2490 lines
		
	
	
		
			71 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			2490 lines
		
	
	
		
			71 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | ||
|  * Copyright 2012-2014 Ecole Normale Superieure
 | ||
|  * Copyright 2014      INRIA Rocquencourt
 | ||
|  *
 | ||
|  * Use of this software is governed by the MIT license
 | ||
|  *
 | ||
|  * Written by Sven Verdoolaege,
 | ||
|  * Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
 | ||
|  * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
 | ||
|  * B.P. 105 - 78153 Le Chesnay, France
 | ||
|  */
 | ||
| 
 | ||
| #include <isl/constraint.h>
 | ||
| #include <isl/ilp.h>
 | ||
| #include <isl_ast_build_expr.h>
 | ||
| #include <isl_ast_private.h>
 | ||
| #include <isl_ast_build_private.h>
 | ||
| #include <isl_sort.h>
 | ||
| 
 | ||
| /* Compute the "opposite" of the (numerator of the) argument of a div
 | ||
|  * with denominator "d".
 | ||
|  *
 | ||
|  * In particular, compute
 | ||
|  *
 | ||
|  *	-aff + (d - 1)
 | ||
|  */
 | ||
| static __isl_give isl_aff *oppose_div_arg(__isl_take isl_aff *aff,
 | ||
| 	__isl_take isl_val *d)
 | ||
| {
 | ||
| 	aff = isl_aff_neg(aff);
 | ||
| 	aff = isl_aff_add_constant_val(aff, d);
 | ||
| 	aff = isl_aff_add_constant_si(aff, -1);
 | ||
| 
 | ||
| 	return aff;
 | ||
| }
 | ||
| 
 | ||
| /* Internal data structure used inside isl_ast_expr_add_term.
 | ||
|  * The domain of "build" is used to simplify the expressions.
 | ||
|  * "build" needs to be set by the caller of isl_ast_expr_add_term.
 | ||
|  * "cst" is the constant term of the expression in which the added term
 | ||
|  * appears.  It may be modified by isl_ast_expr_add_term.
 | ||
|  *
 | ||
|  * "v" is the coefficient of the term that is being constructed and
 | ||
|  * is set internally by isl_ast_expr_add_term.
 | ||
|  */
 | ||
| struct isl_ast_add_term_data {
 | ||
| 	isl_ast_build *build;
 | ||
| 	isl_val *cst;
 | ||
| 	isl_val *v;
 | ||
| };
 | ||
| 
 | ||
| /* Given the numerator "aff" of the argument of an integer division
 | ||
|  * with denominator "d", check if it can be made non-negative over
 | ||
|  * data->build->domain by stealing part of the constant term of
 | ||
|  * the expression in which the integer division appears.
 | ||
|  *
 | ||
|  * In particular, the outer expression is of the form
 | ||
|  *
 | ||
|  *	v * floor(aff/d) + cst
 | ||
|  *
 | ||
|  * We already know that "aff" itself may attain negative values.
 | ||
|  * Here we check if aff + d*floor(cst/v) is non-negative, such
 | ||
|  * that we could rewrite the expression to
 | ||
|  *
 | ||
|  *	v * floor((aff + d*floor(cst/v))/d) + cst - v*floor(cst/v)
 | ||
|  *
 | ||
|  * Note that aff + d*floor(cst/v) can only possibly be non-negative
 | ||
|  * if data->cst and data->v have the same sign.
 | ||
|  * Similarly, if floor(cst/v) is zero, then there is no point in
 | ||
|  * checking again.
 | ||
|  */
 | ||
| static int is_non_neg_after_stealing(__isl_keep isl_aff *aff,
 | ||
| 	__isl_keep isl_val *d, struct isl_ast_add_term_data *data)
 | ||
| {
 | ||
| 	isl_aff *shifted;
 | ||
| 	isl_val *shift;
 | ||
| 	int is_zero;
 | ||
| 	int non_neg;
 | ||
| 
 | ||
| 	if (isl_val_sgn(data->cst) != isl_val_sgn(data->v))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	shift = isl_val_div(isl_val_copy(data->cst), isl_val_copy(data->v));
 | ||
| 	shift = isl_val_floor(shift);
 | ||
| 	is_zero = isl_val_is_zero(shift);
 | ||
| 	if (is_zero < 0 || is_zero) {
 | ||
| 		isl_val_free(shift);
 | ||
| 		return is_zero < 0 ? -1 : 0;
 | ||
| 	}
 | ||
| 	shift = isl_val_mul(shift, isl_val_copy(d));
 | ||
| 	shifted = isl_aff_copy(aff);
 | ||
| 	shifted = isl_aff_add_constant_val(shifted, shift);
 | ||
| 	non_neg = isl_ast_build_aff_is_nonneg(data->build, shifted);
 | ||
| 	isl_aff_free(shifted);
 | ||
| 
 | ||
| 	return non_neg;
 | ||
| }
 | ||
| 
 | ||
| /* Given the numerator "aff' of the argument of an integer division
 | ||
|  * with denominator "d", steal part of the constant term of
 | ||
|  * the expression in which the integer division appears to make it
 | ||
|  * non-negative over data->build->domain.
 | ||
|  *
 | ||
|  * In particular, the outer expression is of the form
 | ||
|  *
 | ||
|  *	v * floor(aff/d) + cst
 | ||
|  *
 | ||
|  * We know that "aff" itself may attain negative values,
 | ||
|  * but that aff + d*floor(cst/v) is non-negative.
 | ||
|  * Find the minimal positive value that we need to add to "aff"
 | ||
|  * to make it positive and adjust data->cst accordingly.
 | ||
|  * That is, compute the minimal value "m" of "aff" over
 | ||
|  * data->build->domain and take
 | ||
|  *
 | ||
|  *	s = ceil(m/d)
 | ||
|  *
 | ||
|  * such that
 | ||
|  *
 | ||
|  *	aff + d * s >= 0
 | ||
|  *
 | ||
|  * and rewrite the expression to
 | ||
|  *
 | ||
|  *	v * floor((aff + s*d)/d) + (cst - v*s)
 | ||
|  */
 | ||
| static __isl_give isl_aff *steal_from_cst(__isl_take isl_aff *aff,
 | ||
| 	__isl_keep isl_val *d, struct isl_ast_add_term_data *data)
 | ||
| {
 | ||
| 	isl_set *domain;
 | ||
| 	isl_val *shift, *t;
 | ||
| 
 | ||
| 	domain = isl_ast_build_get_domain(data->build);
 | ||
| 	shift = isl_set_min_val(domain, aff);
 | ||
| 	isl_set_free(domain);
 | ||
| 
 | ||
| 	shift = isl_val_neg(shift);
 | ||
| 	shift = isl_val_div(shift, isl_val_copy(d));
 | ||
| 	shift = isl_val_ceil(shift);
 | ||
| 
 | ||
| 	t = isl_val_copy(shift);
 | ||
| 	t = isl_val_mul(t, isl_val_copy(data->v));
 | ||
| 	data->cst = isl_val_sub(data->cst, t);
 | ||
| 
 | ||
| 	shift = isl_val_mul(shift, isl_val_copy(d));
 | ||
| 	return isl_aff_add_constant_val(aff, shift);
 | ||
| }
 | ||
| 
 | ||
| /* Create an isl_ast_expr evaluating the div at position "pos" in "ls".
 | ||
|  * The result is simplified in terms of data->build->domain.
 | ||
|  * This function may change (the sign of) data->v.
 | ||
|  *
 | ||
|  * "ls" is known to be non-NULL.
 | ||
|  *
 | ||
|  * Let the div be of the form floor(e/d).
 | ||
|  * If the ast_build_prefer_pdiv option is set then we check if "e"
 | ||
|  * is non-negative, so that we can generate
 | ||
|  *
 | ||
|  *	(pdiv_q, expr(e), expr(d))
 | ||
|  *
 | ||
|  * instead of
 | ||
|  *
 | ||
|  *	(fdiv_q, expr(e), expr(d))
 | ||
|  *
 | ||
|  * If the ast_build_prefer_pdiv option is set and
 | ||
|  * if "e" is not non-negative, then we check if "-e + d - 1" is non-negative.
 | ||
|  * If so, we can rewrite
 | ||
|  *
 | ||
|  *	floor(e/d) = -ceil(-e/d) = -floor((-e + d - 1)/d)
 | ||
|  *
 | ||
|  * and still use pdiv_q, while changing the sign of data->v.
 | ||
|  *
 | ||
|  * Otherwise, we check if
 | ||
|  *
 | ||
|  *	e + d*floor(cst/v)
 | ||
|  *
 | ||
|  * is non-negative and if so, replace floor(e/d) by
 | ||
|  *
 | ||
|  *	floor((e + s*d)/d) - s
 | ||
|  *
 | ||
|  * with s the minimal shift that makes the argument non-negative.
 | ||
|  */
 | ||
| static __isl_give isl_ast_expr *var_div(struct isl_ast_add_term_data *data,
 | ||
| 	__isl_keep isl_local_space *ls, int pos)
 | ||
| {
 | ||
| 	isl_ctx *ctx = isl_local_space_get_ctx(ls);
 | ||
| 	isl_aff *aff;
 | ||
| 	isl_ast_expr *num, *den;
 | ||
| 	isl_val *d;
 | ||
| 	enum isl_ast_op_type type;
 | ||
| 
 | ||
| 	aff = isl_local_space_get_div(ls, pos);
 | ||
| 	d = isl_aff_get_denominator_val(aff);
 | ||
| 	aff = isl_aff_scale_val(aff, isl_val_copy(d));
 | ||
| 	den = isl_ast_expr_from_val(isl_val_copy(d));
 | ||
| 
 | ||
| 	type = isl_ast_op_fdiv_q;
 | ||
| 	if (isl_options_get_ast_build_prefer_pdiv(ctx)) {
 | ||
| 		int non_neg = isl_ast_build_aff_is_nonneg(data->build, aff);
 | ||
| 		if (non_neg >= 0 && !non_neg) {
 | ||
| 			isl_aff *opp = oppose_div_arg(isl_aff_copy(aff),
 | ||
| 							isl_val_copy(d));
 | ||
| 			non_neg = isl_ast_build_aff_is_nonneg(data->build, opp);
 | ||
| 			if (non_neg >= 0 && non_neg) {
 | ||
| 				data->v = isl_val_neg(data->v);
 | ||
| 				isl_aff_free(aff);
 | ||
| 				aff = opp;
 | ||
| 			} else
 | ||
| 				isl_aff_free(opp);
 | ||
| 		}
 | ||
| 		if (non_neg >= 0 && !non_neg) {
 | ||
| 			non_neg = is_non_neg_after_stealing(aff, d, data);
 | ||
| 			if (non_neg >= 0 && non_neg)
 | ||
| 				aff = steal_from_cst(aff, d, data);
 | ||
| 		}
 | ||
| 		if (non_neg < 0)
 | ||
| 			aff = isl_aff_free(aff);
 | ||
| 		else if (non_neg)
 | ||
| 			type = isl_ast_op_pdiv_q;
 | ||
| 	}
 | ||
| 
 | ||
| 	isl_val_free(d);
 | ||
| 	num = isl_ast_expr_from_aff(aff, data->build);
 | ||
| 	return isl_ast_expr_alloc_binary(type, num, den);
 | ||
| }
 | ||
| 
 | ||
| /* Create an isl_ast_expr evaluating the specified dimension of "ls".
 | ||
|  * The result is simplified in terms of data->build->domain.
 | ||
|  * This function may change (the sign of) data->v.
 | ||
|  *
 | ||
|  * The isl_ast_expr is constructed based on the type of the dimension.
 | ||
|  * - divs are constructed by var_div
 | ||
|  * - set variables are constructed from the iterator isl_ids in data->build
 | ||
|  * - parameters are constructed from the isl_ids in "ls"
 | ||
|  */
 | ||
| static __isl_give isl_ast_expr *var(struct isl_ast_add_term_data *data,
 | ||
| 	__isl_keep isl_local_space *ls, enum isl_dim_type type, int pos)
 | ||
| {
 | ||
| 	isl_ctx *ctx = isl_local_space_get_ctx(ls);
 | ||
| 	isl_id *id;
 | ||
| 
 | ||
| 	if (type == isl_dim_div)
 | ||
| 		return var_div(data, ls, pos);
 | ||
| 
 | ||
| 	if (type == isl_dim_set) {
 | ||
| 		id = isl_ast_build_get_iterator_id(data->build, pos);
 | ||
| 		return isl_ast_expr_from_id(id);
 | ||
| 	}
 | ||
| 
 | ||
| 	if (!isl_local_space_has_dim_id(ls, type, pos))
 | ||
| 		isl_die(ctx, isl_error_internal, "unnamed dimension",
 | ||
| 			return NULL);
 | ||
| 	id = isl_local_space_get_dim_id(ls, type, pos);
 | ||
| 	return isl_ast_expr_from_id(id);
 | ||
| }
 | ||
| 
 | ||
| /* Does "expr" represent the zero integer?
 | ||
|  */
 | ||
| static int ast_expr_is_zero(__isl_keep isl_ast_expr *expr)
 | ||
| {
 | ||
| 	if (!expr)
 | ||
| 		return -1;
 | ||
| 	if (expr->type != isl_ast_expr_int)
 | ||
| 		return 0;
 | ||
| 	return isl_val_is_zero(expr->u.v);
 | ||
| }
 | ||
| 
 | ||
| /* Create an expression representing the sum of "expr1" and "expr2",
 | ||
|  * provided neither of the two expressions is identically zero.
 | ||
|  */
 | ||
| static __isl_give isl_ast_expr *ast_expr_add(__isl_take isl_ast_expr *expr1,
 | ||
| 	__isl_take isl_ast_expr *expr2)
 | ||
| {
 | ||
| 	if (!expr1 || !expr2)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	if (ast_expr_is_zero(expr1)) {
 | ||
| 		isl_ast_expr_free(expr1);
 | ||
| 		return expr2;
 | ||
| 	}
 | ||
| 
 | ||
| 	if (ast_expr_is_zero(expr2)) {
 | ||
| 		isl_ast_expr_free(expr2);
 | ||
| 		return expr1;
 | ||
| 	}
 | ||
| 
 | ||
| 	return isl_ast_expr_add(expr1, expr2);
 | ||
| error:
 | ||
| 	isl_ast_expr_free(expr1);
 | ||
| 	isl_ast_expr_free(expr2);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Subtract expr2 from expr1.
 | ||
|  *
 | ||
|  * If expr2 is zero, we simply return expr1.
 | ||
|  * If expr1 is zero, we return
 | ||
|  *
 | ||
|  *	(isl_ast_op_minus, expr2)
 | ||
|  *
 | ||
|  * Otherwise, we return
 | ||
|  *
 | ||
|  *	(isl_ast_op_sub, expr1, expr2)
 | ||
|  */
 | ||
| static __isl_give isl_ast_expr *ast_expr_sub(__isl_take isl_ast_expr *expr1,
 | ||
| 	__isl_take isl_ast_expr *expr2)
 | ||
| {
 | ||
| 	if (!expr1 || !expr2)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	if (ast_expr_is_zero(expr2)) {
 | ||
| 		isl_ast_expr_free(expr2);
 | ||
| 		return expr1;
 | ||
| 	}
 | ||
| 
 | ||
| 	if (ast_expr_is_zero(expr1)) {
 | ||
| 		isl_ast_expr_free(expr1);
 | ||
| 		return isl_ast_expr_neg(expr2);
 | ||
| 	}
 | ||
| 
 | ||
| 	return isl_ast_expr_sub(expr1, expr2);
 | ||
| error:
 | ||
| 	isl_ast_expr_free(expr1);
 | ||
| 	isl_ast_expr_free(expr2);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Return an isl_ast_expr that represents
 | ||
|  *
 | ||
|  *	v * (aff mod d)
 | ||
|  *
 | ||
|  * v is assumed to be non-negative.
