[A -> B] -> B'
 | ||
|  *
 | ||
|  *
 | ||
|  * If "map" is actually a set, then there is no "A" space, meaning
 | ||
|  * that we do not need to perform any wrapping, and that the result
 | ||
|  * of the recursive call is of the form
 | ||
|  *
 | ||
|  *	[T]
 | ||
|  *
 | ||
|  * which is plugged into a mapping of the form
 | ||
|  *
 | ||
|  *	B -> B'
 | ||
|  */
 | ||
| static __isl_give isl_pw_multi_aff *pw_multi_aff_from_map_stride(
 | ||
| 	__isl_take isl_map *map, __isl_take isl_basic_map *hull, int d, int i,
 | ||
| 	isl_int gcd)
 | ||
| {
 | ||
| 	isl_set *set;
 | ||
| 	isl_space *space;
 | ||
| 	isl_local_space *ls;
 | ||
| 	isl_aff *aff;
 | ||
| 	isl_multi_aff *ma;
 | ||
| 	isl_pw_multi_aff *pma, *id;
 | ||
| 	unsigned n_in;
 | ||
| 	unsigned o_out;
 | ||
| 	unsigned n_out;
 | ||
| 	isl_bool is_set;
 | ||
| 
 | ||
| 	is_set = isl_map_is_set(map);
 | ||
| 	if (is_set < 0)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	n_in = isl_basic_map_dim(hull, isl_dim_in);
 | ||
| 	n_out = isl_basic_map_dim(hull, isl_dim_out);
 | ||
| 	o_out = isl_basic_map_offset(hull, isl_dim_out);
 | ||
| 
 | ||
| 	if (is_set)
 | ||
| 		set = map;
 | ||
| 	else
 | ||
| 		set = isl_map_wrap(map);
 | ||
| 	space = isl_space_map_from_set(isl_set_get_space(set));
 | ||
| 	ma = isl_multi_aff_identity(space);
 | ||
| 	ls = isl_local_space_from_space(isl_set_get_space(set));
 | ||
| 	aff = isl_aff_alloc(ls);
 | ||
| 	if (aff) {
 | ||
| 		isl_int_set_si(aff->v->el[0], 1);
 | ||
| 		if (isl_int_is_one(hull->eq[i][o_out + d]))
 | ||
| 			isl_seq_neg(aff->v->el + 1, hull->eq[i],
 | ||
| 				    aff->v->size - 1);
 | ||
| 		else
 | ||
| 			isl_seq_cpy(aff->v->el + 1, hull->eq[i],
 | ||
| 				    aff->v->size - 1);
 | ||
| 		isl_int_set(aff->v->el[1 + o_out + d], gcd);
 | ||
| 	}
 | ||
| 	ma = isl_multi_aff_set_aff(ma, n_in + d, isl_aff_copy(aff));
 | ||
| 	set = isl_set_preimage_multi_aff(set, ma);
 | ||
| 
 | ||
| 	ma = range_map(aff, d, n_in, n_out, is_set);
 | ||
| 
 | ||
| 	if (is_set)
 | ||
| 		map = set;
 | ||
| 	else
 | ||
| 		map = isl_set_unwrap(set);
 | ||
| 	pma = isl_pw_multi_aff_from_map(map);
 | ||
| 
 | ||
| 	if (!is_set) {
 | ||
| 		space = isl_pw_multi_aff_get_domain_space(pma);
 | ||
| 		space = isl_space_map_from_set(space);
 | ||
| 		id = isl_pw_multi_aff_identity(space);
 | ||
| 		pma = isl_pw_multi_aff_range_product(id, pma);
 | ||
| 	}
 | ||
| 	id = isl_pw_multi_aff_from_multi_aff(ma);
 | ||
| 	pma = isl_pw_multi_aff_pullback_pw_multi_aff(id, pma);
 | ||
| 
 | ||
| 	isl_basic_map_free(hull);
 | ||
| 	return pma;
 | ||
| error:
 | ||
| 	isl_map_free(map);
 | ||
| 	isl_basic_map_free(hull);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Try and create an isl_pw_multi_aff that is equivalent to the given isl_map.
 | ||
|  * "hull" contains the equalities valid for "map".
 | ||
|  *
 | ||
|  * Check if any of the output dimensions is "strided".
 | ||
|  * That is, we check if it can be written as
 | ||
|  *
 | ||
|  *	x = m a + f(..)
 | ||
|  *
 | ||
|  * with m greater than 1, a some combination of existentially quantified
 | ||
|  * variables and f an expression in the parameters and input dimensions.
 | ||
|  * If so, we remove the stride in pw_multi_aff_from_map_stride.
 | ||
|  *
 | ||
|  * Otherwise, we continue with pw_multi_aff_from_map_check_div for a further
 | ||
|  * special case.
 | ||
|  */
 | ||
| static __isl_give isl_pw_multi_aff *pw_multi_aff_from_map_check_strides(
 | ||
| 	__isl_take isl_map *map, __isl_take isl_basic_map *hull)
 | ||
| {
 | ||
| 	int i, j;
 | ||
| 	unsigned n_out;
 | ||
| 	unsigned o_out;
 | ||
| 	unsigned n_div;
 | ||
| 	unsigned o_div;
 | ||
| 	isl_int gcd;
 | ||
| 
 | ||
| 	n_div = isl_basic_map_dim(hull, isl_dim_div);
 | ||
| 	o_div = isl_basic_map_offset(hull, isl_dim_div);
 | ||
| 
 | ||
| 	if (n_div == 0) {
 | ||
| 		isl_basic_map_free(hull);
 | ||
| 		return pw_multi_aff_from_map_check_div(map);
 | ||
| 	}
 | ||
| 
 | ||
| 	isl_int_init(gcd);
 | ||
| 
 | ||
| 	n_out = isl_basic_map_dim(hull, isl_dim_out);
 | ||
| 	o_out = isl_basic_map_offset(hull, isl_dim_out);
 | ||
| 
 | ||
| 	for (i = 0; i < n_out; ++i) {
 | ||
| 		for (j = 0; j < hull->n_eq; ++j) {
 | ||
| 			isl_int *eq = hull->eq[j];
 | ||
| 			isl_pw_multi_aff *res;
 | ||
| 
 | ||
| 			if (!isl_int_is_one(eq[o_out + i]) &&
 | ||
| 			    !isl_int_is_negone(eq[o_out + i]))
 | ||
| 				continue;
 | ||
| 			if (isl_seq_first_non_zero(eq + o_out, i) != -1)
 | ||
| 				continue;
 | ||
| 			if (isl_seq_first_non_zero(eq + o_out + i + 1,
 | ||
| 						    n_out - (i + 1)) != -1)
 | ||
| 				continue;
 | ||
| 			isl_seq_gcd(eq + o_div, n_div, &gcd);
 | ||
| 			if (isl_int_is_zero(gcd))
 | ||
| 				continue;
 | ||
| 			if (isl_int_is_one(gcd))
 | ||
| 				continue;
 | ||
| 
 | ||
| 			res = pw_multi_aff_from_map_stride(map, hull,
 | ||
| 								i, j, gcd);
 | ||
| 			isl_int_clear(gcd);
 | ||
| 			return res;
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	isl_int_clear(gcd);
 | ||
| 	isl_basic_map_free(hull);
 | ||
| 	return pw_multi_aff_from_map_check_div(map);
 | ||
| }
 | ||
| 
 | ||
| /* Try and create an isl_pw_multi_aff that is equivalent to the given isl_map.
 | ||
|  *
 | ||
|  * As a special case, we first check if all output dimensions are uniquely
 | ||
|  * defined in terms of the parameters and input dimensions over the entire
 | ||
|  * domain.  If so, we extract the desired isl_pw_multi_aff directly
 | ||
|  * from the affine hull of "map" and its domain.
 | ||
|  *
 | ||
|  * Otherwise, continue with pw_multi_aff_from_map_check_strides for more
 | ||
|  * special cases.
 | ||
|  */
 | ||
| __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_map(__isl_take isl_map *map)
 | ||
| {
 | ||
| 	isl_bool sv;
 | ||
| 	isl_basic_map *hull;
 | ||
| 
 | ||
| 	if (!map)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	if (isl_map_n_basic_map(map) == 1) {
 | ||
| 		hull = isl_map_unshifted_simple_hull(isl_map_copy(map));
 | ||
| 		hull = isl_basic_map_plain_affine_hull(hull);
 | ||
| 		sv = isl_basic_map_plain_is_single_valued(hull);
 | ||
| 		if (sv >= 0 && sv)
 | ||
| 			return plain_pw_multi_aff_from_map(isl_map_domain(map),
 | ||
| 							    hull);
 | ||
| 		isl_basic_map_free(hull);
 | ||
| 	}
 | ||
| 	map = isl_map_detect_equalities(map);
 | ||
| 	hull = isl_map_unshifted_simple_hull(isl_map_copy(map));
 | ||
| 	sv = isl_basic_map_plain_is_single_valued(hull);
 | ||
| 	if (sv >= 0 && sv)
 | ||
| 		return plain_pw_multi_aff_from_map(isl_map_domain(map), hull);
 | ||
| 	if (sv >= 0)
 | ||
| 		return pw_multi_aff_from_map_check_strides(map, hull);
 | ||
| 	isl_basic_map_free(hull);
 | ||
| 	isl_map_free(map);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_set(__isl_take isl_set *set)
 | ||
| {
 | ||
| 	return isl_pw_multi_aff_from_map(set);
 | ||
| }
 | ||
| 
 | ||
| /* Convert "map" into an isl_pw_multi_aff (if possible) and
 | ||
|  * add it to *user.
 | ||
|  */
 | ||
| static isl_stat pw_multi_aff_from_map(__isl_take isl_map *map, void *user)
 | ||
| {
 | ||
| 	isl_union_pw_multi_aff **upma = user;
 | ||
| 	isl_pw_multi_aff *pma;
 | ||
| 
 | ||
| 	pma = isl_pw_multi_aff_from_map(map);
 | ||
| 	*upma = isl_union_pw_multi_aff_add_pw_multi_aff(*upma, pma);
 | ||
| 
 | ||
| 	return *upma ? isl_stat_ok : isl_stat_error;
 | ||
| }
 | ||
| 
 | ||
| /* Create an isl_union_pw_multi_aff with the given isl_aff on a universe
 | ||
|  * domain.
 | ||
|  */
 | ||
| __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_from_aff(
 | ||
| 	__isl_take isl_aff *aff)
 | ||
| {
 | ||
| 	isl_multi_aff *ma;
 | ||
| 	isl_pw_multi_aff *pma;
 | ||
| 
 | ||
| 	ma = isl_multi_aff_from_aff(aff);
 | ||
| 	pma = isl_pw_multi_aff_from_multi_aff(ma);
 | ||
| 	return isl_union_pw_multi_aff_from_pw_multi_aff(pma);
 | ||
| }
 | ||
| 
 | ||
| /* Try and create an isl_union_pw_multi_aff that is equivalent
 | ||
|  * to the given isl_union_map.
 | ||
|  * The isl_union_map is required to be single-valued in each space.
 | ||
|  * Otherwise, an error is produced.
 | ||
|  */
 | ||
| __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_from_union_map(
 | ||
| 	__isl_take isl_union_map *umap)
 | ||
| {
 | ||
| 	isl_space *space;
 | ||
| 	isl_union_pw_multi_aff *upma;
 | ||
| 
 | ||
| 	space = isl_union_map_get_space(umap);
 | ||
| 	upma = isl_union_pw_multi_aff_empty(space);
 | ||
| 	if (isl_union_map_foreach_map(umap, &pw_multi_aff_from_map, &upma) < 0)
 | ||
| 		upma = isl_union_pw_multi_aff_free(upma);
 | ||
| 	isl_union_map_free(umap);
 | ||
| 
 | ||
| 	return upma;
 | ||
| }
 | ||
| 
 | ||
| /* Try and create an isl_union_pw_multi_aff that is equivalent
 | ||
|  * to the given isl_union_set.
 | ||
|  * The isl_union_set is required to be a singleton in each space.
 | ||
|  * Otherwise, an error is produced.
 | ||
|  */
 | ||
| __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_from_union_set(
 | ||
| 	__isl_take isl_union_set *uset)
 | ||
| {
 | ||
| 	return isl_union_pw_multi_aff_from_union_map(uset);
 | ||
| }
 | ||
| 
 | ||
| /* Return the piecewise affine expression "set ? 1 : 0".
 | ||
|  */
 | ||
| __isl_give isl_pw_aff *isl_set_indicator_function(__isl_take isl_set *set)
 | ||
| {
 | ||
| 	isl_pw_aff *pa;
 | ||
| 	isl_space *space = isl_set_get_space(set);
 | ||
| 	isl_local_space *ls = isl_local_space_from_space(space);
 | ||
| 	isl_aff *zero = isl_aff_zero_on_domain(isl_local_space_copy(ls));
 | ||
| 	isl_aff *one = isl_aff_zero_on_domain(ls);
 | ||
| 
 | ||
| 	one = isl_aff_add_constant_si(one, 1);
 | ||
| 	pa = isl_pw_aff_alloc(isl_set_copy(set), one);
 | ||
| 	set = isl_set_complement(set);
 | ||
| 	pa = isl_pw_aff_add_disjoint(pa, isl_pw_aff_alloc(set, zero));
 | ||
| 
 | ||
| 	return pa;
 | ||
| }
 | ||
| 
 | ||
| /* Plug in "subs" for dimension "type", "pos" of "aff".
 | ||
|  *
 | ||
|  * Let i be the dimension to replace and let "subs" be of the form
 | ||
|  *
 | ||
|  *	f/d
 | ||
|  *
 | ||
|  * and "aff" of the form
 | ||
|  *
 | ||
|  *	(a i + g)/m
 | ||
|  *
 | ||
|  * The result is
 | ||
|  *
 | ||
|  *	(a f + d g')/(m d)
 | ||
|  *
 | ||
|  * where g' is the result of plugging in "subs" in each of the integer
 | ||
|  * divisions in g.
 | ||
|  */
 | ||
| __isl_give isl_aff *isl_aff_substitute(__isl_take isl_aff *aff,
 | ||
| 	enum isl_dim_type type, unsigned pos, __isl_keep isl_aff *subs)
 | ||
| {
 | ||
| 	isl_ctx *ctx;
 | ||
| 	isl_int v;
 | ||
| 
 | ||
| 	aff = isl_aff_cow(aff);
 | ||
| 	if (!aff || !subs)
 | ||
| 		return isl_aff_free(aff);
 | ||
| 
 | ||
| 	ctx = isl_aff_get_ctx(aff);
 | ||
| 	if (!isl_space_is_equal(aff->ls->dim, subs->ls->dim))
 | ||
| 		isl_die(ctx, isl_error_invalid,
 | ||
| 			"spaces don't match", return isl_aff_free(aff));
 | ||
| 	if (isl_local_space_dim(subs->ls, isl_dim_div) != 0)
 | ||
| 		isl_die(ctx, isl_error_unsupported,
 | ||
| 			"cannot handle divs yet", return isl_aff_free(aff));
 | ||
| 
 | ||
| 	aff->ls = isl_local_space_substitute(aff->ls, type, pos, subs);
 | ||
| 	if (!aff->ls)
 | ||
| 		return isl_aff_free(aff);
 | ||
| 
 | ||
| 	aff->v = isl_vec_cow(aff->v);
 | ||
| 	if (!aff->v)
 | ||
| 		return isl_aff_free(aff);
 | ||
| 
 | ||
| 	pos += isl_local_space_offset(aff->ls, type);
 | ||
| 
 | ||
| 	isl_int_init(v);
 | ||
| 	isl_seq_substitute(aff->v->el, pos, subs->v->el,
 | ||
| 			    aff->v->size, subs->v->size, v);
 | ||
| 	isl_int_clear(v);
 | ||
| 
 | ||
| 	return aff;
 | ||
| }
 | ||
| 
 | ||
| /* Plug in "subs" for dimension "type", "pos" in each of the affine
 | ||
|  * expressions in "maff".
 | ||
|  */
 | ||
| __isl_give isl_multi_aff *isl_multi_aff_substitute(
 | ||
| 	__isl_take isl_multi_aff *maff, enum isl_dim_type type, unsigned pos,
 | ||
| 	__isl_keep isl_aff *subs)
 | ||
| {
 | ||
| 	int i;
 | ||
| 
 | ||
| 	maff = isl_multi_aff_cow(maff);
 | ||
| 	if (!maff || !subs)
 | ||
| 		return isl_multi_aff_free(maff);
 | ||
| 
 | ||
| 	if (type == isl_dim_in)
 | ||
| 		type = isl_dim_set;
 | ||
| 
 | ||
| 	for (i = 0; i < maff->n; ++i) {
 | ||
| 		maff->p[i] = isl_aff_substitute(maff->p[i], type, pos, subs);
 | ||
| 		if (!maff->p[i])
 | ||
| 			return isl_multi_aff_free(maff);
 | ||
| 	}
 | ||
| 
 | ||
| 	return maff;
 | ||
| }
 | ||
| 
 | ||
| /* Plug in "subs" for dimension "type", "pos" of "pma".
 | ||
|  *
 | ||
|  * pma is of the form
 | ||
|  *
 | ||
|  *	A_i(v) -> M_i(v)
 | ||
|  *
 | ||
|  * while subs is of the form
 | ||
|  *
 | ||
|  *	v' = B_j(v) -> S_j
 | ||
|  *
 | ||
|  * Each pair i,j such that C_ij = A_i \cap B_i is non-empty
 | ||
|  * has a contribution in the result, in particular
 | ||
|  *
 | ||
|  *	C_ij(S_j) -> M_i(S_j)
 | ||
|  *
 | ||
|  * Note that plugging in S_j in C_ij may also result in an empty set
 | ||
|  * and this contribution should simply be discarded.
 | ||
|  */
 | ||
| __isl_give isl_pw_multi_aff *isl_pw_multi_aff_substitute(
 | ||
| 	__isl_take isl_pw_multi_aff *pma, enum isl_dim_type type, unsigned pos,
 | ||
| 	__isl_keep isl_pw_aff *subs)
 | ||
| {
 | ||
| 	int i, j, n;
 | ||
| 	isl_pw_multi_aff *res;
 | ||
| 
 | ||
| 	if (!pma || !subs)
 | ||
| 		return isl_pw_multi_aff_free(pma);
 | ||
| 
 | ||
| 	n = pma->n * subs->n;
 | ||
| 	res = isl_pw_multi_aff_alloc_size(isl_space_copy(pma->dim), n);
 | ||
| 
 | ||
| 	for (i = 0; i < pma->n; ++i) {
 | ||
| 		for (j = 0; j < subs->n; ++j) {
 | ||
| 			isl_set *common;
 | ||
| 			isl_multi_aff *res_ij;
 | ||
| 			int empty;
 | ||
| 
 | ||
| 			common = isl_set_intersect(
 | ||
| 					isl_set_copy(pma->p[i].set),
 | ||
| 					isl_set_copy(subs->p[j].set));
 | ||
| 			common = isl_set_substitute(common,
 | ||
| 					type, pos, subs->p[j].aff);
 | ||
| 			empty = isl_set_plain_is_empty(common);
 | ||
| 			if (empty < 0 || empty) {
 | ||
| 				isl_set_free(common);
 | ||
| 				if (empty < 0)
 | ||
| 					goto error;
 | ||
| 				continue;
 | ||
| 			}
 | ||
| 
 | ||
| 			res_ij = isl_multi_aff_substitute(
 | ||
| 					isl_multi_aff_copy(pma->p[i].maff),
 | ||
| 					type, pos, subs->p[j].aff);
 | ||
| 
 | ||
| 			res = isl_pw_multi_aff_add_piece(res, common, res_ij);
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	isl_pw_multi_aff_free(pma);
 | ||
| 	return res;
 | ||
| error:
 | ||
| 	isl_pw_multi_aff_free(pma);
 | ||
| 	isl_pw_multi_aff_free(res);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Compute the preimage of a range of dimensions in the affine expression "src"
 | ||
|  * under "ma" and put the result in "dst".  The number of dimensions in "src"
 | ||
|  * that precede the range is given by "n_before".  The number of dimensions
 | ||
|  * in the range is given by the number of output dimensions of "ma".
 | ||
|  * The number of dimensions that follow the range is given by "n_after".
 | ||
|  * If "has_denom" is set (to one),
 | ||
|  * then "src" and "dst" have an extra initial denominator.
 | ||
|  * "n_div_ma" is the number of existentials in "ma"
 | ||
|  * "n_div_bset" is the number of existentials in "src"
 | ||
|  * The resulting "dst" (which is assumed to have been allocated by
 | ||
|  * the caller) contains coefficients for both sets of existentials,
 | ||
|  * first those in "ma" and then those in "src".
 | ||
|  * f, c1, c2 and g are temporary objects that have been initialized
 | ||
|  * by the caller.
 | ||
|  *
 | ||
|  * Let src represent the expression
 | ||
|  *
 | ||
|  *	(a(p) + f_u u + b v + f_w w + c(divs))/d
 | ||
|  *
 | ||
|  * and let ma represent the expressions
 | ||
|  *
 | ||
|  *	v_i = (r_i(p) + s_i(y) + t_i(divs'))/m_i
 | ||
|  *
 | ||
|  * We start out with the following expression for dst:
 | ||
|  *
 | ||
|  *	(a(p) + f_u u + 0 y + f_w w + 0 divs' + c(divs) + f \sum_i b_i v_i)/d
 | ||
|  *
 | ||
|  * with the multiplication factor f initially equal to 1
 | ||
|  * and f \sum_i b_i v_i kept separately.
 | ||
|  * For each x_i that we substitute, we multiply the numerator
 | ||
|  * (and denominator) of dst by c_1 = m_i and add the numerator
 | ||
|  * of the x_i expression multiplied by c_2 = f b_i,
 | ||
|  * after removing the common factors of c_1 and c_2.
 | ||
|  * The multiplication factor f also needs to be multiplied by c_1
 | ||
|  * for the next x_j, j > i.
 | ||
|  */
 | ||
| void isl_seq_preimage(isl_int *dst, isl_int *src,
 | ||
| 	__isl_keep isl_multi_aff *ma, int n_before, int n_after,
 | ||
| 	int n_div_ma, int n_div_bmap,
 | ||
| 	isl_int f, isl_int c1, isl_int c2, isl_int g, int has_denom)
 | ||
| {
 | ||
| 	int i;
 | ||
| 	int n_param, n_in, n_out;
 | ||
| 	int o_dst, o_src;
 | ||
| 
 | ||
| 	n_param = isl_multi_aff_dim(ma, isl_dim_param);
 | ||
| 	n_in = isl_multi_aff_dim(ma, isl_dim_in);
 | ||
| 	n_out = isl_multi_aff_dim(ma, isl_dim_out);
 | ||
| 
 | ||
| 	isl_seq_cpy(dst, src, has_denom + 1 + n_param + n_before);
 | ||
| 	o_dst = o_src = has_denom + 1 + n_param + n_before;
 | ||
| 	isl_seq_clr(dst + o_dst, n_in);
 | ||
| 	o_dst += n_in;
 | ||
| 	o_src += n_out;
 | ||
| 	isl_seq_cpy(dst + o_dst, src + o_src, n_after);
 | ||
| 	o_dst += n_after;
 | ||
| 	o_src += n_after;
 | ||
| 	isl_seq_clr(dst + o_dst, n_div_ma);
 | ||
| 	o_dst += n_div_ma;
 | ||
| 	isl_seq_cpy(dst + o_dst, src + o_src, n_div_bmap);
 | ||
| 
 | ||
| 	isl_int_set_si(f, 1);
 | ||
| 
 | ||
| 	for (i = 0; i < n_out; ++i) {
 | ||
| 		int offset = has_denom + 1 + n_param + n_before + i;
 | ||
| 
 | ||
| 		if (isl_int_is_zero(src[offset]))
 | ||
| 			continue;
 | ||
| 		isl_int_set(c1, ma->p[i]->v->el[0]);
 | ||
| 		isl_int_mul(c2, f, src[offset]);
 | ||
| 		isl_int_gcd(g, c1, c2);
 | ||
| 		isl_int_divexact(c1, c1, g);
 | ||
| 		isl_int_divexact(c2, c2, g);
 | ||
| 
 | ||
| 		isl_int_mul(f, f, c1);
 | ||
| 		o_dst = has_denom;
 | ||
| 		o_src = 1;
 | ||
| 		isl_seq_combine(dst + o_dst, c1, dst + o_dst,
 | ||
| 				c2, ma->p[i]->v->el + o_src, 1 + n_param);
 | ||
| 		o_dst += 1 + n_param;
 | ||
| 		o_src += 1 + n_param;
 | ||
| 		isl_seq_scale(dst + o_dst, dst + o_dst, c1, n_before);
 | ||
| 		o_dst += n_before;
 | ||
| 		isl_seq_combine(dst + o_dst, c1, dst + o_dst,
 | ||
| 				c2, ma->p[i]->v->el + o_src, n_in);
 | ||
| 		o_dst += n_in;
 | ||
| 		o_src += n_in;
 | ||
| 		isl_seq_scale(dst + o_dst, dst + o_dst, c1, n_after);
 | ||
| 		o_dst += n_after;
 | ||
| 		isl_seq_combine(dst + o_dst, c1, dst + o_dst,
 | ||
| 				c2, ma->p[i]->v->el + o_src, n_div_ma);
 | ||
| 		o_dst += n_div_ma;
 | ||
| 		o_src += n_div_ma;
 | ||
| 		isl_seq_scale(dst + o_dst, dst + o_dst, c1, n_div_bmap);
 | ||
| 		if (has_denom)
 | ||
| 			isl_int_mul(dst[0], dst[0], c1);
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| /* Compute the pullback of "aff" by the function represented by "ma".
