3049 lines
		
	
	
		
			84 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			3049 lines
		
	
	
		
			84 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  * Copyright 2008-2009 Katholieke Universiteit Leuven
 | |
|  * Copyright 2014      INRIA Rocquencourt
 | |
|  *
 | |
|  * Use of this software is governed by the MIT license
 | |
|  *
 | |
|  * Written by Sven Verdoolaege, K.U.Leuven, Departement
 | |
|  * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
 | |
|  * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
 | |
|  * B.P. 105 - 78153 Le Chesnay, France
 | |
|  */
 | |
| 
 | |
| #include <isl_ctx_private.h>
 | |
| #include <isl_map_private.h>
 | |
| #include <isl_lp_private.h>
 | |
| #include <isl/map.h>
 | |
| #include <isl_mat_private.h>
 | |
| #include <isl_vec_private.h>
 | |
| #include <isl/set.h>
 | |
| #include <isl_seq.h>
 | |
| #include <isl_options_private.h>
 | |
| #include "isl_equalities.h"
 | |
| #include "isl_tab.h"
 | |
| #include <isl_sort.h>
 | |
| 
 | |
| #include <bset_to_bmap.c>
 | |
| #include <bset_from_bmap.c>
 | |
| #include <set_to_map.c>
 | |
| 
 | |
| static struct isl_basic_set *uset_convex_hull_wrap_bounded(struct isl_set *set);
 | |
| 
 | |
| /* Remove redundant
 | |
|  * constraints.  If the minimal value along the normal of a constraint
 | |
|  * is the same if the constraint is removed, then the constraint is redundant.
 | |
|  *
 | |
|  * Since some constraints may be mutually redundant, sort the constraints
 | |
|  * first such that constraints that involve existentially quantified
 | |
|  * variables are considered for removal before those that do not.
 | |
|  * The sorting is also needed for the use in map_simple_hull.
 | |
|  *
 | |
|  * Note that isl_tab_detect_implicit_equalities may also end up
 | |
|  * marking some constraints as redundant.  Make sure the constraints
 | |
|  * are preserved and undo those marking such that isl_tab_detect_redundant
 | |
|  * can consider the constraints in the sorted order.
 | |
|  *
 | |
|  * Alternatively, we could have intersected the basic map with the
 | |
|  * corresponding equality and then checked if the dimension was that
 | |
|  * of a facet.
 | |
|  */
 | |
| __isl_give isl_basic_map *isl_basic_map_remove_redundancies(
 | |
| 	__isl_take isl_basic_map *bmap)
 | |
| {
 | |
| 	struct isl_tab *tab;
 | |
| 
 | |
| 	if (!bmap)
 | |
| 		return NULL;
 | |
| 
 | |
| 	bmap = isl_basic_map_gauss(bmap, NULL);
 | |
| 	if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
 | |
| 		return bmap;
 | |
| 	if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NO_REDUNDANT))
 | |
| 		return bmap;
 | |
| 	if (bmap->n_ineq <= 1)
 | |
| 		return bmap;
 | |
| 
 | |
| 	bmap = isl_basic_map_sort_constraints(bmap);
 | |
| 	tab = isl_tab_from_basic_map(bmap, 0);
 | |
| 	if (!tab)
 | |
| 		goto error;
 | |
| 	tab->preserve = 1;
 | |
| 	if (isl_tab_detect_implicit_equalities(tab) < 0)
 | |
| 		goto error;
 | |
| 	if (isl_tab_restore_redundant(tab) < 0)
 | |
| 		goto error;
 | |
| 	tab->preserve = 0;
 | |
| 	if (isl_tab_detect_redundant(tab) < 0)
 | |
| 		goto error;
 | |
| 	bmap = isl_basic_map_update_from_tab(bmap, tab);
 | |
| 	isl_tab_free(tab);
 | |
| 	if (!bmap)
 | |
| 		return NULL;
 | |
| 	ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT);
 | |
| 	ISL_F_SET(bmap, ISL_BASIC_MAP_NO_REDUNDANT);
 | |
| 	return bmap;
 | |
| error:
 | |
| 	isl_tab_free(tab);
 | |
| 	isl_basic_map_free(bmap);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| __isl_give isl_basic_set *isl_basic_set_remove_redundancies(
 | |
| 	__isl_take isl_basic_set *bset)
 | |
| {
 | |
| 	return bset_from_bmap(
 | |
| 		isl_basic_map_remove_redundancies(bset_to_bmap(bset)));
 | |
| }
 | |
| 
 | |
| /* Remove redundant constraints in each of the basic maps.
 | |
|  */
 | |
| __isl_give isl_map *isl_map_remove_redundancies(__isl_take isl_map *map)
 | |
| {
 | |
| 	return isl_map_inline_foreach_basic_map(map,
 | |
| 					    &isl_basic_map_remove_redundancies);
 | |
| }
 | |
| 
 | |
| __isl_give isl_set *isl_set_remove_redundancies(__isl_take isl_set *set)
 | |
| {
 | |
| 	return isl_map_remove_redundancies(set);
 | |
| }
 | |
| 
 | |
| /* Check if the set set is bound in the direction of the affine
 | |
|  * constraint c and if so, set the constant term such that the
 | |
|  * resulting constraint is a bounding constraint for the set.
 | |
|  */
 | |
| static int uset_is_bound(struct isl_set *set, isl_int *c, unsigned len)
 | |
| {
 | |
| 	int first;
 | |
| 	int j;
 | |
| 	isl_int opt;
 | |
| 	isl_int opt_denom;
 | |
| 
 | |
| 	isl_int_init(opt);
 | |
| 	isl_int_init(opt_denom);
 | |
| 	first = 1;
 | |
| 	for (j = 0; j < set->n; ++j) {
 | |
| 		enum isl_lp_result res;
 | |
| 
 | |
| 		if (ISL_F_ISSET(set->p[j], ISL_BASIC_SET_EMPTY))
 | |
| 			continue;
 | |
| 
 | |
| 		res = isl_basic_set_solve_lp(set->p[j],
 | |
| 				0, c, set->ctx->one, &opt, &opt_denom, NULL);
 | |
| 		if (res == isl_lp_unbounded)
 | |
| 			break;
 | |
| 		if (res == isl_lp_error)
 | |
| 			goto error;
 | |
| 		if (res == isl_lp_empty) {
 | |
| 			set->p[j] = isl_basic_set_set_to_empty(set->p[j]);
 | |
| 			if (!set->p[j])
 | |
| 				goto error;
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (first || isl_int_is_neg(opt)) {
 | |
| 			if (!isl_int_is_one(opt_denom))
 | |
| 				isl_seq_scale(c, c, opt_denom, len);
 | |
| 			isl_int_sub(c[0], c[0], opt);
 | |
| 		}
 | |
| 		first = 0;
 | |
| 	}
 | |
| 	isl_int_clear(opt);
 | |
| 	isl_int_clear(opt_denom);
 | |
| 	return j >= set->n;
 | |
| error:
 | |
| 	isl_int_clear(opt);
 | |
| 	isl_int_clear(opt_denom);
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| static struct isl_basic_set *isl_basic_set_add_equality(
 | |
| 	struct isl_basic_set *bset, isl_int *c)
 | |
| {
 | |
| 	int i;
 | |
| 	unsigned dim;
 | |
| 
 | |
| 	if (!bset)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (ISL_F_ISSET(bset, ISL_BASIC_SET_EMPTY))
 | |
| 		return bset;
 | |
| 
 | |
| 	isl_assert(bset->ctx, isl_basic_set_n_param(bset) == 0, goto error);
 | |
| 	isl_assert(bset->ctx, bset->n_div == 0, goto error);
 | |
| 	dim = isl_basic_set_n_dim(bset);
 | |
| 	bset = isl_basic_set_cow(bset);
 | |
| 	bset = isl_basic_set_extend(bset, 0, dim, 0, 1, 0);
 | |
| 	i = isl_basic_set_alloc_equality(bset);
 | |
| 	if (i < 0)
 | |
| 		goto error;
 | |
| 	isl_seq_cpy(bset->eq[i], c, 1 + dim);
 | |
| 	return bset;
 | |
| error:
 | |
| 	isl_basic_set_free(bset);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static struct isl_set *isl_set_add_basic_set_equality(struct isl_set *set, isl_int *c)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	set = isl_set_cow(set);
 | |
| 	if (!set)
 | |
| 		return NULL;
 | |
| 	for (i = 0; i < set->n; ++i) {
 | |
| 		set->p[i] = isl_basic_set_add_equality(set->p[i], c);
 | |
| 		if (!set->p[i])
 | |
| 			goto error;
 | |
| 	}
 | |
| 	return set;
 | |
| error:
 | |
| 	isl_set_free(set);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* Given a union of basic sets, construct the constraints for wrapping
 | |
|  * a facet around one of its ridges.
 | |
|  * In particular, if each of n the d-dimensional basic sets i in "set"
 | |
|  * contains the origin, satisfies the constraints x_1 >= 0 and x_2 >= 0
 | |
|  * and is defined by the constraints
 | |
|  *				    [ 1 ]
 | |
|  *				A_i [ x ]  >= 0
 | |
|  *
 | |
|  * then the resulting set is of dimension n*(1+d) and has as constraints
 | |
|  *
 | |
|  *				    [ a_i ]
 | |
|  *				A_i [ x_i ] >= 0
 | |
|  *
 | |
|  *				      a_i   >= 0
 | |
|  *
 | |
|  *			\sum_i x_{i,1} = 1
 | |
|  */
 | |
| static struct isl_basic_set *wrap_constraints(struct isl_set *set)
 | |
| {
 | |
| 	struct isl_basic_set *lp;
 | |
| 	unsigned n_eq;
 | |
| 	unsigned n_ineq;
 | |
| 	int i, j, k;
 | |
| 	unsigned dim, lp_dim;
 | |
| 
 | |
| 	if (!set)
 | |
| 		return NULL;
 | |
| 
 | |
| 	dim = 1 + isl_set_n_dim(set);
 | |
| 	n_eq = 1;
 | |
| 	n_ineq = set->n;
 | |
| 	for (i = 0; i < set->n; ++i) {
 | |
| 		n_eq += set->p[i]->n_eq;
 | |
| 		n_ineq += set->p[i]->n_ineq;
 | |
| 	}
 | |
| 	lp = isl_basic_set_alloc(set->ctx, 0, dim * set->n, 0, n_eq, n_ineq);
 | |
| 	lp = isl_basic_set_set_rational(lp);
 | |
| 	if (!lp)
 | |
| 		return NULL;
 | |
| 	lp_dim = isl_basic_set_n_dim(lp);
 | |
| 	k = isl_basic_set_alloc_equality(lp);
 | |
| 	isl_int_set_si(lp->eq[k][0], -1);
 | |
| 	for (i = 0; i < set->n; ++i) {
 | |
| 		isl_int_set_si(lp->eq[k][1+dim*i], 0);
 | |
| 		isl_int_set_si(lp->eq[k][1+dim*i+1], 1);
 | |
| 		isl_seq_clr(lp->eq[k]+1+dim*i+2, dim-2);
 | |
| 	}
 | |
| 	for (i = 0; i < set->n; ++i) {
 | |
| 		k = isl_basic_set_alloc_inequality(lp);
 | |
| 		isl_seq_clr(lp->ineq[k], 1+lp_dim);
 | |
| 		isl_int_set_si(lp->ineq[k][1+dim*i], 1);
 | |
| 
 | |
| 		for (j = 0; j < set->p[i]->n_eq; ++j) {
 | |
| 			k = isl_basic_set_alloc_equality(lp);
 | |
| 			isl_seq_clr(lp->eq[k], 1+dim*i);
 | |
| 			isl_seq_cpy(lp->eq[k]+1+dim*i, set->p[i]->eq[j], dim);
 | |
| 			isl_seq_clr(lp->eq[k]+1+dim*(i+1), dim*(set->n-i-1));
 | |
| 		}
 | |
| 
 | |
| 		for (j = 0; j < set->p[i]->n_ineq; ++j) {
 | |
| 			k = isl_basic_set_alloc_inequality(lp);
 | |
| 			isl_seq_clr(lp->ineq[k], 1+dim*i);
 | |
| 			isl_seq_cpy(lp->ineq[k]+1+dim*i, set->p[i]->ineq[j], dim);
 | |
| 			isl_seq_clr(lp->ineq[k]+1+dim*(i+1), dim*(set->n-i-1));
 | |
| 		}
 | |
| 	}
 | |
| 	return lp;
 | |
| }
 | |
| 
 | |
| /* Given a facet "facet" of the convex hull of "set" and a facet "ridge"
 | |
|  * of that facet, compute the other facet of the convex hull that contains
 | |
|  * the ridge.
 | |
|  *
 | |
|  * We first transform the set such that the facet constraint becomes
 | |
|  *
 | |
|  *			x_1 >= 0
 | |
|  *
 | |
|  * I.e., the facet lies in
 | |
|  *
 | |
|  *			x_1 = 0
 | |
|  *
 | |
|  * and on that facet, the constraint that defines the ridge is
 | |
|  *
 | |
|  *			x_2 >= 0
 | |
|  *
 | |
|  * (This transformation is not strictly needed, all that is needed is
 | |
|  * that the ridge contains the origin.)
 | |
|  *
 | |
|  * Since the ridge contains the origin, the cone of the convex hull
 | |
|  * will be of the form
 | |
|  *
 | |
|  *			x_1 >= 0
 | |
|  *			x_2 >= a x_1
 | |
|  *
 | |
|  * with this second constraint defining the new facet.
 | |
|  * The constant a is obtained by settting x_1 in the cone of the
 | |
|  * convex hull to 1 and minimizing x_2.
 | |
|  * Now, each element in the cone of the convex hull is the sum
 | |
|  * of elements in the cones of the basic sets.
 | |
|  * If a_i is the dilation factor of basic set i, then the problem
 | |
|  * we need to solve is
 | |
|  *
 | |
|  *			min \sum_i x_{i,2}
 | |
|  *			st
 | |
|  *				\sum_i x_{i,1} = 1
 | |
|  *				    a_i   >= 0
 | |
|  *				  [ a_i ]
 | |
|  *				A [ x_i ] >= 0
 | |
|  *
 | |
|  * with
 | |
|  *				    [  1  ]
 | |
|  *				A_i [ x_i ] >= 0
 | |
|  *
 | |
|  * the constraints of each (transformed) basic set.
 | |
|  * If a = n/d, then the constraint defining the new facet (in the transformed
 | |
|  * space) is
 | |
|  *
 | |
|  *			-n x_1 + d x_2 >= 0
 | |
|  *
 | |
|  * In the original space, we need to take the same combination of the
 | |
|  * corresponding constraints "facet" and "ridge".
 | |
|  *
 | |
|  * If a = -infty = "-1/0", then we just return the original facet constraint.
 | |
|  * This means that the facet is unbounded, but has a bounded intersection
 | |
|  * with the union of sets.
 | |
|  */
 | |
| isl_int *isl_set_wrap_facet(__isl_keep isl_set *set,
 | |
| 	isl_int *facet, isl_int *ridge)
 | |
| {
 | |
| 	int i;
 | |
| 	isl_ctx *ctx;
 | |
| 	struct isl_mat *T = NULL;
 | |
| 	struct isl_basic_set *lp = NULL;
 | |
| 	struct isl_vec *obj;
 | |
| 	enum isl_lp_result res;
 | |
| 	isl_int num, den;
 | |
| 	unsigned dim;
 | |
| 
 | |
| 	if (!set)
 | |
| 		return NULL;
 | |
| 	ctx = set->ctx;
 | |
| 	set = isl_set_copy(set);
 | |
| 	set = isl_set_set_rational(set);
 | |
| 
 | |
| 	dim = 1 + isl_set_n_dim(set);
 | |
| 	T = isl_mat_alloc(ctx, 3, dim);
 | |
| 	if (!T)
 | |
| 		goto error;
 | |
| 	isl_int_set_si(T->row[0][0], 1);
 | |
| 	isl_seq_clr(T->row[0]+1, dim - 1);
 | |
| 	isl_seq_cpy(T->row[1], facet, dim);
 | |
| 	isl_seq_cpy(T->row[2], ridge, dim);
 | |
| 	T = isl_mat_right_inverse(T);
 | |
| 	set = isl_set_preimage(set, T);
 | |
| 	T = NULL;
 | |
| 	if (!set)
 | |
| 		goto error;
 | |
| 	lp = wrap_constraints(set);
 | |
| 	obj = isl_vec_alloc(ctx, 1 + dim*set->n);
 | |
| 	if (!obj)
 | |
| 		goto error;
 | |
| 	isl_int_set_si(obj->block.data[0], 0);
 | |
| 	for (i = 0; i < set->n; ++i) {
 | |
| 		isl_seq_clr(obj->block.data + 1 + dim*i, 2);
 | |
| 		isl_int_set_si(obj->block.data[1 + dim*i+2], 1);
 | |
| 		isl_seq_clr(obj->block.data + 1 + dim*i+3, dim-3);
 | |
| 	}
 | |
| 	isl_int_init(num);
 | |
| 	isl_int_init(den);
 | |
| 	res = isl_basic_set_solve_lp(lp, 0,
 | |
| 			    obj->block.data, ctx->one, &num, &den, NULL);
 | |
| 	if (res == isl_lp_ok) {
 | |
| 		isl_int_neg(num, num);
 | |
| 		isl_seq_combine(facet, num, facet, den, ridge, dim);
 | |
| 		isl_seq_normalize(ctx, facet, dim);
 | |
| 	}
 | |
| 	isl_int_clear(num);
 | |
| 	isl_int_clear(den);
 | |
| 	isl_vec_free(obj);
 | |
| 	isl_basic_set_free(lp);
 | |
| 	isl_set_free(set);
 | |
| 	if (res == isl_lp_error)
 | |
| 		return NULL;
 | |
| 	isl_assert(ctx, res == isl_lp_ok || res == isl_lp_unbounded, 
 | |
| 		   return NULL);
 | |
| 	return facet;
 | |
| error:
 | |
| 	isl_basic_set_free(lp);
 | |
| 	isl_mat_free(T);
 | |
| 	isl_set_free(set);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* Compute the constraint of a facet of "set".