 | ||
|  * The result is simplified in terms of build->domain.
 | ||
|  */
 | ||
| static __isl_give isl_ast_expr *isl_ast_expr_mod(__isl_keep isl_val *v,
 | ||
| 	__isl_keep isl_aff *aff, __isl_keep isl_val *d,
 | ||
| 	__isl_keep isl_ast_build *build)
 | ||
| {
 | ||
| 	isl_ast_expr *expr;
 | ||
| 	isl_ast_expr *c;
 | ||
| 
 | ||
| 	if (!aff)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	expr = isl_ast_expr_from_aff(isl_aff_copy(aff), build);
 | ||
| 
 | ||
| 	c = isl_ast_expr_from_val(isl_val_copy(d));
 | ||
| 	expr = isl_ast_expr_alloc_binary(isl_ast_op_pdiv_r, expr, c);
 | ||
| 
 | ||
| 	if (!isl_val_is_one(v)) {
 | ||
| 		c = isl_ast_expr_from_val(isl_val_copy(v));
 | ||
| 		expr = isl_ast_expr_mul(c, expr);
 | ||
| 	}
 | ||
| 
 | ||
| 	return expr;
 | ||
| }
 | ||
| 
 | ||
| /* Create an isl_ast_expr that scales "expr" by "v".
 | ||
|  *
 | ||
|  * If v is 1, we simply return expr.
 | ||
|  * If v is -1, we return
 | ||
|  *
 | ||
|  *	(isl_ast_op_minus, expr)
 | ||
|  *
 | ||
|  * Otherwise, we return
 | ||
|  *
 | ||
|  *	(isl_ast_op_mul, expr(v), expr)
 | ||
|  */
 | ||
| static __isl_give isl_ast_expr *scale(__isl_take isl_ast_expr *expr,
 | ||
| 	__isl_take isl_val *v)
 | ||
| {
 | ||
| 	isl_ast_expr *c;
 | ||
| 
 | ||
| 	if (!expr || !v)
 | ||
| 		goto error;
 | ||
| 	if (isl_val_is_one(v)) {
 | ||
| 		isl_val_free(v);
 | ||
| 		return expr;
 | ||
| 	}
 | ||
| 
 | ||
| 	if (isl_val_is_negone(v)) {
 | ||
| 		isl_val_free(v);
 | ||
| 		expr = isl_ast_expr_neg(expr);
 | ||
| 	} else {
 | ||
| 		c = isl_ast_expr_from_val(v);
 | ||
| 		expr = isl_ast_expr_mul(c, expr);
 | ||
| 	}
 | ||
| 
 | ||
| 	return expr;
 | ||
| error:
 | ||
| 	isl_val_free(v);
 | ||
| 	isl_ast_expr_free(expr);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Add an expression for "*v" times the specified dimension of "ls"
 | ||
|  * to expr.
 | ||
|  * If the dimension is an integer division, then this function
 | ||
|  * may modify data->cst in order to make the numerator non-negative.
 | ||
|  * The result is simplified in terms of data->build->domain.
 | ||
|  *
 | ||
|  * Let e be the expression for the specified dimension,
 | ||
|  * multiplied by the absolute value of "*v".
 | ||
|  * If "*v" is negative, we create
 | ||
|  *
 | ||
|  *	(isl_ast_op_sub, expr, e)
 | ||
|  *
 | ||
|  * except when expr is trivially zero, in which case we create
 | ||
|  *
 | ||
|  *	(isl_ast_op_minus, e)
 | ||
|  *
 | ||
|  * instead.
 | ||
|  *
 | ||
|  * If "*v" is positive, we simply create
 | ||
|  *
 | ||
|  *	(isl_ast_op_add, expr, e)
 | ||
|  *
 | ||
|  */
 | ||
| static __isl_give isl_ast_expr *isl_ast_expr_add_term(
 | ||
| 	__isl_take isl_ast_expr *expr,
 | ||
| 	__isl_keep isl_local_space *ls, enum isl_dim_type type, int pos,
 | ||
| 	__isl_take isl_val *v, struct isl_ast_add_term_data *data)
 | ||
| {
 | ||
| 	isl_ast_expr *term;
 | ||
| 
 | ||
| 	if (!expr)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	data->v = v;
 | ||
| 	term = var(data, ls, type, pos);
 | ||
| 	v = data->v;
 | ||
| 
 | ||
| 	if (isl_val_is_neg(v) && !ast_expr_is_zero(expr)) {
 | ||
| 		v = isl_val_neg(v);
 | ||
| 		term = scale(term, v);
 | ||
| 		return ast_expr_sub(expr, term);
 | ||
| 	} else {
 | ||
| 		term = scale(term, v);
 | ||
| 		return ast_expr_add(expr, term);
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| /* Add an expression for "v" to expr.
 | ||
|  */
 | ||
| static __isl_give isl_ast_expr *isl_ast_expr_add_int(
 | ||
| 	__isl_take isl_ast_expr *expr, __isl_take isl_val *v)
 | ||
| {
 | ||
| 	isl_ast_expr *expr_int;
 | ||
| 
 | ||
| 	if (!expr || !v)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	if (isl_val_is_zero(v)) {
 | ||
| 		isl_val_free(v);
 | ||
| 		return expr;
 | ||
| 	}
 | ||
| 
 | ||
| 	if (isl_val_is_neg(v) && !ast_expr_is_zero(expr)) {
 | ||
| 		v = isl_val_neg(v);
 | ||
| 		expr_int = isl_ast_expr_from_val(v);
 | ||
| 		return ast_expr_sub(expr, expr_int);
 | ||
| 	} else {
 | ||
| 		expr_int = isl_ast_expr_from_val(v);
 | ||
| 		return ast_expr_add(expr, expr_int);
 | ||
| 	}
 | ||
| error:
 | ||
| 	isl_ast_expr_free(expr);
 | ||
| 	isl_val_free(v);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Internal data structure used inside extract_modulos.
 | ||
|  *
 | ||
|  * If any modulo expressions are detected in "aff", then the
 | ||
|  * expression is removed from "aff" and added to either "pos" or "neg"
 | ||
|  * depending on the sign of the coefficient of the modulo expression
 | ||
|  * inside "aff".
 | ||
|  *
 | ||
|  * "add" is an expression that needs to be added to "aff" at the end of
 | ||
|  * the computation.  It is NULL as long as no modulos have been extracted.
 | ||
|  *
 | ||
|  * "i" is the position in "aff" of the div under investigation
 | ||
|  * "v" is the coefficient in "aff" of the div
 | ||
|  * "div" is the argument of the div, with the denominator removed
 | ||
|  * "d" is the original denominator of the argument of the div
 | ||
|  *
 | ||
|  * "nonneg" is an affine expression that is non-negative over "build"
 | ||
|  * and that can be used to extract a modulo expression from "div".
 | ||
|  * In particular, if "sign" is 1, then the coefficients of "nonneg"
 | ||
|  * are equal to those of "div" modulo "d".  If "sign" is -1, then
 | ||
|  * the coefficients of "nonneg" are opposite to those of "div" modulo "d".
 | ||
|  * If "sign" is 0, then no such affine expression has been found (yet).
 | ||
|  */
 | ||
| struct isl_extract_mod_data {
 | ||
| 	isl_ast_build *build;
 | ||
| 	isl_aff *aff;
 | ||
| 
 | ||
| 	isl_ast_expr *pos;
 | ||
| 	isl_ast_expr *neg;
 | ||
| 
 | ||
| 	isl_aff *add;
 | ||
| 
 | ||
| 	int i;
 | ||
| 	isl_val *v;
 | ||
| 	isl_val *d;
 | ||
| 	isl_aff *div;
 | ||
| 
 | ||
| 	isl_aff *nonneg;
 | ||
| 	int sign;
 | ||
| };
 | ||
| 
 | ||
| /* Given that data->v * div_i in data->aff is equal to
 | ||
|  *
 | ||
|  *	f * (term - (arg mod d))
 | ||
|  *
 | ||
|  * with data->d * f = data->v, add
 | ||
|  *
 | ||
|  *	f * term
 | ||
|  *
 | ||
|  * to data->add and
 | ||
|  *
 | ||
|  *	abs(f) * (arg mod d)
 | ||
|  *
 | ||
|  * to data->neg or data->pos depending on the sign of -f.
 | ||
|  */
 | ||
| static int extract_term_and_mod(struct isl_extract_mod_data *data,
 | ||
| 	__isl_take isl_aff *term, __isl_take isl_aff *arg)
 | ||
| {
 | ||
| 	isl_ast_expr *expr;
 | ||
| 	int s;
 | ||
| 
 | ||
| 	data->v = isl_val_div(data->v, isl_val_copy(data->d));
 | ||
| 	s = isl_val_sgn(data->v);
 | ||
| 	data->v = isl_val_abs(data->v);
 | ||
| 	expr = isl_ast_expr_mod(data->v, arg, data->d, data->build);
 | ||
| 	isl_aff_free(arg);
 | ||
| 	if (s > 0)
 | ||
| 		data->neg = ast_expr_add(data->neg, expr);
 | ||
| 	else
 | ||
| 		data->pos = ast_expr_add(data->pos, expr);
 | ||
| 	data->aff = isl_aff_set_coefficient_si(data->aff,
 | ||
| 						isl_dim_div, data->i, 0);
 | ||
| 	if (s < 0)
 | ||
| 		data->v = isl_val_neg(data->v);
 | ||
| 	term = isl_aff_scale_val(term, isl_val_copy(data->v));
 | ||
| 
 | ||
| 	if (!data->add)
 | ||
| 		data->add = term;
 | ||
| 	else
 | ||
| 		data->add = isl_aff_add(data->add, term);
 | ||
| 	if (!data->add)
 | ||
| 		return -1;
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| /* Given that data->v * div_i in data->aff is of the form
 | ||
|  *
 | ||
|  *	f * d * floor(div/d)
 | ||
|  *
 | ||
|  * with div nonnegative on data->build, rewrite it as
 | ||
|  *
 | ||
|  *	f * (div - (div mod d)) = f * div - f * (div mod d)
 | ||
|  *
 | ||
|  * and add
 | ||
|  *
 | ||
|  *	f * div
 | ||
|  *
 | ||
|  * to data->add and
 | ||
|  *
 | ||
|  *	abs(f) * (div mod d)
 | ||
|  *
 | ||
|  * to data->neg or data->pos depending on the sign of -f.
 | ||
|  */
 | ||
| static int extract_mod(struct isl_extract_mod_data *data)
 | ||
| {
 | ||
| 	return extract_term_and_mod(data, isl_aff_copy(data->div),
 | ||
| 			isl_aff_copy(data->div));
 | ||
| }
 | ||
| 
 | ||
| /* Given that data->v * div_i in data->aff is of the form
 | ||
|  *
 | ||
|  *	f * d * floor(div/d)					(1)
 | ||
|  *
 | ||
|  * check if div is non-negative on data->build and, if so,
 | ||
|  * extract the corresponding modulo from data->aff.
 | ||
|  * If not, then check if
 | ||
|  *
 | ||
|  *	-div + d - 1
 | ||
|  *
 | ||
|  * is non-negative on data->build.  If so, replace (1) by
 | ||
|  *
 | ||
|  *	-f * d * floor((-div + d - 1)/d)
 | ||
|  *
 | ||
|  * and extract the corresponding modulo from data->aff.
 | ||
|  *
 | ||
|  * This function may modify data->div.
 | ||
|  */
 | ||
| static int extract_nonneg_mod(struct isl_extract_mod_data *data)
 | ||
| {
 | ||
| 	int mod;
 | ||
| 
 | ||
| 	mod = isl_ast_build_aff_is_nonneg(data->build, data->div);
 | ||
| 	if (mod < 0)
 | ||
| 		goto error;
 | ||
| 	if (mod)
 | ||
| 		return extract_mod(data);
 | ||
| 
 | ||
| 	data->div = oppose_div_arg(data->div, isl_val_copy(data->d));
 | ||
| 	mod = isl_ast_build_aff_is_nonneg(data->build, data->div);
 | ||
| 	if (mod < 0)
 | ||
| 		goto error;
 | ||
| 	if (mod) {
 | ||
| 		data->v = isl_val_neg(data->v);
 | ||
| 		return extract_mod(data);
 | ||
| 	}
 | ||
| 
 | ||
| 	return 0;
 | ||
| error:
 | ||
| 	data->aff = isl_aff_free(data->aff);
 | ||
| 	return -1;
 | ||
| }
 | ||
| 
 | ||
| /* Is the affine expression of constraint "c" "simpler" than data->nonneg
 | ||
|  * for use in extracting a modulo expression?
 | ||
|  *
 | ||
|  * We currently only consider the constant term of the affine expression.
 | ||
|  * In particular, we prefer the affine expression with the smallest constant
 | ||
|  * term.
 | ||
|  * This means that if there are two constraints, say x >= 0 and -x + 10 >= 0,
 | ||
|  * then we would pick x >= 0
 | ||
|  *
 | ||
|  * More detailed heuristics could be used if it turns out that there is a need.
 | ||
|  */
 | ||
| static int mod_constraint_is_simpler(struct isl_extract_mod_data *data,
 | ||
| 	__isl_keep isl_constraint *c)
 | ||
| {
 | ||
| 	isl_val *v1, *v2;
 | ||
| 	int simpler;
 | ||
| 
 | ||
| 	if (!data->nonneg)
 | ||
| 		return 1;
 | ||
| 
 | ||
| 	v1 = isl_val_abs(isl_constraint_get_constant_val(c));
 | ||
| 	v2 = isl_val_abs(isl_aff_get_constant_val(data->nonneg));
 | ||
| 	simpler = isl_val_lt(v1, v2);
 | ||
| 	isl_val_free(v1);
 | ||
| 	isl_val_free(v2);
 | ||
| 
 | ||
| 	return simpler;
 | ||
| }
 | ||
| 
 | ||
| /* Check if the coefficients of "c" are either equal or opposite to those
 | ||
|  * of data->div modulo data->d.  If so, and if "c" is "simpler" than
 | ||
|  * data->nonneg, then replace data->nonneg by the affine expression of "c"
 | ||
|  * and set data->sign accordingly.
 | ||
|  *
 | ||
|  * Both "c" and data->div are assumed not to involve any integer divisions.
 | ||
|  *
 | ||
|  * Before we start the actual comparison, we first quickly check if
 | ||
|  * "c" and data->div have the same non-zero coefficients.
 | ||
|  * If not, then we assume that "c" is not of the desired form.
 | ||
|  * Note that while the coefficients of data->div can be reasonably expected
 | ||
|  * not to involve any coefficients that are multiples of d, "c" may
 | ||
|  * very well involve such coefficients.  This means that we may actually
 | ||
|  * miss some cases.
 | ||
|  *
 | ||
|  * If the constant term is "too large", then the constraint is rejected,
 | ||
|  * where "too large" is fairly arbitrarily set to 1 << 15.
 | ||
|  * We do this to avoid picking up constraints that bound a variable
 | ||
|  * by a very large number, say the largest or smallest possible
 | ||
|  * variable in the representation of some integer type.
