822 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			822 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  * Copyright 2010-2011 INRIA Saclay
 | |
|  * Copyright 2014      Ecole Normale Superieure
 | |
|  *
 | |
|  * Use of this software is governed by the MIT license
 | |
|  *
 | |
|  * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
 | |
|  * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
 | |
|  * 91893 Orsay, France 
 | |
|  * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
 | |
|  */
 | |
| 
 | |
| #include <isl_map_private.h>
 | |
| #include <isl_aff_private.h>
 | |
| #include <isl_morph.h>
 | |
| #include <isl_seq.h>
 | |
| #include <isl_mat_private.h>
 | |
| #include <isl_space_private.h>
 | |
| #include <isl_equalities.h>
 | |
| 
 | |
| isl_ctx *isl_morph_get_ctx(__isl_keep isl_morph *morph)
 | |
| {
 | |
| 	if (!morph)
 | |
| 		return NULL;
 | |
| 	return isl_basic_set_get_ctx(morph->dom);
 | |
| }
 | |
| 
 | |
| __isl_give isl_morph *isl_morph_alloc(
 | |
| 	__isl_take isl_basic_set *dom, __isl_take isl_basic_set *ran,
 | |
| 	__isl_take isl_mat *map, __isl_take isl_mat *inv)
 | |
| {
 | |
| 	isl_morph *morph;
 | |
| 
 | |
| 	if (!dom || !ran || !map || !inv)
 | |
| 		goto error;
 | |
| 
 | |
| 	morph = isl_alloc_type(dom->ctx, struct isl_morph);
 | |
| 	if (!morph)
 | |
| 		goto error;
 | |
| 
 | |
| 	morph->ref = 1;
 | |
| 	morph->dom = dom;
 | |
| 	morph->ran = ran;
 | |
| 	morph->map = map;
 | |
| 	morph->inv = inv;
 | |
| 
 | |
| 	return morph;
 | |
| error:
 | |
| 	isl_basic_set_free(dom);
 | |
| 	isl_basic_set_free(ran);
 | |
| 	isl_mat_free(map);
 | |
| 	isl_mat_free(inv);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| __isl_give isl_morph *isl_morph_copy(__isl_keep isl_morph *morph)
 | |
| {
 | |
| 	if (!morph)
 | |
| 		return NULL;
 | |
| 
 | |
| 	morph->ref++;
 | |
| 	return morph;
 | |
| }
 | |
| 
 | |
| __isl_give isl_morph *isl_morph_dup(__isl_keep isl_morph *morph)
 | |
| {
 | |
| 	if (!morph)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return isl_morph_alloc(isl_basic_set_copy(morph->dom),
 | |
| 		isl_basic_set_copy(morph->ran),
 | |
| 		isl_mat_copy(morph->map), isl_mat_copy(morph->inv));
 | |
| }
 | |
| 
 | |
| __isl_give isl_morph *isl_morph_cow(__isl_take isl_morph *morph)
 | |
| {
 | |
| 	if (!morph)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (morph->ref == 1)
 | |
| 		return morph;
 | |
| 	morph->ref--;
 | |
| 	return isl_morph_dup(morph);
 | |
| }
 | |
| 
 | |
| __isl_null isl_morph *isl_morph_free(__isl_take isl_morph *morph)
 | |
| {
 | |
| 	if (!morph)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (--morph->ref > 0)
 | |
| 		return NULL;
 | |
| 
 | |
| 	isl_basic_set_free(morph->dom);
 | |
| 	isl_basic_set_free(morph->ran);
 | |
| 	isl_mat_free(morph->map);
 | |
| 	isl_mat_free(morph->inv);
 | |
| 	free(morph);
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* Is "morph" an identity on the parameters?
 | |
|  */
 | |
| static int identity_on_parameters(__isl_keep isl_morph *morph)
 | |
| {
 | |
| 	int is_identity;
 | |
| 	unsigned nparam;
 | |
| 	isl_mat *sub;
 | |
| 
 | |
| 	nparam = isl_morph_dom_dim(morph, isl_dim_param);
 | |
| 	if (nparam != isl_morph_ran_dim(morph, isl_dim_param))
 | |
| 		return 0;
 | |
| 	if (nparam == 0)
 | |
| 		return 1;
 | |
| 	sub = isl_mat_sub_alloc(morph->map, 0, 1 + nparam, 0, 1 + nparam);
 | |
| 	is_identity = isl_mat_is_scaled_identity(sub);
 | |
| 	isl_mat_free(sub);
 | |
| 
 | |
| 	return is_identity;
 | |
| }
 | |
| 
 | |
| /* Return an affine expression of the variables of the range of "morph"
 | |
|  * in terms of the parameters and the variables of the domain on "morph".