 | ||
|  * In other words, plug in "ma" in "aff".  The result is an affine expression
 | ||
|  * defined over the domain space of "ma".
 | ||
|  *
 | ||
|  * If "aff" is represented by
 | ||
|  *
 | ||
|  *	(a(p) + b x + c(divs))/d
 | ||
|  *
 | ||
|  * and ma is represented by
 | ||
|  *
 | ||
|  *	x = D(p) + F(y) + G(divs')
 | ||
|  *
 | ||
|  * then the result is
 | ||
|  *
 | ||
|  *	(a(p) + b D(p) + b F(y) + b G(divs') + c(divs))/d
 | ||
|  *
 | ||
|  * The divs in the local space of the input are similarly adjusted
 | ||
|  * through a call to isl_local_space_preimage_multi_aff.
 | ||
|  */
 | ||
| __isl_give isl_aff *isl_aff_pullback_multi_aff(__isl_take isl_aff *aff,
 | ||
| 	__isl_take isl_multi_aff *ma)
 | ||
| {
 | ||
| 	isl_aff *res = NULL;
 | ||
| 	isl_local_space *ls;
 | ||
| 	int n_div_aff, n_div_ma;
 | ||
| 	isl_int f, c1, c2, g;
 | ||
| 
 | ||
| 	ma = isl_multi_aff_align_divs(ma);
 | ||
| 	if (!aff || !ma)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	n_div_aff = isl_aff_dim(aff, isl_dim_div);
 | ||
| 	n_div_ma = ma->n ? isl_aff_dim(ma->p[0], isl_dim_div) : 0;
 | ||
| 
 | ||
| 	ls = isl_aff_get_domain_local_space(aff);
 | ||
| 	ls = isl_local_space_preimage_multi_aff(ls, isl_multi_aff_copy(ma));
 | ||
| 	res = isl_aff_alloc(ls);
 | ||
| 	if (!res)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	isl_int_init(f);
 | ||
| 	isl_int_init(c1);
 | ||
| 	isl_int_init(c2);
 | ||
| 	isl_int_init(g);
 | ||
| 
 | ||
| 	isl_seq_preimage(res->v->el, aff->v->el, ma, 0, 0, n_div_ma, n_div_aff,
 | ||
| 			f, c1, c2, g, 1);
 | ||
| 
 | ||
| 	isl_int_clear(f);
 | ||
| 	isl_int_clear(c1);
 | ||
| 	isl_int_clear(c2);
 | ||
| 	isl_int_clear(g);
 | ||
| 
 | ||
| 	isl_aff_free(aff);
 | ||
| 	isl_multi_aff_free(ma);
 | ||
| 	res = isl_aff_normalize(res);
 | ||
| 	return res;
 | ||
| error:
 | ||
| 	isl_aff_free(aff);
 | ||
| 	isl_multi_aff_free(ma);
 | ||
| 	isl_aff_free(res);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Compute the pullback of "aff1" by the function represented by "aff2".
 | ||
|  * In other words, plug in "aff2" in "aff1".  The result is an affine expression
 | ||
|  * defined over the domain space of "aff1".
 | ||
|  *
 | ||
|  * The domain of "aff1" should match the range of "aff2", which means
 | ||
|  * that it should be single-dimensional.
 | ||
|  */
 | ||
| __isl_give isl_aff *isl_aff_pullback_aff(__isl_take isl_aff *aff1,
 | ||
| 	__isl_take isl_aff *aff2)
 | ||
| {
 | ||
| 	isl_multi_aff *ma;
 | ||
| 
 | ||
| 	ma = isl_multi_aff_from_aff(aff2);
 | ||
| 	return isl_aff_pullback_multi_aff(aff1, ma);
 | ||
| }
 | ||
| 
 | ||
| /* Compute the pullback of "ma1" by the function represented by "ma2".
 | ||
|  * In other words, plug in "ma2" in "ma1".
 | ||
|  *
 | ||
|  * The parameters of "ma1" and "ma2" are assumed to have been aligned.
 | ||
|  */
 | ||
| static __isl_give isl_multi_aff *isl_multi_aff_pullback_multi_aff_aligned(
 | ||
| 	__isl_take isl_multi_aff *ma1, __isl_take isl_multi_aff *ma2)
 | ||
| {
 | ||
| 	int i;
 | ||
| 	isl_space *space = NULL;
 | ||
| 
 | ||
| 	ma2 = isl_multi_aff_align_divs(ma2);
 | ||
| 	ma1 = isl_multi_aff_cow(ma1);
 | ||
| 	if (!ma1 || !ma2)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	space = isl_space_join(isl_multi_aff_get_space(ma2),
 | ||
| 				isl_multi_aff_get_space(ma1));
 | ||
| 
 | ||
| 	for (i = 0; i < ma1->n; ++i) {
 | ||
| 		ma1->p[i] = isl_aff_pullback_multi_aff(ma1->p[i],
 | ||
| 						    isl_multi_aff_copy(ma2));
 | ||
| 		if (!ma1->p[i])
 | ||
| 			goto error;
 | ||
| 	}
 | ||
| 
 | ||
| 	ma1 = isl_multi_aff_reset_space(ma1, space);
 | ||
| 	isl_multi_aff_free(ma2);
 | ||
| 	return ma1;
 | ||
| error:
 | ||
| 	isl_space_free(space);
 | ||
| 	isl_multi_aff_free(ma2);
 | ||
| 	isl_multi_aff_free(ma1);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Compute the pullback of "ma1" by the function represented by "ma2".
 | ||
|  * In other words, plug in "ma2" in "ma1".
 | ||
|  */
 | ||
| __isl_give isl_multi_aff *isl_multi_aff_pullback_multi_aff(
 | ||
| 	__isl_take isl_multi_aff *ma1, __isl_take isl_multi_aff *ma2)
 | ||
| {
 | ||
| 	return isl_multi_aff_align_params_multi_multi_and(ma1, ma2,
 | ||
| 				&isl_multi_aff_pullback_multi_aff_aligned);
 | ||
| }
 | ||
| 
 | ||
| /* Extend the local space of "dst" to include the divs
 | ||
|  * in the local space of "src".
 | ||
|  *
 | ||
|  * If "src" does not have any divs or if the local spaces of "dst" and
 | ||
|  * "src" are the same, then no extension is required.
 | ||
|  */
 | ||
| __isl_give isl_aff *isl_aff_align_divs(__isl_take isl_aff *dst,
 | ||
| 	__isl_keep isl_aff *src)
 | ||
| {
 | ||
| 	isl_ctx *ctx;
 | ||
| 	int src_n_div, dst_n_div;
 | ||
| 	int *exp1 = NULL;
 | ||
| 	int *exp2 = NULL;
 | ||
| 	isl_bool equal;
 | ||
| 	isl_mat *div;
 | ||
| 
 | ||
| 	if (!src || !dst)
 | ||
| 		return isl_aff_free(dst);
 | ||
| 
 | ||
| 	ctx = isl_aff_get_ctx(src);
 | ||
| 	equal = isl_local_space_has_equal_space(src->ls, dst->ls);
 | ||
| 	if (equal < 0)
 | ||
| 		return isl_aff_free(dst);
 | ||
| 	if (!equal)
 | ||
| 		isl_die(ctx, isl_error_invalid,
 | ||
| 			"spaces don't match", goto error);
 | ||
| 
 | ||
| 	src_n_div = isl_local_space_dim(src->ls, isl_dim_div);
 | ||
| 	if (src_n_div == 0)
 | ||
| 		return dst;
 | ||
| 	equal = isl_local_space_is_equal(src->ls, dst->ls);
 | ||
| 	if (equal < 0)
 | ||
| 		return isl_aff_free(dst);
 | ||
| 	if (equal)
 | ||
| 		return dst;
 | ||
| 
 | ||
| 	dst_n_div = isl_local_space_dim(dst->ls, isl_dim_div);
 | ||
| 	exp1 = isl_alloc_array(ctx, int, src_n_div);
 | ||
| 	exp2 = isl_alloc_array(ctx, int, dst_n_div);
 | ||
| 	if (!exp1 || (dst_n_div && !exp2))
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	div = isl_merge_divs(src->ls->div, dst->ls->div, exp1, exp2);
 | ||
| 	dst = isl_aff_expand_divs(dst, div, exp2);
 | ||
| 	free(exp1);
 | ||
| 	free(exp2);
 | ||
| 
 | ||
| 	return dst;
 | ||
| error:
 | ||
| 	free(exp1);
 | ||
| 	free(exp2);
 | ||
| 	return isl_aff_free(dst);
 | ||
| }
 | ||
| 
 | ||
| /* Adjust the local spaces of the affine expressions in "maff"
 | ||
|  * such that they all have the save divs.
 | ||
|  */
 | ||
| __isl_give isl_multi_aff *isl_multi_aff_align_divs(
 | ||
| 	__isl_take isl_multi_aff *maff)
 | ||
| {
 | ||
| 	int i;
 | ||
| 
 | ||
| 	if (!maff)
 | ||
| 		return NULL;
 | ||
| 	if (maff->n == 0)
 | ||
| 		return maff;
 | ||
| 	maff = isl_multi_aff_cow(maff);
 | ||
| 	if (!maff)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	for (i = 1; i < maff->n; ++i)
 | ||
| 		maff->p[0] = isl_aff_align_divs(maff->p[0], maff->p[i]);
 | ||
| 	for (i = 1; i < maff->n; ++i) {
 | ||
| 		maff->p[i] = isl_aff_align_divs(maff->p[i], maff->p[0]);
 | ||
| 		if (!maff->p[i])
 | ||
| 			return isl_multi_aff_free(maff);
 | ||
| 	}
 | ||
| 
 | ||
| 	return maff;
 | ||
| }
 | ||
| 
 | ||
| __isl_give isl_aff *isl_aff_lift(__isl_take isl_aff *aff)
 | ||
| {
 | ||
| 	aff = isl_aff_cow(aff);
 | ||
| 	if (!aff)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	aff->ls = isl_local_space_lift(aff->ls);
 | ||
| 	if (!aff->ls)
 | ||
| 		return isl_aff_free(aff);
 | ||
| 
 | ||
| 	return aff;
 | ||
| }
 | ||
| 
 | ||
| /* Lift "maff" to a space with extra dimensions such that the result
 | ||
|  * has no more existentially quantified variables.
 | ||
|  * If "ls" is not NULL, then *ls is assigned the local space that lies
 | ||
|  * at the basis of the lifting applied to "maff".
 | ||
|  */
 | ||
| __isl_give isl_multi_aff *isl_multi_aff_lift(__isl_take isl_multi_aff *maff,
 | ||
| 	__isl_give isl_local_space **ls)
 | ||
| {
 | ||
| 	int i;
 | ||
| 	isl_space *space;
 | ||
| 	unsigned n_div;
 | ||
| 
 | ||
| 	if (ls)
 | ||
| 		*ls = NULL;
 | ||
| 
 | ||
| 	if (!maff)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	if (maff->n == 0) {
 | ||
| 		if (ls) {
 | ||
| 			isl_space *space = isl_multi_aff_get_domain_space(maff);
 | ||
| 			*ls = isl_local_space_from_space(space);
 | ||
| 			if (!*ls)
 | ||
| 				return isl_multi_aff_free(maff);
 | ||
| 		}
 | ||
| 		return maff;
 | ||
| 	}
 | ||
| 
 | ||
| 	maff = isl_multi_aff_cow(maff);
 | ||
| 	maff = isl_multi_aff_align_divs(maff);
 | ||
| 	if (!maff)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	n_div = isl_aff_dim(maff->p[0], isl_dim_div);
 | ||
| 	space = isl_multi_aff_get_space(maff);
 | ||
| 	space = isl_space_lift(isl_space_domain(space), n_div);
 | ||
| 	space = isl_space_extend_domain_with_range(space,
 | ||
| 						isl_multi_aff_get_space(maff));
 | ||
| 	if (!space)
 | ||
| 		return isl_multi_aff_free(maff);
 | ||
| 	isl_space_free(maff->space);
 | ||
| 	maff->space = space;
 | ||
| 
 | ||
| 	if (ls) {
 | ||
| 		*ls = isl_aff_get_domain_local_space(maff->p[0]);
 | ||
| 		if (!*ls)
 | ||
| 			return isl_multi_aff_free(maff);
 | ||
| 	}
 | ||
| 
 | ||
| 	for (i = 0; i < maff->n; ++i) {
 | ||
| 		maff->p[i] = isl_aff_lift(maff->p[i]);
 | ||
| 		if (!maff->p[i])
 | ||
| 			goto error;
 | ||
| 	}
 | ||
| 
 | ||
| 	return maff;
 | ||
| error:
 | ||
| 	if (ls)
 | ||
| 		isl_local_space_free(*ls);
 | ||
| 	return isl_multi_aff_free(maff);
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /* Extract an isl_pw_aff corresponding to output dimension "pos" of "pma".
 | ||
|  */
 | ||
| __isl_give isl_pw_aff *isl_pw_multi_aff_get_pw_aff(
 | ||
| 	__isl_keep isl_pw_multi_aff *pma, int pos)
 | ||
| {
 | ||
| 	int i;
 | ||
| 	int n_out;
 | ||
| 	isl_space *space;
 | ||
| 	isl_pw_aff *pa;
 | ||
| 
 | ||
| 	if (!pma)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	n_out = isl_pw_multi_aff_dim(pma, isl_dim_out);
 | ||
| 	if (pos < 0 || pos >= n_out)
 | ||
| 		isl_die(isl_pw_multi_aff_get_ctx(pma), isl_error_invalid,
 | ||
| 			"index out of bounds", return NULL);
 | ||
| 
 | ||
| 	space = isl_pw_multi_aff_get_space(pma);
 | ||
| 	space = isl_space_drop_dims(space, isl_dim_out,
 | ||
| 				    pos + 1, n_out - pos - 1);
 | ||
| 	space = isl_space_drop_dims(space, isl_dim_out, 0, pos);
 | ||
| 
 | ||
| 	pa = isl_pw_aff_alloc_size(space, pma->n);
 | ||
| 	for (i = 0; i < pma->n; ++i) {
 | ||
| 		isl_aff *aff;
 | ||
| 		aff = isl_multi_aff_get_aff(pma->p[i].maff, pos);
 | ||
| 		pa = isl_pw_aff_add_piece(pa, isl_set_copy(pma->p[i].set), aff);
 | ||
| 	}
 | ||
| 
 | ||
| 	return pa;
 | ||
| }
 | ||
| 
 | ||
| /* Return an isl_pw_multi_aff with the given "set" as domain and
 | ||
|  * an unnamed zero-dimensional range.
 | ||
|  */
 | ||
| __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_domain(
 | ||
| 	__isl_take isl_set *set)
 | ||
| {
 | ||
| 	isl_multi_aff *ma;
 | ||
| 	isl_space *space;
 | ||
| 
 | ||
| 	space = isl_set_get_space(set);
 | ||
| 	space = isl_space_from_domain(space);
 | ||
| 	ma = isl_multi_aff_zero(space);
 | ||
| 	return isl_pw_multi_aff_alloc(set, ma);
 | ||
| }
 | ||
| 
 | ||
| /* Add an isl_pw_multi_aff with the given "set" as domain and
 | ||
|  * an unnamed zero-dimensional range to *user.
 | ||
|  */
 | ||
| static isl_stat add_pw_multi_aff_from_domain(__isl_take isl_set *set,
 | ||
| 	void *user)
 | ||
| {
 | ||
| 	isl_union_pw_multi_aff **upma = user;
 | ||
| 	isl_pw_multi_aff *pma;
 | ||
| 
 | ||
| 	pma = isl_pw_multi_aff_from_domain(set);
 | ||
| 	*upma = isl_union_pw_multi_aff_add_pw_multi_aff(*upma, pma);
 | ||
| 
 | ||
| 	return isl_stat_ok;
 | ||
| }
 | ||
| 
 | ||
| /* Return an isl_union_pw_multi_aff with the given "uset" as domain and
 | ||
|  * an unnamed zero-dimensional range.
 | ||
|  */
 | ||
| __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_from_domain(
 | ||
| 	__isl_take isl_union_set *uset)
 | ||
| {
 | ||
| 	isl_space *space;
 | ||
| 	isl_union_pw_multi_aff *upma;
 | ||
| 
 | ||
| 	if (!uset)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	space = isl_union_set_get_space(uset);
 | ||
| 	upma = isl_union_pw_multi_aff_empty(space);
 | ||
| 
 | ||
| 	if (isl_union_set_foreach_set(uset,
 | ||
| 				    &add_pw_multi_aff_from_domain, &upma) < 0)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	isl_union_set_free(uset);
 | ||
| 	return upma;
 | ||
| error:
 | ||
| 	isl_union_set_free(uset);
 | ||
| 	isl_union_pw_multi_aff_free(upma);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Convert "pma" to an isl_map and add it to *umap.
 | ||
|  */
 | ||
| static isl_stat map_from_pw_multi_aff(__isl_take isl_pw_multi_aff *pma,
 | ||
| 	void *user)
 | ||
| {
 | ||
| 	isl_union_map **umap = user;
 | ||
| 	isl_map *map;
 | ||
| 
 | ||
| 	map = isl_map_from_pw_multi_aff(pma);
 | ||
| 	*umap = isl_union_map_add_map(*umap, map);
 | ||
| 
 | ||
| 	return isl_stat_ok;
 | ||
| }
 | ||
| 
 | ||
| /* Construct a union map mapping the domain of the union
 | ||
|  * piecewise multi-affine expression to its range, with each dimension
 | ||
|  * in the range equated to the corresponding affine expression on its cell.
 | ||
|  */
 | ||
| __isl_give isl_union_map *isl_union_map_from_union_pw_multi_aff(
 | ||
| 	__isl_take isl_union_pw_multi_aff *upma)
 | ||
| {
 | ||
| 	isl_space *space;
 | ||
| 	isl_union_map *umap;
 | ||
| 
 | ||
| 	if (!upma)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	space = isl_union_pw_multi_aff_get_space(upma);
 | ||
| 	umap = isl_union_map_empty(space);
 | ||
| 
 | ||
| 	if (isl_union_pw_multi_aff_foreach_pw_multi_aff(upma,
 | ||
| 					&map_from_pw_multi_aff, &umap) < 0)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	isl_union_pw_multi_aff_free(upma);
 | ||
| 	return umap;
 | ||
| error:
 | ||
| 	isl_union_pw_multi_aff_free(upma);
 | ||
| 	isl_union_map_free(umap);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Local data for bin_entry and the callback "fn".
 | ||
|  */
 | ||
| struct isl_union_pw_multi_aff_bin_data {
 | ||
| 	isl_union_pw_multi_aff *upma2;
 | ||
| 	isl_union_pw_multi_aff *res;
 | ||
| 	isl_pw_multi_aff *pma;
 | ||
| 	isl_stat (*fn)(__isl_take isl_pw_multi_aff *pma, void *user);
 | ||
| };
 | ||
| 
 | ||
| /* Given an isl_pw_multi_aff from upma1, store it in data->pma
 | ||
|  * and call data->fn for each isl_pw_multi_aff in data->upma2.
 | ||
|  */
 | ||
| static isl_stat bin_entry(__isl_take isl_pw_multi_aff *pma, void *user)
 | ||
| {
 | ||
| 	struct isl_union_pw_multi_aff_bin_data *data = user;
 | ||
| 	isl_stat r;
 | ||
| 
 | ||
| 	data->pma = pma;
 | ||
| 	r = isl_union_pw_multi_aff_foreach_pw_multi_aff(data->upma2,
 | ||
| 				   data->fn, data);
 | ||
| 	isl_pw_multi_aff_free(pma);
 | ||
| 
 | ||
| 	return r;
 | ||
| }
 | ||
| 
 | ||
| /* Call "fn" on each pair of isl_pw_multi_affs in "upma1" and "upma2".
 | ||
|  * The isl_pw_multi_aff from upma1 is stored in data->pma (where data is
 | ||
|  * passed as user field) and the isl_pw_multi_aff from upma2 is available
 | ||
|  * as *entry.  The callback should adjust data->res if desired.
 | ||
|  */
 | ||
| static __isl_give isl_union_pw_multi_aff *bin_op(
 | ||
| 	__isl_take isl_union_pw_multi_aff *upma1,
 | ||
| 	__isl_take isl_union_pw_multi_aff *upma2,
 | ||
| 	isl_stat (*fn)(__isl_take isl_pw_multi_aff *pma, void *user))
 | ||
| {
 | ||
| 	isl_space *space;
 | ||
| 	struct isl_union_pw_multi_aff_bin_data data = { NULL, NULL, NULL, fn };
 | ||
| 
 | ||
| 	space = isl_union_pw_multi_aff_get_space(upma2);
 | ||
| 	upma1 = isl_union_pw_multi_aff_align_params(upma1, space);
 | ||
| 	space = isl_union_pw_multi_aff_get_space(upma1);
 | ||
| 	upma2 = isl_union_pw_multi_aff_align_params(upma2, space);
 | ||
| 
 | ||
| 	if (!upma1 || !upma2)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	data.upma2 = upma2;
 | ||
| 	data.res = isl_union_pw_multi_aff_alloc_same_size(upma1);
 | ||
| 	if (isl_union_pw_multi_aff_foreach_pw_multi_aff(upma1,
 | ||
| 				   &bin_entry, &data) < 0)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	isl_union_pw_multi_aff_free(upma1);
 | ||
| 	isl_union_pw_multi_aff_free(upma2);
 | ||
| 	return data.res;
 | ||
| error:
 | ||
| 	isl_union_pw_multi_aff_free(upma1);
 | ||
| 	isl_union_pw_multi_aff_free(upma2);
 | ||
| 	isl_union_pw_multi_aff_free(data.res);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Given two aligned isl_pw_multi_affs A -> B and C -> D,
 | ||
|  * construct an isl_pw_multi_aff (A * C) -> [B -> D].
 | ||
|  */
 | ||
| static __isl_give isl_pw_multi_aff *pw_multi_aff_range_product(
 | ||
| 	__isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2)
 | ||
| {
 | ||
| 	isl_space *space;
 | ||
| 
 | ||
| 	space = isl_space_range_product(isl_pw_multi_aff_get_space(pma1),
 | ||
| 					isl_pw_multi_aff_get_space(pma2));
 | ||
| 	return isl_pw_multi_aff_on_shared_domain_in(pma1, pma2, space,
 | ||
| 					    &isl_multi_aff_range_product);
 | ||
| }
 | ||
| 
 | ||
| /* Given two isl_pw_multi_affs A -> B and C -> D,
 | ||
|  * construct an isl_pw_multi_aff (A * C) -> [B -> D].
 | ||
|  */
 | ||
| __isl_give isl_pw_multi_aff *isl_pw_multi_aff_range_product(
 | ||
| 	__isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2)
 | ||
| {
 | ||
| 	return isl_pw_multi_aff_align_params_pw_pw_and(pma1, pma2,
 | ||
| 					    &pw_multi_aff_range_product);
 | ||
| }
 | ||
| 
 | ||
| /* Given two aligned isl_pw_multi_affs A -> B and C -> D,
 | ||
|  * construct an isl_pw_multi_aff (A * C) -> (B, D).
