1796 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1796 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  * Copyright 2010      INRIA Saclay
 | |
|  *
 | |
|  * Use of this software is governed by the MIT license
 | |
|  *
 | |
|  * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
 | |
|  * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
 | |
|  * 91893 Orsay, France 
 | |
|  */
 | |
| 
 | |
| #define ISL_DIM_H
 | |
| #include <isl_map_private.h>
 | |
| #include <isl_union_map_private.h>
 | |
| #include <isl_polynomial_private.h>
 | |
| #include <isl_point_private.h>
 | |
| #include <isl_space_private.h>
 | |
| #include <isl_lp_private.h>
 | |
| #include <isl_seq.h>
 | |
| #include <isl_mat_private.h>
 | |
| #include <isl_val_private.h>
 | |
| #include <isl_vec_private.h>
 | |
| #include <isl_config.h>
 | |
| #include <isl/deprecated/polynomial_int.h>
 | |
| 
 | |
| enum isl_fold isl_fold_type_negate(enum isl_fold type)
 | |
| {
 | |
| 	switch (type) {
 | |
| 	case isl_fold_min:
 | |
| 		return isl_fold_max;
 | |
| 	case isl_fold_max:
 | |
| 		return isl_fold_min;
 | |
| 	case isl_fold_list:
 | |
| 		return isl_fold_list;
 | |
| 	}
 | |
| 
 | |
| 	isl_die(NULL, isl_error_internal, "unhandled isl_fold type", abort());
 | |
| }
 | |
| 
 | |
| static __isl_give isl_qpolynomial_fold *qpolynomial_fold_alloc(
 | |
| 	enum isl_fold type, __isl_take isl_space *dim, int n)
 | |
| {
 | |
| 	isl_qpolynomial_fold *fold;
 | |
| 
 | |
| 	if (!dim)
 | |
| 		goto error;
 | |
| 
 | |
| 	isl_assert(dim->ctx, n >= 0, goto error);
 | |
| 	fold = isl_calloc(dim->ctx, struct isl_qpolynomial_fold,
 | |
| 			sizeof(struct isl_qpolynomial_fold) +
 | |
| 			(n - 1) * sizeof(struct isl_qpolynomial *));
 | |
| 	if (!fold)
 | |
| 		goto error;
 | |
| 
 | |
| 	fold->ref = 1;
 | |
| 	fold->size = n;
 | |
| 	fold->n = 0;
 | |
| 	fold->type = type;
 | |
| 	fold->dim = dim;
 | |
| 
 | |
| 	return fold;
 | |
| error:
 | |
| 	isl_space_free(dim);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| isl_ctx *isl_qpolynomial_fold_get_ctx(__isl_keep isl_qpolynomial_fold *fold)
 | |
| {
 | |
| 	return fold ? fold->dim->ctx : NULL;
 | |
| }
 | |
| 
 | |
| __isl_give isl_space *isl_qpolynomial_fold_get_domain_space(
 | |
| 	__isl_keep isl_qpolynomial_fold *fold)
 | |
| {
 | |
| 	return fold ? isl_space_copy(fold->dim) : NULL;
 | |
| }
 | |
| 
 | |
| __isl_give isl_space *isl_qpolynomial_fold_get_space(
 | |
| 	__isl_keep isl_qpolynomial_fold *fold)
 | |
| {
 | |
| 	isl_space *space;
 | |
| 	if (!fold)
 | |
| 		return NULL;
 | |
| 	space = isl_space_copy(fold->dim);
 | |
| 	space = isl_space_from_domain(space);
 | |
| 	space = isl_space_add_dims(space, isl_dim_out, 1);
 | |
| 	return space;
 | |
| }
 | |
| 
 | |
| __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_reset_domain_space(
 | |
| 	__isl_take isl_qpolynomial_fold *fold, __isl_take isl_space *dim)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	fold = isl_qpolynomial_fold_cow(fold);
 | |
| 	if (!fold || !dim)
 | |
| 		goto error;
 | |
| 
 | |
| 	for (i = 0; i < fold->n; ++i) {
 | |
| 		fold->qp[i] = isl_qpolynomial_reset_domain_space(fold->qp[i],
 | |
| 							isl_space_copy(dim));
 | |
| 		if (!fold->qp[i])
 | |
| 			goto error;
 | |
| 	}
 | |
| 
 | |
| 	isl_space_free(fold->dim);
 | |
| 	fold->dim = dim;
 | |
| 
 | |
| 	return fold;
 | |
| error:
 | |
| 	isl_qpolynomial_fold_free(fold);
 | |
| 	isl_space_free(dim);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* Reset the space of "fold".  This function is called from isl_pw_templ.c
 | |
|  * and doesn't know if the space of an element object is represented
 | |
|  * directly or through its domain.  It therefore passes along both.
 | |
|  */
 | |
| __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_reset_space_and_domain(
 | |
| 	__isl_take isl_qpolynomial_fold *fold, __isl_take isl_space *space,
 | |
| 	__isl_take isl_space *domain)
 | |
| {
 | |
| 	isl_space_free(space);
 | |
| 	return isl_qpolynomial_fold_reset_domain_space(fold, domain);
 | |
| }
 | |
| 
 | |
| int isl_qpolynomial_fold_involves_dims(__isl_keep isl_qpolynomial_fold *fold,
 | |
| 	enum isl_dim_type type, unsigned first, unsigned n)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (!fold)
 | |
| 		return -1;
 | |
| 	if (fold->n == 0 || n == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	for (i = 0; i < fold->n; ++i) {
 | |
| 		int involves = isl_qpolynomial_involves_dims(fold->qp[i],
 | |
| 							    type, first, n);
 | |
| 		if (involves < 0 || involves)
 | |
| 			return involves;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_set_dim_name(
 | |
| 	__isl_take isl_qpolynomial_fold *fold,
 | |
| 	enum isl_dim_type type, unsigned pos, const char *s)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	fold = isl_qpolynomial_fold_cow(fold);
 | |
| 	if (!fold)
 | |
| 		return NULL;
 | |
| 	fold->dim = isl_space_set_dim_name(fold->dim, type, pos, s);
 | |
| 	if (!fold->dim)
 | |
| 		goto error;
 | |
| 
 | |
| 	for (i = 0; i < fold->n; ++i) {
 | |
| 		fold->qp[i] = isl_qpolynomial_set_dim_name(fold->qp[i],
 | |
| 							    type, pos, s);
 | |
| 		if (!fold->qp[i])
 | |
| 			goto error;
 | |
| 	}
 | |
| 
 | |
| 	return fold;
 | |
| error:
 | |
| 	isl_qpolynomial_fold_free(fold);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* Given a dimension type for an isl_qpolynomial_fold,
 | |
|  * return the corresponding type for the domain.
 | |
|  */
 | |
| static enum isl_dim_type domain_type(enum isl_dim_type type)
 | |
| {
 | |
| 	if (type == isl_dim_in)
 | |
| 		return isl_dim_set;
 | |
| 	return type;
 | |
| }
 | |
| 
 | |
| __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_drop_dims(
 | |
| 	__isl_take isl_qpolynomial_fold *fold,
 | |
| 	enum isl_dim_type type, unsigned first, unsigned n)
 | |
| {
 | |
| 	int i;
 | |
| 	enum isl_dim_type set_type;
 | |
| 
 | |
| 	if (!fold)
 | |
| 		return NULL;
 | |
| 	if (n == 0)
 | |
| 		return fold;
 | |
| 
 | |
| 	set_type = domain_type(type);
 | |
| 
 | |
| 	fold = isl_qpolynomial_fold_cow(fold);
 | |
| 	if (!fold)
 | |
| 		return NULL;
 | |
| 	fold->dim = isl_space_drop_dims(fold->dim, set_type, first, n);
 | |
| 	if (!fold->dim)
 | |
| 		goto error;
 | |
| 
 | |
| 	for (i = 0; i < fold->n; ++i) {
 | |
| 		fold->qp[i] = isl_qpolynomial_drop_dims(fold->qp[i],
 | |
| 							    type, first, n);
 | |
| 		if (!fold->qp[i])
 | |
| 			goto error;
 | |
| 	}
 | |
| 
 | |
| 	return fold;
 | |
| error:
 | |
| 	isl_qpolynomial_fold_free(fold);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_insert_dims(
 | |
| 	__isl_take isl_qpolynomial_fold *fold,
 | |
| 	enum isl_dim_type type, unsigned first, unsigned n)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (!fold)
 | |
| 		return NULL;
 | |
| 	if (n == 0 && !isl_space_is_named_or_nested(fold->dim, type))
 | |
| 		return fold;
 | |
| 
 | |
| 	fold = isl_qpolynomial_fold_cow(fold);
 | |
| 	if (!fold)
 | |
| 		return NULL;
 | |
| 	fold->dim = isl_space_insert_dims(fold->dim, type, first, n);
 | |
| 	if (!fold->dim)
 | |
| 		goto error;
 | |
| 
 | |
| 	for (i = 0; i < fold->n; ++i) {
 | |
| 		fold->qp[i] = isl_qpolynomial_insert_dims(fold->qp[i],
 | |
| 							    type, first, n);
 | |
| 		if (!fold->qp[i])
 | |
| 			goto error;
 | |
| 	}
 | |
| 
 | |
| 	return fold;
 | |
| error:
 | |
| 	isl_qpolynomial_fold_free(fold);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* Determine the sign of the constant quasipolynomial "qp".