 | ||
|  */
 | ||
| static isl_stat check_parallel_or_opposite(__isl_take isl_constraint *c,
 | ||
| 	void *user)
 | ||
| {
 | ||
| 	struct isl_extract_mod_data *data = user;
 | ||
| 	enum isl_dim_type c_type[2] = { isl_dim_param, isl_dim_set };
 | ||
| 	enum isl_dim_type a_type[2] = { isl_dim_param, isl_dim_in };
 | ||
| 	int i, t;
 | ||
| 	int n[2];
 | ||
| 	int parallel = 1, opposite = 1;
 | ||
| 
 | ||
| 	for (t = 0; t < 2; ++t) {
 | ||
| 		n[t] = isl_constraint_dim(c, c_type[t]);
 | ||
| 		for (i = 0; i < n[t]; ++i) {
 | ||
| 			int a, b;
 | ||
| 
 | ||
| 			a = isl_constraint_involves_dims(c, c_type[t], i, 1);
 | ||
| 			b = isl_aff_involves_dims(data->div, a_type[t], i, 1);
 | ||
| 			if (a != b)
 | ||
| 				parallel = opposite = 0;
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	if (parallel || opposite) {
 | ||
| 		isl_val *v;
 | ||
| 
 | ||
| 		v = isl_val_abs(isl_constraint_get_constant_val(c));
 | ||
| 		if (isl_val_cmp_si(v, 1 << 15) > 0)
 | ||
| 			parallel = opposite = 0;
 | ||
| 		isl_val_free(v);
 | ||
| 	}
 | ||
| 
 | ||
| 	for (t = 0; t < 2; ++t) {
 | ||
| 		for (i = 0; i < n[t]; ++i) {
 | ||
| 			isl_val *v1, *v2;
 | ||
| 
 | ||
| 			if (!parallel && !opposite)
 | ||
| 				break;
 | ||
| 			v1 = isl_constraint_get_coefficient_val(c,
 | ||
| 								c_type[t], i);
 | ||
| 			v2 = isl_aff_get_coefficient_val(data->div,
 | ||
| 								a_type[t], i);
 | ||
| 			if (parallel) {
 | ||
| 				v1 = isl_val_sub(v1, isl_val_copy(v2));
 | ||
| 				parallel = isl_val_is_divisible_by(v1, data->d);
 | ||
| 				v1 = isl_val_add(v1, isl_val_copy(v2));
 | ||
| 			}
 | ||
| 			if (opposite) {
 | ||
| 				v1 = isl_val_add(v1, isl_val_copy(v2));
 | ||
| 				opposite = isl_val_is_divisible_by(v1, data->d);
 | ||
| 			}
 | ||
| 			isl_val_free(v1);
 | ||
| 			isl_val_free(v2);
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	if ((parallel || opposite) && mod_constraint_is_simpler(data, c)) {
 | ||
| 		isl_aff_free(data->nonneg);
 | ||
| 		data->nonneg = isl_constraint_get_aff(c);
 | ||
| 		data->sign = parallel ? 1 : -1;
 | ||
| 	}
 | ||
| 
 | ||
| 	isl_constraint_free(c);
 | ||
| 
 | ||
| 	if (data->sign != 0 && data->nonneg == NULL)
 | ||
| 		return isl_stat_error;
 | ||
| 
 | ||
| 	return isl_stat_ok;
 | ||
| }
 | ||
| 
 | ||
| /* Given that data->v * div_i in data->aff is of the form
 | ||
|  *
 | ||
|  *	f * d * floor(div/d)					(1)
 | ||
|  *
 | ||
|  * see if we can find an expression div' that is non-negative over data->build
 | ||
|  * and that is related to div through
 | ||
|  *
 | ||
|  *	div' = div + d * e
 | ||
|  *
 | ||
|  * or
 | ||
|  *
 | ||
|  *	div' = -div + d - 1 + d * e
 | ||
|  *
 | ||
|  * with e some affine expression.
 | ||
|  * If so, we write (1) as
 | ||
|  *
 | ||
|  *	f * div + f * (div' mod d)
 | ||
|  *
 | ||
|  * or
 | ||
|  *
 | ||
|  *	-f * (-div + d - 1) - f * (div' mod d)
 | ||
|  *
 | ||
|  * exploiting (in the second case) the fact that
 | ||
|  *
 | ||
|  *	f * d * floor(div/d) =	-f * d * floor((-div + d - 1)/d)
 | ||
|  *
 | ||
|  *
 | ||
|  * We first try to find an appropriate expression for div'
 | ||
|  * from the constraints of data->build->domain (which is therefore
 | ||
|  * guaranteed to be non-negative on data->build), where we remove
 | ||
|  * any integer divisions from the constraints and skip this step
 | ||
|  * if "div" itself involves any integer divisions.
 | ||
|  * If we cannot find an appropriate expression this way, then
 | ||
|  * we pass control to extract_nonneg_mod where check
 | ||
|  * if div or "-div + d -1" themselves happen to be
 | ||
|  * non-negative on data->build.
 | ||
|  *
 | ||
|  * While looking for an appropriate constraint in data->build->domain,
 | ||
|  * we ignore the constant term, so after finding such a constraint,
 | ||
|  * we still need to fix up the constant term.
 | ||
|  * In particular, if a is the constant term of "div"
 | ||
|  * (or d - 1 - the constant term of "div" if data->sign < 0)
 | ||
|  * and b is the constant term of the constraint, then we need to find
 | ||
|  * a non-negative constant c such that
 | ||
|  *
 | ||
|  *	b + c \equiv a	mod d
 | ||
|  *
 | ||
|  * We therefore take
 | ||
|  *
 | ||
|  *	c = (a - b) mod d
 | ||
|  *
 | ||
|  * and add it to b to obtain the constant term of div'.
 | ||
|  * If this constant term is "too negative", then we add an appropriate
 | ||
|  * multiple of d to make it positive.
 | ||
|  *
 | ||
|  *
 | ||
|  * Note that the above is a only a very simple heuristic for finding an
 | ||
|  * appropriate expression.  We could try a bit harder by also considering
 | ||
|  * sums of constraints that involve disjoint sets of variables or
 | ||
|  * we could consider arbitrary linear combinations of constraints,
 | ||
|  * although that could potentially be much more expensive as it involves
 | ||
|  * the solution of an LP problem.
 | ||
|  *
 | ||
|  * In particular, if v_i is a column vector representing constraint i,
 | ||
|  * w represents div and e_i is the i-th unit vector, then we are looking
 | ||
|  * for a solution of the constraints
 | ||
|  *
 | ||
|  *	\sum_i lambda_i v_i = w + \sum_i alpha_i d e_i
 | ||
|  *
 | ||
|  * with \lambda_i >= 0 and alpha_i of unrestricted sign.
 | ||
|  * If we are not just interested in a non-negative expression, but
 | ||
|  * also in one with a minimal range, then we don't just want
 | ||
|  * c = \sum_i lambda_i v_i to be non-negative over the domain,
 | ||
|  * but also beta - c = \sum_i mu_i v_i, where beta is a scalar
 | ||
|  * that we want to minimize and we now also have to take into account
 | ||
|  * the constant terms of the constraints.
 | ||
|  * Alternatively, we could first compute the dual of the domain
 | ||
|  * and plug in the constraints on the coefficients.
 | ||
|  */
 | ||
| static int try_extract_mod(struct isl_extract_mod_data *data)
 | ||
| {
 | ||
| 	isl_basic_set *hull;
 | ||
| 	isl_val *v1, *v2;
 | ||
| 	int r, n;
 | ||
| 
 | ||
| 	if (!data->build)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	n = isl_aff_dim(data->div, isl_dim_div);
 | ||
| 
 | ||
| 	if (isl_aff_involves_dims(data->div, isl_dim_div, 0, n))
 | ||
| 		return extract_nonneg_mod(data);
 | ||
| 
 | ||
| 	hull = isl_set_simple_hull(isl_set_copy(data->build->domain));
 | ||
| 	hull = isl_basic_set_remove_divs(hull);
 | ||
| 	data->sign = 0;
 | ||
| 	data->nonneg = NULL;
 | ||
| 	r = isl_basic_set_foreach_constraint(hull, &check_parallel_or_opposite,
 | ||
| 					data);
 | ||
| 	isl_basic_set_free(hull);
 | ||
| 
 | ||
| 	if (!data->sign || r < 0) {
 | ||
| 		isl_aff_free(data->nonneg);
 | ||
| 		if (r < 0)
 | ||
| 			goto error;
 | ||
| 		return extract_nonneg_mod(data);
 | ||
| 	}
 | ||
| 
 | ||
| 	v1 = isl_aff_get_constant_val(data->div);
 | ||
| 	v2 = isl_aff_get_constant_val(data->nonneg);
 | ||
| 	if (data->sign < 0) {
 | ||
| 		v1 = isl_val_neg(v1);
 | ||
| 		v1 = isl_val_add(v1, isl_val_copy(data->d));
 | ||
| 		v1 = isl_val_sub_ui(v1, 1);
 | ||
| 	}
 | ||
| 	v1 = isl_val_sub(v1, isl_val_copy(v2));
 | ||
| 	v1 = isl_val_mod(v1, isl_val_copy(data->d));
 | ||
| 	v1 = isl_val_add(v1, v2);
 | ||
| 	v2 = isl_val_div(isl_val_copy(v1), isl_val_copy(data->d));
 | ||
| 	v2 = isl_val_ceil(v2);
 | ||
| 	if (isl_val_is_neg(v2)) {
 | ||
| 		v2 = isl_val_mul(v2, isl_val_copy(data->d));
 | ||
| 		v1 = isl_val_sub(v1, isl_val_copy(v2));
 | ||
| 	}
 | ||
| 	data->nonneg = isl_aff_set_constant_val(data->nonneg, v1);
 | ||
| 	isl_val_free(v2);
 | ||
| 
 | ||
| 	if (data->sign < 0) {
 | ||
| 		data->div = oppose_div_arg(data->div, isl_val_copy(data->d));
 | ||
| 		data->v = isl_val_neg(data->v);
 | ||
| 	}
 | ||
| 
 | ||
| 	return extract_term_and_mod(data,
 | ||
| 				    isl_aff_copy(data->div), data->nonneg);
 | ||
| error:
 | ||
| 	data->aff = isl_aff_free(data->aff);
 | ||
| 	return -1;
 | ||
| }
 | ||
| 
 | ||
| /* Check if "data->aff" involves any (implicit) modulo computations based
 | ||
|  * on div "data->i".
 | ||
|  * If so, remove them from aff and add expressions corresponding
 | ||
|  * to those modulo computations to data->pos and/or data->neg.
 | ||
|  *
 | ||
|  * "aff" is assumed to be an integer affine expression.
 | ||
|  *
 | ||
|  * In particular, check if (v * div_j) is of the form
 | ||
|  *
 | ||
|  *	f * m * floor(a / m)
 | ||
|  *
 | ||
|  * and, if so, rewrite it as
 | ||
|  *
 | ||
|  *	f * (a - (a mod m)) = f * a - f * (a mod m)
 | ||
|  *
 | ||
|  * and extract out -f * (a mod m).
 | ||
|  * In particular, if f > 0, we add (f * (a mod m)) to *neg.
 | ||
|  * If f < 0, we add ((-f) * (a mod m)) to *pos.
 | ||
|  *
 | ||
|  * Note that in order to represent "a mod m" as
 | ||
|  *
 | ||
|  *	(isl_ast_op_pdiv_r, a, m)
 | ||
|  *
 | ||
|  * we need to make sure that a is non-negative.
 | ||
|  * If not, we check if "-a + m - 1" is non-negative.
 | ||
|  * If so, we can rewrite
 | ||
|  *
 | ||
|  *	floor(a/m) = -ceil(-a/m) = -floor((-a + m - 1)/m)
 | ||
|  *
 | ||
|  * and still extract a modulo.
 | ||
|  */
 | ||
| static int extract_modulo(struct isl_extract_mod_data *data)
 | ||
| {
 | ||
| 	data->div = isl_aff_get_div(data->aff, data->i);
 | ||
| 	data->d = isl_aff_get_denominator_val(data->div);
 | ||
| 	if (isl_val_is_divisible_by(data->v, data->d)) {
 | ||
| 		data->div = isl_aff_scale_val(data->div, isl_val_copy(data->d));
 | ||
| 		if (try_extract_mod(data) < 0)
 | ||
| 			data->aff = isl_aff_free(data->aff);
 | ||
| 	}
 | ||
| 	isl_aff_free(data->div);
 | ||
| 	isl_val_free(data->d);
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| /* Check if "aff" involves any (implicit) modulo computations.
 | ||
|  * If so, remove them from aff and add expressions corresponding
 | ||
|  * to those modulo computations to *pos and/or *neg.
 | ||
|  * We only do this if the option ast_build_prefer_pdiv is set.
 | ||
|  *
 | ||
|  * "aff" is assumed to be an integer affine expression.
 | ||
|  *
 | ||
|  * A modulo expression is of the form
 | ||
|  *
 | ||
|  *	a mod m = a - m * floor(a / m)
 | ||
|  *
 | ||
|  * To detect them in aff, we look for terms of the form
 | ||
|  *
 | ||
|  *	f * m * floor(a / m)
 | ||
|  *
 | ||
|  * rewrite them as
 | ||
|  *
 | ||
|  *	f * (a - (a mod m)) = f * a - f * (a mod m)
 | ||
|  *
 | ||
|  * and extract out -f * (a mod m).
 | ||
|  * In particular, if f > 0, we add (f * (a mod m)) to *neg.
 | ||
|  * If f < 0, we add ((-f) * (a mod m)) to *pos.
 | ||
|  */
 | ||
| static __isl_give isl_aff *extract_modulos(__isl_take isl_aff *aff,
 | ||
| 	__isl_keep isl_ast_expr **pos, __isl_keep isl_ast_expr **neg,
 | ||
| 	__isl_keep isl_ast_build *build)
 | ||
| {
 | ||
| 	struct isl_extract_mod_data data = { build, aff, *pos, *neg };
 | ||
| 	isl_ctx *ctx;
 | ||
| 	int n;
 | ||
| 
 | ||
| 	if (!aff)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	ctx = isl_aff_get_ctx(aff);
 | ||
| 	if (!isl_options_get_ast_build_prefer_pdiv(ctx))
 | ||
| 		return aff;
 | ||
| 
 | ||
| 	n = isl_aff_dim(data.aff, isl_dim_div);
 | ||
| 	for (data.i = 0; data.i < n; ++data.i) {
 | ||
| 		data.v = isl_aff_get_coefficient_val(data.aff,
 | ||
| 							isl_dim_div, data.i);
 | ||
| 		if (!data.v)
 | ||
| 			return isl_aff_free(aff);
 | ||
| 		if (isl_val_is_zero(data.v) ||
 | ||
| 		    isl_val_is_one(data.v) || isl_val_is_negone(data.v)) {
 | ||
| 			isl_val_free(data.v);
 | ||
| 			continue;
 | ||
| 		}
 | ||
| 		if (extract_modulo(&data) < 0)
 | ||
| 			data.aff = isl_aff_free(data.aff);
 | ||
| 		isl_val_free(data.v);
 | ||
| 		if (!data.aff)
 | ||
| 			break;
 | ||
| 	}
 | ||
| 
 | ||
| 	if (data.add)
 | ||
| 		data.aff = isl_aff_add(data.aff, data.add);
 | ||
| 
 | ||
| 	*pos = data.pos;
 | ||
| 	*neg = data.neg;
 | ||
| 	return data.aff;
 | ||
| }
 | ||
| 
 | ||
| /* Check if aff involves any non-integer coefficients.