 | ||
|  */
 | ||
| static __isl_give isl_pw_multi_aff *pw_multi_aff_flat_range_product(
 | ||
| 	__isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2)
 | ||
| {
 | ||
| 	isl_space *space;
 | ||
| 
 | ||
| 	space = isl_space_range_product(isl_pw_multi_aff_get_space(pma1),
 | ||
| 					isl_pw_multi_aff_get_space(pma2));
 | ||
| 	space = isl_space_flatten_range(space);
 | ||
| 	return isl_pw_multi_aff_on_shared_domain_in(pma1, pma2, space,
 | ||
| 					    &isl_multi_aff_flat_range_product);
 | ||
| }
 | ||
| 
 | ||
| /* Given two isl_pw_multi_affs A -> B and C -> D,
 | ||
|  * construct an isl_pw_multi_aff (A * C) -> (B, D).
 | ||
|  */
 | ||
| __isl_give isl_pw_multi_aff *isl_pw_multi_aff_flat_range_product(
 | ||
| 	__isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2)
 | ||
| {
 | ||
| 	return isl_pw_multi_aff_align_params_pw_pw_and(pma1, pma2,
 | ||
| 					    &pw_multi_aff_flat_range_product);
 | ||
| }
 | ||
| 
 | ||
| /* If data->pma and "pma2" have the same domain space, then compute
 | ||
|  * their flat range product and the result to data->res.
 | ||
|  */
 | ||
| static isl_stat flat_range_product_entry(__isl_take isl_pw_multi_aff *pma2,
 | ||
| 	void *user)
 | ||
| {
 | ||
| 	struct isl_union_pw_multi_aff_bin_data *data = user;
 | ||
| 
 | ||
| 	if (!isl_space_tuple_is_equal(data->pma->dim, isl_dim_in,
 | ||
| 				 pma2->dim, isl_dim_in)) {
 | ||
| 		isl_pw_multi_aff_free(pma2);
 | ||
| 		return isl_stat_ok;
 | ||
| 	}
 | ||
| 
 | ||
| 	pma2 = isl_pw_multi_aff_flat_range_product(
 | ||
| 					isl_pw_multi_aff_copy(data->pma), pma2);
 | ||
| 
 | ||
| 	data->res = isl_union_pw_multi_aff_add_pw_multi_aff(data->res, pma2);
 | ||
| 
 | ||
| 	return isl_stat_ok;
 | ||
| }
 | ||
| 
 | ||
| /* Given two isl_union_pw_multi_affs A -> B and C -> D,
 | ||
|  * construct an isl_union_pw_multi_aff (A * C) -> (B, D).
 | ||
|  */
 | ||
| __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_flat_range_product(
 | ||
| 	__isl_take isl_union_pw_multi_aff *upma1,
 | ||
| 	__isl_take isl_union_pw_multi_aff *upma2)
 | ||
| {
 | ||
| 	return bin_op(upma1, upma2, &flat_range_product_entry);
 | ||
| }
 | ||
| 
 | ||
| /* Replace the affine expressions at position "pos" in "pma" by "pa".
 | ||
|  * The parameters are assumed to have been aligned.
 | ||
|  *
 | ||
|  * The implementation essentially performs an isl_pw_*_on_shared_domain,
 | ||
|  * except that it works on two different isl_pw_* types.
 | ||
|  */
 | ||
| static __isl_give isl_pw_multi_aff *pw_multi_aff_set_pw_aff(
 | ||
| 	__isl_take isl_pw_multi_aff *pma, unsigned pos,
 | ||
| 	__isl_take isl_pw_aff *pa)
 | ||
| {
 | ||
| 	int i, j, n;
 | ||
| 	isl_pw_multi_aff *res = NULL;
 | ||
| 
 | ||
| 	if (!pma || !pa)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	if (!isl_space_tuple_is_equal(pma->dim, isl_dim_in,
 | ||
| 					pa->dim, isl_dim_in))
 | ||
| 		isl_die(isl_pw_multi_aff_get_ctx(pma), isl_error_invalid,
 | ||
| 			"domains don't match", goto error);
 | ||
| 	if (pos >= isl_pw_multi_aff_dim(pma, isl_dim_out))
 | ||
| 		isl_die(isl_pw_multi_aff_get_ctx(pma), isl_error_invalid,
 | ||
| 			"index out of bounds", goto error);
 | ||
| 
 | ||
| 	n = pma->n * pa->n;
 | ||
| 	res = isl_pw_multi_aff_alloc_size(isl_pw_multi_aff_get_space(pma), n);
 | ||
| 
 | ||
| 	for (i = 0; i < pma->n; ++i) {
 | ||
| 		for (j = 0; j < pa->n; ++j) {
 | ||
| 			isl_set *common;
 | ||
| 			isl_multi_aff *res_ij;
 | ||
| 			int empty;
 | ||
| 
 | ||
| 			common = isl_set_intersect(isl_set_copy(pma->p[i].set),
 | ||
| 						   isl_set_copy(pa->p[j].set));
 | ||
| 			empty = isl_set_plain_is_empty(common);
 | ||
| 			if (empty < 0 || empty) {
 | ||
| 				isl_set_free(common);
 | ||
| 				if (empty < 0)
 | ||
| 					goto error;
 | ||
| 				continue;
 | ||
| 			}
 | ||
| 
 | ||
| 			res_ij = isl_multi_aff_set_aff(
 | ||
| 					isl_multi_aff_copy(pma->p[i].maff), pos,
 | ||
| 					isl_aff_copy(pa->p[j].aff));
 | ||
| 			res_ij = isl_multi_aff_gist(res_ij,
 | ||
| 					isl_set_copy(common));
 | ||
| 
 | ||
| 			res = isl_pw_multi_aff_add_piece(res, common, res_ij);
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	isl_pw_multi_aff_free(pma);
 | ||
| 	isl_pw_aff_free(pa);
 | ||
| 	return res;
 | ||
| error:
 | ||
| 	isl_pw_multi_aff_free(pma);
 | ||
| 	isl_pw_aff_free(pa);
 | ||
| 	return isl_pw_multi_aff_free(res);
 | ||
| }
 | ||
| 
 | ||
| /* Replace the affine expressions at position "pos" in "pma" by "pa".
 | ||
|  */
 | ||
| __isl_give isl_pw_multi_aff *isl_pw_multi_aff_set_pw_aff(
 | ||
| 	__isl_take isl_pw_multi_aff *pma, unsigned pos,
 | ||
| 	__isl_take isl_pw_aff *pa)
 | ||
| {
 | ||
| 	isl_bool equal_params;
 | ||
| 
 | ||
| 	if (!pma || !pa)
 | ||
| 		goto error;
 | ||
| 	equal_params = isl_space_has_equal_params(pma->dim, pa->dim);
 | ||
| 	if (equal_params < 0)
 | ||
| 		goto error;
 | ||
| 	if (equal_params)
 | ||
| 		return pw_multi_aff_set_pw_aff(pma, pos, pa);
 | ||
| 	if (!isl_space_has_named_params(pma->dim) ||
 | ||
| 	    !isl_space_has_named_params(pa->dim))
 | ||
| 		isl_die(isl_pw_multi_aff_get_ctx(pma), isl_error_invalid,
 | ||
| 			"unaligned unnamed parameters", goto error);
 | ||
| 	pma = isl_pw_multi_aff_align_params(pma, isl_pw_aff_get_space(pa));
 | ||
| 	pa = isl_pw_aff_align_params(pa, isl_pw_multi_aff_get_space(pma));
 | ||
| 	return pw_multi_aff_set_pw_aff(pma, pos, pa);
 | ||
| error:
 | ||
| 	isl_pw_multi_aff_free(pma);
 | ||
| 	isl_pw_aff_free(pa);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Do the parameters of "pa" match those of "space"?
 | ||
|  */
 | ||
| isl_bool isl_pw_aff_matching_params(__isl_keep isl_pw_aff *pa,
 | ||
| 	__isl_keep isl_space *space)
 | ||
| {
 | ||
| 	isl_space *pa_space;
 | ||
| 	isl_bool match;
 | ||
| 
 | ||
| 	if (!pa || !space)
 | ||
| 		return isl_bool_error;
 | ||
| 
 | ||
| 	pa_space = isl_pw_aff_get_space(pa);
 | ||
| 
 | ||
| 	match = isl_space_has_equal_params(space, pa_space);
 | ||
| 
 | ||
| 	isl_space_free(pa_space);
 | ||
| 	return match;
 | ||
| }
 | ||
| 
 | ||
| /* Check that the domain space of "pa" matches "space".
 | ||
|  */
 | ||
| isl_stat isl_pw_aff_check_match_domain_space(__isl_keep isl_pw_aff *pa,
 | ||
| 	__isl_keep isl_space *space)
 | ||
| {
 | ||
| 	isl_space *pa_space;
 | ||
| 	isl_bool match;
 | ||
| 
 | ||
| 	if (!pa || !space)
 | ||
| 		return isl_stat_error;
 | ||
| 
 | ||
| 	pa_space = isl_pw_aff_get_space(pa);
 | ||
| 
 | ||
| 	match = isl_space_has_equal_params(space, pa_space);
 | ||
| 	if (match < 0)
 | ||
| 		goto error;
 | ||
| 	if (!match)
 | ||
| 		isl_die(isl_pw_aff_get_ctx(pa), isl_error_invalid,
 | ||
| 			"parameters don't match", goto error);
 | ||
| 	match = isl_space_tuple_is_equal(space, isl_dim_in,
 | ||
| 					pa_space, isl_dim_in);
 | ||
| 	if (match < 0)
 | ||
| 		goto error;
 | ||
| 	if (!match)
 | ||
| 		isl_die(isl_pw_aff_get_ctx(pa), isl_error_invalid,
 | ||
| 			"domains don't match", goto error);
 | ||
| 	isl_space_free(pa_space);
 | ||
| 	return isl_stat_ok;
 | ||
| error:
 | ||
| 	isl_space_free(pa_space);
 | ||
| 	return isl_stat_error;
 | ||
| }
 | ||
| 
 | ||
| #undef BASE
 | ||
| #define BASE pw_aff
 | ||
| #undef DOMBASE
 | ||
| #define DOMBASE set
 | ||
| 
 | ||
| #include <isl_multi_templ.c>
 | ||
| #include <isl_multi_apply_set.c>
 | ||
| #include <isl_multi_coalesce.c>
 | ||
| #include <isl_multi_gist.c>
 | ||
| #include <isl_multi_hash.c>
 | ||
| #include <isl_multi_intersect.c>
 | ||
| 
 | ||
| /* Scale the elements of "pma" by the corresponding elements of "mv".
 | ||
|  */
 | ||
| __isl_give isl_pw_multi_aff *isl_pw_multi_aff_scale_multi_val(
 | ||
| 	__isl_take isl_pw_multi_aff *pma, __isl_take isl_multi_val *mv)
 | ||
| {
 | ||
| 	int i;
 | ||
| 	isl_bool equal_params;
 | ||
| 
 | ||
| 	pma = isl_pw_multi_aff_cow(pma);
 | ||
| 	if (!pma || !mv)
 | ||
| 		goto error;
 | ||
| 	if (!isl_space_tuple_is_equal(pma->dim, isl_dim_out,
 | ||
| 					mv->space, isl_dim_set))
 | ||
| 		isl_die(isl_pw_multi_aff_get_ctx(pma), isl_error_invalid,
 | ||
| 			"spaces don't match", goto error);
 | ||
| 	equal_params = isl_space_has_equal_params(pma->dim, mv->space);
 | ||
| 	if (equal_params < 0)
 | ||
| 		goto error;
 | ||
| 	if (!equal_params) {
 | ||
| 		pma = isl_pw_multi_aff_align_params(pma,
 | ||
| 					    isl_multi_val_get_space(mv));
 | ||
| 		mv = isl_multi_val_align_params(mv,
 | ||
| 					    isl_pw_multi_aff_get_space(pma));
 | ||
| 		if (!pma || !mv)
 | ||
| 			goto error;
 | ||
| 	}
 | ||
| 
 | ||
| 	for (i = 0; i < pma->n; ++i) {
 | ||
| 		pma->p[i].maff = isl_multi_aff_scale_multi_val(pma->p[i].maff,
 | ||
| 							isl_multi_val_copy(mv));
 | ||
| 		if (!pma->p[i].maff)
 | ||
| 			goto error;
 | ||
| 	}
 | ||
| 
 | ||
| 	isl_multi_val_free(mv);
 | ||
| 	return pma;
 | ||
| error:
 | ||
| 	isl_multi_val_free(mv);
 | ||
| 	isl_pw_multi_aff_free(pma);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* This function is called for each entry of an isl_union_pw_multi_aff.
 | ||
|  * If the space of the entry matches that of data->mv,
 | ||
|  * then apply isl_pw_multi_aff_scale_multi_val and return the result.
 | ||
|  * Otherwise, return an empty isl_pw_multi_aff.
 | ||
|  */
 | ||
| static __isl_give isl_pw_multi_aff *union_pw_multi_aff_scale_multi_val_entry(
 | ||
| 	__isl_take isl_pw_multi_aff *pma, void *user)
 | ||
| {
 | ||
| 	isl_multi_val *mv = user;
 | ||
| 
 | ||
| 	if (!pma)
 | ||
| 		return NULL;
 | ||
| 	if (!isl_space_tuple_is_equal(pma->dim, isl_dim_out,
 | ||
| 				    mv->space, isl_dim_set)) {
 | ||
| 		isl_space *space = isl_pw_multi_aff_get_space(pma);
 | ||
| 		isl_pw_multi_aff_free(pma);
 | ||
| 		return isl_pw_multi_aff_empty(space);
 | ||
| 	}
 | ||
| 
 | ||
| 	return isl_pw_multi_aff_scale_multi_val(pma, isl_multi_val_copy(mv));
 | ||
| }
 | ||
| 
 | ||
| /* Scale the elements of "upma" by the corresponding elements of "mv",
 | ||
|  * for those entries that match the space of "mv".
 | ||
|  */
 | ||
| __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_scale_multi_val(
 | ||
| 	__isl_take isl_union_pw_multi_aff *upma, __isl_take isl_multi_val *mv)
 | ||
| {
 | ||
| 	upma = isl_union_pw_multi_aff_align_params(upma,
 | ||
| 						isl_multi_val_get_space(mv));
 | ||
| 	mv = isl_multi_val_align_params(mv,
 | ||
| 					isl_union_pw_multi_aff_get_space(upma));
 | ||
| 	if (!upma || !mv)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	return isl_union_pw_multi_aff_transform(upma,
 | ||
| 		       &union_pw_multi_aff_scale_multi_val_entry, mv);
 | ||
| 
 | ||
| 	isl_multi_val_free(mv);
 | ||
| 	return upma;
 | ||
| error:
 | ||
| 	isl_multi_val_free(mv);
 | ||
| 	isl_union_pw_multi_aff_free(upma);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Construct and return a piecewise multi affine expression
 | ||
|  * in the given space with value zero in each of the output dimensions and
 | ||
|  * a universe domain.
 | ||
|  */
 | ||
| __isl_give isl_pw_multi_aff *isl_pw_multi_aff_zero(__isl_take isl_space *space)
 | ||
| {
 | ||
| 	return isl_pw_multi_aff_from_multi_aff(isl_multi_aff_zero(space));
 | ||
| }
 | ||
| 
 | ||
| /* Construct and return a piecewise multi affine expression
 | ||
|  * that is equal to the given piecewise affine expression.
 | ||
|  */
 | ||
| __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_pw_aff(
 | ||
| 	__isl_take isl_pw_aff *pa)
 | ||
| {
 | ||
| 	int i;
 | ||
| 	isl_space *space;
 | ||
| 	isl_pw_multi_aff *pma;
 | ||
| 
 | ||
| 	if (!pa)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	space = isl_pw_aff_get_space(pa);
 | ||
| 	pma = isl_pw_multi_aff_alloc_size(space, pa->n);
 | ||
| 
 | ||
| 	for (i = 0; i < pa->n; ++i) {
 | ||
| 		isl_set *set;
 | ||
| 		isl_multi_aff *ma;
 | ||
| 
 | ||
| 		set = isl_set_copy(pa->p[i].set);
 | ||
| 		ma = isl_multi_aff_from_aff(isl_aff_copy(pa->p[i].aff));
 | ||
| 		pma = isl_pw_multi_aff_add_piece(pma, set, ma);
 | ||
| 	}
 | ||
| 
 | ||
| 	isl_pw_aff_free(pa);
 | ||
| 	return pma;
 | ||
| }
 | ||
| 
 | ||
| /* Construct a set or map mapping the shared (parameter) domain
 | ||
|  * of the piecewise affine expressions to the range of "mpa"
 | ||
|  * with each dimension in the range equated to the
 | ||
|  * corresponding piecewise affine expression.
 | ||
|  */
 | ||
| static __isl_give isl_map *map_from_multi_pw_aff(
 | ||
| 	__isl_take isl_multi_pw_aff *mpa)
 | ||
| {
 | ||
| 	int i;
 | ||
| 	isl_space *space;
 | ||
| 	isl_map *map;
 | ||
| 
 | ||
| 	if (!mpa)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	if (isl_space_dim(mpa->space, isl_dim_out) != mpa->n)
 | ||
| 		isl_die(isl_multi_pw_aff_get_ctx(mpa), isl_error_internal,
 | ||
| 			"invalid space", goto error);
 | ||
| 
 | ||
| 	space = isl_multi_pw_aff_get_domain_space(mpa);
 | ||
| 	map = isl_map_universe(isl_space_from_domain(space));
 | ||
| 
 | ||
| 	for (i = 0; i < mpa->n; ++i) {
 | ||
| 		isl_pw_aff *pa;
 | ||
| 		isl_map *map_i;
 | ||
| 
 | ||
| 		pa = isl_pw_aff_copy(mpa->p[i]);
 | ||
| 		map_i = map_from_pw_aff(pa);
 | ||
| 
 | ||
| 		map = isl_map_flat_range_product(map, map_i);
 | ||
| 	}
 | ||
| 
 | ||
| 	map = isl_map_reset_space(map, isl_multi_pw_aff_get_space(mpa));
 | ||
| 
 | ||
| 	isl_multi_pw_aff_free(mpa);
 | ||
| 	return map;
 | ||
| error:
 | ||
| 	isl_multi_pw_aff_free(mpa);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Construct a map mapping the shared domain
 | ||
|  * of the piecewise affine expressions to the range of "mpa"
 | ||
|  * with each dimension in the range equated to the
 | ||
|  * corresponding piecewise affine expression.
 | ||
|  */
 | ||
| __isl_give isl_map *isl_map_from_multi_pw_aff(__isl_take isl_multi_pw_aff *mpa)
 | ||
| {
 | ||
| 	if (!mpa)
 | ||
| 		return NULL;
 | ||
| 	if (isl_space_is_set(mpa->space))
 | ||
| 		isl_die(isl_multi_pw_aff_get_ctx(mpa), isl_error_internal,
 | ||
| 			"space of input is not a map", goto error);
 | ||
| 
 | ||
| 	return map_from_multi_pw_aff(mpa);
 | ||
| error:
 | ||
| 	isl_multi_pw_aff_free(mpa);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Construct a set mapping the shared parameter domain
 | ||
|  * of the piecewise affine expressions to the space of "mpa"
 | ||
|  * with each dimension in the range equated to the
 | ||
|  * corresponding piecewise affine expression.
 | ||
|  */
 | ||
| __isl_give isl_set *isl_set_from_multi_pw_aff(__isl_take isl_multi_pw_aff *mpa)
 | ||
| {
 | ||
| 	if (!mpa)
 | ||
| 		return NULL;
 | ||
| 	if (!isl_space_is_set(mpa->space))
 | ||
| 		isl_die(isl_multi_pw_aff_get_ctx(mpa), isl_error_internal,
 | ||
| 			"space of input is not a set", goto error);
 | ||
| 
 | ||
| 	return map_from_multi_pw_aff(mpa);
 | ||
| error:
 | ||
| 	isl_multi_pw_aff_free(mpa);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Construct and return a piecewise multi affine expression
 | ||
|  * that is equal to the given multi piecewise affine expression
 | ||
|  * on the shared domain of the piecewise affine expressions.
 | ||
|  */
 | ||
| __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_multi_pw_aff(
 | ||
| 	__isl_take isl_multi_pw_aff *mpa)
 | ||
| {
 | ||
| 	int i;
 | ||
| 	isl_space *space;
 | ||
| 	isl_pw_aff *pa;
 | ||
| 	isl_pw_multi_aff *pma;
 | ||
| 
 | ||
| 	if (!mpa)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	space = isl_multi_pw_aff_get_space(mpa);
 | ||
| 
 | ||
| 	if (mpa->n == 0) {
 | ||
| 		isl_multi_pw_aff_free(mpa);
 | ||
| 		return isl_pw_multi_aff_zero(space);
 | ||
| 	}
 | ||
| 
 | ||
| 	pa = isl_multi_pw_aff_get_pw_aff(mpa, 0);
 | ||
| 	pma = isl_pw_multi_aff_from_pw_aff(pa);
 | ||
| 
 | ||
| 	for (i = 1; i < mpa->n; ++i) {
 | ||
| 		isl_pw_multi_aff *pma_i;
 | ||
| 
 | ||
| 		pa = isl_multi_pw_aff_get_pw_aff(mpa, i);
 | ||
| 		pma_i = isl_pw_multi_aff_from_pw_aff(pa);
 | ||
| 		pma = isl_pw_multi_aff_range_product(pma, pma_i);
 | ||
| 	}
 | ||
| 
 | ||
| 	pma = isl_pw_multi_aff_reset_space(pma, space);
 | ||
| 
 | ||
| 	isl_multi_pw_aff_free(mpa);
 | ||
| 	return pma;
 | ||
| }
 | ||
| 
 | ||
| /* Construct and return a multi piecewise affine expression
 | ||
|  * that is equal to the given multi affine expression.
 | ||
|  */
 | ||
| __isl_give isl_multi_pw_aff *isl_multi_pw_aff_from_multi_aff(
 | ||
| 	__isl_take isl_multi_aff *ma)
 | ||
| {
 | ||
| 	int i, n;
 | ||
| 	isl_multi_pw_aff *mpa;
 | ||
| 
 | ||
| 	if (!ma)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	n = isl_multi_aff_dim(ma, isl_dim_out);
 | ||
| 	mpa = isl_multi_pw_aff_alloc(isl_multi_aff_get_space(ma));
 | ||
| 
 | ||
| 	for (i = 0; i < n; ++i) {
 | ||
| 		isl_pw_aff *pa;
 | ||
| 
 | ||
| 		pa = isl_pw_aff_from_aff(isl_multi_aff_get_aff(ma, i));
 | ||
| 		mpa = isl_multi_pw_aff_set_pw_aff(mpa, i, pa);
 | ||
| 	}
 | ||
| 
 | ||
| 	isl_multi_aff_free(ma);
 | ||
| 	return mpa;
 | ||
| }
 | ||
| 
 | ||
| /* Construct and return a multi piecewise affine expression
 | ||
|  * that is equal to the given piecewise multi affine expression.
 | ||
|  */
 | ||
| __isl_give isl_multi_pw_aff *isl_multi_pw_aff_from_pw_multi_aff(
 | ||
| 	__isl_take isl_pw_multi_aff *pma)
 | ||
| {
 | ||
| 	int i, n;
 | ||
| 	isl_space *space;
 | ||
| 	isl_multi_pw_aff *mpa;
 | ||
| 
 | ||
| 	if (!pma)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	n = isl_pw_multi_aff_dim(pma, isl_dim_out);
 | ||
| 	space = isl_pw_multi_aff_get_space(pma);
 | ||
| 	mpa = isl_multi_pw_aff_alloc(space);
 | ||
| 
 | ||
| 	for (i = 0; i < n; ++i) {
 | ||
| 		isl_pw_aff *pa;
 | ||
| 
 | ||
| 		pa = isl_pw_multi_aff_get_pw_aff(pma, i);
 | ||
| 		mpa = isl_multi_pw_aff_set_pw_aff(mpa, i, pa);
 | ||
| 	}
 | ||
| 
 | ||
| 	isl_pw_multi_aff_free(pma);
 | ||
| 	return mpa;
 | ||
| }
 | ||
| 
 | ||
| /* Do "pa1" and "pa2" represent the same function?