 | |
|  *
 | |
|  * We first compute the intersection with a bounding constraint
 | |
|  * that is orthogonal to one of the coordinate axes.
 | |
|  * If the affine hull of this intersection has only one equality,
 | |
|  * we have found a facet.
 | |
|  * Otherwise, we wrap the current bounding constraint around
 | |
|  * one of the equalities of the face (one that is not equal to
 | |
|  * the current bounding constraint).
 | |
|  * This process continues until we have found a facet.
 | |
|  * The dimension of the intersection increases by at least
 | |
|  * one on each iteration, so termination is guaranteed.
 | |
|  */
 | |
| static __isl_give isl_mat *initial_facet_constraint(__isl_keep isl_set *set)
 | |
| {
 | |
| 	struct isl_set *slice = NULL;
 | |
| 	struct isl_basic_set *face = NULL;
 | |
| 	int i;
 | |
| 	unsigned dim = isl_set_n_dim(set);
 | |
| 	int is_bound;
 | |
| 	isl_mat *bounds = NULL;
 | |
| 
 | |
| 	isl_assert(set->ctx, set->n > 0, goto error);
 | |
| 	bounds = isl_mat_alloc(set->ctx, 1, 1 + dim);
 | |
| 	if (!bounds)
 | |
| 		return NULL;
 | |
| 
 | |
| 	isl_seq_clr(bounds->row[0], dim);
 | |
| 	isl_int_set_si(bounds->row[0][1 + dim - 1], 1);
 | |
| 	is_bound = uset_is_bound(set, bounds->row[0], 1 + dim);
 | |
| 	if (is_bound < 0)
 | |
| 		goto error;
 | |
| 	isl_assert(set->ctx, is_bound, goto error);
 | |
| 	isl_seq_normalize(set->ctx, bounds->row[0], 1 + dim);
 | |
| 	bounds->n_row = 1;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		slice = isl_set_copy(set);
 | |
| 		slice = isl_set_add_basic_set_equality(slice, bounds->row[0]);
 | |
| 		face = isl_set_affine_hull(slice);
 | |
| 		if (!face)
 | |
| 			goto error;
 | |
| 		if (face->n_eq == 1) {
 | |
| 			isl_basic_set_free(face);
 | |
| 			break;
 | |
| 		}
 | |
| 		for (i = 0; i < face->n_eq; ++i)
 | |
| 			if (!isl_seq_eq(bounds->row[0], face->eq[i], 1 + dim) &&
 | |
| 			    !isl_seq_is_neg(bounds->row[0],
 | |
| 						face->eq[i], 1 + dim))
 | |
| 				break;
 | |
| 		isl_assert(set->ctx, i < face->n_eq, goto error);
 | |
| 		if (!isl_set_wrap_facet(set, bounds->row[0], face->eq[i]))
 | |
| 			goto error;
 | |
| 		isl_seq_normalize(set->ctx, bounds->row[0], bounds->n_col);
 | |
| 		isl_basic_set_free(face);
 | |
| 	}
 | |
| 
 | |
| 	return bounds;
 | |
| error:
 | |
| 	isl_basic_set_free(face);
 | |
| 	isl_mat_free(bounds);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* Given the bounding constraint "c" of a facet of the convex hull of "set",
 | |
|  * compute a hyperplane description of the facet, i.e., compute the facets
 | |
|  * of the facet.
 | |
|  *
 | |
|  * We compute an affine transformation that transforms the constraint
 | |
|  *
 | |
|  *			  [ 1 ]
 | |
|  *			c [ x ] = 0
 | |
|  *
 | |
|  * to the constraint
 | |
|  *
 | |
|  *			   z_1  = 0
 | |
|  *
 | |
|  * by computing the right inverse U of a matrix that starts with the rows
 | |
|  *
 | |
|  *			[ 1 0 ]
 | |
|  *			[  c  ]
 | |
|  *
 | |
|  * Then
 | |
|  *			[ 1 ]     [ 1 ]
 | |
|  *			[ x ] = U [ z ]
 | |
|  * and
 | |
|  *			[ 1 ]     [ 1 ]
 | |
|  *			[ z ] = Q [ x ]
 | |
|  *
 | |
|  * with Q = U^{-1}
 | |
|  * Since z_1 is zero, we can drop this variable as well as the corresponding
 | |
|  * column of U to obtain
 | |
|  *
 | |
|  *			[ 1 ]      [ 1  ]
 | |
|  *			[ x ] = U' [ z' ]
 | |
|  * and
 | |
|  *			[ 1  ]      [ 1 ]
 | |
|  *			[ z' ] = Q' [ x ]
 | |
|  *
 | |
|  * with Q' equal to Q, but without the corresponding row.
 | |
|  * After computing the facets of the facet in the z' space,
 | |
|  * we convert them back to the x space through Q.
 | |
|  */
 | |
| static struct isl_basic_set *compute_facet(struct isl_set *set, isl_int *c)
 | |
| {
 | |
| 	struct isl_mat *m, *U, *Q;
 | |
| 	struct isl_basic_set *facet = NULL;
 | |
| 	struct isl_ctx *ctx;
 | |
| 	unsigned dim;
 | |
| 
 | |
| 	ctx = set->ctx;
 | |
| 	set = isl_set_copy(set);
 | |
| 	dim = isl_set_n_dim(set);
 | |
| 	m = isl_mat_alloc(set->ctx, 2, 1 + dim);
 | |
| 	if (!m)
 | |
| 		goto error;
 | |
| 	isl_int_set_si(m->row[0][0], 1);
 | |
| 	isl_seq_clr(m->row[0]+1, dim);
 | |
| 	isl_seq_cpy(m->row[1], c, 1+dim);
 | |
| 	U = isl_mat_right_inverse(m);
 | |
| 	Q = isl_mat_right_inverse(isl_mat_copy(U));
 | |
| 	U = isl_mat_drop_cols(U, 1, 1);
 | |
| 	Q = isl_mat_drop_rows(Q, 1, 1);
 | |
| 	set = isl_set_preimage(set, U);
 | |
| 	facet = uset_convex_hull_wrap_bounded(set);
 | |
| 	facet = isl_basic_set_preimage(facet, Q);
 | |
| 	if (facet && facet->n_eq != 0)
 | |
| 		isl_die(ctx, isl_error_internal, "unexpected equality",
 | |
| 			return isl_basic_set_free(facet));
 | |
| 	return facet;
 | |
| error:
 | |
| 	isl_basic_set_free(facet);
 | |
| 	isl_set_free(set);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* Given an initial facet constraint, compute the remaining facets.
 | |
|  * We do this by running through all facets found so far and computing
 | |
|  * the adjacent facets through wrapping, adding those facets that we
 | |
|  * hadn't already found before.
 | |
|  *
 | |
|  * For each facet we have found so far, we first compute its facets
 | |
|  * in the resulting convex hull.  That is, we compute the ridges
 | |
|  * of the resulting convex hull contained in the facet.
 | |
|  * We also compute the corresponding facet in the current approximation
 | |
|  * of the convex hull.  There is no need to wrap around the ridges
 | |
|  * in this facet since that would result in a facet that is already
 | |
|  * present in the current approximation.
 | |
|  *
 | |
|  * This function can still be significantly optimized by checking which of
 | |
|  * the facets of the basic sets are also facets of the convex hull and
 | |
|  * using all the facets so far to help in constructing the facets of the
 | |
|  * facets
 | |
|  * and/or
 | |
|  * using the technique in section "3.1 Ridge Generation" of
 | |
|  * "Extended Convex Hull" by Fukuda et al.
 | |
|  */
 | |
| static struct isl_basic_set *extend(struct isl_basic_set *hull,
 | |
| 	struct isl_set *set)
 | |
| {
 | |
| 	int i, j, f;
 | |
| 	int k;
 | |
| 	struct isl_basic_set *facet = NULL;
 | |
| 	struct isl_basic_set *hull_facet = NULL;
 | |
| 	unsigned dim;
 | |
| 
 | |
| 	if (!hull)
 | |
| 		return NULL;
 | |
| 
 | |
| 	isl_assert(set->ctx, set->n > 0, goto error);
 | |
| 
 | |
| 	dim = isl_set_n_dim(set);
 | |
| 
 | |
| 	for (i = 0; i < hull->n_ineq; ++i) {
 | |
| 		facet = compute_facet(set, hull->ineq[i]);
 | |
| 		facet = isl_basic_set_add_equality(facet, hull->ineq[i]);
 | |
| 		facet = isl_basic_set_gauss(facet, NULL);
 | |
| 		facet = isl_basic_set_normalize_constraints(facet);
 | |
| 		hull_facet = isl_basic_set_copy(hull);
 | |
| 		hull_facet = isl_basic_set_add_equality(hull_facet, hull->ineq[i]);
 | |
| 		hull_facet = isl_basic_set_gauss(hull_facet, NULL);
 | |
| 		hull_facet = isl_basic_set_normalize_constraints(hull_facet);
 | |
| 		if (!facet || !hull_facet)
 | |
| 			goto error;
 | |
| 		hull = isl_basic_set_cow(hull);
 | |
| 		hull = isl_basic_set_extend_space(hull,
 | |
| 			isl_space_copy(hull->dim), 0, 0, facet->n_ineq);
 | |
| 		if (!hull)
 | |
| 			goto error;
 | |
| 		for (j = 0; j < facet->n_ineq; ++j) {
 | |
| 			for (f = 0; f < hull_facet->n_ineq; ++f)
 | |
| 				if (isl_seq_eq(facet->ineq[j],
 | |
| 						hull_facet->ineq[f], 1 + dim))
 | |
| 					break;
 | |
| 			if (f < hull_facet->n_ineq)
 | |
| 				continue;
 | |
| 			k = isl_basic_set_alloc_inequality(hull);
 | |
| 			if (k < 0)
 | |
| 				goto error;
 | |
| 			isl_seq_cpy(hull->ineq[k], hull->ineq[i], 1+dim);
 | |
| 			if (!isl_set_wrap_facet(set, hull->ineq[k], facet->ineq[j]))
 | |
| 				goto error;
 | |
| 		}
 | |
| 		isl_basic_set_free(hull_facet);
 | |
| 		isl_basic_set_free(facet);
 | |
| 	}
 | |
| 	hull = isl_basic_set_simplify(hull);
 | |
| 	hull = isl_basic_set_finalize(hull);
 | |
| 	return hull;
 | |
| error:
 | |
| 	isl_basic_set_free(hull_facet);
 | |
| 	isl_basic_set_free(facet);
 | |
| 	isl_basic_set_free(hull);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* Special case for computing the convex hull of a one dimensional set.
 | |
|  * We simply collect the lower and upper bounds of each basic set
 | |
|  * and the biggest of those.
 | |
|  */
 | |
| static struct isl_basic_set *convex_hull_1d(struct isl_set *set)
 | |
| {
 | |
| 	struct isl_mat *c = NULL;
 | |
| 	isl_int *lower = NULL;
 | |
| 	isl_int *upper = NULL;
 | |
| 	int i, j, k;
 | |
| 	isl_int a, b;
 | |
| 	struct isl_basic_set *hull;
 | |
| 
 | |
| 	for (i = 0; i < set->n; ++i) {
 | |
| 		set->p[i] = isl_basic_set_simplify(set->p[i]);
 | |
| 		if (!set->p[i])
 | |
| 			goto error;
 | |
| 	}
 | |
| 	set = isl_set_remove_empty_parts(set);
 | |
| 	if (!set)
 | |
| 		goto error;
 | |
| 	isl_assert(set->ctx, set->n > 0, goto error);
 | |
| 	c = isl_mat_alloc(set->ctx, 2, 2);
 | |
| 	if (!c)
 | |
| 		goto error;
 | |
| 
 | |
| 	if (set->p[0]->n_eq > 0) {
 | |
| 		isl_assert(set->ctx, set->p[0]->n_eq == 1, goto error);
 | |
| 		lower = c->row[0];
 | |
| 		upper = c->row[1];
 | |
| 		if (isl_int_is_pos(set->p[0]->eq[0][1])) {
 | |
| 			isl_seq_cpy(lower, set->p[0]->eq[0], 2);
 | |
| 			isl_seq_neg(upper, set->p[0]->eq[0], 2);
 | |
| 		} else {
 | |
| 			isl_seq_neg(lower, set->p[0]->eq[0], 2);
 | |
| 			isl_seq_cpy(upper, set->p[0]->eq[0], 2);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (j = 0; j < set->p[0]->n_ineq; ++j) {
 | |
| 			if (isl_int_is_pos(set->p[0]->ineq[j][1])) {
 | |
| 				lower = c->row[0];
 | |
| 				isl_seq_cpy(lower, set->p[0]->ineq[j], 2);
 | |
| 			} else {
 | |
| 				upper = c->row[1];
 | |
| 				isl_seq_cpy(upper, set->p[0]->ineq[j], 2);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	isl_int_init(a);
 | |
| 	isl_int_init(b);
 | |
| 	for (i = 0; i < set->n; ++i) {
 | |
| 		struct isl_basic_set *bset = set->p[i];
 | |
| 		int has_lower = 0;
 | |
| 		int has_upper = 0;
 | |
| 
 | |
| 		for (j = 0; j < bset->n_eq; ++j) {
 | |
| 			has_lower = 1;
 | |
| 			has_upper = 1;
 | |
| 			if (lower) {
 | |
| 				isl_int_mul(a, lower[0], bset->eq[j][1]);
 | |
| 				isl_int_mul(b, lower[1], bset->eq[j][0]);
 | |
| 				if (isl_int_lt(a, b) && isl_int_is_pos(bset->eq[j][1]))
 | |
| 					isl_seq_cpy(lower, bset->eq[j], 2);
 | |
| 				if (isl_int_gt(a, b) && isl_int_is_neg(bset->eq[j][1]))
 | |
| 					isl_seq_neg(lower, bset->eq[j], 2);
 | |
| 			}
 | |
| 			if (upper) {
 | |
| 				isl_int_mul(a, upper[0], bset->eq[j][1]);
 | |
| 				isl_int_mul(b, upper[1], bset->eq[j][0]);
 | |
| 				if (isl_int_lt(a, b) && isl_int_is_pos(bset->eq[j][1]))
 | |
| 					isl_seq_neg(upper, bset->eq[j], 2);
 | |
| 				if (isl_int_gt(a, b) && isl_int_is_neg(bset->eq[j][1]))
 | |
| 					isl_seq_cpy(upper, bset->eq[j], 2);
 | |
| 			}
 | |
| 		}
 | |
| 		for (j = 0; j < bset->n_ineq; ++j) {
 | |
| 			if (isl_int_is_pos(bset->ineq[j][1]))
 | |
| 				has_lower = 1;
 | |
| 			if (isl_int_is_neg(bset->ineq[j][1]))
 | |
| 				has_upper = 1;
 | |
| 			if (lower && isl_int_is_pos(bset->ineq[j][1])) {
 | |
| 				isl_int_mul(a, lower[0], bset->ineq[j][1]);
 | |
| 				isl_int_mul(b, lower[1], bset->ineq[j][0]);
 | |
| 				if (isl_int_lt(a, b))
 | |
| 					isl_seq_cpy(lower, bset->ineq[j], 2);
 | |
| 			}
 | |
| 			if (upper && isl_int_is_neg(bset->ineq[j][1])) {
 | |
| 				isl_int_mul(a, upper[0], bset->ineq[j][1]);
 | |
| 				isl_int_mul(b, upper[1], bset->ineq[j][0]);
 | |
| 				if (isl_int_gt(a, b))
 | |
| 					isl_seq_cpy(upper, bset->ineq[j], 2);
 | |
| 			}
 | |
| 		}
 | |
| 		if (!has_lower)
 | |
| 			lower = NULL;
 | |
| 		if (!has_upper)
 | |
| 			upper = NULL;
 | |
| 	}
 | |
| 	isl_int_clear(a);
 | |
| 	isl_int_clear(b);
 | |
| 
 | |
| 	hull = isl_basic_set_alloc(set->ctx, 0, 1, 0, 0, 2);
 | |
| 	hull = isl_basic_set_set_rational(hull);
 | |
| 	if (!hull)
 | |
| 		goto error;
 | |
| 	if (lower) {
 | |
| 		k = isl_basic_set_alloc_inequality(hull);
 | |
| 		isl_seq_cpy(hull->ineq[k], lower, 2);
 | |
| 	}
 | |
| 	if (upper) {
 | |
| 		k = isl_basic_set_alloc_inequality(hull);
 | |
| 		isl_seq_cpy(hull->ineq[k], upper, 2);
 | |
| 	}
 | |
| 	hull = isl_basic_set_finalize(hull);
 | |
| 	isl_set_free(set);
 | |
| 	isl_mat_free(c);
 | |
| 	return hull;
 | |
| error:
 | |
| 	isl_set_free(set);
 | |
| 	isl_mat_free(c);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static struct isl_basic_set *convex_hull_0d(struct isl_set *set)
 | |
| {
 | |
| 	struct isl_basic_set *convex_hull;
 | |
| 
 | |
| 	if (!set)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (isl_set_is_empty(set))
 | |
| 		convex_hull = isl_basic_set_empty(isl_space_copy(set->dim));
 | |
| 	else
 | |
| 		convex_hull = isl_basic_set_universe(isl_space_copy(set->dim));
 | |
| 	isl_set_free(set);
 | |
| 	return convex_hull;
 | |
| }
 | |
| 
 | |
| /* Compute the convex hull of a pair of basic sets without any parameters or
 | |
|  * integer divisions using Fourier-Motzkin elimination.
 | |
|  * The convex hull is the set of all points that can be written as
 | |
|  * the sum of points from both basic sets (in homogeneous coordinates).
 | |
|  * We set up the constraints in a space with dimensions for each of
 | |
|  * the three sets and then project out the dimensions corresponding
 | |
|  * to the two original basic sets, retaining only those corresponding
 | |
|  * to the convex hull.