 | ||
|  * If so, split aff into
 | ||
|  *
 | ||
|  *	aff = aff1 + (aff2 / d)
 | ||
|  *
 | ||
|  * with both aff1 and aff2 having only integer coefficients.
 | ||
|  * Return aff1 and add (aff2 / d) to *expr.
 | ||
|  */
 | ||
| static __isl_give isl_aff *extract_rational(__isl_take isl_aff *aff,
 | ||
| 	__isl_keep isl_ast_expr **expr, __isl_keep isl_ast_build *build)
 | ||
| {
 | ||
| 	int i, j, n;
 | ||
| 	isl_aff *rat = NULL;
 | ||
| 	isl_local_space *ls = NULL;
 | ||
| 	isl_ast_expr *rat_expr;
 | ||
| 	isl_val *v, *d;
 | ||
| 	enum isl_dim_type t[] = { isl_dim_param, isl_dim_in, isl_dim_div };
 | ||
| 	enum isl_dim_type l[] = { isl_dim_param, isl_dim_set, isl_dim_div };
 | ||
| 
 | ||
| 	if (!aff)
 | ||
| 		return NULL;
 | ||
| 	d = isl_aff_get_denominator_val(aff);
 | ||
| 	if (!d)
 | ||
| 		goto error;
 | ||
| 	if (isl_val_is_one(d)) {
 | ||
| 		isl_val_free(d);
 | ||
| 		return aff;
 | ||
| 	}
 | ||
| 
 | ||
| 	aff = isl_aff_scale_val(aff, isl_val_copy(d));
 | ||
| 
 | ||
| 	ls = isl_aff_get_domain_local_space(aff);
 | ||
| 	rat = isl_aff_zero_on_domain(isl_local_space_copy(ls));
 | ||
| 
 | ||
| 	for (i = 0; i < 3; ++i) {
 | ||
| 		n = isl_aff_dim(aff, t[i]);
 | ||
| 		for (j = 0; j < n; ++j) {
 | ||
| 			isl_aff *rat_j;
 | ||
| 
 | ||
| 			v = isl_aff_get_coefficient_val(aff, t[i], j);
 | ||
| 			if (!v)
 | ||
| 				goto error;
 | ||
| 			if (isl_val_is_divisible_by(v, d)) {
 | ||
| 				isl_val_free(v);
 | ||
| 				continue;
 | ||
| 			}
 | ||
| 			rat_j = isl_aff_var_on_domain(isl_local_space_copy(ls),
 | ||
| 							l[i], j);
 | ||
| 			rat_j = isl_aff_scale_val(rat_j, v);
 | ||
| 			rat = isl_aff_add(rat, rat_j);
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	v = isl_aff_get_constant_val(aff);
 | ||
| 	if (isl_val_is_divisible_by(v, d)) {
 | ||
| 		isl_val_free(v);
 | ||
| 	} else {
 | ||
| 		isl_aff *rat_0;
 | ||
| 
 | ||
| 		rat_0 = isl_aff_val_on_domain(isl_local_space_copy(ls), v);
 | ||
| 		rat = isl_aff_add(rat, rat_0);
 | ||
| 	}
 | ||
| 
 | ||
| 	isl_local_space_free(ls);
 | ||
| 
 | ||
| 	aff = isl_aff_sub(aff, isl_aff_copy(rat));
 | ||
| 	aff = isl_aff_scale_down_val(aff, isl_val_copy(d));
 | ||
| 
 | ||
| 	rat_expr = isl_ast_expr_from_aff(rat, build);
 | ||
| 	rat_expr = isl_ast_expr_div(rat_expr, isl_ast_expr_from_val(d));
 | ||
| 	*expr = ast_expr_add(*expr, rat_expr);
 | ||
| 
 | ||
| 	return aff;
 | ||
| error:
 | ||
| 	isl_aff_free(rat);
 | ||
| 	isl_local_space_free(ls);
 | ||
| 	isl_aff_free(aff);
 | ||
| 	isl_val_free(d);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Construct an isl_ast_expr that evaluates the affine expression "aff",
 | ||
|  * The result is simplified in terms of build->domain.
 | ||
|  *
 | ||
|  * We first extract hidden modulo computations from the affine expression
 | ||
|  * and then add terms for each variable with a non-zero coefficient.
 | ||
|  * Finally, if the affine expression has a non-trivial denominator,
 | ||
|  * we divide the resulting isl_ast_expr by this denominator.
 | ||
|  */
 | ||
| __isl_give isl_ast_expr *isl_ast_expr_from_aff(__isl_take isl_aff *aff,
 | ||
| 	__isl_keep isl_ast_build *build)
 | ||
| {
 | ||
| 	int i, j;
 | ||
| 	int n;
 | ||
| 	isl_val *v;
 | ||
| 	isl_ctx *ctx = isl_aff_get_ctx(aff);
 | ||
| 	isl_ast_expr *expr, *expr_neg;
 | ||
| 	enum isl_dim_type t[] = { isl_dim_param, isl_dim_in, isl_dim_div };
 | ||
| 	enum isl_dim_type l[] = { isl_dim_param, isl_dim_set, isl_dim_div };
 | ||
| 	isl_local_space *ls;
 | ||
| 	struct isl_ast_add_term_data data;
 | ||
| 
 | ||
| 	if (!aff)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	expr = isl_ast_expr_alloc_int_si(ctx, 0);
 | ||
| 	expr_neg = isl_ast_expr_alloc_int_si(ctx, 0);
 | ||
| 
 | ||
| 	aff = extract_rational(aff, &expr, build);
 | ||
| 
 | ||
| 	aff = extract_modulos(aff, &expr, &expr_neg, build);
 | ||
| 	expr = ast_expr_sub(expr, expr_neg);
 | ||
| 
 | ||
| 	ls = isl_aff_get_domain_local_space(aff);
 | ||
| 
 | ||
| 	data.build = build;
 | ||
| 	data.cst = isl_aff_get_constant_val(aff);
 | ||
| 	for (i = 0; i < 3; ++i) {
 | ||
| 		n = isl_aff_dim(aff, t[i]);
 | ||
| 		for (j = 0; j < n; ++j) {
 | ||
| 			v = isl_aff_get_coefficient_val(aff, t[i], j);
 | ||
| 			if (!v)
 | ||
| 				expr = isl_ast_expr_free(expr);
 | ||
| 			if (isl_val_is_zero(v)) {
 | ||
| 				isl_val_free(v);
 | ||
| 				continue;
 | ||
| 			}
 | ||
| 			expr = isl_ast_expr_add_term(expr,
 | ||
| 							ls, l[i], j, v, &data);
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	expr = isl_ast_expr_add_int(expr, data.cst);
 | ||
| 
 | ||
| 	isl_local_space_free(ls);
 | ||
| 	isl_aff_free(aff);
 | ||
| 	return expr;
 | ||
| }
 | ||
| 
 | ||
| /* Add terms to "expr" for each variable in "aff" with a coefficient
 | ||
|  * with sign equal to "sign".
 | ||
|  * The result is simplified in terms of data->build->domain.
 | ||
|  */
 | ||
| static __isl_give isl_ast_expr *add_signed_terms(__isl_take isl_ast_expr *expr,
 | ||
| 	__isl_keep isl_aff *aff, int sign, struct isl_ast_add_term_data *data)
 | ||
| {
 | ||
| 	int i, j;
 | ||
| 	isl_val *v;
 | ||
| 	enum isl_dim_type t[] = { isl_dim_param, isl_dim_in, isl_dim_div };
 | ||
| 	enum isl_dim_type l[] = { isl_dim_param, isl_dim_set, isl_dim_div };
 | ||
| 	isl_local_space *ls;
 | ||
| 
 | ||
| 	ls = isl_aff_get_domain_local_space(aff);
 | ||
| 
 | ||
| 	for (i = 0; i < 3; ++i) {
 | ||
| 		int n = isl_aff_dim(aff, t[i]);
 | ||
| 		for (j = 0; j < n; ++j) {
 | ||
| 			v = isl_aff_get_coefficient_val(aff, t[i], j);
 | ||
| 			if (sign * isl_val_sgn(v) <= 0) {
 | ||
| 				isl_val_free(v);
 | ||
| 				continue;
 | ||
| 			}
 | ||
| 			v = isl_val_abs(v);
 | ||
| 			expr = isl_ast_expr_add_term(expr,
 | ||
| 						ls, l[i], j, v, data);
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	isl_local_space_free(ls);
 | ||
| 
 | ||
| 	return expr;
 | ||
| }
 | ||
| 
 | ||
| /* Should the constant term "v" be considered positive?
 | ||
|  *
 | ||
|  * A positive constant will be added to "pos" by the caller,
 | ||
|  * while a negative constant will be added to "neg".
 | ||
|  * If either "pos" or "neg" is exactly zero, then we prefer
 | ||
|  * to add the constant "v" to that side, irrespective of the sign of "v".
 | ||
|  * This results in slightly shorter expressions and may reduce the risk
 | ||
|  * of overflows.
 | ||
|  */
 | ||
| static int constant_is_considered_positive(__isl_keep isl_val *v,
 | ||
| 	__isl_keep isl_ast_expr *pos, __isl_keep isl_ast_expr *neg)
 | ||
| {
 | ||
| 	if (ast_expr_is_zero(pos))
 | ||
| 		return 1;
 | ||
| 	if (ast_expr_is_zero(neg))
 | ||
| 		return 0;
 | ||
| 	return isl_val_is_pos(v);
 | ||
| }
 | ||
| 
 | ||
| /* Check if the equality
 | ||
|  *
 | ||
|  *	aff = 0
 | ||
|  *
 | ||
|  * represents a stride constraint on the integer division "pos".
 | ||
|  *
 | ||
|  * In particular, if the integer division "pos" is equal to
 | ||
|  *
 | ||
|  *	floor(e/d)
 | ||
|  *
 | ||
|  * then check if aff is equal to
 | ||
|  *
 | ||
|  *	e - d floor(e/d)
 | ||
|  *
 | ||
|  * or its opposite.
 | ||
|  *
 | ||
|  * If so, the equality is exactly
 | ||
|  *
 | ||
|  *	e mod d = 0
 | ||
|  *
 | ||
|  * Note that in principle we could also accept
 | ||
|  *
 | ||
|  *	e - d floor(e'/d)
 | ||
|  *
 | ||
|  * where e and e' differ by a constant.
 | ||
|  */
 | ||
| static int is_stride_constraint(__isl_keep isl_aff *aff, int pos)
 | ||
| {
 | ||
| 	isl_aff *div;
 | ||
| 	isl_val *c, *d;
 | ||
| 	int eq;
 | ||
| 
 | ||
| 	div = isl_aff_get_div(aff, pos);
 | ||
| 	c = isl_aff_get_coefficient_val(aff, isl_dim_div, pos);
 | ||
| 	d = isl_aff_get_denominator_val(div);
 | ||
| 	eq = isl_val_abs_eq(c, d);
 | ||
| 	if (eq >= 0 && eq) {
 | ||
| 		aff = isl_aff_copy(aff);
 | ||
| 		aff = isl_aff_set_coefficient_si(aff, isl_dim_div, pos, 0);
 | ||
| 		div = isl_aff_scale_val(div, d);
 | ||
| 		if (isl_val_is_pos(c))
 | ||
| 			div = isl_aff_neg(div);
 | ||
| 		eq = isl_aff_plain_is_equal(div, aff);
 | ||
| 		isl_aff_free(aff);
 | ||
| 	} else
 | ||
| 		isl_val_free(d);
 | ||
| 	isl_val_free(c);
 | ||
| 	isl_aff_free(div);
 | ||
| 
 | ||
| 	return eq;
 | ||
| }
 | ||
| 
 | ||
| /* Are all coefficients of "aff" (zero or) negative?
 | ||
|  */
 | ||
| static int all_negative_coefficients(__isl_keep isl_aff *aff)
 | ||
| {
 | ||
| 	int i, n;
 | ||
| 
 | ||
| 	if (!aff)
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	n = isl_aff_dim(aff, isl_dim_param);
 | ||
| 	for (i = 0; i < n; ++i)
 | ||
| 		if (isl_aff_coefficient_sgn(aff, isl_dim_param, i) > 0)
 | ||
| 			return 0;
 | ||
| 
 | ||
| 	n = isl_aff_dim(aff, isl_dim_in);
 | ||
| 	for (i = 0; i < n; ++i)
 | ||
| 		if (isl_aff_coefficient_sgn(aff, isl_dim_in, i) > 0)
 | ||
| 			return 0;
 | ||
| 
 | ||
| 	return 1;
 | ||
| }
 | ||
| 
 | ||
| /* Give an equality of the form
 | ||
|  *
 | ||
|  *	aff = e - d floor(e/d) = 0
 | ||
|  *
 | ||
|  * or
 | ||
|  *
 | ||
|  *	aff = -e + d floor(e/d) = 0
 | ||
|  *
 | ||
|  * with the integer division "pos" equal to floor(e/d),
 | ||
|  * construct the AST expression
 | ||
|  *
 | ||
|  *	(isl_ast_op_eq, (isl_ast_op_zdiv_r, expr(e), expr(d)), expr(0))
 | ||
|  *
 | ||
|  * If e only has negative coefficients, then construct
 | ||
|  *
 | ||
|  *	(isl_ast_op_eq, (isl_ast_op_zdiv_r, expr(-e), expr(d)), expr(0))
 | ||
|  *
 | ||
|  * instead.
 | ||
|  */
 | ||
| static __isl_give isl_ast_expr *extract_stride_constraint(
 | ||
| 	__isl_take isl_aff *aff, int pos, __isl_keep isl_ast_build *build)
 | ||
| {
 | ||
| 	isl_ctx *ctx;
 | ||
| 	isl_val *c;
 | ||
| 	isl_ast_expr *expr, *cst;
 | ||
| 
 | ||
| 	if (!aff)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	ctx = isl_aff_get_ctx(aff);
 | ||
| 
 | ||
| 	c = isl_aff_get_coefficient_val(aff, isl_dim_div, pos);
 | ||
| 	aff = isl_aff_set_coefficient_si(aff, isl_dim_div, pos, 0);
 | ||
| 
 | ||
| 	if (all_negative_coefficients(aff))
 | ||
| 		aff = isl_aff_neg(aff);
 | ||
| 
 | ||
| 	cst = isl_ast_expr_from_val(isl_val_abs(c));
 | ||
| 	expr = isl_ast_expr_from_aff(aff, build);
 | ||
| 
 | ||
| 	expr = isl_ast_expr_alloc_binary(isl_ast_op_zdiv_r, expr, cst);
 | ||
| 	cst = isl_ast_expr_alloc_int_si(ctx, 0);
 | ||
| 	expr = isl_ast_expr_alloc_binary(isl_ast_op_eq, expr, cst);
 | ||
| 
 | ||
| 	return expr;
 | ||
| }
 | ||
| 
 | ||
| /* Construct an isl_ast_expr that evaluates the condition "constraint",
 | ||
|  * The result is simplified in terms of build->domain.
 | ||
|  *
 | ||
|  * We first check if the constraint is an equality of the form
 | ||
|  *
 | ||
|  *	e - d floor(e/d) = 0
 | ||
|  *
 | ||
|  * i.e.,
 | ||
|  *
 | ||
|  *	e mod d = 0
 | ||
|  *
 | ||
|  * If so, we convert it to
 | ||
|  *
 | ||
|  *	(isl_ast_op_eq, (isl_ast_op_zdiv_r, expr(e), expr(d)), expr(0))
 | ||
|  *
 | ||
|  * Otherwise, let the constraint by either "a >= 0" or "a == 0".