 | |
|  *
 | |
|  * Return
 | |
|  *	-1 if qp <= 0
 | |
|  *	 1 if qp >= 0
 | |
|  *	 0 if unknown
 | |
|  *
 | |
|  * For qp == 0, we can return either -1 or 1.  In practice, we return 1.
 | |
|  * For qp == NaN, the sign is undefined, so we return 0.
 | |
|  */
 | |
| static int isl_qpolynomial_cst_sign(__isl_keep isl_qpolynomial *qp)
 | |
| {
 | |
| 	struct isl_upoly_cst *cst;
 | |
| 
 | |
| 	if (isl_qpolynomial_is_nan(qp))
 | |
| 		return 0;
 | |
| 
 | |
| 	cst = isl_upoly_as_cst(qp->upoly);
 | |
| 	if (!cst)
 | |
| 		return 0;
 | |
| 
 | |
| 	return isl_int_sgn(cst->n) < 0 ? -1 : 1;
 | |
| }
 | |
| 
 | |
| static int isl_qpolynomial_aff_sign(__isl_keep isl_set *set,
 | |
| 	__isl_keep isl_qpolynomial *qp)
 | |
| {
 | |
| 	enum isl_lp_result res;
 | |
| 	isl_vec *aff;
 | |
| 	isl_int opt;
 | |
| 	int sgn = 0;
 | |
| 
 | |
| 	aff = isl_qpolynomial_extract_affine(qp);
 | |
| 	if (!aff)
 | |
| 		return 0;
 | |
| 
 | |
| 	isl_int_init(opt);
 | |
| 
 | |
| 	res = isl_set_solve_lp(set, 0, aff->el + 1, aff->el[0],
 | |
| 				&opt, NULL, NULL);
 | |
| 	if (res == isl_lp_error)
 | |
| 		goto done;
 | |
| 	if (res == isl_lp_empty ||
 | |
| 	    (res == isl_lp_ok && !isl_int_is_neg(opt))) {
 | |
| 		sgn = 1;
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	res = isl_set_solve_lp(set, 1, aff->el + 1, aff->el[0],
 | |
| 				&opt, NULL, NULL);
 | |
| 	if (res == isl_lp_ok && !isl_int_is_pos(opt))
 | |
| 		sgn = -1;
 | |
| 
 | |
| done:
 | |
| 	isl_int_clear(opt);
 | |
| 	isl_vec_free(aff);
 | |
| 	return sgn;
 | |
| }
 | |
| 
 | |
| /* Determine, if possible, the sign of the quasipolynomial "qp" on
 | |
|  * the domain "set".
 | |
|  *
 | |
|  * If qp is a constant, then the problem is trivial.
 | |
|  * If qp is linear, then we check if the minimum of the corresponding
 | |
|  * affine constraint is non-negative or if the maximum is non-positive.
 | |
|  *
 | |
|  * Otherwise, we check if the outermost variable "v" has a lower bound "l"
 | |
|  * in "set".  If so, we write qp(v,v') as
 | |
|  *
 | |
|  *	q(v,v') * (v - l) + r(v')
 | |
|  *
 | |
|  * if q(v,v') and r(v') have the same known sign, then the original
 | |
|  * quasipolynomial has the same sign as well.
 | |
|  *
 | |
|  * Return
 | |
|  *	-1 if qp <= 0
 | |
|  *	 1 if qp >= 0
 | |
|  *	 0 if unknown
 | |
|  */
 | |
| static int isl_qpolynomial_sign(__isl_keep isl_set *set,
 | |
| 	__isl_keep isl_qpolynomial *qp)
 | |
| {
 | |
| 	int d;
 | |
| 	int i;
 | |
| 	int is;
 | |
| 	struct isl_upoly_rec *rec;
 | |
| 	isl_vec *v;
 | |
| 	isl_int l;
 | |
| 	enum isl_lp_result res;
 | |
| 	int sgn = 0;
 | |
| 
 | |
| 	is = isl_qpolynomial_is_cst(qp, NULL, NULL);
 | |
| 	if (is < 0)
 | |
| 		return 0;
 | |
| 	if (is)
 | |
| 		return isl_qpolynomial_cst_sign(qp);
 | |
| 
 | |
| 	is = isl_qpolynomial_is_affine(qp);
 | |
| 	if (is < 0)
 | |
| 		return 0;
 | |
| 	if (is)
 | |
| 		return isl_qpolynomial_aff_sign(set, qp);
 | |
| 
 | |
| 	if (qp->div->n_row > 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	rec = isl_upoly_as_rec(qp->upoly);
 | |
| 	if (!rec)
 | |
| 		return 0;
 | |
| 
 | |
| 	d = isl_space_dim(qp->dim, isl_dim_all);
 | |
| 	v = isl_vec_alloc(set->ctx, 2 + d);
 | |
| 	if (!v)
 | |
| 		return 0;
 | |
| 
 | |
| 	isl_seq_clr(v->el + 1, 1 + d);
 | |
| 	isl_int_set_si(v->el[0], 1);
 | |
| 	isl_int_set_si(v->el[2 + qp->upoly->var], 1);
 | |
| 
 | |
| 	isl_int_init(l);
 | |
| 
 | |
| 	res = isl_set_solve_lp(set, 0, v->el + 1, v->el[0], &l, NULL, NULL);
 | |
| 	if (res == isl_lp_ok) {
 | |
| 		isl_qpolynomial *min;
 | |
| 		isl_qpolynomial *base;
 | |
| 		isl_qpolynomial *r, *q;
 | |
| 		isl_qpolynomial *t;
 | |
| 
 | |
| 		min = isl_qpolynomial_cst_on_domain(isl_space_copy(qp->dim), l);
 | |
| 		base = isl_qpolynomial_var_pow_on_domain(isl_space_copy(qp->dim),
 | |
| 						qp->upoly->var, 1);
 | |
| 
 | |
| 		r = isl_qpolynomial_alloc(isl_space_copy(qp->dim), 0,
 | |
| 					  isl_upoly_copy(rec->p[rec->n - 1]));
 | |
| 		q = isl_qpolynomial_copy(r);
 | |
| 
 | |
| 		for (i = rec->n - 2; i >= 0; --i) {
 | |
| 			r = isl_qpolynomial_mul(r, isl_qpolynomial_copy(min));
 | |
| 			t = isl_qpolynomial_alloc(isl_space_copy(qp->dim), 0,
 | |
| 						  isl_upoly_copy(rec->p[i]));
 | |
| 			r = isl_qpolynomial_add(r, t);
 | |
| 			if (i == 0)
 | |
| 				break;
 | |
| 			q = isl_qpolynomial_mul(q, isl_qpolynomial_copy(base));
 | |
| 			q = isl_qpolynomial_add(q, isl_qpolynomial_copy(r));
 | |
| 		}
 | |
| 
 | |
| 		if (isl_qpolynomial_is_zero(q))
 | |
| 			sgn = isl_qpolynomial_sign(set, r);
 | |
| 		else if (isl_qpolynomial_is_zero(r))
 | |
| 			sgn = isl_qpolynomial_sign(set, q);
 | |
| 		else {
 | |
| 			int sgn_q, sgn_r;
 | |
| 			sgn_r = isl_qpolynomial_sign(set, r);
 | |
| 			sgn_q = isl_qpolynomial_sign(set, q);
 | |
| 			if (sgn_r == sgn_q)
 | |
| 				sgn = sgn_r;
 | |
| 		}
 | |
| 
 | |
| 		isl_qpolynomial_free(min);
 | |
| 		isl_qpolynomial_free(base);
 | |
| 		isl_qpolynomial_free(q);
 | |
| 		isl_qpolynomial_free(r);
 | |
| 	}
 | |
| 
 | |
| 	isl_int_clear(l);
 | |
| 
 | |
| 	isl_vec_free(v);
 | |
| 
 | |
| 	return sgn;
 | |
| }
 | |
| 
 | |
| /* Combine "fold1" and "fold2" into a single reduction, eliminating
 | |
|  * those elements of one reduction that are already covered by the other
 | |
|  * reduction on "set".
 | |
|  *
 | |
|  * If "fold1" or "fold2" is an empty reduction, then return
 | |
|  * the other reduction.
 | |
|  * If "fold1" or "fold2" is a NaN, then return this NaN.