 | ||
|  *
 | ||
|  * We first check if they are obviously equal.
 | ||
|  * If not, we convert them to maps and check if those are equal.
 | ||
|  *
 | ||
|  * If "pa1" or "pa2" contain any NaNs, then they are considered
 | ||
|  * not to be the same.  A NaN is not equal to anything, not even
 | ||
|  * to another NaN.
 | ||
|  */
 | ||
| isl_bool isl_pw_aff_is_equal(__isl_keep isl_pw_aff *pa1,
 | ||
| 	__isl_keep isl_pw_aff *pa2)
 | ||
| {
 | ||
| 	isl_bool equal;
 | ||
| 	isl_bool has_nan;
 | ||
| 	isl_map *map1, *map2;
 | ||
| 
 | ||
| 	if (!pa1 || !pa2)
 | ||
| 		return isl_bool_error;
 | ||
| 
 | ||
| 	equal = isl_pw_aff_plain_is_equal(pa1, pa2);
 | ||
| 	if (equal < 0 || equal)
 | ||
| 		return equal;
 | ||
| 	has_nan = either_involves_nan(pa1, pa2);
 | ||
| 	if (has_nan < 0)
 | ||
| 		return isl_bool_error;
 | ||
| 	if (has_nan)
 | ||
| 		return isl_bool_false;
 | ||
| 
 | ||
| 	map1 = map_from_pw_aff(isl_pw_aff_copy(pa1));
 | ||
| 	map2 = map_from_pw_aff(isl_pw_aff_copy(pa2));
 | ||
| 	equal = isl_map_is_equal(map1, map2);
 | ||
| 	isl_map_free(map1);
 | ||
| 	isl_map_free(map2);
 | ||
| 
 | ||
| 	return equal;
 | ||
| }
 | ||
| 
 | ||
| /* Do "mpa1" and "mpa2" represent the same function?
 | ||
|  *
 | ||
|  * Note that we cannot convert the entire isl_multi_pw_aff
 | ||
|  * to a map because the domains of the piecewise affine expressions
 | ||
|  * may not be the same.
 | ||
|  */
 | ||
| isl_bool isl_multi_pw_aff_is_equal(__isl_keep isl_multi_pw_aff *mpa1,
 | ||
| 	__isl_keep isl_multi_pw_aff *mpa2)
 | ||
| {
 | ||
| 	int i;
 | ||
| 	isl_bool equal, equal_params;
 | ||
| 
 | ||
| 	if (!mpa1 || !mpa2)
 | ||
| 		return isl_bool_error;
 | ||
| 
 | ||
| 	equal_params = isl_space_has_equal_params(mpa1->space, mpa2->space);
 | ||
| 	if (equal_params < 0)
 | ||
| 		return isl_bool_error;
 | ||
| 	if (!equal_params) {
 | ||
| 		if (!isl_space_has_named_params(mpa1->space))
 | ||
| 			return isl_bool_false;
 | ||
| 		if (!isl_space_has_named_params(mpa2->space))
 | ||
| 			return isl_bool_false;
 | ||
| 		mpa1 = isl_multi_pw_aff_copy(mpa1);
 | ||
| 		mpa2 = isl_multi_pw_aff_copy(mpa2);
 | ||
| 		mpa1 = isl_multi_pw_aff_align_params(mpa1,
 | ||
| 					    isl_multi_pw_aff_get_space(mpa2));
 | ||
| 		mpa2 = isl_multi_pw_aff_align_params(mpa2,
 | ||
| 					    isl_multi_pw_aff_get_space(mpa1));
 | ||
| 		equal = isl_multi_pw_aff_is_equal(mpa1, mpa2);
 | ||
| 		isl_multi_pw_aff_free(mpa1);
 | ||
| 		isl_multi_pw_aff_free(mpa2);
 | ||
| 		return equal;
 | ||
| 	}
 | ||
| 
 | ||
| 	equal = isl_space_is_equal(mpa1->space, mpa2->space);
 | ||
| 	if (equal < 0 || !equal)
 | ||
| 		return equal;
 | ||
| 
 | ||
| 	for (i = 0; i < mpa1->n; ++i) {
 | ||
| 		equal = isl_pw_aff_is_equal(mpa1->p[i], mpa2->p[i]);
 | ||
| 		if (equal < 0 || !equal)
 | ||
| 			return equal;
 | ||
| 	}
 | ||
| 
 | ||
| 	return isl_bool_true;
 | ||
| }
 | ||
| 
 | ||
| /* Do "pma1" and "pma2" represent the same function?
 | ||
|  *
 | ||
|  * First check if they are obviously equal.
 | ||
|  * If not, then convert them to maps and check if those are equal.
 | ||
|  *
 | ||
|  * If "pa1" or "pa2" contain any NaNs, then they are considered
 | ||
|  * not to be the same.  A NaN is not equal to anything, not even
 | ||
|  * to another NaN.
 | ||
|  */
 | ||
| isl_bool isl_pw_multi_aff_is_equal(__isl_keep isl_pw_multi_aff *pma1,
 | ||
| 	__isl_keep isl_pw_multi_aff *pma2)
 | ||
| {
 | ||
| 	isl_bool equal;
 | ||
| 	isl_bool has_nan;
 | ||
| 	isl_map *map1, *map2;
 | ||
| 
 | ||
| 	if (!pma1 || !pma2)
 | ||
| 		return isl_bool_error;
 | ||
| 
 | ||
| 	equal = isl_pw_multi_aff_plain_is_equal(pma1, pma2);
 | ||
| 	if (equal < 0 || equal)
 | ||
| 		return equal;
 | ||
| 	has_nan = isl_pw_multi_aff_involves_nan(pma1);
 | ||
| 	if (has_nan >= 0 && !has_nan)
 | ||
| 		has_nan = isl_pw_multi_aff_involves_nan(pma2);
 | ||
| 	if (has_nan < 0 || has_nan)
 | ||
| 		return isl_bool_not(has_nan);
 | ||
| 
 | ||
| 	map1 = isl_map_from_pw_multi_aff(isl_pw_multi_aff_copy(pma1));
 | ||
| 	map2 = isl_map_from_pw_multi_aff(isl_pw_multi_aff_copy(pma2));
 | ||
| 	equal = isl_map_is_equal(map1, map2);
 | ||
| 	isl_map_free(map1);
 | ||
| 	isl_map_free(map2);
 | ||
| 
 | ||
| 	return equal;
 | ||
| }
 | ||
| 
 | ||
| /* Compute the pullback of "mpa" by the function represented by "ma".
 | ||
|  * In other words, plug in "ma" in "mpa".
 | ||
|  *
 | ||
|  * The parameters of "mpa" and "ma" are assumed to have been aligned.
 | ||
|  */
 | ||
| static __isl_give isl_multi_pw_aff *isl_multi_pw_aff_pullback_multi_aff_aligned(
 | ||
| 	__isl_take isl_multi_pw_aff *mpa, __isl_take isl_multi_aff *ma)
 | ||
| {
 | ||
| 	int i;
 | ||
| 	isl_space *space = NULL;
 | ||
| 
 | ||
| 	mpa = isl_multi_pw_aff_cow(mpa);
 | ||
| 	if (!mpa || !ma)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	space = isl_space_join(isl_multi_aff_get_space(ma),
 | ||
| 				isl_multi_pw_aff_get_space(mpa));
 | ||
| 	if (!space)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	for (i = 0; i < mpa->n; ++i) {
 | ||
| 		mpa->p[i] = isl_pw_aff_pullback_multi_aff(mpa->p[i],
 | ||
| 						    isl_multi_aff_copy(ma));
 | ||
| 		if (!mpa->p[i])
 | ||
| 			goto error;
 | ||
| 	}
 | ||
| 
 | ||
| 	isl_multi_aff_free(ma);
 | ||
| 	isl_space_free(mpa->space);
 | ||
| 	mpa->space = space;
 | ||
| 	return mpa;
 | ||
| error:
 | ||
| 	isl_space_free(space);
 | ||
| 	isl_multi_pw_aff_free(mpa);
 | ||
| 	isl_multi_aff_free(ma);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Compute the pullback of "mpa" by the function represented by "ma".
 | ||
|  * In other words, plug in "ma" in "mpa".
 | ||
|  */
 | ||
| __isl_give isl_multi_pw_aff *isl_multi_pw_aff_pullback_multi_aff(
 | ||
| 	__isl_take isl_multi_pw_aff *mpa, __isl_take isl_multi_aff *ma)
 | ||
| {
 | ||
| 	isl_bool equal_params;
 | ||
| 
 | ||
| 	if (!mpa || !ma)
 | ||
| 		goto error;
 | ||
| 	equal_params = isl_space_has_equal_params(mpa->space, ma->space);
 | ||
| 	if (equal_params < 0)
 | ||
| 		goto error;
 | ||
| 	if (equal_params)
 | ||
| 		return isl_multi_pw_aff_pullback_multi_aff_aligned(mpa, ma);
 | ||
| 	mpa = isl_multi_pw_aff_align_params(mpa, isl_multi_aff_get_space(ma));
 | ||
| 	ma = isl_multi_aff_align_params(ma, isl_multi_pw_aff_get_space(mpa));
 | ||
| 	return isl_multi_pw_aff_pullback_multi_aff_aligned(mpa, ma);
 | ||
| error:
 | ||
| 	isl_multi_pw_aff_free(mpa);
 | ||
| 	isl_multi_aff_free(ma);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Compute the pullback of "mpa" by the function represented by "pma".
 | ||
|  * In other words, plug in "pma" in "mpa".
 | ||
|  *
 | ||
|  * The parameters of "mpa" and "mpa" are assumed to have been aligned.
 | ||
|  */
 | ||
| static __isl_give isl_multi_pw_aff *
 | ||
| isl_multi_pw_aff_pullback_pw_multi_aff_aligned(
 | ||
| 	__isl_take isl_multi_pw_aff *mpa, __isl_take isl_pw_multi_aff *pma)
 | ||
| {
 | ||
| 	int i;
 | ||
| 	isl_space *space = NULL;
 | ||
| 
 | ||
| 	mpa = isl_multi_pw_aff_cow(mpa);
 | ||
| 	if (!mpa || !pma)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	space = isl_space_join(isl_pw_multi_aff_get_space(pma),
 | ||
| 				isl_multi_pw_aff_get_space(mpa));
 | ||
| 
 | ||
| 	for (i = 0; i < mpa->n; ++i) {
 | ||
| 		mpa->p[i] = isl_pw_aff_pullback_pw_multi_aff_aligned(mpa->p[i],
 | ||
| 						    isl_pw_multi_aff_copy(pma));
 | ||
| 		if (!mpa->p[i])
 | ||
| 			goto error;
 | ||
| 	}
 | ||
| 
 | ||
| 	isl_pw_multi_aff_free(pma);
 | ||
| 	isl_space_free(mpa->space);
 | ||
| 	mpa->space = space;
 | ||
| 	return mpa;
 | ||
| error:
 | ||
| 	isl_space_free(space);
 | ||
| 	isl_multi_pw_aff_free(mpa);
 | ||
| 	isl_pw_multi_aff_free(pma);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Compute the pullback of "mpa" by the function represented by "pma".
 | ||
|  * In other words, plug in "pma" in "mpa".
 | ||
|  */
 | ||
| __isl_give isl_multi_pw_aff *isl_multi_pw_aff_pullback_pw_multi_aff(
 | ||
| 	__isl_take isl_multi_pw_aff *mpa, __isl_take isl_pw_multi_aff *pma)
 | ||
| {
 | ||
| 	isl_bool equal_params;
 | ||
| 
 | ||
| 	if (!mpa || !pma)
 | ||
| 		goto error;
 | ||
| 	equal_params = isl_space_has_equal_params(mpa->space, pma->dim);
 | ||
| 	if (equal_params < 0)
 | ||
| 		goto error;
 | ||
| 	if (equal_params)
 | ||
| 		return isl_multi_pw_aff_pullback_pw_multi_aff_aligned(mpa, pma);
 | ||
| 	mpa = isl_multi_pw_aff_align_params(mpa,
 | ||
| 					    isl_pw_multi_aff_get_space(pma));
 | ||
| 	pma = isl_pw_multi_aff_align_params(pma,
 | ||
| 					    isl_multi_pw_aff_get_space(mpa));
 | ||
| 	return isl_multi_pw_aff_pullback_pw_multi_aff_aligned(mpa, pma);
 | ||
| error:
 | ||
| 	isl_multi_pw_aff_free(mpa);
 | ||
| 	isl_pw_multi_aff_free(pma);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Apply "aff" to "mpa".  The range of "mpa" needs to be compatible
 | ||
|  * with the domain of "aff".  The domain of the result is the same
 | ||
|  * as that of "mpa".
 | ||
|  * "mpa" and "aff" are assumed to have been aligned.
 | ||
|  *
 | ||
|  * We first extract the parametric constant from "aff", defined
 | ||
|  * over the correct domain.
 | ||
|  * Then we add the appropriate combinations of the members of "mpa".
 | ||
|  * Finally, we add the integer divisions through recursive calls.
 | ||
|  */
 | ||
| static __isl_give isl_pw_aff *isl_multi_pw_aff_apply_aff_aligned(
 | ||
| 	__isl_take isl_multi_pw_aff *mpa, __isl_take isl_aff *aff)
 | ||
| {
 | ||
| 	int i, n_in, n_div;
 | ||
| 	isl_space *space;
 | ||
| 	isl_val *v;
 | ||
| 	isl_pw_aff *pa;
 | ||
| 	isl_aff *tmp;
 | ||
| 
 | ||
| 	n_in = isl_aff_dim(aff, isl_dim_in);
 | ||
| 	n_div = isl_aff_dim(aff, isl_dim_div);
 | ||
| 
 | ||
| 	space = isl_space_domain(isl_multi_pw_aff_get_space(mpa));
 | ||
| 	tmp = isl_aff_copy(aff);
 | ||
| 	tmp = isl_aff_drop_dims(tmp, isl_dim_div, 0, n_div);
 | ||
| 	tmp = isl_aff_drop_dims(tmp, isl_dim_in, 0, n_in);
 | ||
| 	tmp = isl_aff_add_dims(tmp, isl_dim_in,
 | ||
| 				isl_space_dim(space, isl_dim_set));
 | ||
| 	tmp = isl_aff_reset_domain_space(tmp, space);
 | ||
| 	pa = isl_pw_aff_from_aff(tmp);
 | ||
| 
 | ||
| 	for (i = 0; i < n_in; ++i) {
 | ||
| 		isl_pw_aff *pa_i;
 | ||
| 
 | ||
| 		if (!isl_aff_involves_dims(aff, isl_dim_in, i, 1))
 | ||
| 			continue;
 | ||
| 		v = isl_aff_get_coefficient_val(aff, isl_dim_in, i);
 | ||
| 		pa_i = isl_multi_pw_aff_get_pw_aff(mpa, i);
 | ||
| 		pa_i = isl_pw_aff_scale_val(pa_i, v);
 | ||
| 		pa = isl_pw_aff_add(pa, pa_i);
 | ||
| 	}
 | ||
| 
 | ||
| 	for (i = 0; i < n_div; ++i) {
 | ||
| 		isl_aff *div;
 | ||
| 		isl_pw_aff *pa_i;
 | ||
| 
 | ||
| 		if (!isl_aff_involves_dims(aff, isl_dim_div, i, 1))
 | ||
| 			continue;
 | ||
| 		div = isl_aff_get_div(aff, i);
 | ||
| 		pa_i = isl_multi_pw_aff_apply_aff_aligned(
 | ||
| 					    isl_multi_pw_aff_copy(mpa), div);
 | ||
| 		pa_i = isl_pw_aff_floor(pa_i);
 | ||
| 		v = isl_aff_get_coefficient_val(aff, isl_dim_div, i);
 | ||
| 		pa_i = isl_pw_aff_scale_val(pa_i, v);
 | ||
| 		pa = isl_pw_aff_add(pa, pa_i);
 | ||
| 	}
 | ||
| 
 | ||
| 	isl_multi_pw_aff_free(mpa);
 | ||
| 	isl_aff_free(aff);
 | ||
| 
 | ||
| 	return pa;
 | ||
| }
 | ||
| 
 | ||
| /* Apply "aff" to "mpa".  The range of "mpa" needs to be compatible
 | ||
|  * with the domain of "aff".  The domain of the result is the same
 | ||
|  * as that of "mpa".
 | ||
|  */
 | ||
| __isl_give isl_pw_aff *isl_multi_pw_aff_apply_aff(
 | ||
| 	__isl_take isl_multi_pw_aff *mpa, __isl_take isl_aff *aff)
 | ||
| {
 | ||
| 	isl_bool equal_params;
 | ||
| 
 | ||
| 	if (!aff || !mpa)
 | ||
| 		goto error;
 | ||
| 	equal_params = isl_space_has_equal_params(aff->ls->dim, mpa->space);
 | ||
| 	if (equal_params < 0)
 | ||
| 		goto error;
 | ||
| 	if (equal_params)
 | ||
| 		return isl_multi_pw_aff_apply_aff_aligned(mpa, aff);
 | ||
| 
 | ||
| 	aff = isl_aff_align_params(aff, isl_multi_pw_aff_get_space(mpa));
 | ||
| 	mpa = isl_multi_pw_aff_align_params(mpa, isl_aff_get_space(aff));
 | ||
| 
 | ||
| 	return isl_multi_pw_aff_apply_aff_aligned(mpa, aff);
 | ||
| error:
 | ||
| 	isl_aff_free(aff);
 | ||
| 	isl_multi_pw_aff_free(mpa);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Apply "pa" to "mpa".  The range of "mpa" needs to be compatible
 | ||
|  * with the domain of "pa".  The domain of the result is the same
 | ||
|  * as that of "mpa".
 | ||
|  * "mpa" and "pa" are assumed to have been aligned.
 | ||
|  *
 | ||
|  * We consider each piece in turn.  Note that the domains of the
 | ||
|  * pieces are assumed to be disjoint and they remain disjoint
 | ||
|  * after taking the preimage (over the same function).
 | ||
|  */
 | ||
| static __isl_give isl_pw_aff *isl_multi_pw_aff_apply_pw_aff_aligned(
 | ||
| 	__isl_take isl_multi_pw_aff *mpa, __isl_take isl_pw_aff *pa)
 | ||
| {
 | ||
| 	isl_space *space;
 | ||
| 	isl_pw_aff *res;
 | ||
| 	int i;
 | ||
| 
 | ||
| 	if (!mpa || !pa)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	space = isl_space_join(isl_multi_pw_aff_get_space(mpa),
 | ||
| 				isl_pw_aff_get_space(pa));
 | ||
| 	res = isl_pw_aff_empty(space);
 | ||
| 
 | ||
| 	for (i = 0; i < pa->n; ++i) {
 | ||
| 		isl_pw_aff *pa_i;
 | ||
| 		isl_set *domain;
 | ||
| 
 | ||
| 		pa_i = isl_multi_pw_aff_apply_aff_aligned(
 | ||
| 					isl_multi_pw_aff_copy(mpa),
 | ||
| 					isl_aff_copy(pa->p[i].aff));
 | ||
| 		domain = isl_set_copy(pa->p[i].set);
 | ||
| 		domain = isl_set_preimage_multi_pw_aff(domain,
 | ||
| 					isl_multi_pw_aff_copy(mpa));
 | ||
| 		pa_i = isl_pw_aff_intersect_domain(pa_i, domain);
 | ||
| 		res = isl_pw_aff_add_disjoint(res, pa_i);
 | ||
| 	}
 | ||
| 
 | ||
| 	isl_pw_aff_free(pa);
 | ||
| 	isl_multi_pw_aff_free(mpa);
 | ||
| 	return res;
 | ||
| error:
 | ||
| 	isl_pw_aff_free(pa);
 | ||
| 	isl_multi_pw_aff_free(mpa);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Apply "pa" to "mpa".  The range of "mpa" needs to be compatible
 | ||
|  * with the domain of "pa".  The domain of the result is the same
 | ||
|  * as that of "mpa".
 | ||
|  */
 | ||
| __isl_give isl_pw_aff *isl_multi_pw_aff_apply_pw_aff(
 | ||
| 	__isl_take isl_multi_pw_aff *mpa, __isl_take isl_pw_aff *pa)
 | ||
| {
 | ||
| 	isl_bool equal_params;
 | ||
| 
 | ||
| 	if (!pa || !mpa)
 | ||
| 		goto error;
 | ||
| 	equal_params = isl_space_has_equal_params(pa->dim, mpa->space);
 | ||
| 	if (equal_params < 0)
 | ||
| 		goto error;
 | ||
| 	if (equal_params)
 | ||
| 		return isl_multi_pw_aff_apply_pw_aff_aligned(mpa, pa);
 | ||
| 
 | ||
| 	pa = isl_pw_aff_align_params(pa, isl_multi_pw_aff_get_space(mpa));
 | ||
| 	mpa = isl_multi_pw_aff_align_params(mpa, isl_pw_aff_get_space(pa));
 | ||
| 
 | ||
| 	return isl_multi_pw_aff_apply_pw_aff_aligned(mpa, pa);
 | ||
| error:
 | ||
| 	isl_pw_aff_free(pa);
 | ||
| 	isl_multi_pw_aff_free(mpa);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Compute the pullback of "pa" by the function represented by "mpa".
 | ||
|  * In other words, plug in "mpa" in "pa".
 | ||
|  * "pa" and "mpa" are assumed to have been aligned.
 | ||
|  *
 | ||
|  * The pullback is computed by applying "pa" to "mpa".
 | ||
|  */
 | ||
| static __isl_give isl_pw_aff *isl_pw_aff_pullback_multi_pw_aff_aligned(
 | ||
| 	__isl_take isl_pw_aff *pa, __isl_take isl_multi_pw_aff *mpa)
 | ||
| {
 | ||
| 	return isl_multi_pw_aff_apply_pw_aff_aligned(mpa, pa);
 | ||
| }
 | ||
| 
 | ||
| /* Compute the pullback of "pa" by the function represented by "mpa".
 | ||
|  * In other words, plug in "mpa" in "pa".
 | ||
|  *
 | ||
|  * The pullback is computed by applying "pa" to "mpa".
 | ||
|  */
 | ||
| __isl_give isl_pw_aff *isl_pw_aff_pullback_multi_pw_aff(
 | ||
| 	__isl_take isl_pw_aff *pa, __isl_take isl_multi_pw_aff *mpa)
 | ||
| {
 | ||
| 	return isl_multi_pw_aff_apply_pw_aff(mpa, pa);
 | ||
| }
 | ||
| 
 | ||
| /* Compute the pullback of "mpa1" by the function represented by "mpa2".
 | ||
|  * In other words, plug in "mpa2" in "mpa1".
 | ||
|  *
 | ||
|  * The parameters of "mpa1" and "mpa2" are assumed to have been aligned.
 | ||
|  *
 | ||
|  * We pullback each member of "mpa1" in turn.
 | ||
|  */
 | ||
| static __isl_give isl_multi_pw_aff *
 | ||
| isl_multi_pw_aff_pullback_multi_pw_aff_aligned(
 | ||
| 	__isl_take isl_multi_pw_aff *mpa1, __isl_take isl_multi_pw_aff *mpa2)
 | ||
| {
 | ||
| 	int i;
 | ||
| 	isl_space *space = NULL;
 | ||
| 
 | ||
| 	mpa1 = isl_multi_pw_aff_cow(mpa1);
 | ||
| 	if (!mpa1 || !mpa2)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	space = isl_space_join(isl_multi_pw_aff_get_space(mpa2),
 | ||
| 				isl_multi_pw_aff_get_space(mpa1));
 | ||
| 
 | ||
| 	for (i = 0; i < mpa1->n; ++i) {
 | ||
| 		mpa1->p[i] = isl_pw_aff_pullback_multi_pw_aff_aligned(
 | ||
| 				mpa1->p[i], isl_multi_pw_aff_copy(mpa2));
 | ||
| 		if (!mpa1->p[i])
 | ||
| 			goto error;
 | ||
| 	}
 | ||
| 
 | ||
| 	mpa1 = isl_multi_pw_aff_reset_space(mpa1, space);
 | ||
| 
 | ||
| 	isl_multi_pw_aff_free(mpa2);
 | ||
| 	return mpa1;
 | ||
| error:
 | ||
| 	isl_space_free(space);
 | ||
| 	isl_multi_pw_aff_free(mpa1);
 | ||
| 	isl_multi_pw_aff_free(mpa2);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Compute the pullback of "mpa1" by the function represented by "mpa2".