 | ||
|  * We first extract hidden modulo computations from "a"
 | ||
|  * and then collect all the terms with a positive coefficient in cons_pos
 | ||
|  * and the terms with a negative coefficient in cons_neg.
 | ||
|  *
 | ||
|  * The result is then of the form
 | ||
|  *
 | ||
|  *	(isl_ast_op_ge, expr(pos), expr(-neg)))
 | ||
|  *
 | ||
|  * or
 | ||
|  *
 | ||
|  *	(isl_ast_op_eq, expr(pos), expr(-neg)))
 | ||
|  *
 | ||
|  * However, if the first expression is an integer constant (and the second
 | ||
|  * is not), then we swap the two expressions.  This ensures that we construct,
 | ||
|  * e.g., "i <= 5" rather than "5 >= i".
 | ||
|  *
 | ||
|  * Furthermore, is there are no terms with positive coefficients (or no terms
 | ||
|  * with negative coefficients), then the constant term is added to "pos"
 | ||
|  * (or "neg"), ignoring the sign of the constant term.
 | ||
|  */
 | ||
| static __isl_give isl_ast_expr *isl_ast_expr_from_constraint(
 | ||
| 	__isl_take isl_constraint *constraint, __isl_keep isl_ast_build *build)
 | ||
| {
 | ||
| 	int i, n;
 | ||
| 	isl_ctx *ctx;
 | ||
| 	isl_ast_expr *expr_pos;
 | ||
| 	isl_ast_expr *expr_neg;
 | ||
| 	isl_ast_expr *expr;
 | ||
| 	isl_aff *aff;
 | ||
| 	int eq;
 | ||
| 	enum isl_ast_op_type type;
 | ||
| 	struct isl_ast_add_term_data data;
 | ||
| 
 | ||
| 	if (!constraint)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	aff = isl_constraint_get_aff(constraint);
 | ||
| 	eq = isl_constraint_is_equality(constraint);
 | ||
| 	isl_constraint_free(constraint);
 | ||
| 
 | ||
| 	n = isl_aff_dim(aff, isl_dim_div);
 | ||
| 	if (eq && n > 0)
 | ||
| 		for (i = 0; i < n; ++i) {
 | ||
| 			int is_stride;
 | ||
| 			is_stride = is_stride_constraint(aff, i);
 | ||
| 			if (is_stride < 0)
 | ||
| 				goto error;
 | ||
| 			if (is_stride)
 | ||
| 				return extract_stride_constraint(aff, i, build);
 | ||
| 		}
 | ||
| 
 | ||
| 	ctx = isl_aff_get_ctx(aff);
 | ||
| 	expr_pos = isl_ast_expr_alloc_int_si(ctx, 0);
 | ||
| 	expr_neg = isl_ast_expr_alloc_int_si(ctx, 0);
 | ||
| 
 | ||
| 	aff = extract_modulos(aff, &expr_pos, &expr_neg, build);
 | ||
| 
 | ||
| 	data.build = build;
 | ||
| 	data.cst = isl_aff_get_constant_val(aff);
 | ||
| 	expr_pos = add_signed_terms(expr_pos, aff, 1, &data);
 | ||
| 	data.cst = isl_val_neg(data.cst);
 | ||
| 	expr_neg = add_signed_terms(expr_neg, aff, -1, &data);
 | ||
| 	data.cst = isl_val_neg(data.cst);
 | ||
| 
 | ||
| 	if (constant_is_considered_positive(data.cst, expr_pos, expr_neg)) {
 | ||
| 		expr_pos = isl_ast_expr_add_int(expr_pos, data.cst);
 | ||
| 	} else {
 | ||
| 		data.cst = isl_val_neg(data.cst);
 | ||
| 		expr_neg = isl_ast_expr_add_int(expr_neg, data.cst);
 | ||
| 	}
 | ||
| 
 | ||
| 	if (isl_ast_expr_get_type(expr_pos) == isl_ast_expr_int &&
 | ||
| 	    isl_ast_expr_get_type(expr_neg) != isl_ast_expr_int) {
 | ||
| 		type = eq ? isl_ast_op_eq : isl_ast_op_le;
 | ||
| 		expr = isl_ast_expr_alloc_binary(type, expr_neg, expr_pos);
 | ||
| 	} else {
 | ||
| 		type = eq ? isl_ast_op_eq : isl_ast_op_ge;
 | ||
| 		expr = isl_ast_expr_alloc_binary(type, expr_pos, expr_neg);
 | ||
| 	}
 | ||
| 
 | ||
| 	isl_aff_free(aff);
 | ||
| 	return expr;
 | ||
| error:
 | ||
| 	isl_aff_free(aff);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Wrapper around isl_constraint_cmp_last_non_zero for use
 | ||
|  * as a callback to isl_constraint_list_sort.
 | ||
|  * If isl_constraint_cmp_last_non_zero cannot tell the constraints
 | ||
|  * apart, then use isl_constraint_plain_cmp instead.
 | ||
|  */
 | ||
| static int cmp_constraint(__isl_keep isl_constraint *a,
 | ||
| 	__isl_keep isl_constraint *b, void *user)
 | ||
| {
 | ||
| 	int cmp;
 | ||
| 
 | ||
| 	cmp = isl_constraint_cmp_last_non_zero(a, b);
 | ||
| 	if (cmp != 0)
 | ||
| 		return cmp;
 | ||
| 	return isl_constraint_plain_cmp(a, b);
 | ||
| }
 | ||
| 
 | ||
| /* Construct an isl_ast_expr that evaluates the conditions defining "bset".
 | ||
|  * The result is simplified in terms of build->domain.
 | ||
|  *
 | ||
|  * If "bset" is not bounded by any constraint, then we contruct
 | ||
|  * the expression "1", i.e., "true".
 | ||
|  *
 | ||
|  * Otherwise, we sort the constraints, putting constraints that involve
 | ||
|  * integer divisions after those that do not, and construct an "and"
 | ||
|  * of the ast expressions of the individual constraints.
 | ||
|  *
 | ||
|  * Each constraint is added to the generated constraints of the build
 | ||
|  * after it has been converted to an AST expression so that it can be used
 | ||
|  * to simplify the following constraints.  This may change the truth value
 | ||
|  * of subsequent constraints that do not satisfy the earlier constraints,
 | ||
|  * but this does not affect the outcome of the conjunction as it is
 | ||
|  * only true if all the conjuncts are true (no matter in what order
 | ||
|  * they are evaluated).  In particular, the constraints that do not
 | ||
|  * involve integer divisions may serve to simplify some constraints
 | ||
|  * that do involve integer divisions.
 | ||
|  */
 | ||
| __isl_give isl_ast_expr *isl_ast_build_expr_from_basic_set(
 | ||
| 	 __isl_keep isl_ast_build *build, __isl_take isl_basic_set *bset)
 | ||
| {
 | ||
| 	int i, n;
 | ||
| 	isl_constraint *c;
 | ||
| 	isl_constraint_list *list;
 | ||
| 	isl_ast_expr *res;
 | ||
| 	isl_set *set;
 | ||
| 
 | ||
| 	list = isl_basic_set_get_constraint_list(bset);
 | ||
| 	isl_basic_set_free(bset);
 | ||
| 	list = isl_constraint_list_sort(list, &cmp_constraint, NULL);
 | ||
| 	if (!list)
 | ||
| 		return NULL;
 | ||
| 	n = isl_constraint_list_n_constraint(list);
 | ||
| 	if (n == 0) {
 | ||
| 		isl_ctx *ctx = isl_constraint_list_get_ctx(list);
 | ||
| 		isl_constraint_list_free(list);
 | ||
| 		return isl_ast_expr_alloc_int_si(ctx, 1);
 | ||
| 	}
 | ||
| 
 | ||
| 	build = isl_ast_build_copy(build);
 | ||
| 
 | ||
| 	c = isl_constraint_list_get_constraint(list, 0);
 | ||
| 	bset = isl_basic_set_from_constraint(isl_constraint_copy(c));
 | ||
| 	set = isl_set_from_basic_set(bset);
 | ||
| 	res = isl_ast_expr_from_constraint(c, build);
 | ||
| 	build = isl_ast_build_restrict_generated(build, set);
 | ||
| 
 | ||
| 	for (i = 1; i < n; ++i) {
 | ||
| 		isl_ast_expr *expr;
 | ||
| 
 | ||
| 		c = isl_constraint_list_get_constraint(list, i);
 | ||
| 		bset = isl_basic_set_from_constraint(isl_constraint_copy(c));
 | ||
| 		set = isl_set_from_basic_set(bset);
 | ||
| 		expr = isl_ast_expr_from_constraint(c, build);
 | ||
| 		build = isl_ast_build_restrict_generated(build, set);
 | ||
| 		res = isl_ast_expr_and(res, expr);
 | ||
| 	}
 | ||
| 
 | ||
| 	isl_constraint_list_free(list);
 | ||
| 	isl_ast_build_free(build);
 | ||
| 	return res;
 | ||
| }
 | ||
| 
 | ||
| /* Construct an isl_ast_expr that evaluates the conditions defining "set".
 | ||
|  * The result is simplified in terms of build->domain.
 | ||
|  *
 | ||
|  * If "set" is an (obviously) empty set, then return the expression "0".
 | ||
|  *
 | ||
|  * If there are multiple disjuncts in the description of the set,
 | ||
|  * then subsequent disjuncts are simplified in a context where
 | ||
|  * the previous disjuncts have been removed from build->domain.
 | ||
|  * In particular, constraints that ensure that there is no overlap
 | ||
|  * with these previous disjuncts, can be removed.
 | ||
|  * This is mostly useful for disjuncts that are only defined by
 | ||
|  * a single constraint (relative to the build domain) as the opposite
 | ||
|  * of that single constraint can then be removed from the other disjuncts.
 | ||
|  * In order not to increase the number of disjuncts in the build domain
 | ||
|  * after subtracting the previous disjuncts of "set", the simple hull
 | ||
|  * is computed after taking the difference with each of these disjuncts.
 | ||
|  * This means that constraints that prevent overlap with a union
 | ||
|  * of multiple previous disjuncts are not removed.
 | ||
|  *
 | ||
|  * "set" lives in the internal schedule space.
 | ||
|  */
 | ||
| __isl_give isl_ast_expr *isl_ast_build_expr_from_set_internal(
 | ||
| 	__isl_keep isl_ast_build *build, __isl_take isl_set *set)
 | ||
| {
 | ||
| 	int i, n;
 | ||
| 	isl_basic_set *bset;
 | ||
| 	isl_basic_set_list *list;
 | ||
| 	isl_set *domain;
 | ||
| 	isl_ast_expr *res;
 | ||
| 
 | ||
| 	list = isl_set_get_basic_set_list(set);
 | ||
| 	isl_set_free(set);
 | ||
| 
 | ||
| 	if (!list)
 | ||
| 		return NULL;
 | ||
| 	n = isl_basic_set_list_n_basic_set(list);
 | ||
| 	if (n == 0) {
 | ||
| 		isl_ctx *ctx = isl_ast_build_get_ctx(build);
 | ||
| 		isl_basic_set_list_free(list);
 | ||
| 		return isl_ast_expr_from_val(isl_val_zero(ctx));
 | ||
| 	}
 | ||
| 
 | ||
| 	domain = isl_ast_build_get_domain(build);
 | ||
| 
 | ||
| 	bset = isl_basic_set_list_get_basic_set(list, 0);
 | ||
| 	set = isl_set_from_basic_set(isl_basic_set_copy(bset));
 | ||
| 	res = isl_ast_build_expr_from_basic_set(build, bset);
 | ||
| 
 | ||
| 	for (i = 1; i < n; ++i) {
 | ||
| 		isl_ast_expr *expr;
 | ||
| 		isl_set *rest;
 | ||
| 
 | ||
| 		rest = isl_set_subtract(isl_set_copy(domain), set);
 | ||
| 		rest = isl_set_from_basic_set(isl_set_simple_hull(rest));
 | ||
| 		domain = isl_set_intersect(domain, rest);
 | ||
| 		bset = isl_basic_set_list_get_basic_set(list, i);
 | ||
| 		set = isl_set_from_basic_set(isl_basic_set_copy(bset));
 | ||
| 		bset = isl_basic_set_gist(bset,
 | ||
| 				isl_set_simple_hull(isl_set_copy(domain)));
 | ||
| 		expr = isl_ast_build_expr_from_basic_set(build, bset);
 | ||
| 		res = isl_ast_expr_or(res, expr);
 | ||
| 	}
 | ||
| 
 | ||
| 	isl_set_free(domain);
 | ||
| 	isl_set_free(set);
 | ||
| 	isl_basic_set_list_free(list);
 | ||
| 	return res;
 | ||
| }
 | ||
| 
 | ||
| /* Construct an isl_ast_expr that evaluates the conditions defining "set".
 | ||
|  * The result is simplified in terms of build->domain.
 | ||
|  *
 | ||
|  * If "set" is an (obviously) empty set, then return the expression "0".
 | ||
|  *
 | ||
|  * "set" lives in the external schedule space.
 | ||
|  *
 | ||
|  * The internal AST expression generation assumes that there are
 | ||
|  * no unknown divs, so make sure an explicit representation is available.
 | ||
|  * Since the set comes from the outside, it may have constraints that
 | ||
|  * are redundant with respect to the build domain.  Remove them first.
 | ||
|  */
 | ||
| __isl_give isl_ast_expr *isl_ast_build_expr_from_set(
 | ||
| 	__isl_keep isl_ast_build *build, __isl_take isl_set *set)
 | ||
| {
 | ||
| 	if (isl_ast_build_need_schedule_map(build)) {
 | ||
| 		isl_multi_aff *ma;
 | ||
| 		ma = isl_ast_build_get_schedule_map_multi_aff(build);
 | ||
| 		set = isl_set_preimage_multi_aff(set, ma);
 | ||
| 	}
 | ||
| 
 | ||
| 	set = isl_set_compute_divs(set);
 | ||
| 	set = isl_ast_build_compute_gist(build, set);
 | ||
| 	return isl_ast_build_expr_from_set_internal(build, set);
 | ||
| }
 | ||
| 
 | ||
| /* State of data about previous pieces in
 | ||
|  * isl_ast_build_expr_from_pw_aff_internal.
 | ||
|  *
 | ||
|  * isl_state_none: no data about previous pieces
 | ||
|  * isl_state_single: data about a single previous piece
 | ||
|  * isl_state_min: data represents minimum of several pieces
 | ||
|  * isl_state_max: data represents maximum of several pieces
 | ||
|  */
 | ||
| enum isl_from_pw_aff_state {
 | ||
| 	isl_state_none,
 | ||
| 	isl_state_single,
 | ||
| 	isl_state_min,
 | ||
| 	isl_state_max
 | ||
| };
 | ||
| 
 | ||
| /* Internal date structure representing a single piece in the input of
 | ||
|  * isl_ast_build_expr_from_pw_aff_internal.
 | ||
|  *
 | ||
|  * If "state" is isl_state_none, then "set_list" and "aff_list" are not used.
 | ||
|  * If "state" is isl_state_single, then "set_list" and "aff_list" contain the
 | ||
|  * single previous subpiece.