 | |
|  */
 | |
| __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_fold_on_domain(
 | |
| 	__isl_keep isl_set *set,
 | |
| 	__isl_take isl_qpolynomial_fold *fold1,
 | |
| 	__isl_take isl_qpolynomial_fold *fold2)
 | |
| {
 | |
| 	int i, j;
 | |
| 	int n1;
 | |
| 	struct isl_qpolynomial_fold *res = NULL;
 | |
| 	int better;
 | |
| 
 | |
| 	if (!fold1 || !fold2)
 | |
| 		goto error;
 | |
| 
 | |
| 	isl_assert(fold1->dim->ctx, fold1->type == fold2->type, goto error);
 | |
| 	isl_assert(fold1->dim->ctx, isl_space_is_equal(fold1->dim, fold2->dim),
 | |
| 			goto error);
 | |
| 
 | |
| 	better = fold1->type == isl_fold_max ? -1 : 1;
 | |
| 
 | |
| 	if (isl_qpolynomial_fold_is_empty(fold1) ||
 | |
| 	    isl_qpolynomial_fold_is_nan(fold2)) {
 | |
| 		isl_qpolynomial_fold_free(fold1);
 | |
| 		return fold2;
 | |
| 	}
 | |
| 
 | |
| 	if (isl_qpolynomial_fold_is_empty(fold2) ||
 | |
| 	    isl_qpolynomial_fold_is_nan(fold1)) {
 | |
| 		isl_qpolynomial_fold_free(fold2);
 | |
| 		return fold1;
 | |
| 	}
 | |
| 
 | |
| 	res = qpolynomial_fold_alloc(fold1->type, isl_space_copy(fold1->dim),
 | |
| 					fold1->n + fold2->n);
 | |
| 	if (!res)
 | |
| 		goto error;
 | |
| 
 | |
| 	for (i = 0; i < fold1->n; ++i) {
 | |
| 		res->qp[res->n] = isl_qpolynomial_copy(fold1->qp[i]);
 | |
| 		if (!res->qp[res->n])
 | |
| 			goto error;
 | |
| 		res->n++;
 | |
| 	}
 | |
| 	n1 = res->n;
 | |
| 
 | |
| 	for (i = 0; i < fold2->n; ++i) {
 | |
| 		for (j = n1 - 1; j >= 0; --j) {
 | |
| 			isl_qpolynomial *d;
 | |
| 			int sgn, equal;
 | |
| 			equal = isl_qpolynomial_plain_is_equal(res->qp[j],
 | |
| 								fold2->qp[i]);
 | |
| 			if (equal < 0)
 | |
| 				goto error;
 | |
| 			if (equal)
 | |
| 				break;
 | |
| 			d = isl_qpolynomial_sub(
 | |
| 				isl_qpolynomial_copy(res->qp[j]),
 | |
| 				isl_qpolynomial_copy(fold2->qp[i]));
 | |
| 			sgn = isl_qpolynomial_sign(set, d);
 | |
| 			isl_qpolynomial_free(d);
 | |
| 			if (sgn == 0)
 | |
| 				continue;
 | |
| 			if (sgn != better)
 | |
| 				break;
 | |
| 			isl_qpolynomial_free(res->qp[j]);
 | |
| 			if (j != n1 - 1)
 | |
| 				res->qp[j] = res->qp[n1 - 1];
 | |
| 			n1--;
 | |
| 			if (n1 != res->n - 1)
 | |
| 				res->qp[n1] = res->qp[res->n - 1];
 | |
| 			res->n--;
 | |
| 		}
 | |
| 		if (j >= 0)
 | |
| 			continue;
 | |
| 		res->qp[res->n] = isl_qpolynomial_copy(fold2->qp[i]);
 | |
| 		if (!res->qp[res->n])
 | |
| 			goto error;
 | |
| 		res->n++;
 | |
| 	}
 | |
| 
 | |
| 	isl_qpolynomial_fold_free(fold1);
 | |
| 	isl_qpolynomial_fold_free(fold2);
 | |
| 
 | |
| 	return res;
 | |
| error:
 | |
| 	isl_qpolynomial_fold_free(res);
 | |
| 	isl_qpolynomial_fold_free(fold1);
 | |
| 	isl_qpolynomial_fold_free(fold2);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_add_qpolynomial(
 | |
| 	__isl_take isl_qpolynomial_fold *fold, __isl_take isl_qpolynomial *qp)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (!fold || !qp)
 | |
| 		goto error;
 | |
| 
 | |
| 	if (isl_qpolynomial_is_zero(qp)) {
 | |
| 		isl_qpolynomial_free(qp);
 | |
| 		return fold;
 | |
| 	}
 | |
| 
 | |
| 	fold = isl_qpolynomial_fold_cow(fold);
 | |
| 	if (!fold)
 | |
| 		goto error;
 | |
| 
 | |
| 	for (i = 0; i < fold->n; ++i) {
 | |
| 		fold->qp[i] = isl_qpolynomial_add(fold->qp[i],
 | |
| 						isl_qpolynomial_copy(qp));
 | |
| 		if (!fold->qp[i])
 | |
| 			goto error;
 | |
| 	}
 | |
| 
 | |
| 	isl_qpolynomial_free(qp);
 | |
| 	return fold;
 | |
| error:
 | |
| 	isl_qpolynomial_fold_free(fold);
 | |
| 	isl_qpolynomial_free(qp);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_add_on_domain(
 | |
| 	__isl_keep isl_set *dom,
 | |
| 	__isl_take isl_qpolynomial_fold *fold1,
 | |
| 	__isl_take isl_qpolynomial_fold *fold2)
 | |
| {
 | |
| 	int i;
 | |
| 	isl_qpolynomial_fold *res = NULL;
 | |
| 
 | |
| 	if (!fold1 || !fold2)
 | |
| 		goto error;
 | |
| 
 | |
| 	if (isl_qpolynomial_fold_is_empty(fold1)) {
 | |
| 		isl_qpolynomial_fold_free(fold1);
 | |
| 		return fold2;
 | |
| 	}
 | |
| 
 | |
| 	if (isl_qpolynomial_fold_is_empty(fold2)) {
 | |
| 		isl_qpolynomial_fold_free(fold2);
 | |
| 		return fold1;
 | |
| 	}
 | |
| 
 | |
| 	if (fold1->n == 1 && fold2->n != 1)
 | |
| 		return isl_qpolynomial_fold_add_on_domain(dom, fold2, fold1);
 | |
| 
 | |
| 	if (fold2->n == 1) {
 | |
| 		res = isl_qpolynomial_fold_add_qpolynomial(fold1,
 | |
| 					isl_qpolynomial_copy(fold2->qp[0]));
 | |
| 		isl_qpolynomial_fold_free(fold2);
 | |
| 		return res;
 | |
| 	}
 | |
| 
 | |
| 	res = isl_qpolynomial_fold_add_qpolynomial(
 | |
| 				isl_qpolynomial_fold_copy(fold1),
 | |
| 				isl_qpolynomial_copy(fold2->qp[0]));
 | |
| 
 | |
| 	for (i = 1; i < fold2->n; ++i) {
 | |
| 		isl_qpolynomial_fold *res_i;
 | |
| 		res_i = isl_qpolynomial_fold_add_qpolynomial(
 | |
| 					isl_qpolynomial_fold_copy(fold1),
 | |
| 					isl_qpolynomial_copy(fold2->qp[i]));
 | |
| 		res = isl_qpolynomial_fold_fold_on_domain(dom, res, res_i);
 | |
| 	}
 | |
| 
 | |
| 	isl_qpolynomial_fold_free(fold1);
 | |
| 	isl_qpolynomial_fold_free(fold2);
 | |
| 	return res;
 | |
| error:
 | |
| 	isl_qpolynomial_fold_free(res);
 | |
| 	isl_qpolynomial_fold_free(fold1);
 | |
| 	isl_qpolynomial_fold_free(fold2);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_substitute_equalities(
 | |
| 	__isl_take isl_qpolynomial_fold *fold, __isl_take isl_basic_set *eq)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (!fold || !eq)
 | |
| 		goto error;
 | |
| 
 | |
| 	fold = isl_qpolynomial_fold_cow(fold);
 | |
| 	if (!fold)
 | |
| 		return NULL;
 | |
| 
 | |
| 	for (i = 0; i < fold->n; ++i) {
 | |
| 		fold->qp[i] = isl_qpolynomial_substitute_equalities(fold->qp[i],
 | |
| 							isl_basic_set_copy(eq));
 | |
| 		if (!fold->qp[i])
 | |
| 			goto error;
 | |
| 	}
 | |
| 
 | |
| 	isl_basic_set_free(eq);
 | |
| 	return fold;
 | |
| error:
 | |
| 	isl_basic_set_free(eq);
 | |
| 	isl_qpolynomial_fold_free(fold);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_gist(
 | |
| 	__isl_take isl_qpolynomial_fold *fold, __isl_take isl_set *context)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (!fold || !context)
 | |
| 		goto error;
 | |
| 
 | |
| 	fold = isl_qpolynomial_fold_cow(fold);
 | |
| 	if (!fold)
 | |
| 		return NULL;
 | |
| 
 | |
| 	for (i = 0; i < fold->n; ++i) {
 | |
| 		fold->qp[i] = isl_qpolynomial_gist(fold->qp[i],
 | |
| 							isl_set_copy(context));
 | |
| 		if (!fold->qp[i])
 | |
| 			goto error;
 | |
| 	}
 | |
| 
 | |
| 	isl_set_free(context);
 | |
| 	return fold;
 | |
| error:
 | |
| 	isl_set_free(context);
 | |
| 	isl_qpolynomial_fold_free(fold);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_gist_params(
 | |
| 	__isl_take isl_qpolynomial_fold *fold, __isl_take isl_set *context)
 | |
| {
 | |
| 	isl_space *space = isl_qpolynomial_fold_get_domain_space(fold);
 | |
| 	isl_set *dom_context = isl_set_universe(space);
 | |
| 	dom_context = isl_set_intersect_params(dom_context, context);
 | |
| 	return isl_qpolynomial_fold_gist(fold, dom_context);
 | |
| }
 | |
| 
 | |
| #define isl_qpolynomial_fold_involves_nan isl_qpolynomial_fold_is_nan
 | |
| 
 | |
| #define HAS_TYPE
 | |
| 
 | |
| #undef PW
 | |
| #define PW isl_pw_qpolynomial_fold
 | |
| #undef EL
 | |
| #define EL isl_qpolynomial_fold
 | |
| #undef EL_IS_ZERO
 | |
| #define EL_IS_ZERO is_empty