 | ||
|  * In other words, plug in "mpa2" in "mpa1".
 | ||
|  */
 | ||
| __isl_give isl_multi_pw_aff *isl_multi_pw_aff_pullback_multi_pw_aff(
 | ||
| 	__isl_take isl_multi_pw_aff *mpa1, __isl_take isl_multi_pw_aff *mpa2)
 | ||
| {
 | ||
| 	return isl_multi_pw_aff_align_params_multi_multi_and(mpa1, mpa2,
 | ||
| 			&isl_multi_pw_aff_pullback_multi_pw_aff_aligned);
 | ||
| }
 | ||
| 
 | ||
| /* Align the parameters of "mpa1" and "mpa2", check that the ranges
 | ||
|  * of "mpa1" and "mpa2" live in the same space, construct map space
 | ||
|  * between the domain spaces of "mpa1" and "mpa2" and call "order"
 | ||
|  * with this map space as extract argument.
 | ||
|  */
 | ||
| static __isl_give isl_map *isl_multi_pw_aff_order_map(
 | ||
| 	__isl_take isl_multi_pw_aff *mpa1, __isl_take isl_multi_pw_aff *mpa2,
 | ||
| 	__isl_give isl_map *(*order)(__isl_keep isl_multi_pw_aff *mpa1,
 | ||
| 		__isl_keep isl_multi_pw_aff *mpa2, __isl_take isl_space *space))
 | ||
| {
 | ||
| 	int match;
 | ||
| 	isl_space *space1, *space2;
 | ||
| 	isl_map *res;
 | ||
| 
 | ||
| 	mpa1 = isl_multi_pw_aff_align_params(mpa1,
 | ||
| 					    isl_multi_pw_aff_get_space(mpa2));
 | ||
| 	mpa2 = isl_multi_pw_aff_align_params(mpa2,
 | ||
| 					    isl_multi_pw_aff_get_space(mpa1));
 | ||
| 	if (!mpa1 || !mpa2)
 | ||
| 		goto error;
 | ||
| 	match = isl_space_tuple_is_equal(mpa1->space, isl_dim_out,
 | ||
| 					mpa2->space, isl_dim_out);
 | ||
| 	if (match < 0)
 | ||
| 		goto error;
 | ||
| 	if (!match)
 | ||
| 		isl_die(isl_multi_pw_aff_get_ctx(mpa1), isl_error_invalid,
 | ||
| 			"range spaces don't match", goto error);
 | ||
| 	space1 = isl_space_domain(isl_multi_pw_aff_get_space(mpa1));
 | ||
| 	space2 = isl_space_domain(isl_multi_pw_aff_get_space(mpa2));
 | ||
| 	space1 = isl_space_map_from_domain_and_range(space1, space2);
 | ||
| 
 | ||
| 	res = order(mpa1, mpa2, space1);
 | ||
| 	isl_multi_pw_aff_free(mpa1);
 | ||
| 	isl_multi_pw_aff_free(mpa2);
 | ||
| 	return res;
 | ||
| error:
 | ||
| 	isl_multi_pw_aff_free(mpa1);
 | ||
| 	isl_multi_pw_aff_free(mpa2);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Return a map containing pairs of elements in the domains of "mpa1" and "mpa2"
 | ||
|  * where the function values are equal.  "space" is the space of the result.
 | ||
|  * The parameters of "mpa1" and "mpa2" are assumed to have been aligned.
 | ||
|  *
 | ||
|  * "mpa1" and "mpa2" are equal when each of the pairs of elements
 | ||
|  * in the sequences are equal.
 | ||
|  */
 | ||
| static __isl_give isl_map *isl_multi_pw_aff_eq_map_on_space(
 | ||
| 	__isl_keep isl_multi_pw_aff *mpa1, __isl_keep isl_multi_pw_aff *mpa2,
 | ||
| 	__isl_take isl_space *space)
 | ||
| {
 | ||
| 	int i, n;
 | ||
| 	isl_map *res;
 | ||
| 
 | ||
| 	res = isl_map_universe(space);
 | ||
| 
 | ||
| 	n = isl_multi_pw_aff_dim(mpa1, isl_dim_out);
 | ||
| 	for (i = 0; i < n; ++i) {
 | ||
| 		isl_pw_aff *pa1, *pa2;
 | ||
| 		isl_map *map;
 | ||
| 
 | ||
| 		pa1 = isl_multi_pw_aff_get_pw_aff(mpa1, i);
 | ||
| 		pa2 = isl_multi_pw_aff_get_pw_aff(mpa2, i);
 | ||
| 		map = isl_pw_aff_eq_map(pa1, pa2);
 | ||
| 		res = isl_map_intersect(res, map);
 | ||
| 	}
 | ||
| 
 | ||
| 	return res;
 | ||
| }
 | ||
| 
 | ||
| /* Return a map containing pairs of elements in the domains of "mpa1" and "mpa2"
 | ||
|  * where the function values are equal.
 | ||
|  */
 | ||
| __isl_give isl_map *isl_multi_pw_aff_eq_map(__isl_take isl_multi_pw_aff *mpa1,
 | ||
| 	__isl_take isl_multi_pw_aff *mpa2)
 | ||
| {
 | ||
| 	return isl_multi_pw_aff_order_map(mpa1, mpa2,
 | ||
| 					    &isl_multi_pw_aff_eq_map_on_space);
 | ||
| }
 | ||
| 
 | ||
| /* Return a map containing pairs of elements in the domains of "mpa1" and "mpa2"
 | ||
|  * where the function values of "mpa1" is lexicographically satisfies "base"
 | ||
|  * compared to that of "mpa2".  "space" is the space of the result.
 | ||
|  * The parameters of "mpa1" and "mpa2" are assumed to have been aligned.
 | ||
|  *
 | ||
|  * "mpa1" lexicographically satisfies "base" compared to "mpa2"
 | ||
|  * if its i-th element satisfies "base" when compared to
 | ||
|  * the i-th element of "mpa2" while all previous elements are
 | ||
|  * pairwise equal.
 | ||
|  */
 | ||
| static __isl_give isl_map *isl_multi_pw_aff_lex_map_on_space(
 | ||
| 	__isl_take isl_multi_pw_aff *mpa1, __isl_take isl_multi_pw_aff *mpa2,
 | ||
| 	__isl_give isl_map *(*base)(__isl_take isl_pw_aff *pa1,
 | ||
| 		__isl_take isl_pw_aff *pa2),
 | ||
| 	__isl_take isl_space *space)
 | ||
| {
 | ||
| 	int i, n;
 | ||
| 	isl_map *res, *rest;
 | ||
| 
 | ||
| 	res = isl_map_empty(isl_space_copy(space));
 | ||
| 	rest = isl_map_universe(space);
 | ||
| 
 | ||
| 	n = isl_multi_pw_aff_dim(mpa1, isl_dim_out);
 | ||
| 	for (i = 0; i < n; ++i) {
 | ||
| 		isl_pw_aff *pa1, *pa2;
 | ||
| 		isl_map *map;
 | ||
| 
 | ||
| 		pa1 = isl_multi_pw_aff_get_pw_aff(mpa1, i);
 | ||
| 		pa2 = isl_multi_pw_aff_get_pw_aff(mpa2, i);
 | ||
| 		map = base(pa1, pa2);
 | ||
| 		map = isl_map_intersect(map, isl_map_copy(rest));
 | ||
| 		res = isl_map_union(res, map);
 | ||
| 
 | ||
| 		if (i == n - 1)
 | ||
| 			continue;
 | ||
| 
 | ||
| 		pa1 = isl_multi_pw_aff_get_pw_aff(mpa1, i);
 | ||
| 		pa2 = isl_multi_pw_aff_get_pw_aff(mpa2, i);
 | ||
| 		map = isl_pw_aff_eq_map(pa1, pa2);
 | ||
| 		rest = isl_map_intersect(rest, map);
 | ||
| 	}
 | ||
| 
 | ||
| 	isl_map_free(rest);
 | ||
| 	return res;
 | ||
| }
 | ||
| 
 | ||
| /* Return a map containing pairs of elements in the domains of "mpa1" and "mpa2"
 | ||
|  * where the function value of "mpa1" is lexicographically less than that
 | ||
|  * of "mpa2".  "space" is the space of the result.
 | ||
|  * The parameters of "mpa1" and "mpa2" are assumed to have been aligned.
 | ||
|  *
 | ||
|  * "mpa1" is less than "mpa2" if its i-th element is smaller
 | ||
|  * than the i-th element of "mpa2" while all previous elements are
 | ||
|  * pairwise equal.
 | ||
|  */
 | ||
| __isl_give isl_map *isl_multi_pw_aff_lex_lt_map_on_space(
 | ||
| 	__isl_take isl_multi_pw_aff *mpa1, __isl_take isl_multi_pw_aff *mpa2,
 | ||
| 	__isl_take isl_space *space)
 | ||
| {
 | ||
| 	return isl_multi_pw_aff_lex_map_on_space(mpa1, mpa2,
 | ||
| 						&isl_pw_aff_lt_map, space);
 | ||
| }
 | ||
| 
 | ||
| /* Return a map containing pairs of elements in the domains of "mpa1" and "mpa2"
 | ||
|  * where the function value of "mpa1" is lexicographically less than that
 | ||
|  * of "mpa2".
 | ||
|  */
 | ||
| __isl_give isl_map *isl_multi_pw_aff_lex_lt_map(
 | ||
| 	__isl_take isl_multi_pw_aff *mpa1, __isl_take isl_multi_pw_aff *mpa2)
 | ||
| {
 | ||
| 	return isl_multi_pw_aff_order_map(mpa1, mpa2,
 | ||
| 					&isl_multi_pw_aff_lex_lt_map_on_space);
 | ||
| }
 | ||
| 
 | ||
| /* Return a map containing pairs of elements in the domains of "mpa1" and "mpa2"
 | ||
|  * where the function value of "mpa1" is lexicographically greater than that
 | ||
|  * of "mpa2".  "space" is the space of the result.
 | ||
|  * The parameters of "mpa1" and "mpa2" are assumed to have been aligned.
 | ||
|  *
 | ||
|  * "mpa1" is greater than "mpa2" if its i-th element is greater
 | ||
|  * than the i-th element of "mpa2" while all previous elements are
 | ||
|  * pairwise equal.
 | ||
|  */
 | ||
| __isl_give isl_map *isl_multi_pw_aff_lex_gt_map_on_space(
 | ||
| 	__isl_take isl_multi_pw_aff *mpa1, __isl_take isl_multi_pw_aff *mpa2,
 | ||
| 	__isl_take isl_space *space)
 | ||
| {
 | ||
| 	return isl_multi_pw_aff_lex_map_on_space(mpa1, mpa2,
 | ||
| 						&isl_pw_aff_gt_map, space);
 | ||
| }
 | ||
| 
 | ||
| /* Return a map containing pairs of elements in the domains of "mpa1" and "mpa2"
 | ||
|  * where the function value of "mpa1" is lexicographically greater than that
 | ||
|  * of "mpa2".
 | ||
|  */
 | ||
| __isl_give isl_map *isl_multi_pw_aff_lex_gt_map(
 | ||
| 	__isl_take isl_multi_pw_aff *mpa1, __isl_take isl_multi_pw_aff *mpa2)
 | ||
| {
 | ||
| 	return isl_multi_pw_aff_order_map(mpa1, mpa2,
 | ||
| 					&isl_multi_pw_aff_lex_gt_map_on_space);
 | ||
| }
 | ||
| 
 | ||
| /* Compare two isl_affs.
 | ||
|  *
 | ||
|  * Return -1 if "aff1" is "smaller" than "aff2", 1 if "aff1" is "greater"
 | ||
|  * than "aff2" and 0 if they are equal.
 | ||
|  *
 | ||
|  * The order is fairly arbitrary.  We do consider expressions that only involve
 | ||
|  * earlier dimensions as "smaller".
 | ||
|  */
 | ||
| int isl_aff_plain_cmp(__isl_keep isl_aff *aff1, __isl_keep isl_aff *aff2)
 | ||
| {
 | ||
| 	int cmp;
 | ||
| 	int last1, last2;
 | ||
| 
 | ||
| 	if (aff1 == aff2)
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	if (!aff1)
 | ||
| 		return -1;
 | ||
| 	if (!aff2)
 | ||
| 		return 1;
 | ||
| 
 | ||
| 	cmp = isl_local_space_cmp(aff1->ls, aff2->ls);
 | ||
| 	if (cmp != 0)
 | ||
| 		return cmp;
 | ||
| 
 | ||
| 	last1 = isl_seq_last_non_zero(aff1->v->el + 1, aff1->v->size - 1);
 | ||
| 	last2 = isl_seq_last_non_zero(aff2->v->el + 1, aff1->v->size - 1);
 | ||
| 	if (last1 != last2)
 | ||
| 		return last1 - last2;
 | ||
| 
 | ||
| 	return isl_seq_cmp(aff1->v->el, aff2->v->el, aff1->v->size);
 | ||
| }
 | ||
| 
 | ||
| /* Compare two isl_pw_affs.
 | ||
|  *
 | ||
|  * Return -1 if "pa1" is "smaller" than "pa2", 1 if "pa1" is "greater"
 | ||
|  * than "pa2" and 0 if they are equal.
 | ||
|  *
 | ||
|  * The order is fairly arbitrary.  We do consider expressions that only involve
 | ||
|  * earlier dimensions as "smaller".
 | ||
|  */
 | ||
| int isl_pw_aff_plain_cmp(__isl_keep isl_pw_aff *pa1,
 | ||
| 	__isl_keep isl_pw_aff *pa2)
 | ||
| {
 | ||
| 	int i;
 | ||
| 	int cmp;
 | ||
| 
 | ||
| 	if (pa1 == pa2)
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	if (!pa1)
 | ||
| 		return -1;
 | ||
| 	if (!pa2)
 | ||
| 		return 1;
 | ||
| 
 | ||
| 	cmp = isl_space_cmp(pa1->dim, pa2->dim);
 | ||
| 	if (cmp != 0)
 | ||
| 		return cmp;
 | ||
| 
 | ||
| 	if (pa1->n != pa2->n)
 | ||
| 		return pa1->n - pa2->n;
 | ||
| 
 | ||
| 	for (i = 0; i < pa1->n; ++i) {
 | ||
| 		cmp = isl_set_plain_cmp(pa1->p[i].set, pa2->p[i].set);
 | ||
| 		if (cmp != 0)
 | ||
| 			return cmp;
 | ||
| 		cmp = isl_aff_plain_cmp(pa1->p[i].aff, pa2->p[i].aff);
 | ||
| 		if (cmp != 0)
 | ||
| 			return cmp;
 | ||
| 	}
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| /* Return a piecewise affine expression that is equal to "v" on "domain".
 | ||
|  */
 | ||
| __isl_give isl_pw_aff *isl_pw_aff_val_on_domain(__isl_take isl_set *domain,
 | ||
| 	__isl_take isl_val *v)
 | ||
| {
 | ||
| 	isl_space *space;
 | ||
| 	isl_local_space *ls;
 | ||
| 	isl_aff *aff;
 | ||
| 
 | ||
| 	space = isl_set_get_space(domain);
 | ||
| 	ls = isl_local_space_from_space(space);
 | ||
| 	aff = isl_aff_val_on_domain(ls, v);
 | ||
| 
 | ||
| 	return isl_pw_aff_alloc(domain, aff);
 | ||
| }
 | ||
| 
 | ||
| /* Return a multi affine expression that is equal to "mv" on domain
 | ||
|  * space "space".
 | ||
|  */
 | ||
| __isl_give isl_multi_aff *isl_multi_aff_multi_val_on_space(
 | ||
| 	__isl_take isl_space *space, __isl_take isl_multi_val *mv)
 | ||
| {
 | ||
| 	int i, n;
 | ||
| 	isl_space *space2;
 | ||
| 	isl_local_space *ls;
 | ||
| 	isl_multi_aff *ma;
 | ||
| 
 | ||
| 	if (!space || !mv)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	n = isl_multi_val_dim(mv, isl_dim_set);
 | ||
| 	space2 = isl_multi_val_get_space(mv);
 | ||
| 	space2 = isl_space_align_params(space2, isl_space_copy(space));
 | ||
| 	space = isl_space_align_params(space, isl_space_copy(space2));
 | ||
| 	space = isl_space_map_from_domain_and_range(space, space2);
 | ||
| 	ma = isl_multi_aff_alloc(isl_space_copy(space));
 | ||
| 	ls = isl_local_space_from_space(isl_space_domain(space));
 | ||
| 	for (i = 0; i < n; ++i) {
 | ||
| 		isl_val *v;
 | ||
| 		isl_aff *aff;
 | ||
| 
 | ||
| 		v = isl_multi_val_get_val(mv, i);
 | ||
| 		aff = isl_aff_val_on_domain(isl_local_space_copy(ls), v);
 | ||
| 		ma = isl_multi_aff_set_aff(ma, i, aff);
 | ||
| 	}
 | ||
| 	isl_local_space_free(ls);
 | ||
| 
 | ||
| 	isl_multi_val_free(mv);
 | ||
| 	return ma;
 | ||
| error:
 | ||
| 	isl_space_free(space);
 | ||
| 	isl_multi_val_free(mv);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Return a piecewise multi-affine expression
 | ||
|  * that is equal to "mv" on "domain".
 | ||
|  */
 | ||
| __isl_give isl_pw_multi_aff *isl_pw_multi_aff_multi_val_on_domain(
 | ||
| 	__isl_take isl_set *domain, __isl_take isl_multi_val *mv)
 | ||
| {
 | ||
| 	isl_space *space;
 | ||
| 	isl_multi_aff *ma;
 | ||
| 
 | ||
| 	space = isl_set_get_space(domain);
 | ||
| 	ma = isl_multi_aff_multi_val_on_space(space, mv);
 | ||
| 
 | ||
| 	return isl_pw_multi_aff_alloc(domain, ma);
 | ||
| }
 | ||
| 
 | ||
| /* Internal data structure for isl_union_pw_multi_aff_multi_val_on_domain.
 | ||
|  * mv is the value that should be attained on each domain set
 | ||
|  * res collects the results
 | ||
|  */
 | ||
| struct isl_union_pw_multi_aff_multi_val_on_domain_data {
 | ||
| 	isl_multi_val *mv;
 | ||
| 	isl_union_pw_multi_aff *res;
 | ||
| };
 | ||
| 
 | ||
| /* Create an isl_pw_multi_aff equal to data->mv on "domain"
 | ||
|  * and add it to data->res.
 | ||
|  */
 | ||
| static isl_stat pw_multi_aff_multi_val_on_domain(__isl_take isl_set *domain,
 | ||
| 	void *user)
 | ||
| {
 | ||
| 	struct isl_union_pw_multi_aff_multi_val_on_domain_data *data = user;
 | ||
| 	isl_pw_multi_aff *pma;
 | ||
| 	isl_multi_val *mv;
 | ||
| 
 | ||
| 	mv = isl_multi_val_copy(data->mv);
 | ||
| 	pma = isl_pw_multi_aff_multi_val_on_domain(domain, mv);
 | ||
| 	data->res = isl_union_pw_multi_aff_add_pw_multi_aff(data->res, pma);
 | ||
| 
 | ||
| 	return data->res ? isl_stat_ok : isl_stat_error;
 | ||
| }
 | ||
| 
 | ||
| /* Return a union piecewise multi-affine expression
 | ||
|  * that is equal to "mv" on "domain".
 | ||
|  */
 | ||
| __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_multi_val_on_domain(
 | ||
| 	__isl_take isl_union_set *domain, __isl_take isl_multi_val *mv)
 | ||
| {
 | ||
| 	struct isl_union_pw_multi_aff_multi_val_on_domain_data data;
 | ||
| 	isl_space *space;
 | ||
| 
 | ||
| 	space = isl_union_set_get_space(domain);
 | ||
| 	data.res = isl_union_pw_multi_aff_empty(space);
 | ||
| 	data.mv = mv;
 | ||
| 	if (isl_union_set_foreach_set(domain,
 | ||
| 			&pw_multi_aff_multi_val_on_domain, &data) < 0)
 | ||
| 		data.res = isl_union_pw_multi_aff_free(data.res);
 | ||
| 	isl_union_set_free(domain);
 | ||
| 	isl_multi_val_free(mv);
 | ||
| 	return data.res;
 | ||
| }
 | ||
| 
 | ||
| /* Compute the pullback of data->pma by the function represented by "pma2",
 | ||
|  * provided the spaces match, and add the results to data->res.
 | ||
|  */
 | ||
| static isl_stat pullback_entry(__isl_take isl_pw_multi_aff *pma2, void *user)
 | ||
| {
 | ||
| 	struct isl_union_pw_multi_aff_bin_data *data = user;
 | ||
| 
 | ||
| 	if (!isl_space_tuple_is_equal(data->pma->dim, isl_dim_in,
 | ||
| 				 pma2->dim, isl_dim_out)) {
 | ||
| 		isl_pw_multi_aff_free(pma2);
 | ||
| 		return isl_stat_ok;
 | ||
| 	}
 | ||
| 
 | ||
| 	pma2 = isl_pw_multi_aff_pullback_pw_multi_aff(
 | ||
| 					isl_pw_multi_aff_copy(data->pma), pma2);
 | ||
| 
 | ||
| 	data->res = isl_union_pw_multi_aff_add_pw_multi_aff(data->res, pma2);
 | ||
| 	if (!data->res)
 | ||
| 		return isl_stat_error;
 | ||
| 
 | ||
| 	return isl_stat_ok;
 | ||
| }
 | ||
| 
 | ||
| /* Compute the pullback of "upma1" by the function represented by "upma2".
 | ||
|  */
 | ||
| __isl_give isl_union_pw_multi_aff *
 | ||
| isl_union_pw_multi_aff_pullback_union_pw_multi_aff(
 | ||
| 	__isl_take isl_union_pw_multi_aff *upma1,
 | ||
| 	__isl_take isl_union_pw_multi_aff *upma2)
 | ||
| {
 | ||
| 	return bin_op(upma1, upma2, &pullback_entry);
 | ||
| }
 | ||
| 
 | ||
| /* Check that the domain space of "upa" matches "space".
 | ||
|  *
 | ||
|  * This function is called from isl_multi_union_pw_aff_set_union_pw_aff and
 | ||
|  * can in principle never fail since the space "space" is that
 | ||
|  * of the isl_multi_union_pw_aff and is a set space such that
 | ||
|  * there is no domain space to match.
 | ||
|  *
 | ||
|  * We check the parameters and double-check that "space" is
 | ||
|  * indeed that of a set.
 | ||
|  */
 | ||
| static isl_stat isl_union_pw_aff_check_match_domain_space(
 | ||
| 	__isl_keep isl_union_pw_aff *upa, __isl_keep isl_space *space)
 | ||
| {
 | ||
| 	isl_space *upa_space;
 | ||
| 	isl_bool match;
 | ||
| 
 | ||
| 	if (!upa || !space)
 | ||
| 		return isl_stat_error;
 | ||
| 
 | ||
| 	match = isl_space_is_set(space);
 | ||
| 	if (match < 0)
 | ||
| 		return isl_stat_error;
 | ||
| 	if (!match)
 | ||
| 		isl_die(isl_space_get_ctx(space), isl_error_invalid,
 | ||
| 			"expecting set space", return -1);
 | ||
| 
 | ||
| 	upa_space = isl_union_pw_aff_get_space(upa);
 | ||
| 	match = isl_space_has_equal_params(space, upa_space);
 | ||
| 	if (match < 0)
 | ||
| 		goto error;
 | ||
| 	if (!match)
 | ||
| 		isl_die(isl_space_get_ctx(space), isl_error_invalid,
 | ||
| 			"parameters don't match", goto error);
 | ||
| 
 | ||
| 	isl_space_free(upa_space);
 | ||
| 	return isl_stat_ok;
 | ||
| error:
 | ||
| 	isl_space_free(upa_space);
 | ||
| 	return isl_stat_error;
 | ||
| }
 | ||
| 
 | ||
| /* Do the parameters of "upa" match those of "space"?