 | ||
|  * If "state" is isl_state_min, then "set_list" and "aff_list" contain
 | ||
|  * a sequence of several previous subpieces that are equal to the minimum
 | ||
|  * of the entries in "aff_list" over the union of "set_list"
 | ||
|  * If "state" is isl_state_max, then "set_list" and "aff_list" contain
 | ||
|  * a sequence of several previous subpieces that are equal to the maximum
 | ||
|  * of the entries in "aff_list" over the union of "set_list"
 | ||
|  *
 | ||
|  * During the construction of the pieces, "set" is NULL.
 | ||
|  * After the construction, "set" is set to the union of the elements
 | ||
|  * in "set_list", at which point "set_list" is set to NULL.
 | ||
|  */
 | ||
| struct isl_from_pw_aff_piece {
 | ||
| 	enum isl_from_pw_aff_state state;
 | ||
| 	isl_set *set;
 | ||
| 	isl_set_list *set_list;
 | ||
| 	isl_aff_list *aff_list;
 | ||
| };
 | ||
| 
 | ||
| /* Internal data structure for isl_ast_build_expr_from_pw_aff_internal.
 | ||
|  *
 | ||
|  * "build" specifies the domain against which the result is simplified.
 | ||
|  * "dom" is the domain of the entire isl_pw_aff.
 | ||
|  *
 | ||
|  * "n" is the number of pieces constructed already.
 | ||
|  * In particular, during the construction of the pieces, "n" points to
 | ||
|  * the piece that is being constructed.  After the construction of the
 | ||
|  * pieces, "n" is set to the total number of pieces.
 | ||
|  * "max" is the total number of allocated entries.
 | ||
|  * "p" contains the individual pieces.
 | ||
|  */
 | ||
| struct isl_from_pw_aff_data {
 | ||
| 	isl_ast_build *build;
 | ||
| 	isl_set *dom;
 | ||
| 
 | ||
| 	int n;
 | ||
| 	int max;
 | ||
| 	struct isl_from_pw_aff_piece *p;
 | ||
| };
 | ||
| 
 | ||
| /* Initialize "data" based on "build" and "pa".
 | ||
|  */
 | ||
| static isl_stat isl_from_pw_aff_data_init(struct isl_from_pw_aff_data *data,
 | ||
| 	__isl_keep isl_ast_build *build, __isl_keep isl_pw_aff *pa)
 | ||
| {
 | ||
| 	int n;
 | ||
| 	isl_ctx *ctx;
 | ||
| 
 | ||
| 	ctx = isl_pw_aff_get_ctx(pa);
 | ||
| 	n = isl_pw_aff_n_piece(pa);
 | ||
| 	if (n == 0)
 | ||
| 		isl_die(ctx, isl_error_invalid,
 | ||
| 			"cannot handle void expression", return isl_stat_error);
 | ||
| 	data->max = n;
 | ||
| 	data->p = isl_calloc_array(ctx, struct isl_from_pw_aff_piece, n);
 | ||
| 	if (!data->p)
 | ||
| 		return isl_stat_error;
 | ||
| 	data->build = build;
 | ||
| 	data->dom = isl_pw_aff_domain(isl_pw_aff_copy(pa));
 | ||
| 	data->n = 0;
 | ||
| 
 | ||
| 	return isl_stat_ok;
 | ||
| }
 | ||
| 
 | ||
| /* Free all memory allocated for "data".
 | ||
|  */
 | ||
| static void isl_from_pw_aff_data_clear(struct isl_from_pw_aff_data *data)
 | ||
| {
 | ||
| 	int i;
 | ||
| 
 | ||
| 	isl_set_free(data->dom);
 | ||
| 	if (!data->p)
 | ||
| 		return;
 | ||
| 
 | ||
| 	for (i = 0; i < data->max; ++i) {
 | ||
| 		isl_set_free(data->p[i].set);
 | ||
| 		isl_set_list_free(data->p[i].set_list);
 | ||
| 		isl_aff_list_free(data->p[i].aff_list);
 | ||
| 	}
 | ||
| 	free(data->p);
 | ||
| }
 | ||
| 
 | ||
| /* Initialize the current entry of "data" to an unused piece.
 | ||
|  */
 | ||
| static void set_none(struct isl_from_pw_aff_data *data)
 | ||
| {
 | ||
| 	data->p[data->n].state = isl_state_none;
 | ||
| 	data->p[data->n].set_list = NULL;
 | ||
| 	data->p[data->n].aff_list = NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Store "set" and "aff" in the current entry of "data" as a single subpiece.
 | ||
|  */
 | ||
| static void set_single(struct isl_from_pw_aff_data *data,
 | ||
| 	__isl_take isl_set *set, __isl_take isl_aff *aff)
 | ||
| {
 | ||
| 	data->p[data->n].state = isl_state_single;
 | ||
| 	data->p[data->n].set_list = isl_set_list_from_set(set);
 | ||
| 	data->p[data->n].aff_list = isl_aff_list_from_aff(aff);
 | ||
| }
 | ||
| 
 | ||
| /* Extend the current entry of "data" with "set" and "aff"
 | ||
|  * as a minimum expression.
 | ||
|  */
 | ||
| static isl_stat extend_min(struct isl_from_pw_aff_data *data,
 | ||
| 	__isl_take isl_set *set, __isl_take isl_aff *aff)
 | ||
| {
 | ||
| 	int n = data->n;
 | ||
| 	data->p[n].state = isl_state_min;
 | ||
| 	data->p[n].set_list = isl_set_list_add(data->p[n].set_list, set);
 | ||
| 	data->p[n].aff_list = isl_aff_list_add(data->p[n].aff_list, aff);
 | ||
| 
 | ||
| 	if (!data->p[n].set_list || !data->p[n].aff_list)
 | ||
| 		return isl_stat_error;
 | ||
| 	return isl_stat_ok;
 | ||
| }
 | ||
| 
 | ||
| /* Extend the current entry of "data" with "set" and "aff"
 | ||
|  * as a maximum expression.
 | ||
|  */
 | ||
| static isl_stat extend_max(struct isl_from_pw_aff_data *data,
 | ||
| 	__isl_take isl_set *set, __isl_take isl_aff *aff)
 | ||
| {
 | ||
| 	int n = data->n;
 | ||
| 	data->p[n].state = isl_state_max;
 | ||
| 	data->p[n].set_list = isl_set_list_add(data->p[n].set_list, set);
 | ||
| 	data->p[n].aff_list = isl_aff_list_add(data->p[n].aff_list, aff);
 | ||
| 
 | ||
| 	if (!data->p[n].set_list || !data->p[n].aff_list)
 | ||
| 		return isl_stat_error;
 | ||
| 	return isl_stat_ok;
 | ||
| }
 | ||
| 
 | ||
| /* Extend the domain of the current entry of "data", which is assumed
 | ||
|  * to contain a single subpiece, with "set".  If "replace" is set,
 | ||
|  * then also replace the affine function by "aff".  Otherwise,
 | ||
|  * simply free "aff".
 | ||
|  */
 | ||
| static isl_stat extend_domain(struct isl_from_pw_aff_data *data,
 | ||
| 	__isl_take isl_set *set, __isl_take isl_aff *aff, int replace)
 | ||
| {
 | ||
| 	int n = data->n;
 | ||
| 	isl_set *set_n;
 | ||
| 
 | ||
| 	set_n = isl_set_list_get_set(data->p[n].set_list, 0);
 | ||
| 	set_n = isl_set_union(set_n, set);
 | ||
| 	data->p[n].set_list =
 | ||
| 		isl_set_list_set_set(data->p[n].set_list, 0, set_n);
 | ||
| 
 | ||
| 	if (replace)
 | ||
| 		data->p[n].aff_list =
 | ||
| 			isl_aff_list_set_aff(data->p[n].aff_list, 0, aff);
 | ||
| 	else
 | ||
| 		isl_aff_free(aff);
 | ||
| 
 | ||
| 	if (!data->p[n].set_list || !data->p[n].aff_list)
 | ||
| 		return isl_stat_error;
 | ||
| 	return isl_stat_ok;
 | ||
| }
 | ||
| 
 | ||
| /* Construct an isl_ast_expr from "list" within "build".
 | ||
|  * If "state" is isl_state_single, then "list" contains a single entry and
 | ||
|  * an isl_ast_expr is constructed for that entry.
 | ||
|  * Otherwise a min or max expression is constructed from "list"
 | ||
|  * depending on "state".
 | ||
|  */
 | ||
| static __isl_give isl_ast_expr *ast_expr_from_aff_list(
 | ||
| 	__isl_take isl_aff_list *list, enum isl_from_pw_aff_state state,
 | ||
| 	__isl_keep isl_ast_build *build)
 | ||
| {
 | ||
| 	int i, n;
 | ||
| 	isl_aff *aff;
 | ||
| 	isl_ast_expr *expr;
 | ||
| 	enum isl_ast_op_type op_type;
 | ||
| 
 | ||
| 	if (state == isl_state_single) {
 | ||
| 		aff = isl_aff_list_get_aff(list, 0);
 | ||
| 		isl_aff_list_free(list);
 | ||
| 		return isl_ast_expr_from_aff(aff, build);
 | ||
| 	}
 | ||
| 	n = isl_aff_list_n_aff(list);
 | ||
| 	op_type = state == isl_state_min ? isl_ast_op_min : isl_ast_op_max;
 | ||
| 	expr = isl_ast_expr_alloc_op(isl_ast_build_get_ctx(build), op_type, n);
 | ||
| 	if (!expr)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	for (i = 0; i < n; ++i) {
 | ||
| 		isl_ast_expr *expr_i;
 | ||
| 
 | ||
| 		aff = isl_aff_list_get_aff(list, i);
 | ||
| 		expr_i = isl_ast_expr_from_aff(aff, build);
 | ||
| 		if (!expr_i)
 | ||
| 			goto error;
 | ||
| 		expr->u.op.args[i] = expr_i;
 | ||
| 	}
 | ||
| 
 | ||
| 	isl_aff_list_free(list);
 | ||
| 	return expr;
 | ||
| error:
 | ||
| 	isl_aff_list_free(list);
 | ||
| 	isl_ast_expr_free(expr);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Extend the expression in "next" to take into account
 | ||
|  * the piece at position "pos" in "data", allowing for a further extension
 | ||
|  * for the next piece(s).
 | ||
|  * In particular, "next" is set to a select operation that selects
 | ||
|  * an isl_ast_expr corresponding to data->aff_list on data->set and
 | ||
|  * to an expression that will be filled in by later calls.
 | ||
|  * Return a pointer to this location.
 | ||
|  * Afterwards, the state of "data" is set to isl_state_none.
 | ||
|  *
 | ||
|  * The constraints of data->set are added to the generated
 | ||
|  * constraints of the build such that they can be exploited to simplify
 | ||
|  * the AST expression constructed from data->aff_list.
 | ||
|  */
 | ||
| static isl_ast_expr **add_intermediate_piece(struct isl_from_pw_aff_data *data,
 | ||
| 	int pos, isl_ast_expr **next)
 | ||
| {
 | ||
| 	isl_ctx *ctx;
 | ||
| 	isl_ast_build *build;
 | ||
| 	isl_ast_expr *ternary, *arg;
 | ||
| 	isl_set *set, *gist;
 | ||
| 
 | ||
| 	set = data->p[pos].set;
 | ||
| 	data->p[pos].set = NULL;
 | ||
| 	ctx = isl_ast_build_get_ctx(data->build);
 | ||
| 	ternary = isl_ast_expr_alloc_op(ctx, isl_ast_op_select, 3);
 | ||
| 	gist = isl_set_gist(isl_set_copy(set), isl_set_copy(data->dom));
 | ||
| 	arg = isl_ast_build_expr_from_set_internal(data->build, gist);
 | ||
| 	ternary = isl_ast_expr_set_op_arg(ternary, 0, arg);
 | ||
| 	build = isl_ast_build_copy(data->build);
 | ||
| 	build = isl_ast_build_restrict_generated(build, set);
 | ||
| 	arg = ast_expr_from_aff_list(data->p[pos].aff_list,
 | ||
| 					data->p[pos].state, build);
 | ||
| 	data->p[pos].aff_list = NULL;
 | ||
| 	isl_ast_build_free(build);
 | ||
| 	ternary = isl_ast_expr_set_op_arg(ternary, 1, arg);
 | ||
| 	data->p[pos].state = isl_state_none;
 | ||
| 	if (!ternary)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	*next = ternary;
 | ||
| 	return &ternary->u.op.args[2];
 | ||
| }
 | ||
| 
 | ||
| /* Extend the expression in "next" to take into account
 | ||
|  * the final piece, located at position "pos" in "data".
 | ||
|  * In particular, "next" is set to evaluate data->aff_list
 | ||
|  * and the domain is ignored.
 | ||
|  * Return isl_stat_ok on success and isl_stat_error on failure.
 | ||
|  *
 | ||
|  * The constraints of data->set are however added to the generated
 | ||
|  * constraints of the build such that they can be exploited to simplify
 | ||
|  * the AST expression constructed from data->aff_list.
 | ||
|  */
 | ||
| static isl_stat add_last_piece(struct isl_from_pw_aff_data *data,
 | ||
| 	int pos, isl_ast_expr **next)
 | ||
| {
 | ||
| 	isl_ast_build *build;
 | ||
| 
 | ||
| 	if (data->p[pos].state == isl_state_none)
 | ||
| 		isl_die(isl_ast_build_get_ctx(data->build), isl_error_invalid,
 | ||
| 			"cannot handle void expression", return isl_stat_error);
 | ||
| 
 | ||
| 	build = isl_ast_build_copy(data->build);
 | ||
| 	build = isl_ast_build_restrict_generated(build, data->p[pos].set);
 | ||
| 	data->p[pos].set = NULL;
 | ||
| 	*next = ast_expr_from_aff_list(data->p[pos].aff_list,
 | ||
| 						data->p[pos].state, build);
 | ||
| 	data->p[pos].aff_list = NULL;
 | ||
| 	isl_ast_build_free(build);
 | ||
| 	data->p[pos].state = isl_state_none;
 | ||
| 	if (!*next)
 | ||
| 		return isl_stat_error;
 | ||
| 
 | ||
| 	return isl_stat_ok;
 | ||
| }
 | ||
| 
 | ||
| /* Return -1 if the piece "p1" should be sorted before "p2"
 | ||
|  * and 1 if it should be sorted after "p2".
 | ||
|  * Return 0 if they do not need to be sorted in a specific order.
 | ||
|  *
 | ||
|  * Pieces are sorted according to the number of disjuncts
 | ||
|  * in their domains.
 | ||
|  */
 | ||
| static int sort_pieces_cmp(const void *p1, const void *p2, void *arg)
 | ||
| {
 | ||
| 	const struct isl_from_pw_aff_piece *piece1 = p1;
 | ||
| 	const struct isl_from_pw_aff_piece *piece2 = p2;
 | ||
| 	int n1, n2;
 | ||
| 
 | ||
| 	n1 = isl_set_n_basic_set(piece1->set);
 | ||
| 	n2 = isl_set_n_basic_set(piece2->set);
 | ||
| 
 | ||
| 	return n1 - n2;
 | ||
| }
 | ||
| 
 | ||
| /* Construct an isl_ast_expr from the pieces in "data".
 | ||
|  * Return the result or NULL on failure.
 | ||
|  *
 | ||
|  * When this function is called, data->n points to the current piece.
 | ||
|  * If this is an effective piece, then first increment data->n such
 | ||
|  * that data->n contains the number of pieces.