 | |
| #undef ZERO
 | |
| #define ZERO zero
 | |
| #undef IS_ZERO
 | |
| #define IS_ZERO is_zero
 | |
| #undef FIELD
 | |
| #define FIELD fold
 | |
| #undef DEFAULT_IS_ZERO
 | |
| #define DEFAULT_IS_ZERO 1
 | |
| 
 | |
| #define NO_NEG
 | |
| #define NO_SUB
 | |
| #define NO_PULLBACK
 | |
| 
 | |
| #include <isl_pw_templ.c>
 | |
| 
 | |
| #undef UNION
 | |
| #define UNION isl_union_pw_qpolynomial_fold
 | |
| #undef PART
 | |
| #define PART isl_pw_qpolynomial_fold
 | |
| #undef PARTS
 | |
| #define PARTS pw_qpolynomial_fold
 | |
| 
 | |
| #define NO_SUB
 | |
| 
 | |
| #include <isl_union_single.c>
 | |
| #include <isl_union_eval.c>
 | |
| 
 | |
| __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_empty(enum isl_fold type,
 | |
| 	__isl_take isl_space *dim)
 | |
| {
 | |
| 	return qpolynomial_fold_alloc(type, dim, 0);
 | |
| }
 | |
| 
 | |
| __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_alloc(
 | |
| 	enum isl_fold type, __isl_take isl_qpolynomial *qp)
 | |
| {
 | |
| 	isl_qpolynomial_fold *fold;
 | |
| 
 | |
| 	if (!qp)
 | |
| 		return NULL;
 | |
| 
 | |
| 	fold = qpolynomial_fold_alloc(type, isl_space_copy(qp->dim), 1);
 | |
| 	if (!fold)
 | |
| 		goto error;
 | |
| 
 | |
| 	fold->qp[0] = qp;
 | |
| 	fold->n++;
 | |
| 
 | |
| 	return fold;
 | |
| error:
 | |
| 	isl_qpolynomial_fold_free(fold);
 | |
| 	isl_qpolynomial_free(qp);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_copy(
 | |
| 	__isl_keep isl_qpolynomial_fold *fold)
 | |
| {
 | |
| 	if (!fold)
 | |
| 		return NULL;
 | |
| 
 | |
| 	fold->ref++;
 | |
| 	return fold;
 | |
| }
 | |
| 
 | |
| __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_dup(
 | |
| 	__isl_keep isl_qpolynomial_fold *fold)
 | |
| {
 | |
| 	int i;
 | |
| 	isl_qpolynomial_fold *dup;
 | |
| 
 | |
| 	if (!fold)
 | |
| 		return NULL;
 | |
| 	dup = qpolynomial_fold_alloc(fold->type,
 | |
| 					isl_space_copy(fold->dim), fold->n);
 | |
| 	if (!dup)
 | |
| 		return NULL;
 | |
| 	
 | |
| 	dup->n = fold->n;
 | |
| 	for (i = 0; i < fold->n; ++i) {
 | |
| 		dup->qp[i] = isl_qpolynomial_copy(fold->qp[i]);
 | |
| 		if (!dup->qp[i])
 | |
| 			goto error;
 | |
| 	}
 | |
| 
 | |
| 	return dup;
 | |
| error:
 | |
| 	isl_qpolynomial_fold_free(dup);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_cow(
 | |
| 	__isl_take isl_qpolynomial_fold *fold)
 | |
| {
 | |
| 	if (!fold)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (fold->ref == 1)
 | |
| 		return fold;
 | |
| 	fold->ref--;
 | |
| 	return isl_qpolynomial_fold_dup(fold);
 | |
| }
 | |
| 
 | |
| void isl_qpolynomial_fold_free(__isl_take isl_qpolynomial_fold *fold)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (!fold)
 | |
| 		return;
 | |
| 	if (--fold->ref > 0)
 | |
| 		return;
 | |
| 
 | |
| 	for (i = 0; i < fold->n; ++i)
 | |
| 		isl_qpolynomial_free(fold->qp[i]);
 | |
| 	isl_space_free(fold->dim);
 | |
| 	free(fold);
 | |
| }
 | |
| 
 | |
| int isl_qpolynomial_fold_is_empty(__isl_keep isl_qpolynomial_fold *fold)
 | |
| {
 | |
| 	if (!fold)
 | |
| 		return -1;
 | |
| 
 | |
| 	return fold->n == 0;
 | |
| }
 | |
| 
 | |
| /* Does "fold" represent max(NaN) or min(NaN)?
 | |
|  */
 | |
| isl_bool isl_qpolynomial_fold_is_nan(__isl_keep isl_qpolynomial_fold *fold)
 | |
| {
 | |
| 	if (!fold)
 | |
| 		return isl_bool_error;
 | |
| 	if (fold->n != 1)
 | |
| 		return isl_bool_false;
 | |
| 	return isl_qpolynomial_is_nan(fold->qp[0]);
 | |
| }
 | |
| 
 | |
| __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_fold(
 | |
| 	__isl_take isl_qpolynomial_fold *fold1,
 | |
| 	__isl_take isl_qpolynomial_fold *fold2)
 | |
| {
 | |
| 	int i;
 | |
| 	struct isl_qpolynomial_fold *res = NULL;
 | |
| 
 | |
| 	if (!fold1 || !fold2)
 | |
| 		goto error;
 | |
| 
 | |
| 	isl_assert(fold1->dim->ctx, fold1->type == fold2->type, goto error);
 | |
| 	isl_assert(fold1->dim->ctx, isl_space_is_equal(fold1->dim, fold2->dim),
 | |
| 			goto error);
 | |
| 
 | |
| 	if (isl_qpolynomial_fold_is_empty(fold1)) {
 | |
| 		isl_qpolynomial_fold_free(fold1);
 | |
| 		return fold2;
 | |
| 	}
 | |
| 
 | |
| 	if (isl_qpolynomial_fold_is_empty(fold2)) {
 | |
| 		isl_qpolynomial_fold_free(fold2);
 | |
| 		return fold1;
 | |
| 	}
 | |
| 
 | |
| 	res = qpolynomial_fold_alloc(fold1->type, isl_space_copy(fold1->dim),
 | |
| 					fold1->n + fold2->n);
 | |
| 	if (!res)
 | |
| 		goto error;
 | |
| 
 | |
| 	for (i = 0; i < fold1->n; ++i) {
 | |
| 		res->qp[res->n] = isl_qpolynomial_copy(fold1->qp[i]);
 | |
| 		if (!res->qp[res->n])
 | |
| 			goto error;
 | |
| 		res->n++;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < fold2->n; ++i) {
 | |
| 		res->qp[res->n] = isl_qpolynomial_copy(fold2->qp[i]);
 | |
| 		if (!res->qp[res->n])
 | |
| 			goto error;
 | |
| 		res->n++;
 | |
| 	}
 | |
| 
 | |
| 	isl_qpolynomial_fold_free(fold1);
 | |
| 	isl_qpolynomial_fold_free(fold2);
 | |
| 
 | |
| 	return res;
 | |
| error:
 | |
| 	isl_qpolynomial_fold_free(res);
 | |
| 	isl_qpolynomial_fold_free(fold1);
 | |
| 	isl_qpolynomial_fold_free(fold2);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_fold(
 | |
| 	__isl_take isl_pw_qpolynomial_fold *pw1,
 | |
| 	__isl_take isl_pw_qpolynomial_fold *pw2)
 | |
| {
 | |
| 	int i, j, n;
 | |
| 	struct isl_pw_qpolynomial_fold *res;
 | |
| 	isl_set *set;
 | |
| 
 | |
| 	if (!pw1 || !pw2)
 | |
| 		goto error;
 | |
| 
 | |
| 	isl_assert(pw1->dim->ctx, isl_space_is_equal(pw1->dim, pw2->dim), goto error);
 | |
| 
 | |
| 	if (isl_pw_qpolynomial_fold_is_zero(pw1)) {
 | |
| 		isl_pw_qpolynomial_fold_free(pw1);
 | |
| 		return pw2;
 | |
| 	}
 | |
| 
 | |
| 	if (isl_pw_qpolynomial_fold_is_zero(pw2)) {
 | |
| 		isl_pw_qpolynomial_fold_free(pw2);
 | |
| 		return pw1;
 | |
| 	}
 | |
| 
 | |
| 	if (pw1->type != pw2->type)
 | |
| 		isl_die(pw1->dim->ctx, isl_error_invalid,
 | |
| 			"fold types don't match", goto error);
 | |
| 
 | |
| 	n = (pw1->n + 1) * (pw2->n + 1);
 | |
| 	res = isl_pw_qpolynomial_fold_alloc_size(isl_space_copy(pw1->dim),
 | |
| 						pw1->type, n);
 | |
| 
 | |
| 	for (i = 0; i < pw1->n; ++i) {
 | |
| 		set = isl_set_copy(pw1->p[i].set);
 | |
| 		for (j = 0; j < pw2->n; ++j) {
 | |
| 			struct isl_set *common;
 | |
| 			isl_qpolynomial_fold *sum;
 | |
| 			set = isl_set_subtract(set,
 | |
| 					isl_set_copy(pw2->p[j].set));
 | |
| 			common = isl_set_intersect(isl_set_copy(pw1->p[i].set),
 | |
| 						isl_set_copy(pw2->p[j].set));
 | |
| 			if (isl_set_plain_is_empty(common)) {
 | |
| 				isl_set_free(common);
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			sum = isl_qpolynomial_fold_fold_on_domain(common,
 | |
| 			       isl_qpolynomial_fold_copy(pw1->p[i].fold),
 | |
| 			       isl_qpolynomial_fold_copy(pw2->p[j].fold));
 | |
| 
 | |
| 			res = isl_pw_qpolynomial_fold_add_piece(res, common, sum);
 | |
| 		}
 | |
| 		res = isl_pw_qpolynomial_fold_add_piece(res, set,
 | |
| 			isl_qpolynomial_fold_copy(pw1->p[i].fold));
 | |
| 	}
 | |
| 
 | |
| 	for (j = 0; j < pw2->n; ++j) {
 | |
| 		set = isl_set_copy(pw2->p[j].set);
 | |
| 		for (i = 0; i < pw1->n; ++i)
 | |
| 			set = isl_set_subtract(set, isl_set_copy(pw1->p[i].set));
 | |
| 		res = isl_pw_qpolynomial_fold_add_piece(res, set,
 | |
| 				    isl_qpolynomial_fold_copy(pw2->p[j].fold));
 | |
| 	}
 | |
| 
 | |
| 	isl_pw_qpolynomial_fold_free(pw1);
 | |