 | |
|  */
 | |
| static struct isl_basic_set *convex_hull_pair_elim(struct isl_basic_set *bset1,
 | |
| 	struct isl_basic_set *bset2)
 | |
| {
 | |
| 	int i, j, k;
 | |
| 	struct isl_basic_set *bset[2];
 | |
| 	struct isl_basic_set *hull = NULL;
 | |
| 	unsigned dim;
 | |
| 
 | |
| 	if (!bset1 || !bset2)
 | |
| 		goto error;
 | |
| 
 | |
| 	dim = isl_basic_set_n_dim(bset1);
 | |
| 	hull = isl_basic_set_alloc(bset1->ctx, 0, 2 + 3 * dim, 0,
 | |
| 				1 + dim + bset1->n_eq + bset2->n_eq,
 | |
| 				2 + bset1->n_ineq + bset2->n_ineq);
 | |
| 	bset[0] = bset1;
 | |
| 	bset[1] = bset2;
 | |
| 	for (i = 0; i < 2; ++i) {
 | |
| 		for (j = 0; j < bset[i]->n_eq; ++j) {
 | |
| 			k = isl_basic_set_alloc_equality(hull);
 | |
| 			if (k < 0)
 | |
| 				goto error;
 | |
| 			isl_seq_clr(hull->eq[k], (i+1) * (1+dim));
 | |
| 			isl_seq_clr(hull->eq[k]+(i+2)*(1+dim), (1-i)*(1+dim));
 | |
| 			isl_seq_cpy(hull->eq[k]+(i+1)*(1+dim), bset[i]->eq[j],
 | |
| 					1+dim);
 | |
| 		}
 | |
| 		for (j = 0; j < bset[i]->n_ineq; ++j) {
 | |
| 			k = isl_basic_set_alloc_inequality(hull);
 | |
| 			if (k < 0)
 | |
| 				goto error;
 | |
| 			isl_seq_clr(hull->ineq[k], (i+1) * (1+dim));
 | |
| 			isl_seq_clr(hull->ineq[k]+(i+2)*(1+dim), (1-i)*(1+dim));
 | |
| 			isl_seq_cpy(hull->ineq[k]+(i+1)*(1+dim),
 | |
| 					bset[i]->ineq[j], 1+dim);
 | |
| 		}
 | |
| 		k = isl_basic_set_alloc_inequality(hull);
 | |
| 		if (k < 0)
 | |
| 			goto error;
 | |
| 		isl_seq_clr(hull->ineq[k], 1+2+3*dim);
 | |
| 		isl_int_set_si(hull->ineq[k][(i+1)*(1+dim)], 1);
 | |
| 	}
 | |
| 	for (j = 0; j < 1+dim; ++j) {
 | |
| 		k = isl_basic_set_alloc_equality(hull);
 | |
| 		if (k < 0)
 | |
| 			goto error;
 | |
| 		isl_seq_clr(hull->eq[k], 1+2+3*dim);
 | |
| 		isl_int_set_si(hull->eq[k][j], -1);
 | |
| 		isl_int_set_si(hull->eq[k][1+dim+j], 1);
 | |
| 		isl_int_set_si(hull->eq[k][2*(1+dim)+j], 1);
 | |
| 	}
 | |
| 	hull = isl_basic_set_set_rational(hull);
 | |
| 	hull = isl_basic_set_remove_dims(hull, isl_dim_set, dim, 2*(1+dim));
 | |
| 	hull = isl_basic_set_remove_redundancies(hull);
 | |
| 	isl_basic_set_free(bset1);
 | |
| 	isl_basic_set_free(bset2);
 | |
| 	return hull;
 | |
| error:
 | |
| 	isl_basic_set_free(bset1);
 | |
| 	isl_basic_set_free(bset2);
 | |
| 	isl_basic_set_free(hull);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* Is the set bounded for each value of the parameters?
 | |
|  */
 | |
| isl_bool isl_basic_set_is_bounded(__isl_keep isl_basic_set *bset)
 | |
| {
 | |
| 	struct isl_tab *tab;
 | |
| 	isl_bool bounded;
 | |
| 
 | |
| 	if (!bset)
 | |
| 		return isl_bool_error;
 | |
| 	if (isl_basic_set_plain_is_empty(bset))
 | |
| 		return isl_bool_true;
 | |
| 
 | |
| 	tab = isl_tab_from_recession_cone(bset, 1);
 | |
| 	bounded = isl_tab_cone_is_bounded(tab);
 | |
| 	isl_tab_free(tab);
 | |
| 	return bounded;
 | |
| }
 | |
| 
 | |
| /* Is the image bounded for each value of the parameters and
 | |
|  * the domain variables?
 | |
|  */
 | |
| isl_bool isl_basic_map_image_is_bounded(__isl_keep isl_basic_map *bmap)
 | |
| {
 | |
| 	unsigned nparam = isl_basic_map_dim(bmap, isl_dim_param);
 | |
| 	unsigned n_in = isl_basic_map_dim(bmap, isl_dim_in);
 | |
| 	isl_bool bounded;
 | |
| 
 | |
| 	bmap = isl_basic_map_copy(bmap);
 | |
| 	bmap = isl_basic_map_cow(bmap);
 | |
| 	bmap = isl_basic_map_move_dims(bmap, isl_dim_param, nparam,
 | |
| 					isl_dim_in, 0, n_in);
 | |
| 	bounded = isl_basic_set_is_bounded(bset_from_bmap(bmap));
 | |
| 	isl_basic_map_free(bmap);
 | |
| 
 | |
| 	return bounded;
 | |
| }
 | |
| 
 | |
| /* Is the set bounded for each value of the parameters?
 | |
|  */
 | |
| isl_bool isl_set_is_bounded(__isl_keep isl_set *set)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (!set)
 | |
| 		return isl_bool_error;
 | |
| 
 | |
| 	for (i = 0; i < set->n; ++i) {
 | |
| 		isl_bool bounded = isl_basic_set_is_bounded(set->p[i]);
 | |
| 		if (!bounded || bounded < 0)
 | |
| 			return bounded;
 | |
| 	}
 | |
| 	return isl_bool_true;
 | |
| }
 | |
| 
 | |
| /* Compute the lineality space of the convex hull of bset1 and bset2.
 | |
|  *
 | |
|  * We first compute the intersection of the recession cone of bset1
 | |
|  * with the negative of the recession cone of bset2 and then compute
 | |
|  * the linear hull of the resulting cone.
 | |
|  */
 | |
| static struct isl_basic_set *induced_lineality_space(
 | |
| 	struct isl_basic_set *bset1, struct isl_basic_set *bset2)
 | |
| {
 | |
| 	int i, k;
 | |
| 	struct isl_basic_set *lin = NULL;
 | |
| 	unsigned dim;
 | |
| 
 | |
| 	if (!bset1 || !bset2)
 | |
| 		goto error;
 | |
| 
 | |
| 	dim = isl_basic_set_total_dim(bset1);
 | |
| 	lin = isl_basic_set_alloc_space(isl_basic_set_get_space(bset1), 0,
 | |
| 					bset1->n_eq + bset2->n_eq,
 | |
| 					bset1->n_ineq + bset2->n_ineq);
 | |
| 	lin = isl_basic_set_set_rational(lin);
 | |
| 	if (!lin)
 | |
| 		goto error;
 | |
| 	for (i = 0; i < bset1->n_eq; ++i) {
 | |
| 		k = isl_basic_set_alloc_equality(lin);
 | |
| 		if (k < 0)
 | |
| 			goto error;
 | |
| 		isl_int_set_si(lin->eq[k][0], 0);
 | |
| 		isl_seq_cpy(lin->eq[k] + 1, bset1->eq[i] + 1, dim);
 | |
| 	}
 | |
| 	for (i = 0; i < bset1->n_ineq; ++i) {
 | |
| 		k = isl_basic_set_alloc_inequality(lin);
 | |
| 		if (k < 0)
 | |
| 			goto error;
 | |
| 		isl_int_set_si(lin->ineq[k][0], 0);
 | |
| 		isl_seq_cpy(lin->ineq[k] + 1, bset1->ineq[i] + 1, dim);
 | |
| 	}
 | |
| 	for (i = 0; i < bset2->n_eq; ++i) {
 | |
| 		k = isl_basic_set_alloc_equality(lin);
 | |
| 		if (k < 0)
 | |
| 			goto error;
 | |
| 		isl_int_set_si(lin->eq[k][0], 0);
 | |
| 		isl_seq_neg(lin->eq[k] + 1, bset2->eq[i] + 1, dim);
 | |
| 	}
 | |
| 	for (i = 0; i < bset2->n_ineq; ++i) {
 | |
| 		k = isl_basic_set_alloc_inequality(lin);
 | |
| 		if (k < 0)
 | |
| 			goto error;
 | |
| 		isl_int_set_si(lin->ineq[k][0], 0);
 | |
| 		isl_seq_neg(lin->ineq[k] + 1, bset2->ineq[i] + 1, dim);
 | |
| 	}
 | |
| 
 | |
| 	isl_basic_set_free(bset1);
 | |
| 	isl_basic_set_free(bset2);
 | |
| 	return isl_basic_set_affine_hull(lin);
 | |
| error:
 | |
| 	isl_basic_set_free(lin);
 | |
| 	isl_basic_set_free(bset1);
 | |
| 	isl_basic_set_free(bset2);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static struct isl_basic_set *uset_convex_hull(struct isl_set *set);
 | |
| 
 | |
| /* Given a set and a linear space "lin" of dimension n > 0,
 | |
|  * project the linear space from the set, compute the convex hull
 | |
|  * and then map the set back to the original space.
 | |
|  *
 | |
|  * Let
 | |
|  *
 | |
|  *	M x = 0
 | |
|  *
 | |
|  * describe the linear space.  We first compute the Hermite normal
 | |
|  * form H = M U of M = H Q, to obtain
 | |
|  *
 | |
|  *	H Q x = 0
 | |
|  *
 | |
|  * The last n rows of H will be zero, so the last n variables of x' = Q x
 | |
|  * are the one we want to project out.  We do this by transforming each
 | |
|  * basic set A x >= b to A U x' >= b and then removing the last n dimensions.
 | |
|  * After computing the convex hull in x'_1, i.e., A' x'_1 >= b',
 | |
|  * we transform the hull back to the original space as A' Q_1 x >= b',
 | |
|  * with Q_1 all but the last n rows of Q.
 | |
|  */
 | |
| static struct isl_basic_set *modulo_lineality(struct isl_set *set,
 | |
| 	struct isl_basic_set *lin)
 | |
| {
 | |
| 	unsigned total = isl_basic_set_total_dim(lin);
 | |
| 	unsigned lin_dim;
 | |
| 	struct isl_basic_set *hull;
 | |
| 	struct isl_mat *M, *U, *Q;
 | |
| 
 | |
| 	if (!set || !lin)
 | |
| 		goto error;
 | |
| 	lin_dim = total - lin->n_eq;
 | |
| 	M = isl_mat_sub_alloc6(set->ctx, lin->eq, 0, lin->n_eq, 1, total);
 | |
| 	M = isl_mat_left_hermite(M, 0, &U, &Q);
 | |
| 	if (!M)
 | |
| 		goto error;
 | |
| 	isl_mat_free(M);
 | |
| 	isl_basic_set_free(lin);
 | |
| 
 | |
| 	Q = isl_mat_drop_rows(Q, Q->n_row - lin_dim, lin_dim);
 | |
| 
 | |
| 	U = isl_mat_lin_to_aff(U);
 | |
| 	Q = isl_mat_lin_to_aff(Q);
 | |
| 
 | |
| 	set = isl_set_preimage(set, U);
 | |
| 	set = isl_set_remove_dims(set, isl_dim_set, total - lin_dim, lin_dim);
 | |
| 	hull = uset_convex_hull(set);
 | |
| 	hull = isl_basic_set_preimage(hull, Q);
 | |
| 
 | |
| 	return hull;
 | |
| error:
 | |
| 	isl_basic_set_free(lin);
 | |
| 	isl_set_free(set);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* Given two polyhedra with as constraints h_{ij} x >= 0 in homegeneous space,
 | |
|  * set up an LP for solving
 | |
|  *
 | |
|  *	\sum_j \alpha_{1j} h_{1j} = \sum_j \alpha_{2j} h_{2j}
 | |
|  *
 | |
|  * \alpha{i0} corresponds to the (implicit) positivity constraint 1 >= 0
 | |
|  * The next \alpha{ij} correspond to the equalities and come in pairs.
 | |
|  * The final \alpha{ij} correspond to the inequalities.
 | |
|  */
 | |
| static struct isl_basic_set *valid_direction_lp(
 | |
| 	struct isl_basic_set *bset1, struct isl_basic_set *bset2)
 | |
| {
 | |
| 	isl_space *dim;
 | |
| 	struct isl_basic_set *lp;
 | |
| 	unsigned d;
 | |
| 	int n;
 | |
| 	int i, j, k;
 | |
| 
 | |
| 	if (!bset1 || !bset2)
 | |
| 		goto error;
 | |
| 	d = 1 + isl_basic_set_total_dim(bset1);
 | |
| 	n = 2 +
 | |
| 	    2 * bset1->n_eq + bset1->n_ineq + 2 * bset2->n_eq + bset2->n_ineq;
 | |
| 	dim = isl_space_set_alloc(bset1->ctx, 0, n);
 | |
| 	lp = isl_basic_set_alloc_space(dim, 0, d, n);
 | |
| 	if (!lp)
 | |
| 		goto error;
 | |
| 	for (i = 0; i < n; ++i) {
 | |
| 		k = isl_basic_set_alloc_inequality(lp);
 | |
| 		if (k < 0)
 | |
| 			goto error;
 | |
| 		isl_seq_clr(lp->ineq[k] + 1, n);
 | |
| 		isl_int_set_si(lp->ineq[k][0], -1);
 | |
| 		isl_int_set_si(lp->ineq[k][1 + i], 1);
 | |
| 	}
 | |
| 	for (i = 0; i < d; ++i) {
 | |
| 		k = isl_basic_set_alloc_equality(lp);
 | |
| 		if (k < 0)
 | |
| 			goto error;
 | |
| 		n = 0;
 | |
| 		isl_int_set_si(lp->eq[k][n], 0); n++;
 | |
| 		/* positivity constraint 1 >= 0 */
 | |
| 		isl_int_set_si(lp->eq[k][n], i == 0); n++;
 | |
| 		for (j = 0; j < bset1->n_eq; ++j) {
 | |
| 			isl_int_set(lp->eq[k][n], bset1->eq[j][i]); n++;
 | |
| 			isl_int_neg(lp->eq[k][n], bset1->eq[j][i]); n++;
 | |
| 		}
 | |
| 		for (j = 0; j < bset1->n_ineq; ++j) {
 | |
| 			isl_int_set(lp->eq[k][n], bset1->ineq[j][i]); n++;
 | |
| 		}
 | |
| 		/* positivity constraint 1 >= 0 */
 | |
| 		isl_int_set_si(lp->eq[k][n], -(i == 0)); n++;
 | |
| 		for (j = 0; j < bset2->n_eq; ++j) {
 | |
| 			isl_int_neg(lp->eq[k][n], bset2->eq[j][i]); n++;
 | |
| 			isl_int_set(lp->eq[k][n], bset2->eq[j][i]); n++;
 | |
| 		}
 | |
| 		for (j = 0; j < bset2->n_ineq; ++j) {
 | |
| 			isl_int_neg(lp->eq[k][n], bset2->ineq[j][i]); n++;
 | |
| 		}
 | |
| 	}
 | |
| 	lp = isl_basic_set_gauss(lp, NULL);
 | |
| 	isl_basic_set_free(bset1);
 | |
| 	isl_basic_set_free(bset2);
 | |
| 	return lp;
 | |
| error:
 | |
| 	isl_basic_set_free(bset1);
 | |
| 	isl_basic_set_free(bset2);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* Compute a vector s in the homogeneous space such that <s, r> > 0
 | |
|  * for all rays in the homogeneous space of the two cones that correspond
 | |
|  * to the input polyhedra bset1 and bset2.
 | |
|  *
 | |
|  * We compute s as a vector that satisfies
 | |
|  *
 | |
|  *	s = \sum_j \alpha_{ij} h_{ij}	for i = 1,2			(*)
 | |
|  *
 | |
|  * with h_{ij} the normals of the facets of polyhedron i
 | |
|  * (including the "positivity constraint" 1 >= 0) and \alpha_{ij}
 | |
|  * strictly positive numbers.  For simplicity we impose \alpha_{ij} >= 1.
 | |
|  * We first set up an LP with as variables the \alpha{ij}.
 | |
|  * In this formulation, for each polyhedron i,
 | |
|  * the first constraint is the positivity constraint, followed by pairs
 | |
|  * of variables for the equalities, followed by variables for the inequalities.
 | |
|  * We then simply pick a feasible solution and compute s using (*).
 | |
|  *
 | |
|  * Note that we simply pick any valid direction and make no attempt
 | |
|  * to pick a "good" or even the "best" valid direction.