 | ||
|  * The "set_list" fields are subsequently replaced by the corresponding
 | ||
|  * "set" fields, after which the pieces are sorted according to
 | ||
|  * the number of disjuncts in these "set" fields.
 | ||
|  *
 | ||
|  * Construct intermediate AST expressions for the initial pieces and
 | ||
|  * finish off with the final pieces.
 | ||
|  */
 | ||
| static isl_ast_expr *build_pieces(struct isl_from_pw_aff_data *data)
 | ||
| {
 | ||
| 	int i;
 | ||
| 	isl_ast_expr *res = NULL;
 | ||
| 	isl_ast_expr **next = &res;
 | ||
| 
 | ||
| 	if (data->p[data->n].state != isl_state_none)
 | ||
| 		data->n++;
 | ||
| 	if (data->n == 0)
 | ||
| 		isl_die(isl_ast_build_get_ctx(data->build), isl_error_invalid,
 | ||
| 			"cannot handle void expression", return NULL);
 | ||
| 
 | ||
| 	for (i = 0; i < data->n; ++i) {
 | ||
| 		data->p[i].set = isl_set_list_union(data->p[i].set_list);
 | ||
| 		if (data->p[i].state != isl_state_single)
 | ||
| 			data->p[i].set = isl_set_coalesce(data->p[i].set);
 | ||
| 		data->p[i].set_list = NULL;
 | ||
| 	}
 | ||
| 
 | ||
| 	if (isl_sort(data->p, data->n, sizeof(data->p[0]),
 | ||
| 			&sort_pieces_cmp, NULL) < 0)
 | ||
| 		return isl_ast_expr_free(res);
 | ||
| 
 | ||
| 	for (i = 0; i + 1 < data->n; ++i) {
 | ||
| 		next = add_intermediate_piece(data, i, next);
 | ||
| 		if (!next)
 | ||
| 			return isl_ast_expr_free(res);
 | ||
| 	}
 | ||
| 
 | ||
| 	if (add_last_piece(data, data->n - 1, next) < 0)
 | ||
| 		return isl_ast_expr_free(res);
 | ||
| 
 | ||
| 	return res;
 | ||
| }
 | ||
| 
 | ||
| /* Is the domain of the current entry of "data", which is assumed
 | ||
|  * to contain a single subpiece, a subset of "set"?
 | ||
|  */
 | ||
| static isl_bool single_is_subset(struct isl_from_pw_aff_data *data,
 | ||
| 	__isl_keep isl_set *set)
 | ||
| {
 | ||
| 	isl_bool subset;
 | ||
| 	isl_set *set_n;
 | ||
| 
 | ||
| 	set_n = isl_set_list_get_set(data->p[data->n].set_list, 0);
 | ||
| 	subset = isl_set_is_subset(set_n, set);
 | ||
| 	isl_set_free(set_n);
 | ||
| 
 | ||
| 	return subset;
 | ||
| }
 | ||
| 
 | ||
| /* Is "aff" a rational expression, i.e., does it have a denominator
 | ||
|  * different from one?
 | ||
|  */
 | ||
| static isl_bool aff_is_rational(__isl_keep isl_aff *aff)
 | ||
| {
 | ||
| 	isl_bool rational;
 | ||
| 	isl_val *den;
 | ||
| 
 | ||
| 	den = isl_aff_get_denominator_val(aff);
 | ||
| 	rational = isl_bool_not(isl_val_is_one(den));
 | ||
| 	isl_val_free(den);
 | ||
| 
 | ||
| 	return rational;
 | ||
| }
 | ||
| 
 | ||
| /* Does "list" consist of a single rational affine expression?
 | ||
|  */
 | ||
| static isl_bool is_single_rational_aff(__isl_keep isl_aff_list *list)
 | ||
| {
 | ||
| 	isl_bool rational;
 | ||
| 	isl_aff *aff;
 | ||
| 
 | ||
| 	if (isl_aff_list_n_aff(list) != 1)
 | ||
| 		return isl_bool_false;
 | ||
| 	aff = isl_aff_list_get_aff(list, 0);
 | ||
| 	rational = aff_is_rational(aff);
 | ||
| 	isl_aff_free(aff);
 | ||
| 
 | ||
| 	return rational;
 | ||
| }
 | ||
| 
 | ||
| /* Can the list of subpieces in the last piece of "data" be extended with
 | ||
|  * "set" and "aff" based on "test"?
 | ||
|  * In particular, is it the case for each entry (set_i, aff_i) that
 | ||
|  *
 | ||
|  *	test(aff, aff_i) holds on set_i, and
 | ||
|  *	test(aff_i, aff) holds on set?
 | ||
|  *
 | ||
|  * "test" returns the set of elements where the tests holds, meaning
 | ||
|  * that test(aff_i, aff) holds on set if set is a subset of test(aff_i, aff).
 | ||
|  *
 | ||
|  * This function is used to detect min/max expressions.
 | ||
|  * If the ast_build_detect_min_max option is turned off, then
 | ||
|  * do not even try and perform any detection and return false instead.
 | ||
|  *
 | ||
|  * Rational affine expressions are not considered for min/max expressions
 | ||
|  * since the combined expression will be defined on the union of the domains,
 | ||
|  * while a rational expression may only yield integer values
 | ||
|  * on its own definition domain.
 | ||
|  */
 | ||
| static isl_bool extends(struct isl_from_pw_aff_data *data,
 | ||
| 	__isl_keep isl_set *set, __isl_keep isl_aff *aff,
 | ||
| 	__isl_give isl_basic_set *(*test)(__isl_take isl_aff *aff1,
 | ||
| 		__isl_take isl_aff *aff2))
 | ||
| {
 | ||
| 	int i, n;
 | ||
| 	isl_bool is_rational;
 | ||
| 	isl_ctx *ctx;
 | ||
| 	isl_set *dom;
 | ||
| 
 | ||
| 	is_rational = aff_is_rational(aff);
 | ||
| 	if (is_rational >= 0 && !is_rational)
 | ||
| 		is_rational = is_single_rational_aff(data->p[data->n].aff_list);
 | ||
| 	if (is_rational < 0 || is_rational)
 | ||
| 		return isl_bool_not(is_rational);
 | ||
| 
 | ||
| 	ctx = isl_ast_build_get_ctx(data->build);
 | ||
| 	if (!isl_options_get_ast_build_detect_min_max(ctx))
 | ||
| 		return isl_bool_false;
 | ||
| 
 | ||
| 	dom = isl_ast_build_get_domain(data->build);
 | ||
| 	set = isl_set_intersect(dom, isl_set_copy(set));
 | ||
| 
 | ||
| 	n = isl_set_list_n_set(data->p[data->n].set_list);
 | ||
| 	for (i = 0; i < n ; ++i) {
 | ||
| 		isl_aff *aff_i;
 | ||
| 		isl_set *valid;
 | ||
| 		isl_set *dom, *required;
 | ||
| 		isl_bool is_valid;
 | ||
| 
 | ||
| 		aff_i = isl_aff_list_get_aff(data->p[data->n].aff_list, i);
 | ||
| 		valid = isl_set_from_basic_set(test(isl_aff_copy(aff), aff_i));
 | ||
| 		required = isl_set_list_get_set(data->p[data->n].set_list, i);
 | ||
| 		dom = isl_ast_build_get_domain(data->build);
 | ||
| 		required = isl_set_intersect(dom, required);
 | ||
| 		is_valid = isl_set_is_subset(required, valid);
 | ||
| 		isl_set_free(required);
 | ||
| 		isl_set_free(valid);
 | ||
| 		if (is_valid < 0 || !is_valid) {
 | ||
| 			isl_set_free(set);
 | ||
| 			return is_valid;
 | ||
| 		}
 | ||
| 
 | ||
| 		aff_i = isl_aff_list_get_aff(data->p[data->n].aff_list, i);
 | ||
| 		valid = isl_set_from_basic_set(test(aff_i, isl_aff_copy(aff)));
 | ||
| 		is_valid = isl_set_is_subset(set, valid);
 | ||
| 		isl_set_free(valid);
 | ||
| 		if (is_valid < 0 || !is_valid) {
 | ||
| 			isl_set_free(set);
 | ||
| 			return is_valid;
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	isl_set_free(set);
 | ||
| 	return isl_bool_true;
 | ||
| }
 | ||
| 
 | ||
| /* Can the list of pieces in "data" be extended with "set" and "aff"
 | ||
|  * to form/preserve a minimum expression?
 | ||
|  * In particular, is it the case for each entry (set_i, aff_i) that
 | ||
|  *
 | ||
|  *	aff >= aff_i on set_i, and
 | ||
|  *	aff_i >= aff on set?
 | ||
|  */
 | ||
| static isl_bool extends_min(struct isl_from_pw_aff_data *data,
 | ||
| 	__isl_keep isl_set *set,  __isl_keep isl_aff *aff)
 | ||
| {
 | ||
| 	return extends(data, set, aff, &isl_aff_ge_basic_set);
 | ||
| }
 | ||
| 
 | ||
| /* Can the list of pieces in "data" be extended with "set" and "aff"
 | ||
|  * to form/preserve a maximum expression?
 | ||
|  * In particular, is it the case for each entry (set_i, aff_i) that
 | ||
|  *
 | ||
|  *	aff <= aff_i on set_i, and
 | ||
|  *	aff_i <= aff on set?
 | ||
|  */
 | ||
| static isl_bool extends_max(struct isl_from_pw_aff_data *data,
 | ||
| 	__isl_keep isl_set *set,  __isl_keep isl_aff *aff)
 | ||
| {
 | ||
| 	return extends(data, set, aff, &isl_aff_le_basic_set);
 | ||
| }
 | ||
| 
 | ||
| /* This function is called during the construction of an isl_ast_expr
 | ||
|  * that evaluates an isl_pw_aff.
 | ||
|  * If the last piece of "data" contains a single subpiece and
 | ||
|  * if its affine function is equal to "aff" on a part of the domain
 | ||
|  * that includes either "set" or the domain of that single subpiece,
 | ||
|  * then extend the domain of that single subpiece with "set".
 | ||
|  * If it was the original domain of the single subpiece where
 | ||
|  * the two affine functions are equal, then also replace
 | ||
|  * the affine function of the single subpiece by "aff".
 | ||
|  * If the last piece of "data" contains either a single subpiece
 | ||
|  * or a minimum, then check if this minimum expression can be extended
 | ||
|  * with (set, aff).
 | ||
|  * If so, extend the sequence and return.
 | ||
|  * Perform the same operation for maximum expressions.
 | ||
|  * If no such extension can be performed, then move to the next piece
 | ||
|  * in "data" (if the current piece contains any data), and then store
 | ||
|  * the current subpiece in the current piece of "data" for later handling.
 | ||
|  */
 | ||
| static isl_stat ast_expr_from_pw_aff(__isl_take isl_set *set,
 | ||
| 	__isl_take isl_aff *aff, void *user)
 | ||
| {
 | ||
| 	struct isl_from_pw_aff_data *data = user;
 | ||
| 	isl_bool test;
 | ||
| 	enum isl_from_pw_aff_state state;
 | ||
| 
 | ||
| 	state = data->p[data->n].state;
 | ||
| 	if (state == isl_state_single) {
 | ||
| 		isl_aff *aff0;
 | ||
| 		isl_set *eq;
 | ||
| 		isl_bool subset1, subset2 = isl_bool_false;
 | ||
| 		aff0 = isl_aff_list_get_aff(data->p[data->n].aff_list, 0);
 | ||
| 		eq = isl_aff_eq_set(isl_aff_copy(aff), aff0);
 | ||
| 		subset1 = isl_set_is_subset(set, eq);
 | ||
| 		if (subset1 >= 0 && !subset1)
 | ||
| 			subset2 = single_is_subset(data, eq);
 | ||
| 		isl_set_free(eq);
 | ||
| 		if (subset1 < 0 || subset2 < 0)
 | ||
| 			goto error;
 | ||
| 		if (subset1)
 | ||
| 			return extend_domain(data, set, aff, 0);
 | ||
| 		if (subset2)
 | ||
| 			return extend_domain(data, set, aff, 1);
 | ||
| 	}
 | ||
| 	if (state == isl_state_single || state == isl_state_min) {
 | ||
| 		test = extends_min(data, set, aff);
 | ||
| 		if (test < 0)
 | ||
| 			goto error;
 | ||
| 		if (test)
 | ||
| 			return extend_min(data, set, aff);
 | ||
| 	}
 | ||
| 	if (state == isl_state_single || state == isl_state_max) {
 | ||
| 		test = extends_max(data, set, aff);
 | ||
| 		if (test < 0)
 | ||
| 			goto error;
 | ||
| 		if (test)
 | ||
| 			return extend_max(data, set, aff);
 | ||
| 	}
 | ||
| 	if (state != isl_state_none)
 | ||
| 		data->n++;
 | ||
| 	set_single(data, set, aff);
 | ||
| 
 | ||
| 	return isl_stat_ok;
 | ||
| error:
 | ||
| 	isl_set_free(set);
 | ||
| 	isl_aff_free(aff);
 | ||
| 	return isl_stat_error;
 | ||
| }
 | ||
| 
 | ||
| /* Construct an isl_ast_expr that evaluates "pa".
 | ||
|  * The result is simplified in terms of build->domain.
 | ||
|  *
 | ||
|  * The domain of "pa" lives in the internal schedule space.
 | ||
|  */
 | ||
| __isl_give isl_ast_expr *isl_ast_build_expr_from_pw_aff_internal(
 | ||
| 	__isl_keep isl_ast_build *build, __isl_take isl_pw_aff *pa)
 | ||
| {
 | ||
| 	struct isl_from_pw_aff_data data = { NULL };
 | ||
| 	isl_ast_expr *res = NULL;
 | ||
| 
 | ||
| 	pa = isl_ast_build_compute_gist_pw_aff(build, pa);
 | ||
| 	pa = isl_pw_aff_coalesce(pa);
 | ||
| 	if (!pa)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	if (isl_from_pw_aff_data_init(&data, build, pa) < 0)
 | ||
| 		goto error;
 | ||
| 	set_none(&data);
 | ||
| 
 | ||
| 	if (isl_pw_aff_foreach_piece(pa, &ast_expr_from_pw_aff, &data) >= 0)
 | ||
| 		res = build_pieces(&data);
 | ||
| 
 | ||
| 	isl_pw_aff_free(pa);
 | ||
| 	isl_from_pw_aff_data_clear(&data);
 | ||
| 	return res;
 | ||
| error:
 | ||
| 	isl_pw_aff_free(pa);
 | ||
| 	isl_from_pw_aff_data_clear(&data);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Construct an isl_ast_expr that evaluates "pa".
 | ||
|  * The result is simplified in terms of build->domain.
 | ||
|  *
 | ||
|  * The domain of "pa" lives in the external schedule space.
 | ||
|  */
 | ||
| __isl_give isl_ast_expr *isl_ast_build_expr_from_pw_aff(
 | ||
| 	__isl_keep isl_ast_build *build, __isl_take isl_pw_aff *pa)
 | ||
| {
 | ||
| 	isl_ast_expr *expr;
 | ||
| 
 | ||
| 	if (isl_ast_build_need_schedule_map(build)) {
 | ||
| 		isl_multi_aff *ma;
 | ||
| 		ma = isl_ast_build_get_schedule_map_multi_aff(build);
 | ||
| 		pa = isl_pw_aff_pullback_multi_aff(pa, ma);
 | ||
| 	}
 | ||
| 	expr = isl_ast_build_expr_from_pw_aff_internal(build, pa);
 | ||
| 	return expr;
 | ||
| }
 | ||
| 
 | ||
| /* Set the ids of the input dimensions of "mpa" to the iterator ids
 | ||
|  * of "build".