| 	isl_pw_qpolynomial_fold_free(pw2);
 | |
| 
 | |
| 	return res;
 | |
| error:
 | |
| 	isl_pw_qpolynomial_fold_free(pw1);
 | |
| 	isl_pw_qpolynomial_fold_free(pw2);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_fold_pw_qpolynomial_fold(
 | |
| 	__isl_take isl_union_pw_qpolynomial_fold *u,
 | |
| 	__isl_take isl_pw_qpolynomial_fold *part)
 | |
| {
 | |
| 	struct isl_hash_table_entry *entry;
 | |
| 
 | |
| 	u = isl_union_pw_qpolynomial_fold_cow(u);
 | |
| 
 | |
| 	if (!part || !u)
 | |
| 		goto error;
 | |
| 	if (isl_space_check_equal_params(part->dim, u->space) < 0)
 | |
| 		goto error;
 | |
| 
 | |
| 	entry = isl_union_pw_qpolynomial_fold_find_part_entry(u, part->dim, 1);
 | |
| 	if (!entry)
 | |
| 		goto error;
 | |
| 
 | |
| 	if (!entry->data)
 | |
| 		entry->data = part;
 | |
| 	else {
 | |
| 		entry->data = isl_pw_qpolynomial_fold_fold(entry->data,
 | |
| 					    isl_pw_qpolynomial_fold_copy(part));
 | |
| 		if (!entry->data)
 | |
| 			goto error;
 | |
| 		isl_pw_qpolynomial_fold_free(part);
 | |
| 	}
 | |
| 
 | |
| 	return u;
 | |
| error:
 | |
| 	isl_pw_qpolynomial_fold_free(part);
 | |
| 	isl_union_pw_qpolynomial_fold_free(u);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static isl_stat fold_part(__isl_take isl_pw_qpolynomial_fold *part, void *user)
 | |
| {
 | |
| 	isl_union_pw_qpolynomial_fold **u;
 | |
| 	u = (isl_union_pw_qpolynomial_fold **)user;
 | |
| 
 | |
| 	*u = isl_union_pw_qpolynomial_fold_fold_pw_qpolynomial_fold(*u, part);
 | |
| 
 | |
| 	return isl_stat_ok;
 | |
| }
 | |
| 
 | |
| __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_fold(
 | |
| 	__isl_take isl_union_pw_qpolynomial_fold *u1,
 | |
| 	__isl_take isl_union_pw_qpolynomial_fold *u2)
 | |
| {
 | |
| 	u1 = isl_union_pw_qpolynomial_fold_cow(u1);
 | |
| 
 | |
| 	if (!u1 || !u2)
 | |
| 		goto error;
 | |
| 
 | |
| 	if (isl_union_pw_qpolynomial_fold_foreach_pw_qpolynomial_fold(u2,
 | |
| 							&fold_part, &u1) < 0)
 | |
| 		goto error;
 | |
| 
 | |
| 	isl_union_pw_qpolynomial_fold_free(u2);
 | |
| 
 | |
| 	return u1;
 | |
| error:
 | |
| 	isl_union_pw_qpolynomial_fold_free(u1);
 | |
| 	isl_union_pw_qpolynomial_fold_free(u2);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_from_pw_qpolynomial(
 | |
| 	enum isl_fold type, __isl_take isl_pw_qpolynomial *pwqp)
 | |
| {
 | |
| 	int i;
 | |
| 	isl_pw_qpolynomial_fold *pwf;
 | |
| 
 | |
| 	if (!pwqp)
 | |
| 		return NULL;
 | |
| 	
 | |
| 	pwf = isl_pw_qpolynomial_fold_alloc_size(isl_space_copy(pwqp->dim),
 | |
| 						type, pwqp->n);
 | |
| 
 | |
| 	for (i = 0; i < pwqp->n; ++i)
 | |
| 		pwf = isl_pw_qpolynomial_fold_add_piece(pwf,
 | |
| 			isl_set_copy(pwqp->p[i].set),
 | |
| 			isl_qpolynomial_fold_alloc(type,
 | |
| 				isl_qpolynomial_copy(pwqp->p[i].qp)));
 | |
| 
 | |
| 	isl_pw_qpolynomial_free(pwqp);
 | |
| 
 | |
| 	return pwf;
 | |
| }
 | |
| 
 | |
| __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_add(
 | |
| 	__isl_take isl_pw_qpolynomial_fold *pwf1,
 | |
| 	__isl_take isl_pw_qpolynomial_fold *pwf2)
 | |
| {
 | |
| 	return isl_pw_qpolynomial_fold_union_add_(pwf1, pwf2);
 | |
| }
 | |
| 
 | |
| /* Compare two quasi-polynomial reductions.
 | |
|  *
 | |
|  * Return -1 if "fold1" is "smaller" than "fold2", 1 if "fold1" is "greater"
 | |
|  * than "fold2" and 0 if they are equal.
 | |
|  */
 | |
| int isl_qpolynomial_fold_plain_cmp(__isl_keep isl_qpolynomial_fold *fold1,
 | |
| 	__isl_keep isl_qpolynomial_fold *fold2)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (fold1 == fold2)
 | |
| 		return 0;
 | |
| 	if (!fold1)
 | |
| 		return -1;
 | |
| 	if (!fold2)
 | |
| 		return 1;
 | |
| 
 | |
| 	if (fold1->n != fold2->n)
 | |
| 		return fold1->n - fold2->n;
 | |
| 
 | |
| 	for (i = 0; i < fold1->n; ++i) {
 | |
| 		int cmp;
 | |
| 
 | |
| 		cmp = isl_qpolynomial_plain_cmp(fold1->qp[i], fold2->qp[i]);
 | |
| 		if (cmp != 0)
 | |
| 			return cmp;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int isl_qpolynomial_fold_plain_is_equal(__isl_keep isl_qpolynomial_fold *fold1,
 | |
| 	__isl_keep isl_qpolynomial_fold *fold2)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (!fold1 || !fold2)
 | |
| 		return -1;
 | |
| 
 | |
| 	if (fold1->n != fold2->n)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* We probably want to sort the qps first... */
 | |
| 	for (i = 0; i < fold1->n; ++i) {
 | |
| 		int eq = isl_qpolynomial_plain_is_equal(fold1->qp[i], fold2->qp[i]);
 | |
| 		if (eq < 0 || !eq)
 | |
| 			return eq;
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| __isl_give isl_val *isl_qpolynomial_fold_eval(
 | |
| 	__isl_take isl_qpolynomial_fold *fold, __isl_take isl_point *pnt)
 | |
| {
 | |
| 	isl_ctx *ctx;
 | |
| 	isl_val *v;
 | |
| 
 | |
| 	if (!fold || !pnt)
 | |
| 		goto error;
 | |
| 	ctx = isl_point_get_ctx(pnt);
 | |
| 	isl_assert(pnt->dim->ctx, isl_space_is_equal(pnt->dim, fold->dim), goto error);
 | |
| 	isl_assert(pnt->dim->ctx,
 | |
| 		fold->type == isl_fold_max || fold->type == isl_fold_min,
 | |
| 		goto error);
 | |
| 
 | |
| 	if (fold->n == 0)
 | |
| 		v = isl_val_zero(ctx);
 | |
| 	else {
 | |
| 		int i;
 | |
| 		v = isl_qpolynomial_eval(isl_qpolynomial_copy(fold->qp[0]),
 | |
| 						isl_point_copy(pnt));
 | |
| 		for (i = 1; i < fold->n; ++i) {
 | |
| 			isl_val *v_i;
 | |
| 			v_i = isl_qpolynomial_eval(
 | |
| 					    isl_qpolynomial_copy(fold->qp[i]),
 | |
| 					    isl_point_copy(pnt));
 | |
| 			if (fold->type == isl_fold_max)
 | |
| 				v = isl_val_max(v, v_i);
 | |
| 			else
 | |
| 				v = isl_val_min(v, v_i);
 | |
| 		}
 | |
| 	}
 | |
| 	isl_qpolynomial_fold_free(fold);
 | |
| 	isl_point_free(pnt);
 | |
| 
 | |
| 	return v;
 | |
| error:
 | |
| 	isl_qpolynomial_fold_free(fold);
 | |
| 	isl_point_free(pnt);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| size_t isl_pw_qpolynomial_fold_size(__isl_keep isl_pw_qpolynomial_fold *pwf)
 | |
| {
 | |
| 	int i;
 | |
| 	size_t n = 0;
 | |
| 
 | |
| 	for (i = 0; i < pwf->n; ++i)
 | |
| 		n += pwf->p[i].fold->n;
 | |
| 
 | |
| 	return n;
 | |
| }
 | |
| 
 | |
| __isl_give isl_val *isl_qpolynomial_fold_opt_on_domain(
 | |
| 	__isl_take isl_qpolynomial_fold *fold, __isl_take isl_set *set, int max)
 | |
| {
 | |
| 	int i;
 | |
| 	isl_val *opt;
 | |
| 
 | |
| 	if (!set || !fold)
 | |
| 		goto error;
 | |
| 
 | |
| 	if (fold->n == 0) {
 | |
| 		opt = isl_val_zero(isl_set_get_ctx(set));
 | |
| 		isl_set_free(set);
 | |
| 		isl_qpolynomial_fold_free(fold);
 | |
| 		return opt;
 | |
| 	}
 | |
| 
 | |
| 	opt = isl_qpolynomial_opt_on_domain(isl_qpolynomial_copy(fold->qp[0]),
 | |
| 						isl_set_copy(set), max);
 | |
| 	for (i = 1; i < fold->n; ++i) {
 | |
| 		isl_val *opt_i;
 | |
| 		opt_i = isl_qpolynomial_opt_on_domain(
 | |
| 				isl_qpolynomial_copy(fold->qp[i]),
 | |
| 				isl_set_copy(set), max);
 | |
| 		if (max)
 | |
| 			opt = isl_val_max(opt, opt_i);
 | |
| 		else
 | |
| 			opt = isl_val_min(opt, opt_i);
 | |
| 	}
 | |
| 
 | |
| 	isl_set_free(set);
 | |
| 	isl_qpolynomial_fold_free(fold);
 | |
| 
 | |
| 	return opt;
 | |
| error:
 | |
| 	isl_set_free(set);
 | |
| 	isl_qpolynomial_fold_free(fold);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* Check whether for each quasi-polynomial in "fold2" there is
 | |
|  * a quasi-polynomial in "fold1" that dominates it on "set".