 | ||
|  */
 | ||
| static isl_bool isl_union_pw_aff_matching_params(
 | ||
| 	__isl_keep isl_union_pw_aff *upa, __isl_keep isl_space *space)
 | ||
| {
 | ||
| 	isl_space *upa_space;
 | ||
| 	isl_bool match;
 | ||
| 
 | ||
| 	if (!upa || !space)
 | ||
| 		return isl_bool_error;
 | ||
| 
 | ||
| 	upa_space = isl_union_pw_aff_get_space(upa);
 | ||
| 
 | ||
| 	match = isl_space_has_equal_params(space, upa_space);
 | ||
| 
 | ||
| 	isl_space_free(upa_space);
 | ||
| 	return match;
 | ||
| }
 | ||
| 
 | ||
| /* Internal data structure for isl_union_pw_aff_reset_domain_space.
 | ||
|  * space represents the new parameters.
 | ||
|  * res collects the results.
 | ||
|  */
 | ||
| struct isl_union_pw_aff_reset_params_data {
 | ||
| 	isl_space *space;
 | ||
| 	isl_union_pw_aff *res;
 | ||
| };
 | ||
| 
 | ||
| /* Replace the parameters of "pa" by data->space and
 | ||
|  * add the result to data->res.
 | ||
|  */
 | ||
| static isl_stat reset_params(__isl_take isl_pw_aff *pa, void *user)
 | ||
| {
 | ||
| 	struct isl_union_pw_aff_reset_params_data *data = user;
 | ||
| 	isl_space *space;
 | ||
| 
 | ||
| 	space = isl_pw_aff_get_space(pa);
 | ||
| 	space = isl_space_replace(space, isl_dim_param, data->space);
 | ||
| 	pa = isl_pw_aff_reset_space(pa, space);
 | ||
| 	data->res = isl_union_pw_aff_add_pw_aff(data->res, pa);
 | ||
| 
 | ||
| 	return data->res ? isl_stat_ok : isl_stat_error;
 | ||
| }
 | ||
| 
 | ||
| /* Replace the domain space of "upa" by "space".
 | ||
|  * Since a union expression does not have a (single) domain space,
 | ||
|  * "space" is necessarily a parameter space.
 | ||
|  *
 | ||
|  * Since the order and the names of the parameters determine
 | ||
|  * the hash value, we need to create a new hash table.
 | ||
|  */
 | ||
| static __isl_give isl_union_pw_aff *isl_union_pw_aff_reset_domain_space(
 | ||
| 	__isl_take isl_union_pw_aff *upa, __isl_take isl_space *space)
 | ||
| {
 | ||
| 	struct isl_union_pw_aff_reset_params_data data = { space };
 | ||
| 	isl_bool match;
 | ||
| 
 | ||
| 	match = isl_union_pw_aff_matching_params(upa, space);
 | ||
| 	if (match < 0)
 | ||
| 		upa = isl_union_pw_aff_free(upa);
 | ||
| 	else if (match) {
 | ||
| 		isl_space_free(space);
 | ||
| 		return upa;
 | ||
| 	}
 | ||
| 
 | ||
| 	data.res = isl_union_pw_aff_empty(isl_space_copy(space));
 | ||
| 	if (isl_union_pw_aff_foreach_pw_aff(upa, &reset_params, &data) < 0)
 | ||
| 		data.res = isl_union_pw_aff_free(data.res);
 | ||
| 
 | ||
| 	isl_union_pw_aff_free(upa);
 | ||
| 	isl_space_free(space);
 | ||
| 	return data.res;
 | ||
| }
 | ||
| 
 | ||
| /* Return the floor of "pa".
 | ||
|  */
 | ||
| static __isl_give isl_pw_aff *floor_entry(__isl_take isl_pw_aff *pa, void *user)
 | ||
| {
 | ||
| 	return isl_pw_aff_floor(pa);
 | ||
| }
 | ||
| 
 | ||
| /* Given f, return floor(f).
 | ||
|  */
 | ||
| __isl_give isl_union_pw_aff *isl_union_pw_aff_floor(
 | ||
| 	__isl_take isl_union_pw_aff *upa)
 | ||
| {
 | ||
| 	return isl_union_pw_aff_transform_inplace(upa, &floor_entry, NULL);
 | ||
| }
 | ||
| 
 | ||
| /* Compute
 | ||
|  *
 | ||
|  *	upa mod m = upa - m * floor(upa/m)
 | ||
|  *
 | ||
|  * with m an integer value.
 | ||
|  */
 | ||
| __isl_give isl_union_pw_aff *isl_union_pw_aff_mod_val(
 | ||
| 	__isl_take isl_union_pw_aff *upa, __isl_take isl_val *m)
 | ||
| {
 | ||
| 	isl_union_pw_aff *res;
 | ||
| 
 | ||
| 	if (!upa || !m)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	if (!isl_val_is_int(m))
 | ||
| 		isl_die(isl_val_get_ctx(m), isl_error_invalid,
 | ||
| 			"expecting integer modulo", goto error);
 | ||
| 	if (!isl_val_is_pos(m))
 | ||
| 		isl_die(isl_val_get_ctx(m), isl_error_invalid,
 | ||
| 			"expecting positive modulo", goto error);
 | ||
| 
 | ||
| 	res = isl_union_pw_aff_copy(upa);
 | ||
| 	upa = isl_union_pw_aff_scale_down_val(upa, isl_val_copy(m));
 | ||
| 	upa = isl_union_pw_aff_floor(upa);
 | ||
| 	upa = isl_union_pw_aff_scale_val(upa, m);
 | ||
| 	res = isl_union_pw_aff_sub(res, upa);
 | ||
| 
 | ||
| 	return res;
 | ||
| error:
 | ||
| 	isl_val_free(m);
 | ||
| 	isl_union_pw_aff_free(upa);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Internal data structure for isl_union_pw_aff_aff_on_domain.
 | ||
|  * "aff" is the symbolic value that the resulting isl_union_pw_aff
 | ||
|  * needs to attain.
 | ||
|  * "res" collects the results.
 | ||
|  */
 | ||
| struct isl_union_pw_aff_aff_on_domain_data {
 | ||
| 	isl_aff *aff;
 | ||
| 	isl_union_pw_aff *res;
 | ||
| };
 | ||
| 
 | ||
| /* Construct a piecewise affine expression that is equal to data->aff
 | ||
|  * on "domain" and add the result to data->res.
 | ||
|  */
 | ||
| static isl_stat pw_aff_aff_on_domain(__isl_take isl_set *domain, void *user)
 | ||
| {
 | ||
| 	struct isl_union_pw_aff_aff_on_domain_data *data = user;
 | ||
| 	isl_pw_aff *pa;
 | ||
| 	isl_aff *aff;
 | ||
| 	int dim;
 | ||
| 
 | ||
| 	aff = isl_aff_copy(data->aff);
 | ||
| 	dim = isl_set_dim(domain, isl_dim_set);
 | ||
| 	aff = isl_aff_add_dims(aff, isl_dim_in, dim);
 | ||
| 	aff = isl_aff_reset_domain_space(aff, isl_set_get_space(domain));
 | ||
| 	pa = isl_pw_aff_alloc(domain, aff);
 | ||
| 	data->res = isl_union_pw_aff_add_pw_aff(data->res, pa);
 | ||
| 
 | ||
| 	return data->res ? isl_stat_ok : isl_stat_error;
 | ||
| }
 | ||
| 
 | ||
| /* Internal data structure for isl_union_pw_multi_aff_get_union_pw_aff.
 | ||
|  * pos is the output position that needs to be extracted.
 | ||
|  * res collects the results.
 | ||
|  */
 | ||
| struct isl_union_pw_multi_aff_get_union_pw_aff_data {
 | ||
| 	int pos;
 | ||
| 	isl_union_pw_aff *res;
 | ||
| };
 | ||
| 
 | ||
| /* Extract an isl_pw_aff corresponding to output dimension "pos" of "pma"
 | ||
|  * (assuming it has such a dimension) and add it to data->res.
 | ||
|  */
 | ||
| static isl_stat get_union_pw_aff(__isl_take isl_pw_multi_aff *pma, void *user)
 | ||
| {
 | ||
| 	struct isl_union_pw_multi_aff_get_union_pw_aff_data *data = user;
 | ||
| 	int n_out;
 | ||
| 	isl_pw_aff *pa;
 | ||
| 
 | ||
| 	if (!pma)
 | ||
| 		return isl_stat_error;
 | ||
| 
 | ||
| 	n_out = isl_pw_multi_aff_dim(pma, isl_dim_out);
 | ||
| 	if (data->pos >= n_out) {
 | ||
| 		isl_pw_multi_aff_free(pma);
 | ||
| 		return isl_stat_ok;
 | ||
| 	}
 | ||
| 
 | ||
| 	pa = isl_pw_multi_aff_get_pw_aff(pma, data->pos);
 | ||
| 	isl_pw_multi_aff_free(pma);
 | ||
| 
 | ||
| 	data->res = isl_union_pw_aff_add_pw_aff(data->res, pa);
 | ||
| 
 | ||
| 	return data->res ? isl_stat_ok : isl_stat_error;
 | ||
| }
 | ||
| 
 | ||
| /* Extract an isl_union_pw_aff corresponding to
 | ||
|  * output dimension "pos" of "upma".
 | ||
|  */
 | ||
| __isl_give isl_union_pw_aff *isl_union_pw_multi_aff_get_union_pw_aff(
 | ||
| 	__isl_keep isl_union_pw_multi_aff *upma, int pos)
 | ||
| {
 | ||
| 	struct isl_union_pw_multi_aff_get_union_pw_aff_data data;
 | ||
| 	isl_space *space;
 | ||
| 
 | ||
| 	if (!upma)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	if (pos < 0)
 | ||
| 		isl_die(isl_union_pw_multi_aff_get_ctx(upma), isl_error_invalid,
 | ||
| 			"cannot extract at negative position", return NULL);
 | ||
| 
 | ||
| 	space = isl_union_pw_multi_aff_get_space(upma);
 | ||
| 	data.res = isl_union_pw_aff_empty(space);
 | ||
| 	data.pos = pos;
 | ||
| 	if (isl_union_pw_multi_aff_foreach_pw_multi_aff(upma,
 | ||
| 						&get_union_pw_aff, &data) < 0)
 | ||
| 		data.res = isl_union_pw_aff_free(data.res);
 | ||
| 
 | ||
| 	return data.res;
 | ||
| }
 | ||
| 
 | ||
| /* Return a union piecewise affine expression
 | ||
|  * that is equal to "aff" on "domain".
 | ||
|  *
 | ||
|  * Construct an isl_pw_aff on each of the sets in "domain" and
 | ||
|  * collect the results.
 | ||
|  */
 | ||
| __isl_give isl_union_pw_aff *isl_union_pw_aff_aff_on_domain(
 | ||
| 	__isl_take isl_union_set *domain, __isl_take isl_aff *aff)
 | ||
| {
 | ||
| 	struct isl_union_pw_aff_aff_on_domain_data data;
 | ||
| 	isl_space *space;
 | ||
| 
 | ||
| 	if (!domain || !aff)
 | ||
| 		goto error;
 | ||
| 	if (!isl_local_space_is_params(aff->ls))
 | ||
| 		isl_die(isl_aff_get_ctx(aff), isl_error_invalid,
 | ||
| 			"expecting parametric expression", goto error);
 | ||
| 
 | ||
| 	space = isl_union_set_get_space(domain);
 | ||
| 	data.res = isl_union_pw_aff_empty(space);
 | ||
| 	data.aff = aff;
 | ||
| 	if (isl_union_set_foreach_set(domain, &pw_aff_aff_on_domain, &data) < 0)
 | ||
| 		data.res = isl_union_pw_aff_free(data.res);
 | ||
| 	isl_union_set_free(domain);
 | ||
| 	isl_aff_free(aff);
 | ||
| 	return data.res;
 | ||
| error:
 | ||
| 	isl_union_set_free(domain);
 | ||
| 	isl_aff_free(aff);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Internal data structure for isl_union_pw_aff_val_on_domain.
 | ||
|  * "v" is the value that the resulting isl_union_pw_aff needs to attain.
 | ||
|  * "res" collects the results.
 | ||
|  */
 | ||
| struct isl_union_pw_aff_val_on_domain_data {
 | ||
| 	isl_val *v;
 | ||
| 	isl_union_pw_aff *res;
 | ||
| };
 | ||
| 
 | ||
| /* Construct a piecewise affine expression that is equal to data->v
 | ||
|  * on "domain" and add the result to data->res.
 | ||
|  */
 | ||
| static isl_stat pw_aff_val_on_domain(__isl_take isl_set *domain, void *user)
 | ||
| {
 | ||
| 	struct isl_union_pw_aff_val_on_domain_data *data = user;
 | ||
| 	isl_pw_aff *pa;
 | ||
| 	isl_val *v;
 | ||
| 
 | ||
| 	v = isl_val_copy(data->v);
 | ||
| 	pa = isl_pw_aff_val_on_domain(domain, v);
 | ||
| 	data->res = isl_union_pw_aff_add_pw_aff(data->res, pa);
 | ||
| 
 | ||
| 	return data->res ? isl_stat_ok : isl_stat_error;
 | ||
| }
 | ||
| 
 | ||
| /* Return a union piecewise affine expression
 | ||
|  * that is equal to "v" on "domain".
 | ||
|  *
 | ||
|  * Construct an isl_pw_aff on each of the sets in "domain" and
 | ||
|  * collect the results.
 | ||
|  */
 | ||
| __isl_give isl_union_pw_aff *isl_union_pw_aff_val_on_domain(
 | ||
| 	__isl_take isl_union_set *domain, __isl_take isl_val *v)
 | ||
| {
 | ||
| 	struct isl_union_pw_aff_val_on_domain_data data;
 | ||
| 	isl_space *space;
 | ||
| 
 | ||
| 	space = isl_union_set_get_space(domain);
 | ||
| 	data.res = isl_union_pw_aff_empty(space);
 | ||
| 	data.v = v;
 | ||
| 	if (isl_union_set_foreach_set(domain, &pw_aff_val_on_domain, &data) < 0)
 | ||
| 		data.res = isl_union_pw_aff_free(data.res);
 | ||
| 	isl_union_set_free(domain);
 | ||
| 	isl_val_free(v);
 | ||
| 	return data.res;
 | ||
| }
 | ||
| 
 | ||
| /* Construct a piecewise multi affine expression
 | ||
|  * that is equal to "pa" and add it to upma.
 | ||
|  */
 | ||
| static isl_stat pw_multi_aff_from_pw_aff_entry(__isl_take isl_pw_aff *pa,
 | ||
| 	void *user)
 | ||
| {
 | ||
| 	isl_union_pw_multi_aff **upma = user;
 | ||
| 	isl_pw_multi_aff *pma;
 | ||
| 
 | ||
| 	pma = isl_pw_multi_aff_from_pw_aff(pa);
 | ||
| 	*upma = isl_union_pw_multi_aff_add_pw_multi_aff(*upma, pma);
 | ||
| 
 | ||
| 	return *upma ? isl_stat_ok : isl_stat_error;
 | ||
| }
 | ||
| 
 | ||
| /* Construct and return a union piecewise multi affine expression
 | ||
|  * that is equal to the given union piecewise affine expression.
 | ||
|  */
 | ||
| __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_from_union_pw_aff(
 | ||
| 	__isl_take isl_union_pw_aff *upa)
 | ||
| {
 | ||
| 	isl_space *space;
 | ||
| 	isl_union_pw_multi_aff *upma;
 | ||
| 
 | ||
| 	if (!upa)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	space = isl_union_pw_aff_get_space(upa);
 | ||
| 	upma = isl_union_pw_multi_aff_empty(space);
 | ||
| 
 | ||
| 	if (isl_union_pw_aff_foreach_pw_aff(upa,
 | ||
| 				&pw_multi_aff_from_pw_aff_entry, &upma) < 0)
 | ||
| 		upma = isl_union_pw_multi_aff_free(upma);
 | ||
| 
 | ||
| 	isl_union_pw_aff_free(upa);
 | ||
| 	return upma;
 | ||
| }
 | ||
| 
 | ||
| /* Compute the set of elements in the domain of "pa" where it is zero and
 | ||
|  * add this set to "uset".
 | ||
|  */
 | ||
| static isl_stat zero_union_set(__isl_take isl_pw_aff *pa, void *user)
 | ||
| {
 | ||
| 	isl_union_set **uset = (isl_union_set **)user;
 | ||
| 
 | ||
| 	*uset = isl_union_set_add_set(*uset, isl_pw_aff_zero_set(pa));
 | ||
| 
 | ||
| 	return *uset ? isl_stat_ok : isl_stat_error;
 | ||
| }
 | ||
| 
 | ||
| /* Return a union set containing those elements in the domain
 | ||
|  * of "upa" where it is zero.
 | ||
|  */
 | ||
| __isl_give isl_union_set *isl_union_pw_aff_zero_union_set(
 | ||
| 	__isl_take isl_union_pw_aff *upa)
 | ||
| {
 | ||
| 	isl_union_set *zero;
 | ||
| 
 | ||
| 	zero = isl_union_set_empty(isl_union_pw_aff_get_space(upa));
 | ||
| 	if (isl_union_pw_aff_foreach_pw_aff(upa, &zero_union_set, &zero) < 0)
 | ||
| 		zero = isl_union_set_free(zero);
 | ||
| 
 | ||
| 	isl_union_pw_aff_free(upa);
 | ||
| 	return zero;
 | ||
| }
 | ||
| 
 | ||
| /* Convert "pa" to an isl_map and add it to *umap.
 | ||
|  */
 | ||
| static isl_stat map_from_pw_aff_entry(__isl_take isl_pw_aff *pa, void *user)
 | ||
| {
 | ||
| 	isl_union_map **umap = user;
 | ||
| 	isl_map *map;
 | ||
| 
 | ||
| 	map = isl_map_from_pw_aff(pa);
 | ||
| 	*umap = isl_union_map_add_map(*umap, map);
 | ||
| 
 | ||
| 	return *umap ? isl_stat_ok : isl_stat_error;
 | ||
| }
 | ||
| 
 | ||
| /* Construct a union map mapping the domain of the union
 | ||
|  * piecewise affine expression to its range, with the single output dimension
 | ||
|  * equated to the corresponding affine expressions on their cells.
 | ||
|  */
 | ||
| __isl_give isl_union_map *isl_union_map_from_union_pw_aff(
 | ||
| 	__isl_take isl_union_pw_aff *upa)
 | ||
| {
 | ||
| 	isl_space *space;
 | ||
| 	isl_union_map *umap;
 | ||
| 
 | ||
| 	if (!upa)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	space = isl_union_pw_aff_get_space(upa);
 | ||
| 	umap = isl_union_map_empty(space);
 | ||
| 
 | ||
| 	if (isl_union_pw_aff_foreach_pw_aff(upa, &map_from_pw_aff_entry,
 | ||
| 						&umap) < 0)
 | ||
| 		umap = isl_union_map_free(umap);
 | ||
| 
 | ||
| 	isl_union_pw_aff_free(upa);
 | ||
| 	return umap;
 | ||
| }
 | ||
| 
 | ||
| /* Internal data structure for isl_union_pw_aff_pullback_union_pw_multi_aff.
 | ||
|  * upma is the function that is plugged in.
 | ||
|  * pa is the current part of the function in which upma is plugged in.
 | ||
|  * res collects the results.
 | ||
|  */
 | ||
| struct isl_union_pw_aff_pullback_upma_data {
 | ||
| 	isl_union_pw_multi_aff *upma;
 | ||
| 	isl_pw_aff *pa;
 | ||
| 	isl_union_pw_aff *res;
 | ||
| };
 | ||
| 
 | ||
| /* Check if "pma" can be plugged into data->pa.
 | ||
|  * If so, perform the pullback and add the result to data->res.
 | ||
|  */
 | ||
| static isl_stat pa_pb_pma(__isl_take isl_pw_multi_aff *pma, void *user)
 | ||
| {
 | ||
| 	struct isl_union_pw_aff_pullback_upma_data *data = user;
 | ||
| 	isl_pw_aff *pa;
 | ||
| 
 | ||
| 	if (!isl_space_tuple_is_equal(data->pa->dim, isl_dim_in,
 | ||
| 				 pma->dim, isl_dim_out)) {
 | ||
| 		isl_pw_multi_aff_free(pma);
 | ||
| 		return isl_stat_ok;
 | ||
| 	}
 | ||
| 
 | ||
| 	pa = isl_pw_aff_copy(data->pa);
 | ||
| 	pa = isl_pw_aff_pullback_pw_multi_aff(pa, pma);
 | ||
| 
 | ||
| 	data->res = isl_union_pw_aff_add_pw_aff(data->res, pa);
 | ||
| 
 | ||
| 	return data->res ? isl_stat_ok : isl_stat_error;
 | ||
| }
 | ||
| 
 | ||
| /* Check if any of the elements of data->upma can be plugged into pa,
 | ||
|  * add if so add the result to data->res.
 | ||
|  */
 | ||
| static isl_stat upa_pb_upma(__isl_take isl_pw_aff *pa, void *user)
 | ||
| {
 | ||
| 	struct isl_union_pw_aff_pullback_upma_data *data = user;
 | ||
| 	isl_stat r;
 | ||
| 
 | ||
| 	data->pa = pa;
 | ||
| 	r = isl_union_pw_multi_aff_foreach_pw_multi_aff(data->upma,
 | ||
| 				   &pa_pb_pma, data);
 | ||
| 	isl_pw_aff_free(pa);
 | ||
| 
 | ||
| 	return r;
 | ||
| }
 | ||
| 
 | ||
| /* Compute the pullback of "upa" by the function represented by "upma".
 | ||
|  * In other words, plug in "upma" in "upa".  The result contains
 | ||
|  * expressions defined over the domain space of "upma".
 | ||
|  *
 | ||
|  * Run over all pairs of elements in "upa" and "upma", perform
 | ||
|  * the pullback when appropriate and collect the results.
 | ||
|  * If the hash value were based on the domain space rather than
 | ||
|  * the function space, then we could run through all elements
 | ||
|  * of "upma" and directly pick out the corresponding element of "upa".
 | ||
|  */
 | ||
| __isl_give isl_union_pw_aff *isl_union_pw_aff_pullback_union_pw_multi_aff(
 | ||
| 	__isl_take isl_union_pw_aff *upa,
 | ||
| 	__isl_take isl_union_pw_multi_aff *upma)
 | ||
| {
 | ||
| 	struct isl_union_pw_aff_pullback_upma_data data = { NULL, NULL };
 | ||
| 	isl_space *space;
 | ||
| 
 | ||
| 	space = isl_union_pw_multi_aff_get_space(upma);
 | ||
| 	upa = isl_union_pw_aff_align_params(upa, space);
 | ||
| 	space = isl_union_pw_aff_get_space(upa);
 | ||
| 	upma = isl_union_pw_multi_aff_align_params(upma, space);
 | ||
| 
 | ||
| 	if (!upa || !upma)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	data.upma = upma;
 | ||
| 	data.res = isl_union_pw_aff_alloc_same_size(upa);
 | ||
| 	if (isl_union_pw_aff_foreach_pw_aff(upa, &upa_pb_upma, &data) < 0)
 | ||
| 		data.res = isl_union_pw_aff_free(data.res);
 | ||
| 
 | ||
| 	isl_union_pw_aff_free(upa);
 | ||
| 	isl_union_pw_multi_aff_free(upma);
 | ||
| 	return data.res;
 | ||
| error:
 | ||
| 	isl_union_pw_aff_free(upa);
 | ||
| 	isl_union_pw_multi_aff_free(upma);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| #undef BASE
 | ||
| #define BASE union_pw_aff
 | ||
| #undef DOMBASE
 | ||
| #define DOMBASE union_set
 | ||
| 
 | ||
| #define NO_MOVE_DIMS
 | ||
| #define NO_DIMS
 | ||
| #define NO_DOMAIN
 | ||
| #define NO_PRODUCT
 | ||
| #define NO_SPLICE
 | ||
| #define NO_ZERO
 | ||
| #define NO_IDENTITY
 | ||
| #define NO_GIST
 | ||
| 
 | ||
| #include <isl_multi_templ.c>
 | ||
| #include <isl_multi_apply_set.c>
 | ||
| #include <isl_multi_apply_union_set.c>
 | ||
| #include <isl_multi_coalesce.c>
 | ||
| #include <isl_multi_floor.c>
 | ||
| #include <isl_multi_gist.c>
 | ||
| #include <isl_multi_intersect.c>
 | ||
| 
 | ||
| /* Construct a multiple union piecewise affine expression
 | ||
|  * in the given space with value zero in each of the output dimensions.