 | |
|  *
 | |
|  * In order for the space manipulations to make sense, we require
 | |
|  * that the parameters are not modified by "morph".
 | |
|  */
 | |
| __isl_give isl_multi_aff *isl_morph_get_var_multi_aff(
 | |
| 	__isl_keep isl_morph *morph)
 | |
| {
 | |
| 	isl_space *dom, *ran, *space;
 | |
| 	isl_local_space *ls;
 | |
| 	isl_multi_aff *ma;
 | |
| 	unsigned nparam, nvar;
 | |
| 	int i;
 | |
| 	int is_identity;
 | |
| 
 | |
| 	if (!morph)
 | |
| 		return NULL;
 | |
| 
 | |
| 	is_identity = identity_on_parameters(morph);
 | |
| 	if (is_identity < 0)
 | |
| 		return NULL;
 | |
| 	if (!is_identity)
 | |
| 		isl_die(isl_morph_get_ctx(morph), isl_error_invalid,
 | |
| 			"cannot handle parameter compression", return NULL);
 | |
| 
 | |
| 	dom = isl_morph_get_dom_space(morph);
 | |
| 	ls = isl_local_space_from_space(isl_space_copy(dom));
 | |
| 	ran = isl_morph_get_ran_space(morph);
 | |
| 	space = isl_space_map_from_domain_and_range(dom, ran);
 | |
| 	ma = isl_multi_aff_zero(space);
 | |
| 
 | |
| 	nparam = isl_multi_aff_dim(ma, isl_dim_param);
 | |
| 	nvar = isl_multi_aff_dim(ma, isl_dim_out);
 | |
| 	for (i = 0; i < nvar; ++i) {
 | |
| 		isl_val *val;
 | |
| 		isl_vec *v;
 | |
| 		isl_aff *aff;
 | |
| 
 | |
| 		v = isl_mat_get_row(morph->map, 1 + nparam + i);
 | |
| 		v = isl_vec_insert_els(v, 0, 1);
 | |
| 		val = isl_mat_get_element_val(morph->map, 0, 0);
 | |
| 		v = isl_vec_set_element_val(v, 0, val);
 | |
| 		aff = isl_aff_alloc_vec(isl_local_space_copy(ls), v);
 | |
| 		ma = isl_multi_aff_set_aff(ma, i, aff);
 | |
| 	}
 | |
| 
 | |
| 	isl_local_space_free(ls);
 | |
| 	return ma;
 | |
| }
 | |
| 
 | |
| /* Return the domain space of "morph".
 | |
|  */
 | |
| __isl_give isl_space *isl_morph_get_dom_space(__isl_keep isl_morph *morph)
 | |
| {
 | |
| 	if (!morph)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return isl_basic_set_get_space(morph->dom);
 | |
| }
 | |
| 
 | |
| __isl_give isl_space *isl_morph_get_ran_space(__isl_keep isl_morph *morph)
 | |
| {
 | |
| 	if (!morph)
 | |
| 		return NULL;
 | |
| 	
 | |
| 	return isl_space_copy(morph->ran->dim);
 | |
| }
 | |
| 
 | |
| unsigned isl_morph_dom_dim(__isl_keep isl_morph *morph, enum isl_dim_type type)
 | |
| {
 | |
| 	if (!morph)
 | |
| 		return 0;
 | |
| 
 | |
| 	return isl_basic_set_dim(morph->dom, type);
 | |
| }
 | |
| 
 | |
| unsigned isl_morph_ran_dim(__isl_keep isl_morph *morph, enum isl_dim_type type)
 | |
| {
 | |
| 	if (!morph)
 | |
| 		return 0;
 | |
| 
 | |
| 	return isl_basic_set_dim(morph->ran, type);
 | |
| }
 | |
| 
 | |
| __isl_give isl_morph *isl_morph_remove_dom_dims(__isl_take isl_morph *morph,
 | |
| 	enum isl_dim_type type, unsigned first, unsigned n)
 | |
| {
 | |
| 	unsigned dom_offset;
 | |
| 
 | |
| 	if (n == 0)
 | |
| 		return morph;
 | |
| 
 | |
| 	morph = isl_morph_cow(morph);
 | |
| 	if (!morph)
 | |
| 		return NULL;
 | |
| 
 | |
| 	dom_offset = 1 + isl_space_offset(morph->dom->dim, type);
 | |
| 
 | |
| 	morph->dom = isl_basic_set_remove_dims(morph->dom, type, first, n);
 | |
| 
 | |