 | |
|  */
 | |
| static int qpolynomial_fold_covers_on_domain(__isl_keep isl_set *set,
 | |
| 	__isl_keep isl_qpolynomial_fold *fold1,
 | |
| 	__isl_keep isl_qpolynomial_fold *fold2)
 | |
| {
 | |
| 	int i, j;
 | |
| 	int covers;
 | |
| 
 | |
| 	if (!set || !fold1 || !fold2)
 | |
| 		return -1;
 | |
| 
 | |
| 	covers = fold1->type == isl_fold_max ? 1 : -1;
 | |
| 
 | |
| 	for (i = 0; i < fold2->n; ++i) {
 | |
| 		for (j = 0; j < fold1->n; ++j) {
 | |
| 			isl_qpolynomial *d;
 | |
| 			int sgn;
 | |
| 
 | |
| 			d = isl_qpolynomial_sub(
 | |
| 				isl_qpolynomial_copy(fold1->qp[j]),
 | |
| 				isl_qpolynomial_copy(fold2->qp[i]));
 | |
| 			sgn = isl_qpolynomial_sign(set, d);
 | |
| 			isl_qpolynomial_free(d);
 | |
| 			if (sgn == covers)
 | |
| 				break;
 | |
| 		}
 | |
| 		if (j >= fold1->n)
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* Check whether "pwf1" dominated "pwf2", i.e., the domain of "pwf1" contains
 | |
|  * that of "pwf2" and on each cell, the corresponding fold from pwf1 dominates
 | |
|  * that of pwf2.
 | |
|  */
 | |
| int isl_pw_qpolynomial_fold_covers(__isl_keep isl_pw_qpolynomial_fold *pwf1,
 | |
| 	__isl_keep isl_pw_qpolynomial_fold *pwf2)
 | |
| {
 | |
| 	int i, j;
 | |
| 	isl_set *dom1, *dom2;
 | |
| 	int is_subset;
 | |
| 
 | |
| 	if (!pwf1 || !pwf2)
 | |
| 		return -1;
 | |
| 
 | |
| 	if (pwf2->n == 0)
 | |
| 		return 1;
 | |
| 	if (pwf1->n == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	dom1 = isl_pw_qpolynomial_fold_domain(isl_pw_qpolynomial_fold_copy(pwf1));
 | |
| 	dom2 = isl_pw_qpolynomial_fold_domain(isl_pw_qpolynomial_fold_copy(pwf2));
 | |
| 	is_subset = isl_set_is_subset(dom2, dom1);
 | |
| 	isl_set_free(dom1);
 | |
| 	isl_set_free(dom2);
 | |
| 
 | |
| 	if (is_subset < 0 || !is_subset)
 | |
| 		return is_subset;
 | |
| 
 | |
| 	for (i = 0; i < pwf2->n; ++i) {
 | |
| 		for (j = 0; j < pwf1->n; ++j) {
 | |
| 			int is_empty;
 | |
| 			isl_set *common;
 | |
| 			int covers;
 | |
| 
 | |
| 			common = isl_set_intersect(isl_set_copy(pwf1->p[j].set),
 | |
| 						   isl_set_copy(pwf2->p[i].set));
 | |
| 			is_empty = isl_set_is_empty(common);
 | |
| 			if (is_empty < 0 || is_empty) {
 | |
| 				isl_set_free(common);
 | |
| 				if (is_empty < 0)
 | |
| 					return -1;
 | |
| 				continue;
 | |
| 			}
 | |
| 			covers = qpolynomial_fold_covers_on_domain(common,
 | |
| 					pwf1->p[j].fold, pwf2->p[i].fold);
 | |
| 			isl_set_free(common);
 | |
| 			if (covers < 0 || !covers)
 | |
| 				return covers;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_morph_domain(
 | |
| 	__isl_take isl_qpolynomial_fold *fold, __isl_take isl_morph *morph)
 | |
| {
 | |
| 	int i;
 | |
| 	isl_ctx *ctx;
 | |
| 
 | |
| 	if (!fold || !morph)
 | |
| 		goto error;
 | |
| 
 | |
| 	ctx = fold->dim->ctx;
 | |
| 	isl_assert(ctx, isl_space_is_equal(fold->dim, morph->dom->dim), goto error);
 | |
| 
 | |
| 	fold = isl_qpolynomial_fold_cow(fold);
 | |
| 	if (!fold)
 | |
| 		goto error;
 | |
| 
 | |
| 	isl_space_free(fold->dim);
 | |
| 	fold->dim = isl_space_copy(morph->ran->dim);
 | |
| 	if (!fold->dim)
 | |
| 		goto error;
 | |
| 
 | |
| 	for (i = 0; i < fold->n; ++i) {
 | |
| 		fold->qp[i] = isl_qpolynomial_morph_domain(fold->qp[i],
 | |
| 						isl_morph_copy(morph));
 | |
| 		if (!fold->qp[i])
 | |
| 			goto error;
 | |
| 	}
 | |
| 
 | |
| 	isl_morph_free(morph);
 | |
| 
 | |
| 	return fold;
 | |
| error:
 | |
| 	isl_qpolynomial_fold_free(fold);
 | |
| 	isl_morph_free(morph);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| enum isl_fold isl_qpolynomial_fold_get_type(__isl_keep isl_qpolynomial_fold *fold)
 | |
| {
 | |
| 	if (!fold)
 | |
| 		return isl_fold_list;
 | |
| 	return fold->type;
 | |
| }
 | |
| 
 | |
| enum isl_fold isl_union_pw_qpolynomial_fold_get_type(
 | |
| 	__isl_keep isl_union_pw_qpolynomial_fold *upwf)
 | |
| {
 | |
| 	if (!upwf)
 | |
| 		return isl_fold_list;
 | |
| 	return upwf->type;
 | |
| }
 | |
| 
 | |
| __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_lift(
 | |
| 	__isl_take isl_qpolynomial_fold *fold, __isl_take isl_space *dim)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (!fold || !dim)
 | |
| 		goto error;
 | |
| 
 | |
| 	if (isl_space_is_equal(fold->dim, dim)) {
 | |
| 		isl_space_free(dim);
 | |
| 		return fold;
 | |
| 	}
 | |
| 
 | |
| 	fold = isl_qpolynomial_fold_cow(fold);
 | |
| 	if (!fold)
 | |
| 		goto error;
 | |
| 
 | |
| 	isl_space_free(fold->dim);
 | |
| 	fold->dim = isl_space_copy(dim);
 | |
| 	if (!fold->dim)
 | |
| 		goto error;
 | |
| 
 | |
| 	for (i = 0; i < fold->n; ++i) {
 | |
| 		fold->qp[i] = isl_qpolynomial_lift(fold->qp[i],
 | |
| 						isl_space_copy(dim));
 | |
| 		if (!fold->qp[i])
 | |
| 			goto error;
 | |
| 	}
 | |
| 
 | |
| 	isl_space_free(dim);
 | |
| 
 | |
| 	return fold;
 | |
| error:
 | |
| 	isl_qpolynomial_fold_free(fold);
 | |
| 	isl_space_free(dim);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| isl_stat isl_qpolynomial_fold_foreach_qpolynomial(
 | |
| 	__isl_keep isl_qpolynomial_fold *fold,
 | |
| 	isl_stat (*fn)(__isl_take isl_qpolynomial *qp, void *user), void *user)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (!fold)
 | |
| 		return isl_stat_error;
 | |
| 
 | |
| 	for (i = 0; i < fold->n; ++i)
 | |
| 		if (fn(isl_qpolynomial_copy(fold->qp[i]), user) < 0)
 | |
| 			return isl_stat_error;
 | |
| 
 | |
| 	return isl_stat_ok;
 | |
| }
 | |
| 
 | |
| __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_move_dims(
 | |
| 	__isl_take isl_qpolynomial_fold *fold,
 | |
| 	enum isl_dim_type dst_type, unsigned dst_pos,
 | |
| 	enum isl_dim_type src_type, unsigned src_pos, unsigned n)
 | |
| {
 | |
| 	int i;
 | |
| 	enum isl_dim_type set_src_type, set_dst_type;
 | |
| 
 | |
| 	if (n == 0)
 | |
| 		return fold;
 | |
| 
 | |
| 	fold = isl_qpolynomial_fold_cow(fold);
 | |
| 	if (!fold)
 | |
| 		return NULL;
 | |
| 
 | |
| 	set_src_type = domain_type(src_type);
 | |
| 	set_dst_type = domain_type(dst_type);
 | |
| 
 | |
| 	fold->dim = isl_space_move_dims(fold->dim, set_dst_type, dst_pos,
 | |
| 						set_src_type, src_pos, n);
 | |
| 	if (!fold->dim)
 | |
| 		goto error;
 | |
| 
 | |
| 	for (i = 0; i < fold->n; ++i) {
 | |
| 		fold->qp[i] = isl_qpolynomial_move_dims(fold->qp[i],
 | |
| 				dst_type, dst_pos, src_type, src_pos, n);
 | |
| 		if (!fold->qp[i])
 | |
| 			goto error;
 | |
| 	}
 | |
| 
 | |
| 	return fold;
 | |
| error:
 | |
| 	isl_qpolynomial_fold_free(fold);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* For each 0 <= i < "n", replace variable "first" + i of type "type"
 | |
|  * in fold->qp[k] by subs[i].