 | |
|  */
 | |
| static struct isl_vec *valid_direction(
 | |
| 	struct isl_basic_set *bset1, struct isl_basic_set *bset2)
 | |
| {
 | |
| 	struct isl_basic_set *lp;
 | |
| 	struct isl_tab *tab;
 | |
| 	struct isl_vec *sample = NULL;
 | |
| 	struct isl_vec *dir;
 | |
| 	unsigned d;
 | |
| 	int i;
 | |
| 	int n;
 | |
| 
 | |
| 	if (!bset1 || !bset2)
 | |
| 		goto error;
 | |
| 	lp = valid_direction_lp(isl_basic_set_copy(bset1),
 | |
| 				isl_basic_set_copy(bset2));
 | |
| 	tab = isl_tab_from_basic_set(lp, 0);
 | |
| 	sample = isl_tab_get_sample_value(tab);
 | |
| 	isl_tab_free(tab);
 | |
| 	isl_basic_set_free(lp);
 | |
| 	if (!sample)
 | |
| 		goto error;
 | |
| 	d = isl_basic_set_total_dim(bset1);
 | |
| 	dir = isl_vec_alloc(bset1->ctx, 1 + d);
 | |
| 	if (!dir)
 | |
| 		goto error;
 | |
| 	isl_seq_clr(dir->block.data + 1, dir->size - 1);
 | |
| 	n = 1;
 | |
| 	/* positivity constraint 1 >= 0 */
 | |
| 	isl_int_set(dir->block.data[0], sample->block.data[n]); n++;
 | |
| 	for (i = 0; i < bset1->n_eq; ++i) {
 | |
| 		isl_int_sub(sample->block.data[n],
 | |
| 			    sample->block.data[n], sample->block.data[n+1]);
 | |
| 		isl_seq_combine(dir->block.data,
 | |
| 				bset1->ctx->one, dir->block.data,
 | |
| 				sample->block.data[n], bset1->eq[i], 1 + d);
 | |
| 
 | |
| 		n += 2;
 | |
| 	}
 | |
| 	for (i = 0; i < bset1->n_ineq; ++i)
 | |
| 		isl_seq_combine(dir->block.data,
 | |
| 				bset1->ctx->one, dir->block.data,
 | |
| 				sample->block.data[n++], bset1->ineq[i], 1 + d);
 | |
| 	isl_vec_free(sample);
 | |
| 	isl_seq_normalize(bset1->ctx, dir->el, dir->size);
 | |
| 	isl_basic_set_free(bset1);
 | |
| 	isl_basic_set_free(bset2);
 | |
| 	return dir;
 | |
| error:
 | |
| 	isl_vec_free(sample);
 | |
| 	isl_basic_set_free(bset1);
 | |
| 	isl_basic_set_free(bset2);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* Given a polyhedron b_i + A_i x >= 0 and a map T = S^{-1},
 | |
|  * compute b_i' + A_i' x' >= 0, with
 | |
|  *
 | |
|  *	[ b_i A_i ]        [ y' ]		              [ y' ]
 | |
|  *	[  1   0  ] S^{-1} [ x' ] >= 0	or	[ b_i' A_i' ] [ x' ] >= 0
 | |
|  *
 | |
|  * In particular, add the "positivity constraint" and then perform
 | |
|  * the mapping.
 | |
|  */
 | |
| static struct isl_basic_set *homogeneous_map(struct isl_basic_set *bset,
 | |
| 	struct isl_mat *T)
 | |
| {
 | |
| 	int k;
 | |
| 
 | |
| 	if (!bset)
 | |
| 		goto error;
 | |
| 	bset = isl_basic_set_extend_constraints(bset, 0, 1);
 | |
| 	k = isl_basic_set_alloc_inequality(bset);
 | |
| 	if (k < 0)
 | |
| 		goto error;
 | |
| 	isl_seq_clr(bset->ineq[k] + 1, isl_basic_set_total_dim(bset));
 | |
| 	isl_int_set_si(bset->ineq[k][0], 1);
 | |
| 	bset = isl_basic_set_preimage(bset, T);
 | |
| 	return bset;
 | |
| error:
 | |
| 	isl_mat_free(T);
 | |
| 	isl_basic_set_free(bset);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* Compute the convex hull of a pair of basic sets without any parameters or
 | |
|  * integer divisions, where the convex hull is known to be pointed,
 | |
|  * but the basic sets may be unbounded.
 | |
|  *
 | |
|  * We turn this problem into the computation of a convex hull of a pair
 | |
|  * _bounded_ polyhedra by "changing the direction of the homogeneous
 | |
|  * dimension".  This idea is due to Matthias Koeppe.
 | |
|  *
 | |
|  * Consider the cones in homogeneous space that correspond to the
 | |
|  * input polyhedra.  The rays of these cones are also rays of the
 | |
|  * polyhedra if the coordinate that corresponds to the homogeneous
 | |
|  * dimension is zero.  That is, if the inner product of the rays
 | |
|  * with the homogeneous direction is zero.
 | |
|  * The cones in the homogeneous space can also be considered to
 | |
|  * correspond to other pairs of polyhedra by chosing a different
 | |
|  * homogeneous direction.  To ensure that both of these polyhedra
 | |
|  * are bounded, we need to make sure that all rays of the cones
 | |
|  * correspond to vertices and not to rays.
 | |
|  * Let s be a direction such that <s, r> > 0 for all rays r of both cones.
 | |
|  * Then using s as a homogeneous direction, we obtain a pair of polytopes.
 | |
|  * The vector s is computed in valid_direction.
 | |
|  *
 | |
|  * Note that we need to consider _all_ rays of the cones and not just
 | |
|  * the rays that correspond to rays in the polyhedra.  If we were to
 | |
|  * only consider those rays and turn them into vertices, then we
 | |
|  * may inadvertently turn some vertices into rays.
 | |
|  *
 | |
|  * The standard homogeneous direction is the unit vector in the 0th coordinate.
 | |
|  * We therefore transform the two polyhedra such that the selected
 | |
|  * direction is mapped onto this standard direction and then proceed
 | |
|  * with the normal computation.
 | |
|  * Let S be a non-singular square matrix with s as its first row,
 | |
|  * then we want to map the polyhedra to the space
 | |
|  *
 | |
|  *	[ y' ]     [ y ]		[ y ]          [ y' ]
 | |
|  *	[ x' ] = S [ x ]	i.e.,	[ x ] = S^{-1} [ x' ]
 | |
|  *
 | |
|  * We take S to be the unimodular completion of s to limit the growth
 | |
|  * of the coefficients in the following computations.
 | |
|  *
 | |
|  * Let b_i + A_i x >= 0 be the constraints of polyhedron i.
 | |
|  * We first move to the homogeneous dimension
 | |
|  *
 | |
|  *	b_i y + A_i x >= 0		[ b_i A_i ] [ y ]    [ 0 ]
 | |
|  *	    y         >= 0	or	[  1   0  ] [ x ] >= [ 0 ]
 | |
|  *
 | |
|  * Then we change directoin
 | |
|  *
 | |
|  *	[ b_i A_i ]        [ y' ]		              [ y' ]
 | |
|  *	[  1   0  ] S^{-1} [ x' ] >= 0	or	[ b_i' A_i' ] [ x' ] >= 0
 | |
|  *
 | |
|  * Then we compute the convex hull of the polytopes b_i' + A_i' x' >= 0
 | |
|  * resulting in b' + A' x' >= 0, which we then convert back
 | |
|  *
 | |
|  *	            [ y ]		        [ y ]
 | |
|  *	[ b' A' ] S [ x ] >= 0	or	[ b A ] [ x ] >= 0
 | |
|  *
 | |
|  * The polyhedron b + A x >= 0 is then the convex hull of the input polyhedra.
 | |
|  */
 | |
| static struct isl_basic_set *convex_hull_pair_pointed(
 | |
| 	struct isl_basic_set *bset1, struct isl_basic_set *bset2)
 | |
| {
 | |
| 	struct isl_ctx *ctx = NULL;
 | |
| 	struct isl_vec *dir = NULL;
 | |
| 	struct isl_mat *T = NULL;
 | |
| 	struct isl_mat *T2 = NULL;
 | |
| 	struct isl_basic_set *hull;
 | |
| 	struct isl_set *set;
 | |
| 
 | |
| 	if (!bset1 || !bset2)
 | |
| 		goto error;
 | |
| 	ctx = isl_basic_set_get_ctx(bset1);
 | |
| 	dir = valid_direction(isl_basic_set_copy(bset1),
 | |
| 				isl_basic_set_copy(bset2));
 | |
| 	if (!dir)
 | |
| 		goto error;
 | |
| 	T = isl_mat_alloc(ctx, dir->size, dir->size);
 | |
| 	if (!T)
 | |
| 		goto error;
 | |
| 	isl_seq_cpy(T->row[0], dir->block.data, dir->size);
 | |
| 	T = isl_mat_unimodular_complete(T, 1);
 | |
| 	T2 = isl_mat_right_inverse(isl_mat_copy(T));
 | |
| 
 | |
| 	bset1 = homogeneous_map(bset1, isl_mat_copy(T2));
 | |
| 	bset2 = homogeneous_map(bset2, T2);
 | |
| 	set = isl_set_alloc_space(isl_basic_set_get_space(bset1), 2, 0);
 | |
| 	set = isl_set_add_basic_set(set, bset1);
 | |
| 	set = isl_set_add_basic_set(set, bset2);
 | |
| 	hull = uset_convex_hull(set);
 | |
| 	hull = isl_basic_set_preimage(hull, T);
 | |
| 	 
 | |
| 	isl_vec_free(dir);
 | |
| 
 | |
| 	return hull;
 | |
| error:
 | |
| 	isl_vec_free(dir);
 | |
| 	isl_basic_set_free(bset1);
 | |
| 	isl_basic_set_free(bset2);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static struct isl_basic_set *uset_convex_hull_wrap(struct isl_set *set);
 | |
| static struct isl_basic_set *modulo_affine_hull(
 | |
| 	struct isl_set *set, struct isl_basic_set *affine_hull);
 | |
| 
 | |
| /* Compute the convex hull of a pair of basic sets without any parameters or
 | |
|  * integer divisions.
 | |
|  *
 | |
|  * This function is called from uset_convex_hull_unbounded, which
 | |
|  * means that the complete convex hull is unbounded.  Some pairs
 | |
|  * of basic sets may still be bounded, though.
 | |
|  * They may even lie inside a lower dimensional space, in which
 | |
|  * case they need to be handled inside their affine hull since
 | |
|  * the main algorithm assumes that the result is full-dimensional.
 | |
|  *
 | |
|  * If the convex hull of the two basic sets would have a non-trivial
 | |
|  * lineality space, we first project out this lineality space.
 | |
|  */
 | |
| static struct isl_basic_set *convex_hull_pair(struct isl_basic_set *bset1,
 | |
| 	struct isl_basic_set *bset2)
 | |
| {
 | |
| 	isl_basic_set *lin, *aff;
 | |
| 	int bounded1, bounded2;
 | |
| 
 | |
| 	if (bset1->ctx->opt->convex == ISL_CONVEX_HULL_FM)
 | |
| 		return convex_hull_pair_elim(bset1, bset2);
 | |
| 
 | |
| 	aff = isl_set_affine_hull(isl_basic_set_union(isl_basic_set_copy(bset1),
 | |
| 						    isl_basic_set_copy(bset2)));
 | |
| 	if (!aff)
 | |
| 		goto error;
 | |
| 	if (aff->n_eq != 0) 
 | |
| 		return modulo_affine_hull(isl_basic_set_union(bset1, bset2), aff);
 | |
| 	isl_basic_set_free(aff);
 | |
| 
 | |
| 	bounded1 = isl_basic_set_is_bounded(bset1);
 | |
| 	bounded2 = isl_basic_set_is_bounded(bset2);
 | |
| 
 | |
| 	if (bounded1 < 0 || bounded2 < 0)
 | |
| 		goto error;
 | |
| 
 | |
| 	if (bounded1 && bounded2)
 | |
| 		return uset_convex_hull_wrap(isl_basic_set_union(bset1, bset2));
 | |
| 
 | |
| 	if (bounded1 || bounded2)
 | |
| 		return convex_hull_pair_pointed(bset1, bset2);
 | |
| 
 | |
| 	lin = induced_lineality_space(isl_basic_set_copy(bset1),
 | |
| 				      isl_basic_set_copy(bset2));
 | |
| 	if (!lin)
 | |
| 		goto error;
 | |
| 	if (isl_basic_set_plain_is_universe(lin)) {
 | |
| 		isl_basic_set_free(bset1);
 | |
| 		isl_basic_set_free(bset2);
 | |
| 		return lin;
 | |
| 	}
 | |
| 	if (lin->n_eq < isl_basic_set_total_dim(lin)) {
 | |
| 		struct isl_set *set;
 | |
| 		set = isl_set_alloc_space(isl_basic_set_get_space(bset1), 2, 0);
 | |
| 		set = isl_set_add_basic_set(set, bset1);
 | |
| 		set = isl_set_add_basic_set(set, bset2);
 | |
| 		return modulo_lineality(set, lin);
 | |
| 	}
 | |
| 	isl_basic_set_free(lin);
 | |
| 
 | |
| 	return convex_hull_pair_pointed(bset1, bset2);
 | |
| error:
 | |
| 	isl_basic_set_free(bset1);
 | |
| 	isl_basic_set_free(bset2);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* Compute the lineality space of a basic set.
 | |
|  * We currently do not allow the basic set to have any divs.
 | |
|  * We basically just drop the constants and turn every inequality
 | |
|  * into an equality.
 | |
|  */
 | |
| struct isl_basic_set *isl_basic_set_lineality_space(struct isl_basic_set *bset)
 | |
| {
 | |
| 	int i, k;
 | |
| 	struct isl_basic_set *lin = NULL;
 | |
| 	unsigned dim;
 | |
| 
 | |
| 	if (!bset)
 | |
| 		goto error;
 | |
| 	isl_assert(bset->ctx, bset->n_div == 0, goto error);
 | |
| 	dim = isl_basic_set_total_dim(bset);
 | |
| 
 | |
| 	lin = isl_basic_set_alloc_space(isl_basic_set_get_space(bset), 0, dim, 0);
 | |
| 	if (!lin)
 | |
| 		goto error;
 | |
| 	for (i = 0; i < bset->n_eq; ++i) {
 | |
| 		k = isl_basic_set_alloc_equality(lin);
 | |
| 		if (k < 0)
 | |
| 			goto error;
 | |
| 		isl_int_set_si(lin->eq[k][0], 0);
 | |
| 		isl_seq_cpy(lin->eq[k] + 1, bset->eq[i] + 1, dim);
 | |
| 	}
 | |
| 	lin = isl_basic_set_gauss(lin, NULL);
 | |
| 	if (!lin)
 | |
| 		goto error;
 | |
| 	for (i = 0; i < bset->n_ineq && lin->n_eq < dim; ++i) {
 | |
| 		k = isl_basic_set_alloc_equality(lin);
 | |
| 		if (k < 0)
 | |
| 			goto error;
 | |
| 		isl_int_set_si(lin->eq[k][0], 0);
 | |
| 		isl_seq_cpy(lin->eq[k] + 1, bset->ineq[i] + 1, dim);
 | |
| 		lin = isl_basic_set_gauss(lin, NULL);
 | |
| 		if (!lin)
 | |
| 			goto error;
 | |
| 	}
 | |
| 	isl_basic_set_free(bset);
 | |
| 	return lin;
 | |
| error:
 | |
| 	isl_basic_set_free(lin);
 | |
| 	isl_basic_set_free(bset);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* Compute the (linear) hull of the lineality spaces of the basic sets in the
 | |
|  * "underlying" set "set".
 | |
|  */
 | |
| static struct isl_basic_set *uset_combined_lineality_space(struct isl_set *set)
 | |
| {
 | |
| 	int i;
 | |
| 	struct isl_set *lin = NULL;
 | |
| 
 | |
| 	if (!set)
 | |
| 		return NULL;
 | |
| 	if (set->n == 0) {
 | |
| 		isl_space *dim = isl_set_get_space(set);
 | |
| 		isl_set_free(set);
 | |
| 		return isl_basic_set_empty(dim);
 | |
| 	}
 | |
| 
 | |
| 	lin = isl_set_alloc_space(isl_set_get_space(set), set->n, 0);
 | |
| 	for (i = 0; i < set->n; ++i)
 | |
| 		lin = isl_set_add_basic_set(lin,
 | |
| 		    isl_basic_set_lineality_space(isl_basic_set_copy(set->p[i])));
 | |
| 	isl_set_free(set);
 | |
| 	return isl_set_affine_hull(lin);
 | |
| }
 | |
| 
 | |
| /* Compute the convex hull of a set without any parameters or
 | |
|  * integer divisions.
 | |
|  * In each step, we combined two basic sets until only one
 | |
|  * basic set is left.
 | |
|  * The input basic sets are assumed not to have a non-trivial
 | |
|  * lineality space.  If any of the intermediate results has
 | |
|  * a non-trivial lineality space, it is projected out.
 | |
|  */
 | |
| static __isl_give isl_basic_set *uset_convex_hull_unbounded(
 | |
| 	__isl_take isl_set *set)
 | |
| {
 | |
| 	isl_basic_set_list *list;
 | |
| 
 | |
| 	list = isl_set_get_basic_set_list(set);
 | |
| 	isl_set_free(set);
 | |
| 
 | |
| 	while (list) {
 | |
| 		int n;
 | |
| 		struct isl_basic_set *t;
 | |
| 		isl_basic_set *bset1, *bset2;
 | |
| 
 | |
| 		n = isl_basic_set_list_n_basic_set(list);
 | |
| 		if (n < 2)
 | |
| 			isl_die(isl_basic_set_list_get_ctx(list),
 | |
| 				isl_error_internal,
 | |
| 				"expecting at least two elements", goto error);
 | |
| 		bset1 = isl_basic_set_list_get_basic_set(list, n - 1);
 | |
| 		bset2 = isl_basic_set_list_get_basic_set(list, n - 2);
 | |
| 		bset1 = convex_hull_pair(bset1, bset2);
 | |
| 		if (n == 2) {
 | |
| 			isl_basic_set_list_free(list);
 | |
| 			return bset1;
 | |
| 		}
 | |
| 		bset1 = isl_basic_set_underlying_set(bset1);
 | |
| 		list = isl_basic_set_list_drop(list, n - 2, 2);
 | |
| 		list = isl_basic_set_list_add(list, bset1);
 | |
| 
 | |
| 		t = isl_basic_set_list_get_basic_set(list, n - 2);
 | |
| 		t = isl_basic_set_lineality_space(t);
 | |
| 		if (!t)
 | |
| 			goto error;
 | |
| 		if (isl_basic_set_plain_is_universe(t)) {
 | |
| 			isl_basic_set_list_free(list);
 | |
| 			return t;
 | |
| 		}
 | |
| 		if (t->n_eq < isl_basic_set_total_dim(t)) {
 | |
| 			set = isl_basic_set_list_union(list);
 | |
| 			return modulo_lineality(set, t);
 | |
| 		}
 | |
| 		isl_basic_set_free(t);
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| error:
 | |
| 	isl_basic_set_list_free(list);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* Compute an initial hull for wrapping containing a single initial
 | |
|  * facet.