 | ||
|  *
 | ||
|  * The domain of "mpa" is assumed to live in the internal schedule domain.
 | ||
|  */
 | ||
| static __isl_give isl_multi_pw_aff *set_iterator_names(
 | ||
| 	__isl_keep isl_ast_build *build, __isl_take isl_multi_pw_aff *mpa)
 | ||
| {
 | ||
| 	int i, n;
 | ||
| 
 | ||
| 	n = isl_multi_pw_aff_dim(mpa, isl_dim_in);
 | ||
| 	for (i = 0; i < n; ++i) {
 | ||
| 		isl_id *id;
 | ||
| 
 | ||
| 		id = isl_ast_build_get_iterator_id(build, i);
 | ||
| 		mpa = isl_multi_pw_aff_set_dim_id(mpa, isl_dim_in, i, id);
 | ||
| 	}
 | ||
| 
 | ||
| 	return mpa;
 | ||
| }
 | ||
| 
 | ||
| /* Construct an isl_ast_expr of type "type" with as first argument "arg0" and
 | ||
|  * the remaining arguments derived from "mpa".
 | ||
|  * That is, construct a call or access expression that calls/accesses "arg0"
 | ||
|  * with arguments/indices specified by "mpa".
 | ||
|  */
 | ||
| static __isl_give isl_ast_expr *isl_ast_build_with_arguments(
 | ||
| 	__isl_keep isl_ast_build *build, enum isl_ast_op_type type,
 | ||
| 	__isl_take isl_ast_expr *arg0, __isl_take isl_multi_pw_aff *mpa)
 | ||
| {
 | ||
| 	int i, n;
 | ||
| 	isl_ctx *ctx;
 | ||
| 	isl_ast_expr *expr;
 | ||
| 
 | ||
| 	ctx = isl_ast_build_get_ctx(build);
 | ||
| 
 | ||
| 	n = isl_multi_pw_aff_dim(mpa, isl_dim_out);
 | ||
| 	expr = isl_ast_expr_alloc_op(ctx, type, 1 + n);
 | ||
| 	expr = isl_ast_expr_set_op_arg(expr, 0, arg0);
 | ||
| 	for (i = 0; i < n; ++i) {
 | ||
| 		isl_pw_aff *pa;
 | ||
| 		isl_ast_expr *arg;
 | ||
| 
 | ||
| 		pa = isl_multi_pw_aff_get_pw_aff(mpa, i);
 | ||
| 		arg = isl_ast_build_expr_from_pw_aff_internal(build, pa);
 | ||
| 		expr = isl_ast_expr_set_op_arg(expr, 1 + i, arg);
 | ||
| 	}
 | ||
| 
 | ||
| 	isl_multi_pw_aff_free(mpa);
 | ||
| 	return expr;
 | ||
| }
 | ||
| 
 | ||
| static __isl_give isl_ast_expr *isl_ast_build_from_multi_pw_aff_internal(
 | ||
| 	__isl_keep isl_ast_build *build, enum isl_ast_op_type type,
 | ||
| 	__isl_take isl_multi_pw_aff *mpa);
 | ||
| 
 | ||
| /* Construct an isl_ast_expr that accesses the member specified by "mpa".
 | ||
|  * The range of "mpa" is assumed to be wrapped relation.
 | ||
|  * The domain of this wrapped relation specifies the structure being
 | ||
|  * accessed, while the range of this wrapped relation spacifies the
 | ||
|  * member of the structure being accessed.
 | ||
|  *
 | ||
|  * The domain of "mpa" is assumed to live in the internal schedule domain.
 | ||
|  */
 | ||
| static __isl_give isl_ast_expr *isl_ast_build_from_multi_pw_aff_member(
 | ||
| 	__isl_keep isl_ast_build *build, __isl_take isl_multi_pw_aff *mpa)
 | ||
| {
 | ||
| 	isl_id *id;
 | ||
| 	isl_multi_pw_aff *domain;
 | ||
| 	isl_ast_expr *domain_expr, *expr;
 | ||
| 	enum isl_ast_op_type type = isl_ast_op_access;
 | ||
| 
 | ||
| 	domain = isl_multi_pw_aff_copy(mpa);
 | ||
| 	domain = isl_multi_pw_aff_range_factor_domain(domain);
 | ||
| 	domain_expr = isl_ast_build_from_multi_pw_aff_internal(build,
 | ||
| 								type, domain);
 | ||
| 	mpa = isl_multi_pw_aff_range_factor_range(mpa);
 | ||
| 	if (!isl_multi_pw_aff_has_tuple_id(mpa, isl_dim_out))
 | ||
| 		isl_die(isl_ast_build_get_ctx(build), isl_error_invalid,
 | ||
| 			"missing field name", goto error);
 | ||
| 	id = isl_multi_pw_aff_get_tuple_id(mpa, isl_dim_out);
 | ||
| 	expr = isl_ast_expr_from_id(id);
 | ||
| 	expr = isl_ast_expr_alloc_binary(isl_ast_op_member, domain_expr, expr);
 | ||
| 	return isl_ast_build_with_arguments(build, type, expr, mpa);
 | ||
| error:
 | ||
| 	isl_multi_pw_aff_free(mpa);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Construct an isl_ast_expr of type "type" that calls or accesses
 | ||
|  * the element specified by "mpa".
 | ||
|  * The first argument is obtained from the output tuple name.
 | ||
|  * The remaining arguments are given by the piecewise affine expressions.
 | ||
|  *
 | ||
|  * If the range of "mpa" is a mapped relation, then we assume it
 | ||
|  * represents an access to a member of a structure.
 | ||
|  *
 | ||
|  * The domain of "mpa" is assumed to live in the internal schedule domain.
 | ||
|  */
 | ||
| static __isl_give isl_ast_expr *isl_ast_build_from_multi_pw_aff_internal(
 | ||
| 	__isl_keep isl_ast_build *build, enum isl_ast_op_type type,
 | ||
| 	__isl_take isl_multi_pw_aff *mpa)
 | ||
| {
 | ||
| 	isl_ctx *ctx;
 | ||
| 	isl_id *id;
 | ||
| 	isl_ast_expr *expr;
 | ||
| 
 | ||
| 	if (!mpa)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	if (type == isl_ast_op_access &&
 | ||
| 	    isl_multi_pw_aff_range_is_wrapping(mpa))
 | ||
| 		return isl_ast_build_from_multi_pw_aff_member(build, mpa);
 | ||
| 
 | ||
| 	mpa = set_iterator_names(build, mpa);
 | ||
| 	if (!build || !mpa)
 | ||
| 		goto error;
 | ||
| 
 | ||
| 	ctx = isl_ast_build_get_ctx(build);
 | ||
| 
 | ||
| 	if (isl_multi_pw_aff_has_tuple_id(mpa, isl_dim_out))
 | ||
| 		id = isl_multi_pw_aff_get_tuple_id(mpa, isl_dim_out);
 | ||
| 	else
 | ||
| 		id = isl_id_alloc(ctx, "", NULL);
 | ||
| 
 | ||
| 	expr = isl_ast_expr_from_id(id);
 | ||
| 	return isl_ast_build_with_arguments(build, type, expr, mpa);
 | ||
| error:
 | ||
| 	isl_multi_pw_aff_free(mpa);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Construct an isl_ast_expr of type "type" that calls or accesses
 | ||
|  * the element specified by "pma".
 | ||
|  * The first argument is obtained from the output tuple name.
 | ||
|  * The remaining arguments are given by the piecewise affine expressions.
 | ||
|  *
 | ||
|  * The domain of "pma" is assumed to live in the internal schedule domain.
 | ||
|  */
 | ||
| static __isl_give isl_ast_expr *isl_ast_build_from_pw_multi_aff_internal(
 | ||
| 	__isl_keep isl_ast_build *build, enum isl_ast_op_type type,
 | ||
| 	__isl_take isl_pw_multi_aff *pma)
 | ||
| {
 | ||
| 	isl_multi_pw_aff *mpa;
 | ||
| 
 | ||
| 	mpa = isl_multi_pw_aff_from_pw_multi_aff(pma);
 | ||
| 	return isl_ast_build_from_multi_pw_aff_internal(build, type, mpa);
 | ||
| }
 | ||
| 
 | ||
| /* Construct an isl_ast_expr of type "type" that calls or accesses
 | ||
|  * the element specified by "mpa".
 | ||
|  * The first argument is obtained from the output tuple name.
 | ||
|  * The remaining arguments are given by the piecewise affine expressions.
 | ||
|  *
 | ||
|  * The domain of "mpa" is assumed to live in the external schedule domain.
 | ||
|  */
 | ||
| static __isl_give isl_ast_expr *isl_ast_build_from_multi_pw_aff(
 | ||
| 	__isl_keep isl_ast_build *build, enum isl_ast_op_type type,
 | ||
| 	__isl_take isl_multi_pw_aff *mpa)
 | ||
| {
 | ||
| 	int is_domain;
 | ||
| 	isl_ast_expr *expr;
 | ||
| 	isl_space *space_build, *space_mpa;
 | ||
| 
 | ||
| 	space_build = isl_ast_build_get_space(build, 0);
 | ||
| 	space_mpa = isl_multi_pw_aff_get_space(mpa);
 | ||
| 	is_domain = isl_space_tuple_is_equal(space_build, isl_dim_set,
 | ||
| 					space_mpa, isl_dim_in);
 | ||
| 	isl_space_free(space_build);
 | ||
| 	isl_space_free(space_mpa);
 | ||
| 	if (is_domain < 0)
 | ||
| 		goto error;
 | ||
| 	if (!is_domain)
 | ||
| 		isl_die(isl_ast_build_get_ctx(build), isl_error_invalid,
 | ||
| 			"spaces don't match", goto error);
 | ||
| 
 | ||
| 	if (isl_ast_build_need_schedule_map(build)) {
 | ||
| 		isl_multi_aff *ma;
 | ||
| 		ma = isl_ast_build_get_schedule_map_multi_aff(build);
 | ||
| 		mpa = isl_multi_pw_aff_pullback_multi_aff(mpa, ma);
 | ||
| 	}
 | ||
| 
 | ||
| 	expr = isl_ast_build_from_multi_pw_aff_internal(build, type, mpa);
 | ||
| 	return expr;
 | ||
| error:
 | ||
| 	isl_multi_pw_aff_free(mpa);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Construct an isl_ast_expr that calls the domain element specified by "mpa".
 | ||
|  * The name of the function is obtained from the output tuple name.
 | ||
|  * The arguments are given by the piecewise affine expressions.
 | ||
|  *
 | ||
|  * The domain of "mpa" is assumed to live in the external schedule domain.
 | ||
|  */
 | ||
| __isl_give isl_ast_expr *isl_ast_build_call_from_multi_pw_aff(
 | ||
| 	__isl_keep isl_ast_build *build, __isl_take isl_multi_pw_aff *mpa)
 | ||
| {
 | ||
| 	return isl_ast_build_from_multi_pw_aff(build, isl_ast_op_call, mpa);
 | ||
| }
 | ||
| 
 | ||
| /* Construct an isl_ast_expr that accesses the array element specified by "mpa".
 | ||
|  * The name of the array is obtained from the output tuple name.
 | ||
|  * The index expressions are given by the piecewise affine expressions.
 | ||
|  *
 | ||
|  * The domain of "mpa" is assumed to live in the external schedule domain.
 | ||
|  */
 | ||
| __isl_give isl_ast_expr *isl_ast_build_access_from_multi_pw_aff(
 | ||
| 	__isl_keep isl_ast_build *build, __isl_take isl_multi_pw_aff *mpa)
 | ||
| {
 | ||
| 	return isl_ast_build_from_multi_pw_aff(build, isl_ast_op_access, mpa);
 | ||
| }
 | ||
| 
 | ||
| /* Construct an isl_ast_expr of type "type" that calls or accesses
 | ||
|  * the element specified by "pma".
 | ||
|  * The first argument is obtained from the output tuple name.
 | ||
|  * The remaining arguments are given by the piecewise affine expressions.
 | ||
|  *
 | ||
|  * The domain of "pma" is assumed to live in the external schedule domain.
 | ||
|  */
 | ||
| static __isl_give isl_ast_expr *isl_ast_build_from_pw_multi_aff(
 | ||
| 	__isl_keep isl_ast_build *build, enum isl_ast_op_type type,
 | ||
| 	__isl_take isl_pw_multi_aff *pma)
 | ||
| {
 | ||
| 	isl_multi_pw_aff *mpa;
 | ||
| 
 | ||
| 	mpa = isl_multi_pw_aff_from_pw_multi_aff(pma);
 | ||
| 	return isl_ast_build_from_multi_pw_aff(build, type, mpa);
 | ||
| }
 | ||
| 
 | ||
| /* Construct an isl_ast_expr that calls the domain element specified by "pma".
 | ||
|  * The name of the function is obtained from the output tuple name.
 | ||
|  * The arguments are given by the piecewise affine expressions.
 | ||
|  *
 | ||
|  * The domain of "pma" is assumed to live in the external schedule domain.
 | ||
|  */
 | ||
| __isl_give isl_ast_expr *isl_ast_build_call_from_pw_multi_aff(
 | ||
| 	__isl_keep isl_ast_build *build, __isl_take isl_pw_multi_aff *pma)
 | ||
| {
 | ||
| 	return isl_ast_build_from_pw_multi_aff(build, isl_ast_op_call, pma);
 | ||
| }
 | ||
| 
 | ||
| /* Construct an isl_ast_expr that accesses the array element specified by "pma".
 | ||
|  * The name of the array is obtained from the output tuple name.
 | ||
|  * The index expressions are given by the piecewise affine expressions.
 | ||
|  *
 | ||
|  * The domain of "pma" is assumed to live in the external schedule domain.
 | ||
|  */
 | ||
| __isl_give isl_ast_expr *isl_ast_build_access_from_pw_multi_aff(
 | ||
| 	__isl_keep isl_ast_build *build, __isl_take isl_pw_multi_aff *pma)
 | ||
| {
 | ||
| 	return isl_ast_build_from_pw_multi_aff(build, isl_ast_op_access, pma);
 | ||
| }
 | ||
| 
 | ||
| /* Construct an isl_ast_expr that calls the domain element
 | ||
|  * specified by "executed".
 | ||
|  *
 | ||
|  * "executed" is assumed to be single-valued, with a domain that lives
 | ||
|  * in the internal schedule space.
 | ||
|  */
 | ||
| __isl_give isl_ast_node *isl_ast_build_call_from_executed(
 | ||
| 	__isl_keep isl_ast_build *build, __isl_take isl_map *executed)
 | ||
| {
 | ||
| 	isl_pw_multi_aff *iteration;
 | ||
| 	isl_ast_expr *expr;
 | ||
| 
 | ||
| 	iteration = isl_pw_multi_aff_from_map(executed);
 | ||
| 	iteration = isl_ast_build_compute_gist_pw_multi_aff(build, iteration);
 | ||
| 	iteration = isl_pw_multi_aff_intersect_domain(iteration,
 | ||
| 					isl_ast_build_get_domain(build));
 | ||
| 	expr = isl_ast_build_from_pw_multi_aff_internal(build, isl_ast_op_call,
 | ||
| 							iteration);
 | ||
| 	return isl_ast_node_alloc_user(expr);
 | ||
| }
 |