 | |
|  */
 | |
| __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_substitute(
 | |
| 	__isl_take isl_qpolynomial_fold *fold,
 | |
| 	enum isl_dim_type type, unsigned first, unsigned n,
 | |
| 	__isl_keep isl_qpolynomial **subs)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (n == 0)
 | |
| 		return fold;
 | |
| 
 | |
| 	fold = isl_qpolynomial_fold_cow(fold);
 | |
| 	if (!fold)
 | |
| 		return NULL;
 | |
| 
 | |
| 	for (i = 0; i < fold->n; ++i) {
 | |
| 		fold->qp[i] = isl_qpolynomial_substitute(fold->qp[i],
 | |
| 				type, first, n, subs);
 | |
| 		if (!fold->qp[i])
 | |
| 			goto error;
 | |
| 	}
 | |
| 
 | |
| 	return fold;
 | |
| error:
 | |
| 	isl_qpolynomial_fold_free(fold);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static isl_stat add_pwqp(__isl_take isl_pw_qpolynomial *pwqp, void *user)
 | |
| {
 | |
| 	isl_pw_qpolynomial_fold *pwf;
 | |
| 	isl_union_pw_qpolynomial_fold **upwf;
 | |
| 	struct isl_hash_table_entry *entry;
 | |
| 
 | |
| 	upwf = (isl_union_pw_qpolynomial_fold **)user;
 | |
| 
 | |
| 	entry = isl_union_pw_qpolynomial_fold_find_part_entry(*upwf,
 | |
| 			 pwqp->dim, 1);
 | |
| 	if (!entry)
 | |
| 		goto error;
 | |
| 
 | |
| 	pwf = isl_pw_qpolynomial_fold_from_pw_qpolynomial((*upwf)->type, pwqp);
 | |
| 	if (!entry->data)
 | |
| 		entry->data = pwf;
 | |
| 	else {
 | |
| 		entry->data = isl_pw_qpolynomial_fold_add(entry->data, pwf);
 | |
| 		if (!entry->data)
 | |
| 			return isl_stat_error;
 | |
| 		if (isl_pw_qpolynomial_fold_is_zero(entry->data))
 | |
| 			*upwf = isl_union_pw_qpolynomial_fold_remove_part_entry(
 | |
| 								*upwf, entry);
 | |
| 	}
 | |
| 
 | |
| 	return isl_stat_ok;
 | |
| error:
 | |
| 	isl_pw_qpolynomial_free(pwqp);
 | |
| 	return isl_stat_error;
 | |
| }
 | |
| 
 | |
| __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_add_union_pw_qpolynomial(
 | |
| 	__isl_take isl_union_pw_qpolynomial_fold *upwf,
 | |
| 	__isl_take isl_union_pw_qpolynomial *upwqp)
 | |
| {
 | |
| 	upwf = isl_union_pw_qpolynomial_fold_align_params(upwf,
 | |
| 				isl_union_pw_qpolynomial_get_space(upwqp));
 | |
| 	upwqp = isl_union_pw_qpolynomial_align_params(upwqp,
 | |
| 				isl_union_pw_qpolynomial_fold_get_space(upwf));
 | |
| 
 | |
| 	upwf = isl_union_pw_qpolynomial_fold_cow(upwf);
 | |
| 	if (!upwf || !upwqp)
 | |
| 		goto error;
 | |
| 
 | |
| 	if (isl_union_pw_qpolynomial_foreach_pw_qpolynomial(upwqp, &add_pwqp,
 | |
| 							 &upwf) < 0)
 | |
| 		goto error;
 | |
| 
 | |
| 	isl_union_pw_qpolynomial_free(upwqp);
 | |
| 
 | |
| 	return upwf;
 | |
| error:
 | |
| 	isl_union_pw_qpolynomial_fold_free(upwf);
 | |
| 	isl_union_pw_qpolynomial_free(upwqp);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static isl_bool join_compatible(__isl_keep isl_space *space1,
 | |
| 	__isl_keep isl_space *space2)
 | |
| {
 | |
| 	isl_bool m;
 | |
| 	m = isl_space_has_equal_params(space1, space2);
 | |
| 	if (m < 0 || !m)
 | |
| 		return m;
 | |
| 	return isl_space_tuple_is_equal(space1, isl_dim_out,
 | |
| 					space2, isl_dim_in);
 | |
| }
 | |
| 
 | |
| /* Compute the intersection of the range of the map and the domain
 | |
|  * of the piecewise quasipolynomial reduction and then compute a bound
 | |
|  * on the associated quasipolynomial reduction over all elements
 | |
|  * in this intersection.
 | |
|  *
 | |
|  * We first introduce some unconstrained dimensions in the
 | |
|  * piecewise quasipolynomial, intersect the resulting domain
 | |
|  * with the wrapped map and the compute the sum.
 | |
|  */
 | |
| __isl_give isl_pw_qpolynomial_fold *isl_map_apply_pw_qpolynomial_fold(
 | |
| 	__isl_take isl_map *map, __isl_take isl_pw_qpolynomial_fold *pwf,
 | |
| 	int *tight)
 | |
| {
 | |
| 	isl_ctx *ctx;
 | |
| 	isl_set *dom;
 | |
| 	isl_space *map_dim;
 | |
| 	isl_space *pwf_dim;
 | |
| 	unsigned n_in;
 | |
| 	isl_bool ok;
 | |
| 
 | |
| 	ctx = isl_map_get_ctx(map);
 | |
| 	if (!ctx)
 | |
| 		goto error;
 | |
| 
 | |
| 	map_dim = isl_map_get_space(map);
 | |
| 	pwf_dim = isl_pw_qpolynomial_fold_get_space(pwf);
 | |
| 	ok = join_compatible(map_dim, pwf_dim);
 | |
| 	isl_space_free(map_dim);
 | |
| 	isl_space_free(pwf_dim);
 | |
| 	if (ok < 0)
 | |
| 		goto error;
 | |
| 	if (!ok)
 | |
| 		isl_die(ctx, isl_error_invalid, "incompatible dimensions",
 | |
| 			goto error);
 | |
| 
 | |
| 	n_in = isl_map_dim(map, isl_dim_in);
 | |
| 	pwf = isl_pw_qpolynomial_fold_insert_dims(pwf, isl_dim_in, 0, n_in);
 | |
| 
 | |
| 	dom = isl_map_wrap(map);
 | |
| 	pwf = isl_pw_qpolynomial_fold_reset_domain_space(pwf,
 | |
| 						isl_set_get_space(dom));
 | |
| 
 | |
| 	pwf = isl_pw_qpolynomial_fold_intersect_domain(pwf, dom);
 | |
| 	pwf = isl_pw_qpolynomial_fold_bound(pwf, tight);
 | |
| 	
 | |
| 	return pwf;
 | |
| error:
 | |
| 	isl_map_free(map);
 | |
| 	isl_pw_qpolynomial_fold_free(pwf);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| __isl_give isl_pw_qpolynomial_fold *isl_set_apply_pw_qpolynomial_fold(
 | |
| 	__isl_take isl_set *set, __isl_take isl_pw_qpolynomial_fold *pwf,
 | |
| 	int *tight)
 | |
| {
 | |
| 	return isl_map_apply_pw_qpolynomial_fold(set, pwf, tight);
 | |
| }
 | |
| 
 | |
| struct isl_apply_fold_data {
 | |
| 	isl_union_pw_qpolynomial_fold *upwf;
 | |
| 	isl_union_pw_qpolynomial_fold *res;
 | |
| 	isl_map *map;
 | |
| 	int tight;
 | |
| };
 | |
| 
 | |
| static isl_stat pw_qpolynomial_fold_apply(
 | |
| 	__isl_take isl_pw_qpolynomial_fold *pwf, void *user)
 | |
| {
 | |
| 	isl_space *map_dim;
 | |
| 	isl_space *pwf_dim;
 | |
| 	struct isl_apply_fold_data *data = user;
 | |
| 	isl_bool ok;
 | |
| 
 | |
| 	map_dim = isl_map_get_space(data->map);
 | |
| 	pwf_dim = isl_pw_qpolynomial_fold_get_space(pwf);
 | |
| 	ok = join_compatible(map_dim, pwf_dim);
 | |
| 	isl_space_free(map_dim);
 | |
| 	isl_space_free(pwf_dim);
 | |
| 
 | |
| 	if (ok < 0)
 | |
| 		return isl_stat_error;
 | |
| 	if (ok) {
 | |
| 		pwf = isl_map_apply_pw_qpolynomial_fold(isl_map_copy(data->map),
 | |
| 				    pwf, data->tight ? &data->tight : NULL);
 | |
| 		data->res = isl_union_pw_qpolynomial_fold_fold_pw_qpolynomial_fold(
 | |
| 							data->res, pwf);
 | |
| 	} else
 | |
| 		isl_pw_qpolynomial_fold_free(pwf);
 | |
| 
 | |
| 	return isl_stat_ok;
 | |
| }
 | |