 | |
|  * This function assumes that the given set is bounded.
 | |
|  */
 | |
| static struct isl_basic_set *initial_hull(struct isl_basic_set *hull,
 | |
| 	struct isl_set *set)
 | |
| {
 | |
| 	struct isl_mat *bounds = NULL;
 | |
| 	unsigned dim;
 | |
| 	int k;
 | |
| 
 | |
| 	if (!hull)
 | |
| 		goto error;
 | |
| 	bounds = initial_facet_constraint(set);
 | |
| 	if (!bounds)
 | |
| 		goto error;
 | |
| 	k = isl_basic_set_alloc_inequality(hull);
 | |
| 	if (k < 0)
 | |
| 		goto error;
 | |
| 	dim = isl_set_n_dim(set);
 | |
| 	isl_assert(set->ctx, 1 + dim == bounds->n_col, goto error);
 | |
| 	isl_seq_cpy(hull->ineq[k], bounds->row[0], bounds->n_col);
 | |
| 	isl_mat_free(bounds);
 | |
| 
 | |
| 	return hull;
 | |
| error:
 | |
| 	isl_basic_set_free(hull);
 | |
| 	isl_mat_free(bounds);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| struct max_constraint {
 | |
| 	struct isl_mat *c;
 | |
| 	int	 	count;
 | |
| 	int		ineq;
 | |
| };
 | |
| 
 | |
| static int max_constraint_equal(const void *entry, const void *val)
 | |
| {
 | |
| 	struct max_constraint *a = (struct max_constraint *)entry;
 | |
| 	isl_int *b = (isl_int *)val;
 | |
| 
 | |
| 	return isl_seq_eq(a->c->row[0] + 1, b, a->c->n_col - 1);
 | |
| }
 | |
| 
 | |
| static void update_constraint(struct isl_ctx *ctx, struct isl_hash_table *table,
 | |
| 	isl_int *con, unsigned len, int n, int ineq)
 | |
| {
 | |
| 	struct isl_hash_table_entry *entry;
 | |
| 	struct max_constraint *c;
 | |
| 	uint32_t c_hash;
 | |
| 
 | |
| 	c_hash = isl_seq_get_hash(con + 1, len);
 | |
| 	entry = isl_hash_table_find(ctx, table, c_hash, max_constraint_equal,
 | |
| 			con + 1, 0);
 | |
| 	if (!entry)
 | |
| 		return;
 | |
| 	c = entry->data;
 | |
| 	if (c->count < n) {
 | |
| 		isl_hash_table_remove(ctx, table, entry);
 | |
| 		return;
 | |
| 	}
 | |
| 	c->count++;
 | |
| 	if (isl_int_gt(c->c->row[0][0], con[0]))
 | |
| 		return;
 | |
| 	if (isl_int_eq(c->c->row[0][0], con[0])) {
 | |
| 		if (ineq)
 | |
| 			c->ineq = ineq;
 | |
| 		return;
 | |
| 	}
 | |
| 	c->c = isl_mat_cow(c->c);
 | |
| 	isl_int_set(c->c->row[0][0], con[0]);
 | |
| 	c->ineq = ineq;
 | |
| }
 | |
| 
 | |
| /* Check whether the constraint hash table "table" constains the constraint
 | |
|  * "con".
 | |
|  */
 | |
| static int has_constraint(struct isl_ctx *ctx, struct isl_hash_table *table,
 | |
| 	isl_int *con, unsigned len, int n)
 | |
| {
 | |
| 	struct isl_hash_table_entry *entry;
 | |
| 	struct max_constraint *c;
 | |
| 	uint32_t c_hash;
 | |
| 
 | |
| 	c_hash = isl_seq_get_hash(con + 1, len);
 | |
| 	entry = isl_hash_table_find(ctx, table, c_hash, max_constraint_equal,
 | |
| 			con + 1, 0);
 | |
| 	if (!entry)
 | |
| 		return 0;
 | |
| 	c = entry->data;
 | |
| 	if (c->count < n)
 | |
| 		return 0;
 | |
| 	return isl_int_eq(c->c->row[0][0], con[0]);
 | |
| }
 | |
| 
 | |
| /* Check for inequality constraints of a basic set without equalities
 | |
|  * such that the same or more stringent copies of the constraint appear
 | |
|  * in all of the basic sets.  Such constraints are necessarily facet
 | |
|  * constraints of the convex hull.
 | |
|  *
 | |
|  * If the resulting basic set is by chance identical to one of
 | |
|  * the basic sets in "set", then we know that this basic set contains
 | |
|  * all other basic sets and is therefore the convex hull of set.
 | |
|  * In this case we set *is_hull to 1.
 | |
|  */
 | |
| static struct isl_basic_set *common_constraints(struct isl_basic_set *hull,
 | |
| 	struct isl_set *set, int *is_hull)
 | |
| {
 | |
| 	int i, j, s, n;
 | |
| 	int min_constraints;
 | |
| 	int best;
 | |
| 	struct max_constraint *constraints = NULL;
 | |
| 	struct isl_hash_table *table = NULL;
 | |
| 	unsigned total;
 | |
| 
 | |
| 	*is_hull = 0;
 | |
| 
 | |
| 	for (i = 0; i < set->n; ++i)
 | |
| 		if (set->p[i]->n_eq == 0)
 | |
| 			break;
 | |
| 	if (i >= set->n)
 | |
| 		return hull;
 | |
| 	min_constraints = set->p[i]->n_ineq;
 | |
| 	best = i;
 | |
| 	for (i = best + 1; i < set->n; ++i) {
 | |
| 		if (set->p[i]->n_eq != 0)
 | |
| 			continue;
 | |
| 		if (set->p[i]->n_ineq >= min_constraints)
 | |
| 			continue;
 | |
| 		min_constraints = set->p[i]->n_ineq;
 | |
| 		best = i;
 | |
| 	}
 | |
| 	constraints = isl_calloc_array(hull->ctx, struct max_constraint,
 | |
| 					min_constraints);
 | |
| 	if (!constraints)
 | |
| 		return hull;
 | |
| 	table = isl_alloc_type(hull->ctx, struct isl_hash_table);
 | |
| 	if (isl_hash_table_init(hull->ctx, table, min_constraints))
 | |
| 		goto error;
 | |
| 
 | |
| 	total = isl_space_dim(set->dim, isl_dim_all);
 | |
| 	for (i = 0; i < set->p[best]->n_ineq; ++i) {
 | |
| 		constraints[i].c = isl_mat_sub_alloc6(hull->ctx,
 | |
| 			set->p[best]->ineq + i, 0, 1, 0, 1 + total);
 | |
| 		if (!constraints[i].c)
 | |
| 			goto error;
 | |
| 		constraints[i].ineq = 1;
 | |
| 	}
 | |
| 	for (i = 0; i < min_constraints; ++i) {
 | |
| 		struct isl_hash_table_entry *entry;
 | |
| 		uint32_t c_hash;
 | |
| 		c_hash = isl_seq_get_hash(constraints[i].c->row[0] + 1, total);
 | |
| 		entry = isl_hash_table_find(hull->ctx, table, c_hash,
 | |
| 			max_constraint_equal, constraints[i].c->row[0] + 1, 1);
 | |
| 		if (!entry)
 | |
| 			goto error;
 | |
| 		isl_assert(hull->ctx, !entry->data, goto error);
 | |
| 		entry->data = &constraints[i];
 | |
| 	}
 | |
| 
 | |
| 	n = 0;
 | |
| 	for (s = 0; s < set->n; ++s) {
 | |
| 		if (s == best)
 | |
| 			continue;
 | |
| 
 | |
| 		for (i = 0; i < set->p[s]->n_eq; ++i) {
 | |
| 			isl_int *eq = set->p[s]->eq[i];
 | |
| 			for (j = 0; j < 2; ++j) {
 | |
| 				isl_seq_neg(eq, eq, 1 + total);
 | |
| 				update_constraint(hull->ctx, table,
 | |
| 							    eq, total, n, 0);
 | |
| 			}
 | |
| 		}
 | |
| 		for (i = 0; i < set->p[s]->n_ineq; ++i) {
 | |
| 			isl_int *ineq = set->p[s]->ineq[i];
 | |
| 			update_constraint(hull->ctx, table, ineq, total, n,
 | |
| 				set->p[s]->n_eq == 0);
 | |
| 		}
 | |
| 		++n;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < min_constraints; ++i) {
 | |
| 		if (constraints[i].count < n)
 | |
| 			continue;
 | |
| 		if (!constraints[i].ineq)
 | |
| 			continue;
 | |
| 		j = isl_basic_set_alloc_inequality(hull);
 | |
| 		if (j < 0)
 | |
| 			goto error;
 | |
| 		isl_seq_cpy(hull->ineq[j], constraints[i].c->row[0], 1 + total);
 | |
| 	}
 | |
| 
 | |
| 	for (s = 0; s < set->n; ++s) {
 | |
| 		if (set->p[s]->n_eq)
 | |
| 			continue;
 | |
| 		if (set->p[s]->n_ineq != hull->n_ineq)
 | |
| 			continue;
 | |
| 		for (i = 0; i < set->p[s]->n_ineq; ++i) {
 | |
| 			isl_int *ineq = set->p[s]->ineq[i];
 | |
| 			if (!has_constraint(hull->ctx, table, ineq, total, n))
 | |
| 				break;
 | |
| 		}
 | |
| 		if (i == set->p[s]->n_ineq)
 | |
| 			*is_hull = 1;
 | |
| 	}
 | |
| 
 | |
| 	isl_hash_table_clear(table);
 | |
| 	for (i = 0; i < min_constraints; ++i)
 | |
| 		isl_mat_free(constraints[i].c);
 | |
| 	free(constraints);
 | |
| 	free(table);
 | |
| 	return hull;
 | |
| error:
 | |
| 	isl_hash_table_clear(table);
 | |
| 	free(table);
 | |
| 	if (constraints)
 | |
| 		for (i = 0; i < min_constraints; ++i)
 | |
| 			isl_mat_free(constraints[i].c);
 | |
| 	free(constraints);
 | |
| 	return hull;
 | |
| }
 | |
| 
 | |
| /* Create a template for the convex hull of "set" and fill it up
 | |
|  * obvious facet constraints, if any.  If the result happens to
 | |
|  * be the convex hull of "set" then *is_hull is set to 1.
 | |
|  */
 | |
| static struct isl_basic_set *proto_hull(struct isl_set *set, int *is_hull)
 | |
| {
 | |
| 	struct isl_basic_set *hull;
 | |
| 	unsigned n_ineq;
 | |
| 	int i;
 | |
| 
 | |
| 	n_ineq = 1;
 | |
| 	for (i = 0; i < set->n; ++i) {
 | |
| 		n_ineq += set->p[i]->n_eq;
 | |
| 		n_ineq += set->p[i]->n_ineq;
 | |
| 	}
 | |
| 	hull = isl_basic_set_alloc_space(isl_space_copy(set->dim), 0, 0, n_ineq);
 | |
| 	hull = isl_basic_set_set_rational(hull);
 | |
| 	if (!hull)
 | |
| 		return NULL;
 | |
| 	return common_constraints(hull, set, is_hull);
 | |
| }
 | |
| 
 | |
| static struct isl_basic_set *uset_convex_hull_wrap(struct isl_set *set)
 | |
| {
 | |
| 	struct isl_basic_set *hull;
 | |
| 	int is_hull;
 | |
| 
 | |
| 	hull = proto_hull(set, &is_hull);
 | |
| 	if (hull && !is_hull) {
 | |
| 		if (hull->n_ineq == 0)
 | |
| 			hull = initial_hull(hull, set);
 | |
| 		hull = extend(hull, set);
 | |
| 	}
 | |
| 	isl_set_free(set);
 | |
| 
 | |
| 	return hull;
 | |
| }
 | |
| 
 | |
| /* Compute the convex hull of a set without any parameters or
 | |
|  * integer divisions.  Depending on whether the set is bounded,
 | |
|  * we pass control to the wrapping based convex hull or
 | |
|  * the Fourier-Motzkin elimination based convex hull.
 | |
|  * We also handle a few special cases before checking the boundedness.
 | |
|  */
 | |
| static struct isl_basic_set *uset_convex_hull(struct isl_set *set)
 | |
| {
 | |
| 	isl_bool bounded;
 | |
| 	struct isl_basic_set *convex_hull = NULL;
 | |
| 	struct isl_basic_set *lin;
 | |
| 
 | |
| 	if (isl_set_n_dim(set) == 0)
 | |
| 		return convex_hull_0d(set);
 | |
| 
 | |
| 	set = isl_set_coalesce(set);
 | |
| 	set = isl_set_set_rational(set);
 | |
| 
 | |
| 	if (!set)
 | |
| 		return NULL;
 | |
| 	if (set->n == 1) {
 | |
| 		convex_hull = isl_basic_set_copy(set->p[0]);
 | |
| 		isl_set_free(set);
 | |
| 		return convex_hull;
 | |
| 	}
 | |
| 	if (isl_set_n_dim(set) == 1)
 | |
| 		return convex_hull_1d(set);
 | |
| 
 | |
| 	bounded = isl_set_is_bounded(set);
 | |
| 	if (bounded < 0)
 | |
| 		goto error;
 | |
| 	if (bounded && set->ctx->opt->convex == ISL_CONVEX_HULL_WRAP)
 | |
| 		return uset_convex_hull_wrap(set);
 | |
| 
 | |
| 	lin = uset_combined_lineality_space(isl_set_copy(set));
 | |
| 	if (!lin)
 | |
| 		goto error;
 | |
| 	if (isl_basic_set_plain_is_universe(lin)) {
 | |
| 		isl_set_free(set);
 | |
| 		return lin;
 | |
| 	}
 | |
| 	if (lin->n_eq < isl_basic_set_total_dim(lin))
 | |
| 		return modulo_lineality(set, lin);
 | |
| 	isl_basic_set_free(lin);
 | |
| 
 | |
| 	return uset_convex_hull_unbounded(set);
 | |
| error:
 | |
| 	isl_set_free(set);
 | |
| 	isl_basic_set_free(convex_hull);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* This is the core procedure, where "set" is a "pure" set, i.e.,
 | |
|  * without parameters or divs and where the convex hull of set is
 | |
|  * known to be full-dimensional.
 | |
|  */
 | |
| static struct isl_basic_set *uset_convex_hull_wrap_bounded(struct isl_set *set)
 | |
| {
 | |
| 	struct isl_basic_set *convex_hull = NULL;
 | |
| 
 | |
| 	if (!set)
 | |
| 		goto error;
 | |
| 
 | |
| 	if (isl_set_n_dim(set) == 0) {
 | |
| 		convex_hull = isl_basic_set_universe(isl_space_copy(set->dim));
 | |
| 		isl_set_free(set);
 | |
| 		convex_hull = isl_basic_set_set_rational(convex_hull);
 | |
| 		return convex_hull;
 | |
| 	}
 | |
| 
 | |
| 	set = isl_set_set_rational(set);
 | |
| 	set = isl_set_coalesce(set);
 | |
| 	if (!set)
 | |
| 		goto error;
 | |
| 	if (set->n == 1) {
 | |
| 		convex_hull = isl_basic_set_copy(set->p[0]);
 | |
| 		isl_set_free(set);
 | |
| 		convex_hull = isl_basic_map_remove_redundancies(convex_hull);
 | |
| 		return convex_hull;
 | |
| 	}
 | |
| 	if (isl_set_n_dim(set) == 1)
 | |
| 		return convex_hull_1d(set);
 | |
| 
 | |
| 	return uset_convex_hull_wrap(set);
 | |
| error:
 | |
| 	isl_set_free(set);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* Compute the convex hull of set "set" with affine hull "affine_hull",
 | |
|  * We first remove the equalities (transforming the set), compute the
 | |
|  * convex hull of the transformed set and then add the equalities back
 | |
|  * (after performing the inverse transformation.
 | |
|  */
 | |
| static struct isl_basic_set *modulo_affine_hull(
 | |
| 	struct isl_set *set, struct isl_basic_set *affine_hull)
 | |
| {
 | |
| 	struct isl_mat *T;
 | |
| 	struct isl_mat *T2;
 | |
| 	struct isl_basic_set *dummy;
 | |
| 	struct isl_basic_set *convex_hull;
 | |
| 
 | |
| 	dummy = isl_basic_set_remove_equalities(
 | |
| 			isl_basic_set_copy(affine_hull), &T, &T2);
 | |
| 	if (!dummy)
 | |
| 		goto error;
 | |
| 	isl_basic_set_free(dummy);
 | |
| 	set = isl_set_preimage(set, T);
 | |
| 	convex_hull = uset_convex_hull(set);
 | |
| 	convex_hull = isl_basic_set_preimage(convex_hull, T2);
 | |
| 	convex_hull = isl_basic_set_intersect(convex_hull, affine_hull);
 | |
| 	return convex_hull;
 | |
| error:
 | |
| 	isl_basic_set_free(affine_hull);
 | |
| 	isl_set_free(set);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* Return an empty basic map living in the same space as "map".
 | |
|  */
 | |
| static __isl_give isl_basic_map *replace_map_by_empty_basic_map(
 | |
| 	__isl_take isl_map *map)
 | |
| {
 | |
| 	isl_space *space;
 | |
| 
 | |
| 	space = isl_map_get_space(map);
 | |
| 	isl_map_free(map);
 | |
| 	return isl_basic_map_empty(space);
 | |
| }
 | |
| 
 | |
| /* Compute the convex hull of a map.
 | |
|  *
 | |
|  * The implementation was inspired by "Extended Convex Hull" by Fukuda et al.,
 | |
|  * specifically, the wrapping of facets to obtain new facets.