 | ||
|  *
 | ||
|  * Since there is no canonical zero value for
 | ||
|  * a union piecewise affine expression, we can only construct
 | ||
|  * zero-dimensional "zero" value.
 | ||
|  */
 | ||
| __isl_give isl_multi_union_pw_aff *isl_multi_union_pw_aff_zero(
 | ||
| 	__isl_take isl_space *space)
 | ||
| {
 | ||
| 	if (!space)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	if (!isl_space_is_set(space))
 | ||
| 		isl_die(isl_space_get_ctx(space), isl_error_invalid,
 | ||
| 			"expecting set space", goto error);
 | ||
| 	if (isl_space_dim(space , isl_dim_out) != 0)
 | ||
| 		isl_die(isl_space_get_ctx(space), isl_error_invalid,
 | ||
| 			"expecting 0D space", goto error);
 | ||
| 
 | ||
| 	return isl_multi_union_pw_aff_alloc(space);
 | ||
| error:
 | ||
| 	isl_space_free(space);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Compute the sum of "mupa1" and "mupa2" on the union of their domains,
 | ||
|  * with the actual sum on the shared domain and
 | ||
|  * the defined expression on the symmetric difference of the domains.
 | ||
|  *
 | ||
|  * We simply iterate over the elements in both arguments and
 | ||
|  * call isl_union_pw_aff_union_add on each of them.
 | ||
|  */
 | ||
| static __isl_give isl_multi_union_pw_aff *
 | ||
| isl_multi_union_pw_aff_union_add_aligned(
 | ||
| 	__isl_take isl_multi_union_pw_aff *mupa1,
 | ||
| 	__isl_take isl_multi_union_pw_aff *mupa2)
 | ||
| {
 | ||
| 	return isl_multi_union_pw_aff_bin_op(mupa1, mupa2,
 | ||
| 					    &isl_union_pw_aff_union_add);
 | ||
| }
 | ||
| 
 | ||
| /* Compute the sum of "mupa1" and "mupa2" on the union of their domains,
 | ||
|  * with the actual sum on the shared domain and
 | ||
|  * the defined expression on the symmetric difference of the domains.
 | ||
|  */
 | ||
| __isl_give isl_multi_union_pw_aff *isl_multi_union_pw_aff_union_add(
 | ||
| 	__isl_take isl_multi_union_pw_aff *mupa1,
 | ||
| 	__isl_take isl_multi_union_pw_aff *mupa2)
 | ||
| {
 | ||
| 	return isl_multi_union_pw_aff_align_params_multi_multi_and(mupa1, mupa2,
 | ||
| 				    &isl_multi_union_pw_aff_union_add_aligned);
 | ||
| }
 | ||
| 
 | ||
| /* Construct and return a multi union piecewise affine expression
 | ||
|  * that is equal to the given multi affine expression.
 | ||
|  */
 | ||
| __isl_give isl_multi_union_pw_aff *isl_multi_union_pw_aff_from_multi_aff(
 | ||
| 	__isl_take isl_multi_aff *ma)
 | ||
| {
 | ||
| 	isl_multi_pw_aff *mpa;
 | ||
| 
 | ||
| 	mpa = isl_multi_pw_aff_from_multi_aff(ma);
 | ||
| 	return isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
 | ||
| }
 | ||
| 
 | ||
| /* Construct and return a multi union piecewise affine expression
 | ||
|  * that is equal to the given multi piecewise affine expression.
 | ||
|  */
 | ||
| __isl_give isl_multi_union_pw_aff *isl_multi_union_pw_aff_from_multi_pw_aff(
 | ||
| 	__isl_take isl_multi_pw_aff *mpa)
 | ||
| {
 | ||
| 	int i, n;
 | ||
| 	isl_space *space;
 | ||
| 	isl_multi_union_pw_aff *mupa;
 | ||
| 
 | ||
| 	if (!mpa)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	space = isl_multi_pw_aff_get_space(mpa);
 | ||
| 	space = isl_space_range(space);
 | ||
| 	mupa = isl_multi_union_pw_aff_alloc(space);
 | ||
| 
 | ||
| 	n = isl_multi_pw_aff_dim(mpa, isl_dim_out);
 | ||
| 	for (i = 0; i < n; ++i) {
 | ||
| 		isl_pw_aff *pa;
 | ||
| 		isl_union_pw_aff *upa;
 | ||
| 
 | ||
| 		pa = isl_multi_pw_aff_get_pw_aff(mpa, i);
 | ||
| 		upa = isl_union_pw_aff_from_pw_aff(pa);
 | ||
| 		mupa = isl_multi_union_pw_aff_set_union_pw_aff(mupa, i, upa);
 | ||
| 	}
 | ||
| 
 | ||
| 	isl_multi_pw_aff_free(mpa);
 | ||
| 
 | ||
| 	return mupa;
 | ||
| }
 | ||
| 
 | ||
| /* Extract the range space of "pma" and assign it to *space.
 | ||
|  * If *space has already been set (through a previous call to this function),
 | ||
|  * then check that the range space is the same.
 | ||
|  */
 | ||
| static isl_stat extract_space(__isl_take isl_pw_multi_aff *pma, void *user)
 | ||
| {
 | ||
| 	isl_space **space = user;
 | ||
| 	isl_space *pma_space;
 | ||
| 	isl_bool equal;
 | ||
| 
 | ||
| 	pma_space = isl_space_range(isl_pw_multi_aff_get_space(pma));
 | ||
| 	isl_pw_multi_aff_free(pma);
 | ||
| 
 | ||
| 	if (!pma_space)
 | ||
| 		return isl_stat_error;
 | ||
| 	if (!*space) {
 | ||
| 		*space = pma_space;
 | ||
| 		return isl_stat_ok;
 | ||
| 	}
 | ||
| 
 | ||
| 	equal = isl_space_is_equal(pma_space, *space);
 | ||
| 	isl_space_free(pma_space);
 | ||
| 
 | ||
| 	if (equal < 0)
 | ||
| 		return isl_stat_error;
 | ||
| 	if (!equal)
 | ||
| 		isl_die(isl_space_get_ctx(*space), isl_error_invalid,
 | ||
| 			"range spaces not the same", return isl_stat_error);
 | ||
| 	return isl_stat_ok;
 | ||
| }
 | ||
| 
 | ||
| /* Construct and return a multi union piecewise affine expression
 | ||
|  * that is equal to the given union piecewise multi affine expression.
 | ||
|  *
 | ||
|  * In order to be able to perform the conversion, the input
 | ||
|  * needs to be non-empty and may only involve a single range space.
 | ||
|  */
 | ||
| __isl_give isl_multi_union_pw_aff *
 | ||
| isl_multi_union_pw_aff_from_union_pw_multi_aff(
 | ||
| 	__isl_take isl_union_pw_multi_aff *upma)
 | ||
| {
 | ||
| 	isl_space *space = NULL;
 | ||
| 	isl_multi_union_pw_aff *mupa;
 | ||
| 	int i, n;
 | ||
| 
 | ||
| 	if (!upma)
 | ||
| 		return NULL;
 | ||
| 	if (isl_union_pw_multi_aff_n_pw_multi_aff(upma) == 0)
 | ||
| 		isl_die(isl_union_pw_multi_aff_get_ctx(upma), isl_error_invalid,
 | ||
| 			"cannot extract range space from empty input",
 | ||
| 			goto error);
 | ||
| 	if (isl_union_pw_multi_aff_foreach_pw_multi_aff(upma, &extract_space,
 | ||
| 							&space) < 0)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	if (!space)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	n = isl_space_dim(space, isl_dim_set);
 | ||
| 	mupa = isl_multi_union_pw_aff_alloc(space);
 | ||
| 
 | ||
| 	for (i = 0; i < n; ++i) {
 | ||
| 		isl_union_pw_aff *upa;
 | ||
| 
 | ||
| 		upa = isl_union_pw_multi_aff_get_union_pw_aff(upma, i);
 | ||
| 		mupa = isl_multi_union_pw_aff_set_union_pw_aff(mupa, i, upa);
 | ||
| 	}
 | ||
| 
 | ||
| 	isl_union_pw_multi_aff_free(upma);
 | ||
| 	return mupa;
 | ||
| error:
 | ||
| 	isl_space_free(space);
 | ||
| 	isl_union_pw_multi_aff_free(upma);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Try and create an isl_multi_union_pw_aff that is equivalent
 | ||
|  * to the given isl_union_map.
 | ||
|  * The isl_union_map is required to be single-valued in each space.
 | ||
|  * Moreover, it cannot be empty and all range spaces need to be the same.
 | ||
|  * Otherwise, an error is produced.
 | ||
|  */
 | ||
| __isl_give isl_multi_union_pw_aff *isl_multi_union_pw_aff_from_union_map(
 | ||
| 	__isl_take isl_union_map *umap)
 | ||
| {
 | ||
| 	isl_union_pw_multi_aff *upma;
 | ||
| 
 | ||
| 	upma = isl_union_pw_multi_aff_from_union_map(umap);
 | ||
| 	return isl_multi_union_pw_aff_from_union_pw_multi_aff(upma);
 | ||
| }
 | ||
| 
 | ||
| /* Return a multiple union piecewise affine expression
 | ||
|  * that is equal to "mv" on "domain", assuming "domain" and "mv"
 | ||
|  * have been aligned.
 | ||
|  */
 | ||
| static __isl_give isl_multi_union_pw_aff *
 | ||
| isl_multi_union_pw_aff_multi_val_on_domain_aligned(
 | ||
| 	__isl_take isl_union_set *domain, __isl_take isl_multi_val *mv)
 | ||
| {
 | ||
| 	int i, n;
 | ||
| 	isl_space *space;
 | ||
| 	isl_multi_union_pw_aff *mupa;
 | ||
| 
 | ||
| 	if (!domain || !mv)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	n = isl_multi_val_dim(mv, isl_dim_set);
 | ||
| 	space = isl_multi_val_get_space(mv);
 | ||
| 	mupa = isl_multi_union_pw_aff_alloc(space);
 | ||
| 	for (i = 0; i < n; ++i) {
 | ||
| 		isl_val *v;
 | ||
| 		isl_union_pw_aff *upa;
 | ||
| 
 | ||
| 		v = isl_multi_val_get_val(mv, i);
 | ||
| 		upa = isl_union_pw_aff_val_on_domain(isl_union_set_copy(domain),
 | ||
| 							v);
 | ||
| 		mupa = isl_multi_union_pw_aff_set_union_pw_aff(mupa, i, upa);
 | ||
| 	}
 | ||
| 
 | ||
| 	isl_union_set_free(domain);
 | ||
| 	isl_multi_val_free(mv);
 | ||
| 	return mupa;
 | ||
| error:
 | ||
| 	isl_union_set_free(domain);
 | ||
| 	isl_multi_val_free(mv);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Return a multiple union piecewise affine expression
 | ||
|  * that is equal to "mv" on "domain".
 | ||
|  */
 | ||
| __isl_give isl_multi_union_pw_aff *isl_multi_union_pw_aff_multi_val_on_domain(
 | ||
| 	__isl_take isl_union_set *domain, __isl_take isl_multi_val *mv)
 | ||
| {
 | ||
| 	isl_bool equal_params;
 | ||
| 
 | ||
| 	if (!domain || !mv)
 | ||
| 		goto error;
 | ||
| 	equal_params = isl_space_has_equal_params(domain->dim, mv->space);
 | ||
| 	if (equal_params < 0)
 | ||
| 		goto error;
 | ||
| 	if (equal_params)
 | ||
| 		return isl_multi_union_pw_aff_multi_val_on_domain_aligned(
 | ||
| 								    domain, mv);
 | ||
| 	domain = isl_union_set_align_params(domain,
 | ||
| 						isl_multi_val_get_space(mv));
 | ||
| 	mv = isl_multi_val_align_params(mv, isl_union_set_get_space(domain));
 | ||
| 	return isl_multi_union_pw_aff_multi_val_on_domain_aligned(domain, mv);
 | ||
| error:
 | ||
| 	isl_union_set_free(domain);
 | ||
| 	isl_multi_val_free(mv);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Return a multiple union piecewise affine expression
 | ||
|  * that is equal to "ma" on "domain", assuming "domain" and "ma"
 | ||
|  * have been aligned.
 | ||
|  */
 | ||
| static __isl_give isl_multi_union_pw_aff *
 | ||
| isl_multi_union_pw_aff_multi_aff_on_domain_aligned(
 | ||
| 	__isl_take isl_union_set *domain, __isl_take isl_multi_aff *ma)
 | ||
| {
 | ||
| 	int i, n;
 | ||
| 	isl_space *space;
 | ||
| 	isl_multi_union_pw_aff *mupa;
 | ||
| 
 | ||
| 	if (!domain || !ma)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	n = isl_multi_aff_dim(ma, isl_dim_set);
 | ||
| 	space = isl_multi_aff_get_space(ma);
 | ||
| 	mupa = isl_multi_union_pw_aff_alloc(space);
 | ||
| 	for (i = 0; i < n; ++i) {
 | ||
| 		isl_aff *aff;
 | ||
| 		isl_union_pw_aff *upa;
 | ||
| 
 | ||
| 		aff = isl_multi_aff_get_aff(ma, i);
 | ||
| 		upa = isl_union_pw_aff_aff_on_domain(isl_union_set_copy(domain),
 | ||
| 							aff);
 | ||
| 		mupa = isl_multi_union_pw_aff_set_union_pw_aff(mupa, i, upa);
 | ||
| 	}
 | ||
| 
 | ||
| 	isl_union_set_free(domain);
 | ||
| 	isl_multi_aff_free(ma);
 | ||
| 	return mupa;
 | ||
| error:
 | ||
| 	isl_union_set_free(domain);
 | ||
| 	isl_multi_aff_free(ma);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Return a multiple union piecewise affine expression
 | ||
|  * that is equal to "ma" on "domain".
 | ||
|  */
 | ||
| __isl_give isl_multi_union_pw_aff *isl_multi_union_pw_aff_multi_aff_on_domain(
 | ||
| 	__isl_take isl_union_set *domain, __isl_take isl_multi_aff *ma)
 | ||
| {
 | ||
| 	isl_bool equal_params;
 | ||
| 
 | ||
| 	if (!domain || !ma)
 | ||
| 		goto error;
 | ||
| 	equal_params = isl_space_has_equal_params(domain->dim, ma->space);
 | ||
| 	if (equal_params < 0)
 | ||
| 		goto error;
 | ||
| 	if (equal_params)
 | ||
| 		return isl_multi_union_pw_aff_multi_aff_on_domain_aligned(
 | ||
| 								    domain, ma);
 | ||
| 	domain = isl_union_set_align_params(domain,
 | ||
| 						isl_multi_aff_get_space(ma));
 | ||
| 	ma = isl_multi_aff_align_params(ma, isl_union_set_get_space(domain));
 | ||
| 	return isl_multi_union_pw_aff_multi_aff_on_domain_aligned(domain, ma);
 | ||
| error:
 | ||
| 	isl_union_set_free(domain);
 | ||
| 	isl_multi_aff_free(ma);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Return a union set containing those elements in the domains
 | ||
|  * of the elements of "mupa" where they are all zero.
 | ||
|  */
 | ||
| __isl_give isl_union_set *isl_multi_union_pw_aff_zero_union_set(
 | ||
| 	__isl_take isl_multi_union_pw_aff *mupa)
 | ||
| {
 | ||
| 	int i, n;
 | ||
| 	isl_union_pw_aff *upa;
 | ||
| 	isl_union_set *zero;
 | ||
| 
 | ||
| 	if (!mupa)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	n = isl_multi_union_pw_aff_dim(mupa, isl_dim_set);
 | ||
| 	if (n == 0)
 | ||
| 		isl_die(isl_multi_union_pw_aff_get_ctx(mupa), isl_error_invalid,
 | ||
| 			"cannot determine zero set "
 | ||
| 			"of zero-dimensional function", goto error);
 | ||
| 
 | ||
| 	upa = isl_multi_union_pw_aff_get_union_pw_aff(mupa, 0);
 | ||
| 	zero = isl_union_pw_aff_zero_union_set(upa);
 | ||
| 
 | ||
| 	for (i = 1; i < n; ++i) {
 | ||
| 		isl_union_set *zero_i;
 | ||
| 
 | ||
| 		upa = isl_multi_union_pw_aff_get_union_pw_aff(mupa, i);
 | ||
| 		zero_i = isl_union_pw_aff_zero_union_set(upa);
 | ||
| 
 | ||
| 		zero = isl_union_set_intersect(zero, zero_i);
 | ||
| 	}
 | ||
| 
 | ||
| 	isl_multi_union_pw_aff_free(mupa);
 | ||
| 	return zero;
 | ||
| error:
 | ||
| 	isl_multi_union_pw_aff_free(mupa);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Construct a union map mapping the shared domain
 | ||
|  * of the union piecewise affine expressions to the range of "mupa"
 | ||
|  * with each dimension in the range equated to the
 | ||
|  * corresponding union piecewise affine expression.
 | ||
|  *
 | ||
|  * The input cannot be zero-dimensional as there is
 | ||
|  * no way to extract a domain from a zero-dimensional isl_multi_union_pw_aff.
 | ||
|  */
 | ||
| __isl_give isl_union_map *isl_union_map_from_multi_union_pw_aff(
 | ||
| 	__isl_take isl_multi_union_pw_aff *mupa)
 | ||
| {
 | ||
| 	int i, n;
 | ||
| 	isl_space *space;
 | ||
| 	isl_union_map *umap;
 | ||
| 	isl_union_pw_aff *upa;
 | ||
| 
 | ||
| 	if (!mupa)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	n = isl_multi_union_pw_aff_dim(mupa, isl_dim_set);
 | ||
| 	if (n == 0)
 | ||
| 		isl_die(isl_multi_union_pw_aff_get_ctx(mupa), isl_error_invalid,
 | ||
| 			"cannot determine domain of zero-dimensional "
 | ||
| 			"isl_multi_union_pw_aff", goto error);
 | ||
| 
 | ||
| 	upa = isl_multi_union_pw_aff_get_union_pw_aff(mupa, 0);
 | ||
| 	umap = isl_union_map_from_union_pw_aff(upa);
 | ||
| 
 | ||
| 	for (i = 1; i < n; ++i) {
 | ||
| 		isl_union_map *umap_i;
 | ||
| 
 | ||
| 		upa = isl_multi_union_pw_aff_get_union_pw_aff(mupa, i);
 | ||
| 		umap_i = isl_union_map_from_union_pw_aff(upa);
 | ||
| 		umap = isl_union_map_flat_range_product(umap, umap_i);
 | ||
| 	}
 | ||
| 
 | ||
| 	space = isl_multi_union_pw_aff_get_space(mupa);
 | ||
| 	umap = isl_union_map_reset_range_space(umap, space);
 | ||
| 
 | ||
| 	isl_multi_union_pw_aff_free(mupa);
 | ||
| 	return umap;
 | ||
| error:
 | ||
| 	isl_multi_union_pw_aff_free(mupa);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Internal data structure for isl_union_pw_multi_aff_reset_range_space.
 | ||
|  * "range" is the space from which to set the range space.
 | ||
|  * "res" collects the results.
 | ||
|  */
 | ||
| struct isl_union_pw_multi_aff_reset_range_space_data {
 | ||
| 	isl_space *range;
 | ||
| 	isl_union_pw_multi_aff *res;
 | ||
| };
 | ||
| 
 | ||
| /* Replace the range space of "pma" by the range space of data->range and
 | ||
|  * add the result to data->res.
 | ||
|  */
 | ||
| static isl_stat reset_range_space(__isl_take isl_pw_multi_aff *pma, void *user)
 | ||
| {
 | ||
| 	struct isl_union_pw_multi_aff_reset_range_space_data *data = user;
 | ||
| 	isl_space *space;
 | ||
| 
 | ||
| 	space = isl_pw_multi_aff_get_space(pma);
 | ||
| 	space = isl_space_domain(space);
 | ||
| 	space = isl_space_extend_domain_with_range(space,
 | ||
| 						isl_space_copy(data->range));
 | ||
| 	pma = isl_pw_multi_aff_reset_space(pma, space);
 | ||
| 	data->res = isl_union_pw_multi_aff_add_pw_multi_aff(data->res, pma);
 | ||
| 
 | ||
| 	return data->res ? isl_stat_ok : isl_stat_error;
 | ||
| }
 | ||
| 
 | ||
| /* Replace the range space of all the piecewise affine expressions in "upma" by
 | ||
|  * the range space of "space".
 | ||
|  *
 | ||
|  * This assumes that all these expressions have the same output dimension.
 | ||
|  *
 | ||
|  * Since the spaces of the expressions change, so do their hash values.
 | ||
|  * We therefore need to create a new isl_union_pw_multi_aff.
 | ||
|  * Note that the hash value is currently computed based on the entire
 | ||
|  * space even though there can only be a single expression with a given
 | ||
|  * domain space.
 | ||
|  */
 | ||
| static __isl_give isl_union_pw_multi_aff *
 | ||
| isl_union_pw_multi_aff_reset_range_space(
 | ||
| 	__isl_take isl_union_pw_multi_aff *upma, __isl_take isl_space *space)
 | ||
| {
 | ||
| 	struct isl_union_pw_multi_aff_reset_range_space_data data = { space };
 | ||
| 	isl_space *space_upma;
 | ||
| 
 | ||
| 	space_upma = isl_union_pw_multi_aff_get_space(upma);
 | ||
| 	data.res = isl_union_pw_multi_aff_empty(space_upma);
 | ||
| 	if (isl_union_pw_multi_aff_foreach_pw_multi_aff(upma,
 | ||
| 					&reset_range_space, &data) < 0)
 | ||
| 		data.res = isl_union_pw_multi_aff_free(data.res);
 | ||
| 
 | ||
| 	isl_space_free(space);
 | ||
| 	isl_union_pw_multi_aff_free(upma);
 | ||
| 	return data.res;
 | ||
| }
 | ||
| 
 | ||
| /* Construct and return a union piecewise multi affine expression
 | ||
|  * that is equal to the given multi union piecewise affine expression.
 | ||
|  *
 | ||
|  * In order to be able to perform the conversion, the input
 | ||
|  * needs to have a least one output dimension.
 | ||
|  */
 | ||
| __isl_give isl_union_pw_multi_aff *
 | ||
| isl_union_pw_multi_aff_from_multi_union_pw_aff(
 | ||
| 	__isl_take isl_multi_union_pw_aff *mupa)
 | ||
| {
 | ||
| 	int i, n;
 | ||
| 	isl_space *space;
 | ||
| 	isl_union_pw_multi_aff *upma;
 | ||
| 	isl_union_pw_aff *upa;
 | ||
| 
 | ||
| 	if (!mupa)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	n = isl_multi_union_pw_aff_dim(mupa, isl_dim_set);
 | ||
| 	if (n == 0)
 | ||
| 		isl_die(isl_multi_union_pw_aff_get_ctx(mupa), isl_error_invalid,
 | ||
| 			"cannot determine domain of zero-dimensional "
 | ||
| 			"isl_multi_union_pw_aff", goto error);
 | ||
| 
 | ||
| 	space = isl_multi_union_pw_aff_get_space(mupa);
 | ||
| 	upa = isl_multi_union_pw_aff_get_union_pw_aff(mupa, 0);
 | ||
| 	upma = isl_union_pw_multi_aff_from_union_pw_aff(upa);
 | ||
| 
 | ||
| 	for (i = 1; i < n; ++i) {
 | ||
| 		isl_union_pw_multi_aff *upma_i;
 | ||
| 
 | ||
| 		upa = isl_multi_union_pw_aff_get_union_pw_aff(mupa, i);
 | ||
| 		upma_i = isl_union_pw_multi_aff_from_union_pw_aff(upa);
 | ||
| 		upma = isl_union_pw_multi_aff_flat_range_product(upma, upma_i);
 | ||
| 	}
 | ||
| 
 | ||
| 	upma = isl_union_pw_multi_aff_reset_range_space(upma, space);
 | ||
| 
 | ||
| 	isl_multi_union_pw_aff_free(mupa);
 | ||
| 	return upma;
 | ||
| error:
 | ||
| 	isl_multi_union_pw_aff_free(mupa);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Intersect the range of "mupa" with "range".