| 
 | |
| static isl_stat map_apply(__isl_take isl_map *map, void *user)
 | |
| {
 | |
| 	struct isl_apply_fold_data *data = user;
 | |
| 	isl_stat r;
 | |
| 
 | |
| 	data->map = map;
 | |
| 	r = isl_union_pw_qpolynomial_fold_foreach_pw_qpolynomial_fold(
 | |
| 				data->upwf, &pw_qpolynomial_fold_apply, data);
 | |
| 
 | |
| 	isl_map_free(map);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| __isl_give isl_union_pw_qpolynomial_fold *isl_union_map_apply_union_pw_qpolynomial_fold(
 | |
| 	__isl_take isl_union_map *umap,
 | |
| 	__isl_take isl_union_pw_qpolynomial_fold *upwf, int *tight)
 | |
| {
 | |
| 	isl_space *dim;
 | |
| 	enum isl_fold type;
 | |
| 	struct isl_apply_fold_data data;
 | |
| 
 | |
| 	upwf = isl_union_pw_qpolynomial_fold_align_params(upwf,
 | |
| 				isl_union_map_get_space(umap));
 | |
| 	umap = isl_union_map_align_params(umap,
 | |
| 				isl_union_pw_qpolynomial_fold_get_space(upwf));
 | |
| 
 | |
| 	data.upwf = upwf;
 | |
| 	data.tight = tight ? 1 : 0;
 | |
| 	dim = isl_union_pw_qpolynomial_fold_get_space(upwf);
 | |
| 	type = isl_union_pw_qpolynomial_fold_get_type(upwf);
 | |
| 	data.res = isl_union_pw_qpolynomial_fold_zero(dim, type);
 | |
| 	if (isl_union_map_foreach_map(umap, &map_apply, &data) < 0)
 | |
| 		goto error;
 | |
| 
 | |
| 	isl_union_map_free(umap);
 | |
| 	isl_union_pw_qpolynomial_fold_free(upwf);
 | |
| 
 | |
| 	if (tight)
 | |
| 		*tight = data.tight;
 | |
| 
 | |
| 	return data.res;
 | |
| error:
 | |
| 	isl_union_map_free(umap);
 | |
| 	isl_union_pw_qpolynomial_fold_free(upwf);
 | |
| 	isl_union_pw_qpolynomial_fold_free(data.res);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| __isl_give isl_union_pw_qpolynomial_fold *isl_union_set_apply_union_pw_qpolynomial_fold(
 | |
| 	__isl_take isl_union_set *uset,
 | |
| 	__isl_take isl_union_pw_qpolynomial_fold *upwf, int *tight)
 | |
| {
 | |
| 	return isl_union_map_apply_union_pw_qpolynomial_fold(uset, upwf, tight);
 | |
| }
 | |
| 
 | |
| /* Reorder the dimension of "fold" according to the given reordering.
 | |
|  */
 | |
| __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_realign_domain(
 | |
| 	__isl_take isl_qpolynomial_fold *fold, __isl_take isl_reordering *r)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	fold = isl_qpolynomial_fold_cow(fold);
 | |
| 	if (!fold || !r)
 | |
| 		goto error;
 | |
| 
 | |
| 	for (i = 0; i < fold->n; ++i) {
 | |
| 		fold->qp[i] = isl_qpolynomial_realign_domain(fold->qp[i],
 | |
| 						    isl_reordering_copy(r));
 | |
| 		if (!fold->qp[i])
 | |
| 			goto error;
 | |
| 	}
 | |
| 
 | |
| 	fold = isl_qpolynomial_fold_reset_domain_space(fold,
 | |
| 						    isl_space_copy(r->dim));
 | |
| 
 | |
| 	isl_reordering_free(r);
 | |
| 
 | |
| 	return fold;
 | |
| error:
 | |
| 	isl_qpolynomial_fold_free(fold);
 | |
| 	isl_reordering_free(r);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_mul_isl_int(
 | |
| 	__isl_take isl_qpolynomial_fold *fold, isl_int v)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (isl_int_is_one(v))
 | |
| 		return fold;
 | |
| 	if (fold && isl_int_is_zero(v)) {
 | |
| 		isl_qpolynomial_fold *zero;
 | |
| 		isl_space *dim = isl_space_copy(fold->dim);
 | |
| 		zero = isl_qpolynomial_fold_empty(fold->type, dim);
 | |
| 		isl_qpolynomial_fold_free(fold);
 | |
| 		return zero;
 | |
| 	}
 | |
| 
 | |
| 	fold = isl_qpolynomial_fold_cow(fold);
 | |
| 	if (!fold)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (isl_int_is_neg(v))
 | |
| 		fold->type = isl_fold_type_negate(fold->type);
 | |
| 	for (i = 0; i < fold->n; ++i) {
 | |
| 		fold->qp[i] = isl_qpolynomial_mul_isl_int(fold->qp[i], v);
 | |
| 		if (!fold->qp[i])
 | |
| 			goto error;
 | |
| 	}
 | |
| 
 | |
| 	return fold;
 | |
| error:
 | |
| 	isl_qpolynomial_fold_free(fold);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_scale(
 | |
| 	__isl_take isl_qpolynomial_fold *fold, isl_int v)
 | |
| {
 | |
| 	return isl_qpolynomial_fold_mul_isl_int(fold, v);
 | |
| }
 | |
| 
 | |
| /* Multiply "fold" by "v".
 | |
|  */
 | |
| __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_scale_val(
 | |
| 	__isl_take isl_qpolynomial_fold *fold, __isl_take isl_val *v)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (!fold || !v)
 | |
| 		goto error;
 | |
| 
 | |
| 	if (isl_val_is_one(v)) {
 | |
| 		isl_val_free(v);
 | |
| 		return fold;
 | |
| 	}
 | |
| 	if (isl_val_is_zero(v)) {
 | |
| 		isl_qpolynomial_fold *zero;
 | |
| 		isl_space *space = isl_qpolynomial_fold_get_domain_space(fold);
 | |
| 		zero = isl_qpolynomial_fold_empty(fold->type, space);
 | |
| 		isl_qpolynomial_fold_free(fold);
 | |
| 		isl_val_free(v);
 | |
| 		return zero;
 | |
| 	}
 | |
| 	if (!isl_val_is_rat(v))
 | |
| 		isl_die(isl_qpolynomial_fold_get_ctx(fold), isl_error_invalid,
 | |
| 			"expecting rational factor", goto error);
 | |
| 
 | |
| 	fold = isl_qpolynomial_fold_cow(fold);
 | |
| 	if (!fold)
 | |
| 		goto error;
 | |
| 
 | |
| 	if (isl_val_is_neg(v))
 | |
| 		fold->type = isl_fold_type_negate(fold->type);
 | |
| 	for (i = 0; i < fold->n; ++i) {
 | |
| 		fold->qp[i] = isl_qpolynomial_scale_val(fold->qp[i],
 | |
| 							isl_val_copy(v));
 | |
| 		if (!fold->qp[i])
 | |
| 			goto error;
 | |
| 	}
 | |
| 
 | |
| 	isl_val_free(v);
 | |
| 	return fold;
 | |
| error:
 | |
| 	isl_val_free(v);
 | |
| 	isl_qpolynomial_fold_free(fold);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* Divide "fold" by "v".
 | |
|  */
 | |
| __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_scale_down_val(
 | |
| 	__isl_take isl_qpolynomial_fold *fold, __isl_take isl_val *v)
 | |
| {
 | |
| 	if (!fold || !v)
 | |
| 		goto error;
 | |
| 
 | |
| 	if (isl_val_is_one(v)) {
 | |
| 		isl_val_free(v);
 | |
| 		return fold;
 | |
| 	}
 | |
| 	if (!isl_val_is_rat(v))
 | |
| 		isl_die(isl_qpolynomial_fold_get_ctx(fold), isl_error_invalid,
 | |
| 			"expecting rational factor", goto error);
 | |
| 	if (isl_val_is_zero(v))
 | |
| 		isl_die(isl_val_get_ctx(v), isl_error_invalid,
 | |
| 			"cannot scale down by zero", goto error);
 | |
| 
 | |
| 	return isl_qpolynomial_fold_scale_val(fold, isl_val_inv(v));
 | |
| error:
 | |
| 	isl_val_free(v);
 | |
| 	isl_qpolynomial_fold_free(fold);
 | |
| 	return NULL;
 | |
| }
 |