 | |
|  */
 | |
| struct isl_basic_map *isl_map_convex_hull(struct isl_map *map)
 | |
| {
 | |
| 	struct isl_basic_set *bset;
 | |
| 	struct isl_basic_map *model = NULL;
 | |
| 	struct isl_basic_set *affine_hull = NULL;
 | |
| 	struct isl_basic_map *convex_hull = NULL;
 | |
| 	struct isl_set *set = NULL;
 | |
| 
 | |
| 	map = isl_map_detect_equalities(map);
 | |
| 	map = isl_map_align_divs_internal(map);
 | |
| 	if (!map)
 | |
| 		goto error;
 | |
| 
 | |
| 	if (map->n == 0)
 | |
| 		return replace_map_by_empty_basic_map(map);
 | |
| 
 | |
| 	model = isl_basic_map_copy(map->p[0]);
 | |
| 	set = isl_map_underlying_set(map);
 | |
| 	if (!set)
 | |
| 		goto error;
 | |
| 
 | |
| 	affine_hull = isl_set_affine_hull(isl_set_copy(set));
 | |
| 	if (!affine_hull)
 | |
| 		goto error;
 | |
| 	if (affine_hull->n_eq != 0)
 | |
| 		bset = modulo_affine_hull(set, affine_hull);
 | |
| 	else {
 | |
| 		isl_basic_set_free(affine_hull);
 | |
| 		bset = uset_convex_hull(set);
 | |
| 	}
 | |
| 
 | |
| 	convex_hull = isl_basic_map_overlying_set(bset, model);
 | |
| 	if (!convex_hull)
 | |
| 		return NULL;
 | |
| 
 | |
| 	ISL_F_SET(convex_hull, ISL_BASIC_MAP_NO_IMPLICIT);
 | |
| 	ISL_F_SET(convex_hull, ISL_BASIC_MAP_ALL_EQUALITIES);
 | |
| 	ISL_F_CLR(convex_hull, ISL_BASIC_MAP_RATIONAL);
 | |
| 	return convex_hull;
 | |
| error:
 | |
| 	isl_set_free(set);
 | |
| 	isl_basic_map_free(model);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| struct isl_basic_set *isl_set_convex_hull(struct isl_set *set)
 | |
| {
 | |
| 	return bset_from_bmap(isl_map_convex_hull(set_to_map(set)));
 | |
| }
 | |
| 
 | |
| __isl_give isl_basic_map *isl_map_polyhedral_hull(__isl_take isl_map *map)
 | |
| {
 | |
| 	isl_basic_map *hull;
 | |
| 
 | |
| 	hull = isl_map_convex_hull(map);
 | |
| 	return isl_basic_map_remove_divs(hull);
 | |
| }
 | |
| 
 | |
| __isl_give isl_basic_set *isl_set_polyhedral_hull(__isl_take isl_set *set)
 | |
| {
 | |
| 	return bset_from_bmap(isl_map_polyhedral_hull(set_to_map(set)));
 | |
| }
 | |
| 
 | |
| struct sh_data_entry {
 | |
| 	struct isl_hash_table	*table;
 | |
| 	struct isl_tab		*tab;
 | |
| };
 | |
| 
 | |
| /* Holds the data needed during the simple hull computation.
 | |
|  * In particular,
 | |
|  *	n		the number of basic sets in the original set
 | |
|  *	hull_table	a hash table of already computed constraints
 | |
|  *			in the simple hull
 | |
|  *	p		for each basic set,
 | |
|  *		table		a hash table of the constraints
 | |
|  *		tab		the tableau corresponding to the basic set
 | |
|  */
 | |
| struct sh_data {
 | |
| 	struct isl_ctx		*ctx;
 | |
| 	unsigned		n;
 | |
| 	struct isl_hash_table	*hull_table;
 | |
| 	struct sh_data_entry	p[1];
 | |
| };
 | |
| 
 | |
| static void sh_data_free(struct sh_data *data)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (!data)
 | |
| 		return;
 | |
| 	isl_hash_table_free(data->ctx, data->hull_table);
 | |
| 	for (i = 0; i < data->n; ++i) {
 | |
| 		isl_hash_table_free(data->ctx, data->p[i].table);
 | |
| 		isl_tab_free(data->p[i].tab);
 | |
| 	}
 | |
| 	free(data);
 | |
| }
 | |
| 
 | |
| struct ineq_cmp_data {
 | |
| 	unsigned	len;
 | |
| 	isl_int		*p;
 | |
| };
 | |
| 
 | |
| static int has_ineq(const void *entry, const void *val)
 | |
| {
 | |
| 	isl_int *row = (isl_int *)entry;
 | |
| 	struct ineq_cmp_data *v = (struct ineq_cmp_data *)val;
 | |
| 
 | |
| 	return isl_seq_eq(row + 1, v->p + 1, v->len) ||
 | |
| 	       isl_seq_is_neg(row + 1, v->p + 1, v->len);
 | |
| }
 | |
| 
 | |
| static int hash_ineq(struct isl_ctx *ctx, struct isl_hash_table *table,
 | |
| 			isl_int *ineq, unsigned len)
 | |
| {
 | |
| 	uint32_t c_hash;
 | |
| 	struct ineq_cmp_data v;
 | |
| 	struct isl_hash_table_entry *entry;
 | |
| 
 | |
| 	v.len = len;
 | |
| 	v.p = ineq;
 | |
| 	c_hash = isl_seq_get_hash(ineq + 1, len);
 | |
| 	entry = isl_hash_table_find(ctx, table, c_hash, has_ineq, &v, 1);
 | |
| 	if (!entry)
 | |
| 		return - 1;
 | |
| 	entry->data = ineq;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Fill hash table "table" with the constraints of "bset".
 | |
|  * Equalities are added as two inequalities.
 | |
|  * The value in the hash table is a pointer to the (in)equality of "bset".
 | |
|  */
 | |
| static int hash_basic_set(struct isl_hash_table *table,
 | |
| 				struct isl_basic_set *bset)
 | |
| {
 | |
| 	int i, j;
 | |
| 	unsigned dim = isl_basic_set_total_dim(bset);
 | |
| 
 | |
| 	for (i = 0; i < bset->n_eq; ++i) {
 | |
| 		for (j = 0; j < 2; ++j) {
 | |
| 			isl_seq_neg(bset->eq[i], bset->eq[i], 1 + dim);
 | |
| 			if (hash_ineq(bset->ctx, table, bset->eq[i], dim) < 0)
 | |
| 				return -1;
 | |
| 		}
 | |
| 	}
 | |
| 	for (i = 0; i < bset->n_ineq; ++i) {
 | |
| 		if (hash_ineq(bset->ctx, table, bset->ineq[i], dim) < 0)
 | |
| 			return -1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct sh_data *sh_data_alloc(struct isl_set *set, unsigned n_ineq)
 | |
| {
 | |
| 	struct sh_data *data;
 | |
| 	int i;
 | |
| 
 | |
| 	data = isl_calloc(set->ctx, struct sh_data,
 | |
| 		sizeof(struct sh_data) +
 | |
| 		(set->n - 1) * sizeof(struct sh_data_entry));
 | |
| 	if (!data)
 | |
| 		return NULL;
 | |
| 	data->ctx = set->ctx;
 | |
| 	data->n = set->n;
 | |
| 	data->hull_table = isl_hash_table_alloc(set->ctx, n_ineq);
 | |
| 	if (!data->hull_table)
 | |
| 		goto error;
 | |
| 	for (i = 0; i < set->n; ++i) {
 | |
| 		data->p[i].table = isl_hash_table_alloc(set->ctx,
 | |
| 				    2 * set->p[i]->n_eq + set->p[i]->n_ineq);
 | |
| 		if (!data->p[i].table)
 | |
| 			goto error;
 | |
| 		if (hash_basic_set(data->p[i].table, set->p[i]) < 0)
 | |
| 			goto error;
 | |
| 	}
 | |
| 	return data;
 | |
| error:
 | |
| 	sh_data_free(data);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* Check if inequality "ineq" is a bound for basic set "j" or if
 | |
|  * it can be relaxed (by increasing the constant term) to become
 | |
|  * a bound for that basic set.  In the latter case, the constant
 | |
|  * term is updated.
 | |
|  * Relaxation of the constant term is only allowed if "shift" is set.
 | |
|  *
 | |
|  * Return 1 if "ineq" is a bound
 | |
|  *	  0 if "ineq" may attain arbitrarily small values on basic set "j"
 | |
|  *	 -1 if some error occurred
 | |
|  */
 | |
| static int is_bound(struct sh_data *data, struct isl_set *set, int j,
 | |
| 	isl_int *ineq, int shift)
 | |
| {
 | |
| 	enum isl_lp_result res;
 | |
| 	isl_int opt;
 | |
| 
 | |
| 	if (!data->p[j].tab) {
 | |
| 		data->p[j].tab = isl_tab_from_basic_set(set->p[j], 0);
 | |
| 		if (!data->p[j].tab)
 | |
| 			return -1;
 | |
| 	}
 | |
| 
 | |
| 	isl_int_init(opt);
 | |
| 
 | |
| 	res = isl_tab_min(data->p[j].tab, ineq, data->ctx->one,
 | |
| 				&opt, NULL, 0);
 | |
| 	if (res == isl_lp_ok && isl_int_is_neg(opt)) {
 | |
| 		if (shift)
 | |
| 			isl_int_sub(ineq[0], ineq[0], opt);
 | |
| 		else
 | |
| 			res = isl_lp_unbounded;
 | |
| 	}
 | |
| 
 | |
| 	isl_int_clear(opt);
 | |
| 
 | |
| 	return (res == isl_lp_ok || res == isl_lp_empty) ? 1 :
 | |
| 	       res == isl_lp_unbounded ? 0 : -1;
 | |
| }
 | |
| 
 | |
| /* Set the constant term of "ineq" to the maximum of those of the constraints
 | |
|  * in the basic sets of "set" following "i" that are parallel to "ineq".
 | |
|  * That is, if any of the basic sets of "set" following "i" have a more
 | |
|  * relaxed copy of "ineq", then replace "ineq" by the most relaxed copy.
 | |
|  * "c_hash" is the hash value of the linear part of "ineq".
 | |
|  * "v" has been set up for use by has_ineq.
 | |
|  *
 | |
|  * Note that the two inequality constraints corresponding to an equality are
 | |
|  * represented by the same inequality constraint in data->p[j].table
 | |
|  * (but with different hash values).  This means the constraint (or at
 | |
|  * least its constant term) may need to be temporarily negated to get
 | |
|  * the actually hashed constraint.
 | |
|  */
 | |
| static void set_max_constant_term(struct sh_data *data, __isl_keep isl_set *set,
 | |
| 	int i, isl_int *ineq, uint32_t c_hash, struct ineq_cmp_data *v)
 | |
| {
 | |
| 	int j;
 | |
| 	isl_ctx *ctx;
 | |
| 	struct isl_hash_table_entry *entry;
 | |
| 
 | |
| 	ctx = isl_set_get_ctx(set);
 | |
| 	for (j = i + 1; j < set->n; ++j) {
 | |
| 		int neg;
 | |
| 		isl_int *ineq_j;
 | |
| 
 | |
| 		entry = isl_hash_table_find(ctx, data->p[j].table,
 | |
| 						c_hash, &has_ineq, v, 0);
 | |
| 		if (!entry)
 | |
| 			continue;
 | |
| 
 | |
| 		ineq_j = entry->data;
 | |
| 		neg = isl_seq_is_neg(ineq_j + 1, ineq + 1, v->len);
 | |
| 		if (neg)
 | |
| 			isl_int_neg(ineq_j[0], ineq_j[0]);
 | |
| 		if (isl_int_gt(ineq_j[0], ineq[0]))
 | |
| 			isl_int_set(ineq[0], ineq_j[0]);
 | |
| 		if (neg)
 | |
| 			isl_int_neg(ineq_j[0], ineq_j[0]);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Check if inequality "ineq" from basic set "i" is or can be relaxed to
 | |
|  * become a bound on the whole set.  If so, add the (relaxed) inequality
 | |
|  * to "hull".  Relaxation is only allowed if "shift" is set.
 | |
|  *
 | |
|  * We first check if "hull" already contains a translate of the inequality.
 | |
|  * If so, we are done.
 | |
|  * Then, we check if any of the previous basic sets contains a translate
 | |
|  * of the inequality.  If so, then we have already considered this
 | |
|  * inequality and we are done.
 | |
|  * Otherwise, for each basic set other than "i", we check if the inequality
 | |
|  * is a bound on the basic set, but first replace the constant term
 | |
|  * by the maximal value of any translate of the inequality in any
 | |
|  * of the following basic sets.
 | |
|  * For previous basic sets, we know that they do not contain a translate
 | |
|  * of the inequality, so we directly call is_bound.
 | |
|  * For following basic sets, we first check if a translate of the
 | |
|  * inequality appears in its description.  If so, the constant term
 | |
|  * of the inequality has already been updated with respect to this
 | |
|  * translate and the inequality is therefore known to be a bound
 | |
|  * of this basic set.
 | |
|  */
 | |
| static struct isl_basic_set *add_bound(struct isl_basic_set *hull,
 | |
| 	struct sh_data *data, struct isl_set *set, int i, isl_int *ineq,
 | |
| 	int shift)
 | |
| {
 | |
| 	uint32_t c_hash;
 | |
| 	struct ineq_cmp_data v;
 | |
| 	struct isl_hash_table_entry *entry;
 | |
| 	int j, k;
 | |
| 
 | |
| 	if (!hull)
 | |
| 		return NULL;
 | |
| 
 | |
| 	v.len = isl_basic_set_total_dim(hull);
 | |
| 	v.p = ineq;
 | |
| 	c_hash = isl_seq_get_hash(ineq + 1, v.len);
 | |
| 
 | |
| 	entry = isl_hash_table_find(hull->ctx, data->hull_table, c_hash,
 | |
| 					has_ineq, &v, 0);
 | |
| 	if (entry)
 | |
| 		return hull;
 | |
| 
 | |
| 	for (j = 0; j < i; ++j) {
 | |
| 		entry = isl_hash_table_find(hull->ctx, data->p[j].table,
 | |
| 						c_hash, has_ineq, &v, 0);
 | |
| 		if (entry)
 | |
| 			break;
 | |
| 	}
 | |
| 	if (j < i)
 | |
| 		return hull;
 | |
| 
 | |
| 	k = isl_basic_set_alloc_inequality(hull);
 | |
| 	if (k < 0)
 | |
| 		goto error;
 | |
| 	isl_seq_cpy(hull->ineq[k], ineq, 1 + v.len);
 | |
| 
 | |
| 	set_max_constant_term(data, set, i, hull->ineq[k], c_hash, &v);
 | |
| 	for (j = 0; j < i; ++j) {
 | |
| 		int bound;
 | |
| 		bound = is_bound(data, set, j, hull->ineq[k], shift);
 | |
| 		if (bound < 0)
 | |
| 			goto error;
 | |
| 		if (!bound)
 | |
| 			break;
 | |
| 	}
 | |
| 	if (j < i) {
 | |
| 		isl_basic_set_free_inequality(hull, 1);
 | |
| 		return hull;
 | |
| 	}
 | |
| 
 | |
| 	for (j = i + 1; j < set->n; ++j) {
 | |
| 		int bound;
 | |
| 		entry = isl_hash_table_find(hull->ctx, data->p[j].table,
 | |
| 						c_hash, has_ineq, &v, 0);
 | |
| 		if (entry)
 | |
| 			continue;
 | |
| 		bound = is_bound(data, set, j, hull->ineq[k], shift);
 | |
| 		if (bound < 0)
 | |
| 			goto error;
 | |
| 		if (!bound)
 | |
| 			break;
 | |
| 	}
 | |
| 	if (j < set->n) {
 | |
| 		isl_basic_set_free_inequality(hull, 1);
 | |
| 		return hull;
 | |
| 	}
 | |
| 
 | |
| 	entry = isl_hash_table_find(hull->ctx, data->hull_table, c_hash,
 | |
| 					has_ineq, &v, 1);
 | |
| 	if (!entry)
 | |
| 		goto error;
 | |
| 	entry->data = hull->ineq[k];
 | |
| 
 | |
| 	return hull;
 | |
| error:
 | |
| 	isl_basic_set_free(hull);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* Check if any inequality from basic set "i" is or can be relaxed to
 | |
|  * become a bound on the whole set.  If so, add the (relaxed) inequality
 | |
|  * to "hull".  Relaxation is only allowed if "shift" is set.
 | |
|  */
 | |
| static struct isl_basic_set *add_bounds(struct isl_basic_set *bset,
 | |
| 	struct sh_data *data, struct isl_set *set, int i, int shift)
 | |
| {
 | |
| 	int j, k;
 | |
| 	unsigned dim = isl_basic_set_total_dim(bset);
 | |
| 
 | |
| 	for (j = 0; j < set->p[i]->n_eq; ++j) {
 | |
| 		for (k = 0; k < 2; ++k) {
 | |
| 			isl_seq_neg(set->p[i]->eq[j], set->p[i]->eq[j], 1+dim);
 | |
| 			bset = add_bound(bset, data, set, i, set->p[i]->eq[j],
 | |
| 					    shift);
 | |
| 		}
 | |
| 	}
 | |
| 	for (j = 0; j < set->p[i]->n_ineq; ++j)
 | |
| 		bset = add_bound(bset, data, set, i, set->p[i]->ineq[j], shift);
 | |
| 	return bset;
 | |
| }
 | |
| 
 | |
| /* Compute a superset of the convex hull of set that is described
 | |
|  * by only (translates of) the constraints in the constituents of set.
 | |
|  * Translation is only allowed if "shift" is set.
 | |
|  */
 | |
| static __isl_give isl_basic_set *uset_simple_hull(__isl_take isl_set *set,
 | |
| 	int shift)
 | |
| {
 | |
| 	struct sh_data *data = NULL;
 | |
| 	struct isl_basic_set *hull = NULL;
 | |
| 	unsigned n_ineq;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!set)
 | |
| 		return NULL;
 | |
| 
 | |
| 	n_ineq = 0;
 | |
| 	for (i = 0; i < set->n; ++i) {
 | |
| 		if (!set->p[i])
 | |
| 			goto error;
 | |
| 		n_ineq += 2 * set->p[i]->n_eq + set->p[i]->n_ineq;
 | |
| 	}
 | |
| 
 | |
| 	hull = isl_basic_set_alloc_space(isl_space_copy(set->dim), 0, 0, n_ineq);
 | |
| 	if (!hull)
 | |
| 		goto error;
 | |
| 
 | |
| 	data = sh_data_alloc(set, n_ineq);
 | |
| 	if (!data)
 | |
| 		goto error;
 | |
| 
 | |
| 	for (i = 0; i < set->n; ++i)
 | |
| 		hull = add_bounds(hull, data, set, i, shift);
 | |
| 
 | |
| 	sh_data_free(data);
 | |
| 	isl_set_free(set);
 | |
| 
 | |
| 	return hull;
 | |
| error:
 | |
| 	sh_data_free(data);
 | |
| 	isl_basic_set_free(hull);
 | |
| 	isl_set_free(set);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* Compute a superset of the convex hull of map that is described
 | |
|  * by only (translates of) the constraints in the constituents of map.