 | ||
|  * That is, keep only those domain elements that have a function value
 | ||
|  * in "range".
 | ||
|  */
 | ||
| __isl_give isl_multi_union_pw_aff *isl_multi_union_pw_aff_intersect_range(
 | ||
| 	__isl_take isl_multi_union_pw_aff *mupa, __isl_take isl_set *range)
 | ||
| {
 | ||
| 	isl_union_pw_multi_aff *upma;
 | ||
| 	isl_union_set *domain;
 | ||
| 	isl_space *space;
 | ||
| 	int n;
 | ||
| 	int match;
 | ||
| 
 | ||
| 	if (!mupa || !range)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	space = isl_set_get_space(range);
 | ||
| 	match = isl_space_tuple_is_equal(mupa->space, isl_dim_set,
 | ||
| 					space, isl_dim_set);
 | ||
| 	isl_space_free(space);
 | ||
| 	if (match < 0)
 | ||
| 		goto error;
 | ||
| 	if (!match)
 | ||
| 		isl_die(isl_multi_union_pw_aff_get_ctx(mupa), isl_error_invalid,
 | ||
| 			"space don't match", goto error);
 | ||
| 	n = isl_multi_union_pw_aff_dim(mupa, isl_dim_set);
 | ||
| 	if (n == 0)
 | ||
| 		isl_die(isl_multi_union_pw_aff_get_ctx(mupa), isl_error_invalid,
 | ||
| 			"cannot intersect range of zero-dimensional "
 | ||
| 			"isl_multi_union_pw_aff", goto error);
 | ||
| 
 | ||
| 	upma = isl_union_pw_multi_aff_from_multi_union_pw_aff(
 | ||
| 					isl_multi_union_pw_aff_copy(mupa));
 | ||
| 	domain = isl_union_set_from_set(range);
 | ||
| 	domain = isl_union_set_preimage_union_pw_multi_aff(domain, upma);
 | ||
| 	mupa = isl_multi_union_pw_aff_intersect_domain(mupa, domain);
 | ||
| 
 | ||
| 	return mupa;
 | ||
| error:
 | ||
| 	isl_multi_union_pw_aff_free(mupa);
 | ||
| 	isl_set_free(range);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Return the shared domain of the elements of "mupa".
 | ||
|  */
 | ||
| __isl_give isl_union_set *isl_multi_union_pw_aff_domain(
 | ||
| 	__isl_take isl_multi_union_pw_aff *mupa)
 | ||
| {
 | ||
| 	int i, n;
 | ||
| 	isl_union_pw_aff *upa;
 | ||
| 	isl_union_set *dom;
 | ||
| 
 | ||
| 	if (!mupa)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	n = isl_multi_union_pw_aff_dim(mupa, isl_dim_set);
 | ||
| 	if (n == 0)
 | ||
| 		isl_die(isl_multi_union_pw_aff_get_ctx(mupa), isl_error_invalid,
 | ||
| 			"cannot determine domain", goto error);
 | ||
| 
 | ||
| 	upa = isl_multi_union_pw_aff_get_union_pw_aff(mupa, 0);
 | ||
| 	dom = isl_union_pw_aff_domain(upa);
 | ||
| 	for (i = 1; i < n; ++i) {
 | ||
| 		isl_union_set *dom_i;
 | ||
| 
 | ||
| 		upa = isl_multi_union_pw_aff_get_union_pw_aff(mupa, i);
 | ||
| 		dom_i = isl_union_pw_aff_domain(upa);
 | ||
| 		dom = isl_union_set_intersect(dom, dom_i);
 | ||
| 	}
 | ||
| 
 | ||
| 	isl_multi_union_pw_aff_free(mupa);
 | ||
| 	return dom;
 | ||
| error:
 | ||
| 	isl_multi_union_pw_aff_free(mupa);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Apply "aff" to "mupa".  The space of "mupa" is equal to the domain of "aff".
 | ||
|  * In particular, the spaces have been aligned.
 | ||
|  * The result is defined over the shared domain of the elements of "mupa"
 | ||
|  *
 | ||
|  * We first extract the parametric constant part of "aff" and
 | ||
|  * define that over the shared domain.
 | ||
|  * Then we iterate over all input dimensions of "aff" and add the corresponding
 | ||
|  * multiples of the elements of "mupa".
 | ||
|  * Finally, we consider the integer divisions, calling the function
 | ||
|  * recursively to obtain an isl_union_pw_aff corresponding to the
 | ||
|  * integer division argument.
 | ||
|  */
 | ||
| static __isl_give isl_union_pw_aff *multi_union_pw_aff_apply_aff(
 | ||
| 	__isl_take isl_multi_union_pw_aff *mupa, __isl_take isl_aff *aff)
 | ||
| {
 | ||
| 	int i, n_in, n_div;
 | ||
| 	isl_union_pw_aff *upa;
 | ||
| 	isl_union_set *uset;
 | ||
| 	isl_val *v;
 | ||
| 	isl_aff *cst;
 | ||
| 
 | ||
| 	n_in = isl_aff_dim(aff, isl_dim_in);
 | ||
| 	n_div = isl_aff_dim(aff, isl_dim_div);
 | ||
| 
 | ||
| 	uset = isl_multi_union_pw_aff_domain(isl_multi_union_pw_aff_copy(mupa));
 | ||
| 	cst = isl_aff_copy(aff);
 | ||
| 	cst = isl_aff_drop_dims(cst, isl_dim_div, 0, n_div);
 | ||
| 	cst = isl_aff_drop_dims(cst, isl_dim_in, 0, n_in);
 | ||
| 	cst = isl_aff_project_domain_on_params(cst);
 | ||
| 	upa = isl_union_pw_aff_aff_on_domain(uset, cst);
 | ||
| 
 | ||
| 	for (i = 0; i < n_in; ++i) {
 | ||
| 		isl_union_pw_aff *upa_i;
 | ||
| 
 | ||
| 		if (!isl_aff_involves_dims(aff, isl_dim_in, i, 1))
 | ||
| 			continue;
 | ||
| 		v = isl_aff_get_coefficient_val(aff, isl_dim_in, i);
 | ||
| 		upa_i = isl_multi_union_pw_aff_get_union_pw_aff(mupa, i);
 | ||
| 		upa_i = isl_union_pw_aff_scale_val(upa_i, v);
 | ||
| 		upa = isl_union_pw_aff_add(upa, upa_i);
 | ||
| 	}
 | ||
| 
 | ||
| 	for (i = 0; i < n_div; ++i) {
 | ||
| 		isl_aff *div;
 | ||
| 		isl_union_pw_aff *upa_i;
 | ||
| 
 | ||
| 		if (!isl_aff_involves_dims(aff, isl_dim_div, i, 1))
 | ||
| 			continue;
 | ||
| 		div = isl_aff_get_div(aff, i);
 | ||
| 		upa_i = multi_union_pw_aff_apply_aff(
 | ||
| 					isl_multi_union_pw_aff_copy(mupa), div);
 | ||
| 		upa_i = isl_union_pw_aff_floor(upa_i);
 | ||
| 		v = isl_aff_get_coefficient_val(aff, isl_dim_div, i);
 | ||
| 		upa_i = isl_union_pw_aff_scale_val(upa_i, v);
 | ||
| 		upa = isl_union_pw_aff_add(upa, upa_i);
 | ||
| 	}
 | ||
| 
 | ||
| 	isl_multi_union_pw_aff_free(mupa);
 | ||
| 	isl_aff_free(aff);
 | ||
| 
 | ||
| 	return upa;
 | ||
| }
 | ||
| 
 | ||
| /* Apply "aff" to "mupa".  The space of "mupa" needs to be compatible
 | ||
|  * with the domain of "aff".
 | ||
|  * Furthermore, the dimension of this space needs to be greater than zero.
 | ||
|  * The result is defined over the shared domain of the elements of "mupa"
 | ||
|  *
 | ||
|  * We perform these checks and then hand over control to
 | ||
|  * multi_union_pw_aff_apply_aff.
 | ||
|  */
 | ||
| __isl_give isl_union_pw_aff *isl_multi_union_pw_aff_apply_aff(
 | ||
| 	__isl_take isl_multi_union_pw_aff *mupa, __isl_take isl_aff *aff)
 | ||
| {
 | ||
| 	isl_space *space1, *space2;
 | ||
| 	int equal;
 | ||
| 
 | ||
| 	mupa = isl_multi_union_pw_aff_align_params(mupa,
 | ||
| 						isl_aff_get_space(aff));
 | ||
| 	aff = isl_aff_align_params(aff, isl_multi_union_pw_aff_get_space(mupa));
 | ||
| 	if (!mupa || !aff)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	space1 = isl_multi_union_pw_aff_get_space(mupa);
 | ||
| 	space2 = isl_aff_get_domain_space(aff);
 | ||
| 	equal = isl_space_is_equal(space1, space2);
 | ||
| 	isl_space_free(space1);
 | ||
| 	isl_space_free(space2);
 | ||
| 	if (equal < 0)
 | ||
| 		goto error;
 | ||
| 	if (!equal)
 | ||
| 		isl_die(isl_aff_get_ctx(aff), isl_error_invalid,
 | ||
| 			"spaces don't match", goto error);
 | ||
| 	if (isl_aff_dim(aff, isl_dim_in) == 0)
 | ||
| 		isl_die(isl_aff_get_ctx(aff), isl_error_invalid,
 | ||
| 			"cannot determine domains", goto error);
 | ||
| 
 | ||
| 	return multi_union_pw_aff_apply_aff(mupa, aff);
 | ||
| error:
 | ||
| 	isl_multi_union_pw_aff_free(mupa);
 | ||
| 	isl_aff_free(aff);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Apply "ma" to "mupa".  The space of "mupa" needs to be compatible
 | ||
|  * with the domain of "ma".
 | ||
|  * Furthermore, the dimension of this space needs to be greater than zero,
 | ||
|  * unless the dimension of the target space of "ma" is also zero.
 | ||
|  * The result is defined over the shared domain of the elements of "mupa"
 | ||
|  */
 | ||
| __isl_give isl_multi_union_pw_aff *isl_multi_union_pw_aff_apply_multi_aff(
 | ||
| 	__isl_take isl_multi_union_pw_aff *mupa, __isl_take isl_multi_aff *ma)
 | ||
| {
 | ||
| 	isl_space *space1, *space2;
 | ||
| 	isl_multi_union_pw_aff *res;
 | ||
| 	int equal;
 | ||
| 	int i, n_out;
 | ||
| 
 | ||
| 	mupa = isl_multi_union_pw_aff_align_params(mupa,
 | ||
| 						isl_multi_aff_get_space(ma));
 | ||
| 	ma = isl_multi_aff_align_params(ma,
 | ||
| 					isl_multi_union_pw_aff_get_space(mupa));
 | ||
| 	if (!mupa || !ma)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	space1 = isl_multi_union_pw_aff_get_space(mupa);
 | ||
| 	space2 = isl_multi_aff_get_domain_space(ma);
 | ||
| 	equal = isl_space_is_equal(space1, space2);
 | ||
| 	isl_space_free(space1);
 | ||
| 	isl_space_free(space2);
 | ||
| 	if (equal < 0)
 | ||
| 		goto error;
 | ||
| 	if (!equal)
 | ||
| 		isl_die(isl_multi_aff_get_ctx(ma), isl_error_invalid,
 | ||
| 			"spaces don't match", goto error);
 | ||
| 	n_out = isl_multi_aff_dim(ma, isl_dim_out);
 | ||
| 	if (isl_multi_aff_dim(ma, isl_dim_in) == 0 && n_out != 0)
 | ||
| 		isl_die(isl_multi_aff_get_ctx(ma), isl_error_invalid,
 | ||
| 			"cannot determine domains", goto error);
 | ||
| 
 | ||
| 	space1 = isl_space_range(isl_multi_aff_get_space(ma));
 | ||
| 	res = isl_multi_union_pw_aff_alloc(space1);
 | ||
| 
 | ||
| 	for (i = 0; i < n_out; ++i) {
 | ||
| 		isl_aff *aff;
 | ||
| 		isl_union_pw_aff *upa;
 | ||
| 
 | ||
| 		aff = isl_multi_aff_get_aff(ma, i);
 | ||
| 		upa = multi_union_pw_aff_apply_aff(
 | ||
| 					isl_multi_union_pw_aff_copy(mupa), aff);
 | ||
| 		res = isl_multi_union_pw_aff_set_union_pw_aff(res, i, upa);
 | ||
| 	}
 | ||
| 
 | ||
| 	isl_multi_aff_free(ma);
 | ||
| 	isl_multi_union_pw_aff_free(mupa);
 | ||
| 	return res;
 | ||
| error:
 | ||
| 	isl_multi_union_pw_aff_free(mupa);
 | ||
| 	isl_multi_aff_free(ma);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Apply "pa" to "mupa".  The space of "mupa" needs to be compatible
 | ||
|  * with the domain of "pa".
 | ||
|  * Furthermore, the dimension of this space needs to be greater than zero.
 | ||
|  * The result is defined over the shared domain of the elements of "mupa"
 | ||
|  */
 | ||
| __isl_give isl_union_pw_aff *isl_multi_union_pw_aff_apply_pw_aff(
 | ||
| 	__isl_take isl_multi_union_pw_aff *mupa, __isl_take isl_pw_aff *pa)
 | ||
| {
 | ||
| 	int i;
 | ||
| 	int equal;
 | ||
| 	isl_space *space, *space2;
 | ||
| 	isl_union_pw_aff *upa;
 | ||
| 
 | ||
| 	mupa = isl_multi_union_pw_aff_align_params(mupa,
 | ||
| 						isl_pw_aff_get_space(pa));
 | ||
| 	pa = isl_pw_aff_align_params(pa,
 | ||
| 				    isl_multi_union_pw_aff_get_space(mupa));
 | ||
| 	if (!mupa || !pa)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	space = isl_multi_union_pw_aff_get_space(mupa);
 | ||
| 	space2 = isl_pw_aff_get_domain_space(pa);
 | ||
| 	equal = isl_space_is_equal(space, space2);
 | ||
| 	isl_space_free(space);
 | ||
| 	isl_space_free(space2);
 | ||
| 	if (equal < 0)
 | ||
| 		goto error;
 | ||
| 	if (!equal)
 | ||
| 		isl_die(isl_pw_aff_get_ctx(pa), isl_error_invalid,
 | ||
| 			"spaces don't match", goto error);
 | ||
| 	if (isl_pw_aff_dim(pa, isl_dim_in) == 0)
 | ||
| 		isl_die(isl_pw_aff_get_ctx(pa), isl_error_invalid,
 | ||
| 			"cannot determine domains", goto error);
 | ||
| 
 | ||
| 	space = isl_space_params(isl_multi_union_pw_aff_get_space(mupa));
 | ||
| 	upa = isl_union_pw_aff_empty(space);
 | ||
| 
 | ||
| 	for (i = 0; i < pa->n; ++i) {
 | ||
| 		isl_aff *aff;
 | ||
| 		isl_set *domain;
 | ||
| 		isl_multi_union_pw_aff *mupa_i;
 | ||
| 		isl_union_pw_aff *upa_i;
 | ||
| 
 | ||
| 		mupa_i = isl_multi_union_pw_aff_copy(mupa);
 | ||
| 		domain = isl_set_copy(pa->p[i].set);
 | ||
| 		mupa_i = isl_multi_union_pw_aff_intersect_range(mupa_i, domain);
 | ||
| 		aff = isl_aff_copy(pa->p[i].aff);
 | ||
| 		upa_i = multi_union_pw_aff_apply_aff(mupa_i, aff);
 | ||
| 		upa = isl_union_pw_aff_union_add(upa, upa_i);
 | ||
| 	}
 | ||
| 
 | ||
| 	isl_multi_union_pw_aff_free(mupa);
 | ||
| 	isl_pw_aff_free(pa);
 | ||
| 	return upa;
 | ||
| error:
 | ||
| 	isl_multi_union_pw_aff_free(mupa);
 | ||
| 	isl_pw_aff_free(pa);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Apply "pma" to "mupa".  The space of "mupa" needs to be compatible
 | ||
|  * with the domain of "pma".
 | ||
|  * Furthermore, the dimension of this space needs to be greater than zero,
 | ||
|  * unless the dimension of the target space of "pma" is also zero.
 | ||
|  * The result is defined over the shared domain of the elements of "mupa"
 | ||
|  */
 | ||
| __isl_give isl_multi_union_pw_aff *isl_multi_union_pw_aff_apply_pw_multi_aff(
 | ||
| 	__isl_take isl_multi_union_pw_aff *mupa,
 | ||
| 	__isl_take isl_pw_multi_aff *pma)
 | ||
| {
 | ||
| 	isl_space *space1, *space2;
 | ||
| 	isl_multi_union_pw_aff *res;
 | ||
| 	int equal;
 | ||
| 	int i, n_out;
 | ||
| 
 | ||
| 	mupa = isl_multi_union_pw_aff_align_params(mupa,
 | ||
| 					isl_pw_multi_aff_get_space(pma));
 | ||
| 	pma = isl_pw_multi_aff_align_params(pma,
 | ||
| 					isl_multi_union_pw_aff_get_space(mupa));
 | ||
| 	if (!mupa || !pma)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	space1 = isl_multi_union_pw_aff_get_space(mupa);
 | ||
| 	space2 = isl_pw_multi_aff_get_domain_space(pma);
 | ||
| 	equal = isl_space_is_equal(space1, space2);
 | ||
| 	isl_space_free(space1);
 | ||
| 	isl_space_free(space2);
 | ||
| 	if (equal < 0)
 | ||
| 		goto error;
 | ||
| 	if (!equal)
 | ||
| 		isl_die(isl_pw_multi_aff_get_ctx(pma), isl_error_invalid,
 | ||
| 			"spaces don't match", goto error);
 | ||
| 	n_out = isl_pw_multi_aff_dim(pma, isl_dim_out);
 | ||
| 	if (isl_pw_multi_aff_dim(pma, isl_dim_in) == 0 && n_out != 0)
 | ||
| 		isl_die(isl_pw_multi_aff_get_ctx(pma), isl_error_invalid,
 | ||
| 			"cannot determine domains", goto error);
 | ||
| 
 | ||
| 	space1 = isl_space_range(isl_pw_multi_aff_get_space(pma));
 | ||
| 	res = isl_multi_union_pw_aff_alloc(space1);
 | ||
| 
 | ||
| 	for (i = 0; i < n_out; ++i) {
 | ||
| 		isl_pw_aff *pa;
 | ||
| 		isl_union_pw_aff *upa;
 | ||
| 
 | ||
| 		pa = isl_pw_multi_aff_get_pw_aff(pma, i);
 | ||
| 		upa = isl_multi_union_pw_aff_apply_pw_aff(
 | ||
| 					isl_multi_union_pw_aff_copy(mupa), pa);
 | ||
| 		res = isl_multi_union_pw_aff_set_union_pw_aff(res, i, upa);
 | ||
| 	}
 | ||
| 
 | ||
| 	isl_pw_multi_aff_free(pma);
 | ||
| 	isl_multi_union_pw_aff_free(mupa);
 | ||
| 	return res;
 | ||
| error:
 | ||
| 	isl_multi_union_pw_aff_free(mupa);
 | ||
| 	isl_pw_multi_aff_free(pma);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Compute the pullback of "mupa" by the function represented by "upma".
 | ||
|  * In other words, plug in "upma" in "mupa".  The result contains
 | ||
|  * expressions defined over the domain space of "upma".
 | ||
|  *
 | ||
|  * Run over all elements of "mupa" and plug in "upma" in each of them.
 | ||
|  */
 | ||
| __isl_give isl_multi_union_pw_aff *
 | ||
| isl_multi_union_pw_aff_pullback_union_pw_multi_aff(
 | ||
| 	__isl_take isl_multi_union_pw_aff *mupa,
 | ||
| 	__isl_take isl_union_pw_multi_aff *upma)
 | ||
| {
 | ||
| 	int i, n;
 | ||
| 
 | ||
| 	mupa = isl_multi_union_pw_aff_align_params(mupa,
 | ||
| 				    isl_union_pw_multi_aff_get_space(upma));
 | ||
| 	upma = isl_union_pw_multi_aff_align_params(upma,
 | ||
| 				    isl_multi_union_pw_aff_get_space(mupa));
 | ||
| 	if (!mupa || !upma)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	n = isl_multi_union_pw_aff_dim(mupa, isl_dim_set);
 | ||
| 	for (i = 0; i < n; ++i) {
 | ||
| 		isl_union_pw_aff *upa;
 | ||
| 
 | ||
| 		upa = isl_multi_union_pw_aff_get_union_pw_aff(mupa, i);
 | ||
| 		upa = isl_union_pw_aff_pullback_union_pw_multi_aff(upa,
 | ||
| 					    isl_union_pw_multi_aff_copy(upma));
 | ||
| 		mupa = isl_multi_union_pw_aff_set_union_pw_aff(mupa, i, upa);
 | ||
| 	}
 | ||
| 
 | ||
| 	isl_union_pw_multi_aff_free(upma);
 | ||
| 	return mupa;
 | ||
| error:
 | ||
| 	isl_multi_union_pw_aff_free(mupa);
 | ||
| 	isl_union_pw_multi_aff_free(upma);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Extract the sequence of elements in "mupa" with domain space "space"
 | ||
|  * (ignoring parameters).
 | ||
|  *
 | ||
|  * For the elements of "mupa" that are not defined on the specified space,
 | ||
|  * the corresponding element in the result is empty.
 | ||
|  */
 | ||
| __isl_give isl_multi_pw_aff *isl_multi_union_pw_aff_extract_multi_pw_aff(
 | ||
| 	__isl_keep isl_multi_union_pw_aff *mupa, __isl_take isl_space *space)
 | ||
| {
 | ||
| 	int i, n;
 | ||
| 	isl_bool equal_params;
 | ||
| 	isl_space *space_mpa = NULL;
 | ||
| 	isl_multi_pw_aff *mpa;
 | ||
| 
 | ||
| 	if (!mupa || !space)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	space_mpa = isl_multi_union_pw_aff_get_space(mupa);
 | ||
| 	equal_params = isl_space_has_equal_params(space_mpa, space);
 | ||
| 	if (equal_params < 0)
 | ||
| 		goto error;
 | ||
| 	if (!equal_params) {
 | ||
| 		space = isl_space_drop_dims(space, isl_dim_param,
 | ||
| 					0, isl_space_dim(space, isl_dim_param));
 | ||
| 		space = isl_space_align_params(space,
 | ||
| 					isl_space_copy(space_mpa));
 | ||
| 		if (!space)
 | ||
| 			goto error;
 | ||
| 	}
 | ||
| 	space_mpa = isl_space_map_from_domain_and_range(isl_space_copy(space),
 | ||
| 							space_mpa);
 | ||
| 	mpa = isl_multi_pw_aff_alloc(space_mpa);
 | ||
| 
 | ||
| 	space = isl_space_from_domain(space);
 | ||
| 	space = isl_space_add_dims(space, isl_dim_out, 1);
 | ||
| 	n = isl_multi_union_pw_aff_dim(mupa, isl_dim_set);
 | ||
| 	for (i = 0; i < n; ++i) {
 | ||
| 		isl_union_pw_aff *upa;
 | ||
| 		isl_pw_aff *pa;
 | ||
| 
 | ||
| 		upa = isl_multi_union_pw_aff_get_union_pw_aff(mupa, i);
 | ||
| 		pa = isl_union_pw_aff_extract_pw_aff(upa,
 | ||
| 							isl_space_copy(space));
 | ||
| 		mpa = isl_multi_pw_aff_set_pw_aff(mpa, i, pa);
 | ||
| 		isl_union_pw_aff_free(upa);
 | ||
| 	}
 | ||
| 
 | ||
| 	isl_space_free(space);
 | ||
| 	return mpa;
 | ||
| error:
 | ||
| 	isl_space_free(space_mpa);
 | ||
| 	isl_space_free(space);
 | ||
| 	return NULL;
 | ||
| }
 |