 | |
|  * Handle trivial cases where map is NULL or contains at most one disjunct.
 | |
|  */
 | |
| static __isl_give isl_basic_map *map_simple_hull_trivial(
 | |
| 	__isl_take isl_map *map)
 | |
| {
 | |
| 	isl_basic_map *hull;
 | |
| 
 | |
| 	if (!map)
 | |
| 		return NULL;
 | |
| 	if (map->n == 0)
 | |
| 		return replace_map_by_empty_basic_map(map);
 | |
| 
 | |
| 	hull = isl_basic_map_copy(map->p[0]);
 | |
| 	isl_map_free(map);
 | |
| 	return hull;
 | |
| }
 | |
| 
 | |
| /* Return a copy of the simple hull cached inside "map".
 | |
|  * "shift" determines whether to return the cached unshifted or shifted
 | |
|  * simple hull.
 | |
|  */
 | |
| static __isl_give isl_basic_map *cached_simple_hull(__isl_take isl_map *map,
 | |
| 	int shift)
 | |
| {
 | |
| 	isl_basic_map *hull;
 | |
| 
 | |
| 	hull = isl_basic_map_copy(map->cached_simple_hull[shift]);
 | |
| 	isl_map_free(map);
 | |
| 
 | |
| 	return hull;
 | |
| }
 | |
| 
 | |
| /* Compute a superset of the convex hull of map that is described
 | |
|  * by only (translates of) the constraints in the constituents of map.
 | |
|  * Translation is only allowed if "shift" is set.
 | |
|  *
 | |
|  * The constraints are sorted while removing redundant constraints
 | |
|  * in order to indicate a preference of which constraints should
 | |
|  * be preserved.  In particular, pairs of constraints that are
 | |
|  * sorted together are preferred to either both be preserved
 | |
|  * or both be removed.  The sorting is performed inside
 | |
|  * isl_basic_map_remove_redundancies.
 | |
|  *
 | |
|  * The result of the computation is stored in map->cached_simple_hull[shift]
 | |
|  * such that it can be reused in subsequent calls.  The cache is cleared
 | |
|  * whenever the map is modified (in isl_map_cow).
 | |
|  * Note that the results need to be stored in the input map for there
 | |
|  * to be any chance that they may get reused.  In particular, they
 | |
|  * are stored in a copy of the input map that is saved before
 | |
|  * the integer division alignment.
 | |
|  */
 | |
| static __isl_give isl_basic_map *map_simple_hull(__isl_take isl_map *map,
 | |
| 	int shift)
 | |
| {
 | |
| 	struct isl_set *set = NULL;
 | |
| 	struct isl_basic_map *model = NULL;
 | |
| 	struct isl_basic_map *hull;
 | |
| 	struct isl_basic_map *affine_hull;
 | |
| 	struct isl_basic_set *bset = NULL;
 | |
| 	isl_map *input;
 | |
| 
 | |
| 	if (!map || map->n <= 1)
 | |
| 		return map_simple_hull_trivial(map);
 | |
| 
 | |
| 	if (map->cached_simple_hull[shift])
 | |
| 		return cached_simple_hull(map, shift);
 | |
| 
 | |
| 	map = isl_map_detect_equalities(map);
 | |
| 	if (!map || map->n <= 1)
 | |
| 		return map_simple_hull_trivial(map);
 | |
| 	affine_hull = isl_map_affine_hull(isl_map_copy(map));
 | |
| 	input = isl_map_copy(map);
 | |
| 	map = isl_map_align_divs_internal(map);
 | |
| 	model = map ? isl_basic_map_copy(map->p[0]) : NULL;
 | |
| 
 | |
| 	set = isl_map_underlying_set(map);
 | |
| 
 | |
| 	bset = uset_simple_hull(set, shift);
 | |
| 
 | |
| 	hull = isl_basic_map_overlying_set(bset, model);
 | |
| 
 | |
| 	hull = isl_basic_map_intersect(hull, affine_hull);
 | |
| 	hull = isl_basic_map_remove_redundancies(hull);
 | |
| 
 | |
| 	if (hull) {
 | |
| 		ISL_F_SET(hull, ISL_BASIC_MAP_NO_IMPLICIT);
 | |
| 		ISL_F_SET(hull, ISL_BASIC_MAP_ALL_EQUALITIES);
 | |
| 	}
 | |
| 
 | |
| 	hull = isl_basic_map_finalize(hull);
 | |
| 	if (input)
 | |
| 		input->cached_simple_hull[shift] = isl_basic_map_copy(hull);
 | |
| 	isl_map_free(input);
 | |
| 
 | |
| 	return hull;
 | |
| }
 | |
| 
 | |
| /* Compute a superset of the convex hull of map that is described
 | |
|  * by only translates of the constraints in the constituents of map.
 | |
|  */
 | |
| __isl_give isl_basic_map *isl_map_simple_hull(__isl_take isl_map *map)
 | |
| {
 | |
| 	return map_simple_hull(map, 1);
 | |
| }
 | |
| 
 | |
| struct isl_basic_set *isl_set_simple_hull(struct isl_set *set)
 | |
| {
 | |
| 	return bset_from_bmap(isl_map_simple_hull(set_to_map(set)));
 | |
| }
 | |
| 
 | |
| /* Compute a superset of the convex hull of map that is described
 | |
|  * by only the constraints in the constituents of map.
 | |
|  */
 | |
| __isl_give isl_basic_map *isl_map_unshifted_simple_hull(
 | |
| 	__isl_take isl_map *map)
 | |
| {
 | |
| 	return map_simple_hull(map, 0);
 | |
| }
 | |
| 
 | |
| __isl_give isl_basic_set *isl_set_unshifted_simple_hull(
 | |
| 	__isl_take isl_set *set)
 | |
| {
 | |
| 	return isl_map_unshifted_simple_hull(set);
 | |
| }
 | |
| 
 | |
| /* Drop all inequalities from "bmap1" that do not also appear in "bmap2".
 | |
|  * A constraint that appears with different constant terms
 | |
|  * in "bmap1" and "bmap2" is also kept, with the least restrictive
 | |
|  * (i.e., greatest) constant term.
 | |
|  * "bmap1" and "bmap2" are assumed to have the same (known)
 | |
|  * integer divisions.
 | |
|  * The constraints of both "bmap1" and "bmap2" are assumed
 | |
|  * to have been sorted using isl_basic_map_sort_constraints.
 | |
|  *
 | |
|  * Run through the inequality constraints of "bmap1" and "bmap2"
 | |
|  * in sorted order.
 | |
|  * Each constraint of "bmap1" without a matching constraint in "bmap2"
 | |
|  * is removed.
 | |
|  * If a match is found, the constraint is kept.  If needed, the constant
 | |
|  * term of the constraint is adjusted.
 | |
|  */
 | |
| static __isl_give isl_basic_map *select_shared_inequalities(
 | |
| 	__isl_take isl_basic_map *bmap1, __isl_keep isl_basic_map *bmap2)
 | |
| {
 | |
| 	int i1, i2;
 | |
| 
 | |
| 	bmap1 = isl_basic_map_cow(bmap1);
 | |
| 	if (!bmap1 || !bmap2)
 | |
| 		return isl_basic_map_free(bmap1);
 | |
| 
 | |
| 	i1 = bmap1->n_ineq - 1;
 | |
| 	i2 = bmap2->n_ineq - 1;
 | |
| 	while (bmap1 && i1 >= 0 && i2 >= 0) {
 | |
| 		int cmp;
 | |
| 
 | |
| 		cmp = isl_basic_map_constraint_cmp(bmap1, bmap1->ineq[i1],
 | |
| 							bmap2->ineq[i2]);
 | |
| 		if (cmp < 0) {
 | |
| 			--i2;
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (cmp > 0) {
 | |
| 			if (isl_basic_map_drop_inequality(bmap1, i1) < 0)
 | |
| 				bmap1 = isl_basic_map_free(bmap1);
 | |
| 			--i1;
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (isl_int_lt(bmap1->ineq[i1][0], bmap2->ineq[i2][0]))
 | |
| 			isl_int_set(bmap1->ineq[i1][0], bmap2->ineq[i2][0]);
 | |
| 		--i1;
 | |
| 		--i2;
 | |
| 	}
 | |
| 	for (; i1 >= 0; --i1)
 | |
| 		if (isl_basic_map_drop_inequality(bmap1, i1) < 0)
 | |
| 			bmap1 = isl_basic_map_free(bmap1);
 | |
| 
 | |
| 	return bmap1;
 | |
| }
 | |
| 
 | |
| /* Drop all equalities from "bmap1" that do not also appear in "bmap2".
 | |
|  * "bmap1" and "bmap2" are assumed to have the same (known)
 | |
|  * integer divisions.
 | |
|  *
 | |
|  * Run through the equality constraints of "bmap1" and "bmap2".
 | |
|  * Each constraint of "bmap1" without a matching constraint in "bmap2"
 | |
|  * is removed.
 | |
|  */
 | |
| static __isl_give isl_basic_map *select_shared_equalities(
 | |
| 	__isl_take isl_basic_map *bmap1, __isl_keep isl_basic_map *bmap2)
 | |
| {
 | |
| 	int i1, i2;
 | |
| 	unsigned total;
 | |
| 
 | |
| 	bmap1 = isl_basic_map_cow(bmap1);
 | |
| 	if (!bmap1 || !bmap2)
 | |
| 		return isl_basic_map_free(bmap1);
 | |
| 
 | |
| 	total = isl_basic_map_total_dim(bmap1);
 | |
| 
 | |
| 	i1 = bmap1->n_eq - 1;
 | |
| 	i2 = bmap2->n_eq - 1;
 | |
| 	while (bmap1 && i1 >= 0 && i2 >= 0) {
 | |
| 		int last1, last2;
 | |
| 
 | |
| 		last1 = isl_seq_last_non_zero(bmap1->eq[i1] + 1, total);
 | |
| 		last2 = isl_seq_last_non_zero(bmap2->eq[i2] + 1, total);
 | |
| 		if (last1 > last2) {
 | |
| 			--i2;
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (last1 < last2) {
 | |
| 			if (isl_basic_map_drop_equality(bmap1, i1) < 0)
 | |
| 				bmap1 = isl_basic_map_free(bmap1);
 | |
| 			--i1;
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (!isl_seq_eq(bmap1->eq[i1], bmap2->eq[i2], 1 + total)) {
 | |
| 			if (isl_basic_map_drop_equality(bmap1, i1) < 0)
 | |
| 				bmap1 = isl_basic_map_free(bmap1);
 | |
| 		}
 | |
| 		--i1;
 | |
| 		--i2;
 | |
| 	}
 | |
| 	for (; i1 >= 0; --i1)
 | |
| 		if (isl_basic_map_drop_equality(bmap1, i1) < 0)
 | |
| 			bmap1 = isl_basic_map_free(bmap1);
 | |
| 
 | |
| 	return bmap1;
 | |
| }
 | |
| 
 | |
| /* Compute a superset of "bmap1" and "bmap2" that is described
 | |
|  * by only the constraints that appear in both "bmap1" and "bmap2".
 | |
|  *
 | |
|  * First drop constraints that involve unknown integer divisions
 | |
|  * since it is not trivial to check whether two such integer divisions
 | |
|  * in different basic maps are the same.
 | |
|  * Then align the remaining (known) divs and sort the constraints.
 | |
|  * Finally drop all inequalities and equalities from "bmap1" that
 | |
|  * do not also appear in "bmap2".
 | |
|  */
 | |
| __isl_give isl_basic_map *isl_basic_map_plain_unshifted_simple_hull(
 | |
| 	__isl_take isl_basic_map *bmap1, __isl_take isl_basic_map *bmap2)
 | |
| {
 | |
| 	bmap1 = isl_basic_map_drop_constraint_involving_unknown_divs(bmap1);
 | |
| 	bmap2 = isl_basic_map_drop_constraint_involving_unknown_divs(bmap2);
 | |
| 	bmap2 = isl_basic_map_align_divs(bmap2, bmap1);
 | |
| 	bmap1 = isl_basic_map_align_divs(bmap1, bmap2);
 | |
| 	bmap1 = isl_basic_map_gauss(bmap1, NULL);
 | |
| 	bmap2 = isl_basic_map_gauss(bmap2, NULL);
 | |
| 	bmap1 = isl_basic_map_sort_constraints(bmap1);
 | |
| 	bmap2 = isl_basic_map_sort_constraints(bmap2);
 | |
| 
 | |
| 	bmap1 = select_shared_inequalities(bmap1, bmap2);
 | |
| 	bmap1 = select_shared_equalities(bmap1, bmap2);
 | |
| 
 | |
| 	isl_basic_map_free(bmap2);
 | |
| 	bmap1 = isl_basic_map_finalize(bmap1);
 | |
| 	return bmap1;
 | |
| }
 | |
| 
 | |
| /* Compute a superset of the convex hull of "map" that is described
 | |
|  * by only the constraints in the constituents of "map".
 | |
|  * In particular, the result is composed of constraints that appear
 | |
|  * in each of the basic maps of "map"
 | |
|  *
 | |
|  * Constraints that involve unknown integer divisions are dropped
 | |
|  * since it is not trivial to check whether two such integer divisions
 | |
|  * in different basic maps are the same.
 | |
|  *
 | |
|  * The hull is initialized from the first basic map and then
 | |
|  * updated with respect to the other basic maps in turn.
 | |
|  */
 | |
| __isl_give isl_basic_map *isl_map_plain_unshifted_simple_hull(
 | |
| 	__isl_take isl_map *map)
 | |
| {
 | |
| 	int i;
 | |
| 	isl_basic_map *hull;
 | |
| 
 | |
| 	if (!map)
 | |
| 		return NULL;
 | |
| 	if (map->n <= 1)
 | |
| 		return map_simple_hull_trivial(map);
 | |
| 	map = isl_map_drop_constraint_involving_unknown_divs(map);
 | |
| 	hull = isl_basic_map_copy(map->p[0]);
 | |
| 	for (i = 1; i < map->n; ++i) {
 | |
| 		isl_basic_map *bmap_i;
 | |
| 
 | |
| 		bmap_i = isl_basic_map_copy(map->p[i]);
 | |
| 		hull = isl_basic_map_plain_unshifted_simple_hull(hull, bmap_i);
 | |
| 	}
 | |
| 
 | |
| 	isl_map_free(map);
 | |
| 	return hull;
 | |
| }
 | |
| 
 | |
| /* Compute a superset of the convex hull of "set" that is described
 | |
|  * by only the constraints in the constituents of "set".
 | |
|  * In particular, the result is composed of constraints that appear
 | |
|  * in each of the basic sets of "set"
 | |
|  */
 | |
| __isl_give isl_basic_set *isl_set_plain_unshifted_simple_hull(
 | |
| 	__isl_take isl_set *set)
 | |
| {
 | |
| 	return isl_map_plain_unshifted_simple_hull(set);
 | |
| }
 | |
| 
 | |
| /* Check if "ineq" is a bound on "set" and, if so, add it to "hull".
 | |
|  *
 | |
|  * For each basic set in "set", we first check if the basic set
 | |
|  * contains a translate of "ineq".  If this translate is more relaxed,
 | |
|  * then we assume that "ineq" is not a bound on this basic set.
 | |
|  * Otherwise, we know that it is a bound.
 | |
|  * If the basic set does not contain a translate of "ineq", then
 | |
|  * we call is_bound to perform the test.
 | |
|  */
 | |
| static __isl_give isl_basic_set *add_bound_from_constraint(
 | |
| 	__isl_take isl_basic_set *hull, struct sh_data *data,
 | |
| 	__isl_keep isl_set *set, isl_int *ineq)
 | |
| {
 | |
| 	int i, k;
 | |
| 	isl_ctx *ctx;
 | |
| 	uint32_t c_hash;
 | |
| 	struct ineq_cmp_data v;
 | |
| 
 | |
| 	if (!hull || !set)
 | |
| 		return isl_basic_set_free(hull);
 | |
| 
 | |
| 	v.len = isl_basic_set_total_dim(hull);
 | |
| 	v.p = ineq;
 | |
| 	c_hash = isl_seq_get_hash(ineq + 1, v.len);
 | |
| 
 | |
| 	ctx = isl_basic_set_get_ctx(hull);
 | |
| 	for (i = 0; i < set->n; ++i) {
 | |
| 		int bound;
 | |
| 		struct isl_hash_table_entry *entry;
 | |
| 
 | |
| 		entry = isl_hash_table_find(ctx, data->p[i].table,
 | |
| 						c_hash, &has_ineq, &v, 0);
 | |
| 		if (entry) {
 | |
| 			isl_int *ineq_i = entry->data;
 | |
| 			int neg, more_relaxed;
 | |
| 
 | |
| 			neg = isl_seq_is_neg(ineq_i + 1, ineq + 1, v.len);
 | |
| 			if (neg)
 | |
| 				isl_int_neg(ineq_i[0], ineq_i[0]);
 | |
| 			more_relaxed = isl_int_gt(ineq_i[0], ineq[0]);
 | |
| 			if (neg)
 | |
| 				isl_int_neg(ineq_i[0], ineq_i[0]);
 | |
| 			if (more_relaxed)
 | |
| 				break;
 | |
| 			else
 | |
| 				continue;
 | |
| 		}
 | |
| 		bound = is_bound(data, set, i, ineq, 0);
 | |
| 		if (bound < 0)
 | |
| 			return isl_basic_set_free(hull);
 | |
| 		if (!bound)
 | |
| 			break;
 | |
| 	}
 | |
| 	if (i < set->n)
 | |
| 		return hull;
 | |
| 
 | |
| 	k = isl_basic_set_alloc_inequality(hull);
 | |
| 	if (k < 0)
 | |
| 		return isl_basic_set_free(hull);
 | |
| 	isl_seq_cpy(hull->ineq[k], ineq, 1 + v.len);
 | |
| 
 | |
| 	return hull;
 | |
| }
 | |
| 
 | |
| /* Compute a superset of the convex hull of "set" that is described
 | |
|  * by only some of the "n_ineq" constraints in the list "ineq", where "set"
 | |
|  * has no parameters or integer divisions.
 | |
|  *
 | |
|  * The inequalities in "ineq" are assumed to have been sorted such
 | |
|  * that constraints with the same linear part appear together and
 | |
|  * that among constraints with the same linear part, those with
 | |
|  * smaller constant term appear first.
 | |
|  *
 | |
|  * We reuse the same data structure that is used by uset_simple_hull,
 | |
|  * but we do not need the hull table since we will not consider the
 | |
|  * same constraint more than once.  We therefore allocate it with zero size.
 | |
|  *
 | |
|  * We run through the constraints and try to add them one by one,
 | |
|  * skipping identical constraints.  If we have added a constraint and
 | |
|  * the next constraint is a more relaxed translate, then we skip this
 | |
|  * next constraint as well.
 | |
|  */
 | |
| static __isl_give isl_basic_set *uset_unshifted_simple_hull_from_constraints(
 | |
| 	__isl_take isl_set *set, int n_ineq, isl_int **ineq)
 | |
| {
 | |
| 	int i;
 | |
| 	int last_added = 0;
 | |
| 	struct sh_data *data = NULL;
 | |
| 	isl_basic_set *hull = NULL;
 | |
| 	unsigned dim;
 | |
| 
 | |
| 	hull = isl_basic_set_alloc_space(isl_set_get_space(set), 0, 0, n_ineq);
 | |
| 	if (!hull)
 | |
| 		goto error;
 | |
| 
 | |
| 	data = sh_data_alloc(set, 0);
 | |
| 	if (!data)
 | |
| 		goto error;
 | |
| 
 | |
| 	dim = isl_set_dim(set, isl_dim_set);
 | |
| 	for (i = 0; i < n_ineq; ++i) {
 | |
| 		int hull_n_ineq = hull->n_ineq;
 | |
| 		int parallel;
 | |
| 
 | |
| 		parallel = i > 0 && isl_seq_eq(ineq[i - 1] + 1, ineq[i] + 1,
 | |
| 						dim);
 | |
| 		if (parallel &&
 | |
| 		    (last_added || isl_int_eq(ineq[i - 1][0], ineq[i][0])))
 | |
| 			continue;
 | |
| 		hull = add_bound_from_constraint(hull, data, set, ineq[i]);
 | |
| 		if (!hull)
 | |
| 			goto error;
 | |
| 		last_added = hull->n_ineq > hull_n_ineq;
 | |
| 	}
 | |
| 
 | |
| 	sh_data_free(data);
 | |
| 	isl_set_free(set);
 | |
| 	return hull;
 | |
| error:
 | |
| 	sh_data_free(data);
 | |
| 	isl_set_free(set);
 | |
| 	isl_basic_set_free(hull);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* Collect pointers to all the inequalities in the elements of "list"
 | |
|  * in "ineq".  For equalities, store both a pointer to the equality and
 | |
|  * a pointer to its opposite, which is first copied to "mat".
 | |
|  * "ineq" and "mat" are assumed to have been preallocated to the right size
 | |
|  * (the number of inequalities + 2 times the number of equalites and
 | |
|  * the number of equalities, respectively).
 | |
|  */
 | |
| static __isl_give isl_mat *collect_inequalities(__isl_take isl_mat *mat,
 | |
| 	__isl_keep isl_basic_set_list *list, isl_int **ineq)
 | |
| {
 | |
| 	int i, j, n, n_eq, n_ineq;
 | |
| 
 | |
| 	if (!mat)
 | |
| 		return NULL;
 | |
| 
 | |
| 	n_eq = 0;
 | |
| 	n_ineq = 0;
 | |
| 	n = isl_basic_set_list_n_basic_set(list);
 | |
| 	for (i = 0; i < n; ++i) {
 | |
| 		isl_basic_set *bset;
 | |
| 		bset = isl_basic_set_list_get_basic_set(list, i);
 | |
| 		if (!bset)
 | |
| 			return isl_mat_free(mat);
 | |
| 		for (j = 0; j < bset->n_eq; ++j) {
 | |
| 			ineq[n_ineq++] = mat->row[n_eq];
 | |
| 			ineq[n_ineq++] = bset->eq[j];
 | |
| 			isl_seq_neg(mat->row[n_eq++], bset->eq[j], mat->n_col);
 | |
| 		}
 | |
| 		for (j = 0; j < bset->n_ineq; ++j)
 | |
| 			ineq[n_ineq++] = bset->ineq[j];
 | |
| 		isl_basic_set_free(bset);
 | |
| 	}
 | |
| 
 | |
| 	return mat;
 | |
| }
 | |
| 
 | |
| /* Comparison routine for use as an isl_sort callback.
 | |
|  *
 | |
|  * Constraints with the same linear part are sorted together and
 | |
|  * among constraints with the same linear part, those with smaller
 | |
|  * constant term are sorted first.
 | |
|  */
 | |
| static int cmp_ineq(const void *a, const void *b, void *arg)
 | |
| {
 | |
| 	unsigned dim = *(unsigned *) arg;
 | |
| 	isl_int * const *ineq1 = a;
 | |
| 	isl_int * const *ineq2 = b;
 | |
| 	int cmp;
 | |
| 
 | |
| 	cmp = isl_seq_cmp((*ineq1) + 1, (*ineq2) + 1, dim);
 | |
| 	if (cmp != 0)
 | |
| 		return cmp;
 | |
| 	return isl_int_cmp((*ineq1)[0], (*ineq2)[0]);
 | |
| }
 | |
| 
 | |
| /* Compute a superset of the convex hull of "set" that is described
 | |
|  * by only constraints in the elements of "list", where "set" has
 | |
|  * no parameters or integer divisions.
 | |
|  *
 | |
|  * We collect all the constraints in those elements and then
 | |
|  * sort the constraints such that constraints with the same linear part
 | |
|  * are sorted together and that those with smaller constant term are
 | |
|  * sorted first.
 | |
|  */
 | |
| static __isl_give isl_basic_set *uset_unshifted_simple_hull_from_basic_set_list(
 | |
| 	__isl_take isl_set *set, __isl_take isl_basic_set_list *list)
 | |
| {
 | |
| 	int i, n, n_eq, n_ineq;
 | |
| 	unsigned dim;
 | |
| 	isl_ctx *ctx;
 | |
| 	isl_mat *mat = NULL;
 | |
| 	isl_int **ineq = NULL;
 | |
| 	isl_basic_set *hull;
 | |
| 
 | |
| 	if (!set)
 | |
| 		goto error;
 | |
| 	ctx = isl_set_get_ctx(set);
 | |
| 
 | |
| 	n_eq = 0;
 | |
| 	n_ineq = 0;
 | |
| 	n = isl_basic_set_list_n_basic_set(list);
 | |
| 	for (i = 0; i < n; ++i) {
 | |
| 		isl_basic_set *bset;
 | |
| 		bset = isl_basic_set_list_get_basic_set(list, i);
 | |
| 		if (!bset)
 | |
| 			goto error;
 | |
| 		n_eq += bset->n_eq;
 | |
| 		n_ineq += 2 * bset->n_eq + bset->n_ineq;
 | |
| 		isl_basic_set_free(bset);
 | |
| 	}
 | |
| 
 | |
| 	ineq = isl_alloc_array(ctx, isl_int *, n_ineq);
 | |
| 	if (n_ineq > 0 && !ineq)
 | |
| 		goto error;
 | |
| 
 | |
| 	dim = isl_set_dim(set, isl_dim_set);
 | |
| 	mat = isl_mat_alloc(ctx, n_eq, 1 + dim);
 | |
| 	mat = collect_inequalities(mat, list, ineq);
 | |
| 	if (!mat)
 | |
| 		goto error;
 | |
| 
 | |
| 	if (isl_sort(ineq, n_ineq, sizeof(ineq[0]), &cmp_ineq, &dim) < 0)
 | |
| 		goto error;
 | |
| 
 | |
| 	hull = uset_unshifted_simple_hull_from_constraints(set, n_ineq, ineq);
 | |
| 
 | |
| 	isl_mat_free(mat);
 | |
| 	free(ineq);
 | |
| 	isl_basic_set_list_free(list);
 | |
| 	return hull;
 | |
| error:
 | |
| 	isl_mat_free(mat);
 | |
| 	free(ineq);
 | |
| 	isl_set_free(set);
 | |
| 	isl_basic_set_list_free(list);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* Compute a superset of the convex hull of "map" that is described
 | |
|  * by only constraints in the elements of "list".
 | |
|  *
 | |
|  * If the list is empty, then we can only describe the universe set.
 | |
|  * If the input map is empty, then all constraints are valid, so
 | |
|  * we return the intersection of the elements in "list".
 | |
|  *
 | |
|  * Otherwise, we align all divs and temporarily treat them
 | |
|  * as regular variables, computing the unshifted simple hull in
 | |
|  * uset_unshifted_simple_hull_from_basic_set_list.
 | |
|  */
 | |
| static __isl_give isl_basic_map *map_unshifted_simple_hull_from_basic_map_list(
 | |
| 	__isl_take isl_map *map, __isl_take isl_basic_map_list *list)
 | |
| {
 | |
| 	isl_basic_map *model;
 | |
| 	isl_basic_map *hull;
 | |
| 	isl_set *set;
 | |
| 	isl_basic_set_list *bset_list;
 | |
| 
 | |
| 	if (!map || !list)
 | |
| 		goto error;
 | |
| 
 | |
| 	if (isl_basic_map_list_n_basic_map(list) == 0) {
 | |
| 		isl_space *space;
 | |
| 
 | |
| 		space = isl_map_get_space(map);
 | |
| 		isl_map_free(map);
 | |
| 		isl_basic_map_list_free(list);
 | |
| 		return isl_basic_map_universe(space);
 | |
| 	}
 | |
| 	if (isl_map_plain_is_empty(map)) {
 | |
| 		isl_map_free(map);
 | |
| 		return isl_basic_map_list_intersect(list);
 | |
| 	}
 | |
| 
 | |
| 	map = isl_map_align_divs_to_basic_map_list(map, list);
 | |
| 	if (!map)
 | |
| 		goto error;
 | |
| 	list = isl_basic_map_list_align_divs_to_basic_map(list, map->p[0]);
 | |
| 
 | |
| 	model = isl_basic_map_list_get_basic_map(list, 0);
 | |
| 
 | |
| 	set = isl_map_underlying_set(map);
 | |
| 	bset_list = isl_basic_map_list_underlying_set(list);
 | |
| 
 | |
| 	hull = uset_unshifted_simple_hull_from_basic_set_list(set, bset_list);
 | |
| 	hull = isl_basic_map_overlying_set(hull, model);
 | |
| 
 | |
| 	return hull;
 | |
| error:
 | |
| 	isl_map_free(map);
 | |
| 	isl_basic_map_list_free(list);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* Return a sequence of the basic maps that make up the maps in "list".
 | |
|  */
 | |
| static __isl_give isl_basic_map_list *collect_basic_maps(
 | |
| 	__isl_take isl_map_list *list)
 | |
| {
 | |
| 	int i, n;
 | |
| 	isl_ctx *ctx;
 | |
| 	isl_basic_map_list *bmap_list;
 | |
| 
 | |
| 	if (!list)
 | |
| 		return NULL;
 | |
| 	n = isl_map_list_n_map(list);
 | |
| 	ctx = isl_map_list_get_ctx(list);
 | |
| 	bmap_list = isl_basic_map_list_alloc(ctx, 0);
 | |
| 
 | |
| 	for (i = 0; i < n; ++i) {
 | |
| 		isl_map *map;
 | |
| 		isl_basic_map_list *list_i;
 | |
| 
 | |
| 		map = isl_map_list_get_map(list, i);
 | |
| 		map = isl_map_compute_divs(map);
 | |
| 		list_i = isl_map_get_basic_map_list(map);
 | |
| 		isl_map_free(map);
 | |
| 		bmap_list = isl_basic_map_list_concat(bmap_list, list_i);
 | |
| 	}
 | |
| 
 | |
| 	isl_map_list_free(list);
 | |
| 	return bmap_list;
 | |
| }
 | |
| 
 | |
| /* Compute a superset of the convex hull of "map" that is described
 | |
|  * by only constraints in the elements of "list".
 | |
|  *
 | |
|  * If "map" is the universe, then the convex hull (and therefore
 | |
|  * any superset of the convexhull) is the universe as well.
 | |
|  *
 | |
|  * Otherwise, we collect all the basic maps in the map list and
 | |
|  * continue with map_unshifted_simple_hull_from_basic_map_list.
 | |
|  */
 | |
| __isl_give isl_basic_map *isl_map_unshifted_simple_hull_from_map_list(
 | |
| 	__isl_take isl_map *map, __isl_take isl_map_list *list)
 | |
| {
 | |
| 	isl_basic_map_list *bmap_list;
 | |
| 	int is_universe;
 | |
| 
 | |
| 	is_universe = isl_map_plain_is_universe(map);
 | |
| 	if (is_universe < 0)
 | |
| 		map = isl_map_free(map);
 | |
| 	if (is_universe < 0 || is_universe) {
 | |
| 		isl_map_list_free(list);
 | |
| 		return isl_map_unshifted_simple_hull(map);
 | |
| 	}
 | |
| 
 | |
| 	bmap_list = collect_basic_maps(list);
 | |
| 	return map_unshifted_simple_hull_from_basic_map_list(map, bmap_list);
 | |
| }
 | |
| 
 | |
| /* Compute a superset of the convex hull of "set" that is described
 | |
|  * by only constraints in the elements of "list".
 | |
|  */
 | |
| __isl_give isl_basic_set *isl_set_unshifted_simple_hull_from_set_list(
 | |
| 	__isl_take isl_set *set, __isl_take isl_set_list *list)
 | |
| {
 | |
| 	return isl_map_unshifted_simple_hull_from_map_list(set, list);
 | |
| }
 | |
| 
 | |
| /* Given a set "set", return parametric bounds on the dimension "dim".
 | |
|  */
 | |
| static struct isl_basic_set *set_bounds(struct isl_set *set, int dim)
 | |
| {
 | |
| 	unsigned set_dim = isl_set_dim(set, isl_dim_set);
 | |
| 	set = isl_set_copy(set);
 | |
| 	set = isl_set_eliminate_dims(set, dim + 1, set_dim - (dim + 1));
 | |
| 	set = isl_set_eliminate_dims(set, 0, dim);
 | |
| 	return isl_set_convex_hull(set);
 | |
| }
 | |
| 
 | |
| /* Computes a "simple hull" and then check if each dimension in the
 | |
|  * resulting hull is bounded by a symbolic constant.  If not, the
 | |
|  * hull is intersected with the corresponding bounds on the whole set.
 | |
|  */
 | |
| struct isl_basic_set *isl_set_bounded_simple_hull(struct isl_set *set)
 | |
| {
 | |
| 	int i, j;
 | |
| 	struct isl_basic_set *hull;
 | |
| 	unsigned nparam, left;
 | |
| 	int removed_divs = 0;
 | |
| 
 | |
| 	hull = isl_set_simple_hull(isl_set_copy(set));
 | |
| 	if (!hull)
 | |
| 		goto error;
 | |
| 
 | |
| 	nparam = isl_basic_set_dim(hull, isl_dim_param);
 | |
| 	for (i = 0; i < isl_basic_set_dim(hull, isl_dim_set); ++i) {
 | |
| 		int lower = 0, upper = 0;
 | |
| 		struct isl_basic_set *bounds;
 | |
| 
 | |
| 		left = isl_basic_set_total_dim(hull) - nparam - i - 1;
 | |
| 		for (j = 0; j < hull->n_eq; ++j) {
 | |
| 			if (isl_int_is_zero(hull->eq[j][1 + nparam + i]))
 | |
| 				continue;
 | |
| 			if (isl_seq_first_non_zero(hull->eq[j]+1+nparam+i+1,
 | |
| 						    left) == -1)
 | |
| 				break;
 | |
| 		}
 | |
| 		if (j < hull->n_eq)
 | |
| 			continue;
 | |
| 
 | |
| 		for (j = 0; j < hull->n_ineq; ++j) {
 | |
| 			if (isl_int_is_zero(hull->ineq[j][1 + nparam + i]))
 | |
| 				continue;
 | |
| 			if (isl_seq_first_non_zero(hull->ineq[j]+1+nparam+i+1,
 | |
| 						    left) != -1 ||
 | |
| 			    isl_seq_first_non_zero(hull->ineq[j]+1+nparam,
 | |
| 						    i) != -1)
 | |
| 				continue;
 | |
| 			if (isl_int_is_pos(hull->ineq[j][1 + nparam + i]))
 | |
| 				lower = 1;
 | |
| 			else
 | |
| 				upper = 1;
 | |
| 			if (lower && upper)
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		if (lower && upper)
 | |
| 			continue;
 | |
| 
 | |
| 		if (!removed_divs) {
 | |
| 			set = isl_set_remove_divs(set);
 | |
| 			if (!set)
 | |
| 				goto error;
 | |
| 			removed_divs = 1;
 | |
| 		}
 | |
| 		bounds = set_bounds(set, i);
 | |
| 		hull = isl_basic_set_intersect(hull, bounds);
 | |
| 		if (!hull)
 | |
| 			goto error;
 | |
| 	}
 | |
| 
 | |
| 	isl_set_free(set);
 | |
| 	return hull;
 | |
| error:
 | |
| 	isl_set_free(set);
 | |
| 	isl_basic_set_free(hull);
 | |
| 	return NULL;
 | |
| }
 |