| 	morph->map = isl_mat_drop_cols(morph->map, dom_offset + first, n);
 | |
| 
 | |
| 	morph->inv = isl_mat_drop_rows(morph->inv, dom_offset + first, n);
 | |
| 
 | |
| 	if (morph->dom && morph->ran && morph->map && morph->inv)
 | |
| 		return morph;
 | |
| 
 | |
| 	isl_morph_free(morph);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| __isl_give isl_morph *isl_morph_remove_ran_dims(__isl_take isl_morph *morph,
 | |
| 	enum isl_dim_type type, unsigned first, unsigned n)
 | |
| {
 | |
| 	unsigned ran_offset;
 | |
| 
 | |
| 	if (n == 0)
 | |
| 		return morph;
 | |
| 
 | |
| 	morph = isl_morph_cow(morph);
 | |
| 	if (!morph)
 | |
| 		return NULL;
 | |
| 
 | |
| 	ran_offset = 1 + isl_space_offset(morph->ran->dim, type);
 | |
| 
 | |
| 	morph->ran = isl_basic_set_remove_dims(morph->ran, type, first, n);
 | |
| 
 | |
| 	morph->map = isl_mat_drop_rows(morph->map, ran_offset + first, n);
 | |
| 
 | |
| 	morph->inv = isl_mat_drop_cols(morph->inv, ran_offset + first, n);
 | |
| 
 | |
| 	if (morph->dom && morph->ran && morph->map && morph->inv)
 | |
| 		return morph;
 | |
| 
 | |
| 	isl_morph_free(morph);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* Project domain of morph onto its parameter domain.
 | |
|  */
 | |
| __isl_give isl_morph *isl_morph_dom_params(__isl_take isl_morph *morph)
 | |
| {
 | |
| 	unsigned n;
 | |
| 
 | |
| 	morph = isl_morph_cow(morph);
 | |
| 	if (!morph)
 | |
| 		return NULL;
 | |
| 	n = isl_basic_set_dim(morph->dom, isl_dim_set);
 | |
| 	morph = isl_morph_remove_dom_dims(morph, isl_dim_set, 0, n);
 | |
| 	if (!morph)
 | |
| 		return NULL;
 | |
| 	morph->dom = isl_basic_set_params(morph->dom);
 | |
| 	if (morph->dom)
 | |
| 		return morph;
 | |
| 
 | |
| 	isl_morph_free(morph);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* Project range of morph onto its parameter domain.
 | |
|  */
 | |
| __isl_give isl_morph *isl_morph_ran_params(__isl_take isl_morph *morph)
 | |
| {
 | |
| 	unsigned n;
 | |
| 
 | |
| 	morph = isl_morph_cow(morph);
 | |
| 	if (!morph)
 | |
| 		return NULL;
 | |
| 	n = isl_basic_set_dim(morph->ran, isl_dim_set);
 | |
| 	morph = isl_morph_remove_ran_dims(morph, isl_dim_set, 0, n);
 | |
| 	if (!morph)
 | |
| 		return NULL;
 | |
| 	morph->ran = isl_basic_set_params(morph->ran);
 | |
| 	if (morph->ran)
 | |
| 		return morph;
 | |
| 
 | |
| 	isl_morph_free(morph);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| void isl_morph_print_internal(__isl_take isl_morph *morph, FILE *out)
 | |
| {
 | |
| 	if (!morph)
 | |
| 		return;
 | |
| 
 | |
| 	isl_basic_set_dump(morph->dom);
 | |
| 	isl_basic_set_dump(morph->ran);
 | |
| 	isl_mat_print_internal(morph->map, out, 4);
 | |
| 	isl_mat_print_internal(morph->inv, out, 4);
 | |
| }
 | |
| 
 | |
| void isl_morph_dump(__isl_take isl_morph *morph)
 | |
| {
 | |
| 	isl_morph_print_internal(morph, stderr);
 | |
| }
 | |
| 
 | |
| __isl_give isl_morph *isl_morph_identity(__isl_keep isl_basic_set *bset)
 | |
| {
 | |
| 	isl_mat *id;
 | |
| 	isl_basic_set *universe;
 | |
| 	unsigned total;
 | |
| 
 | |
| 	if (!bset)
 | |
| 		return NULL;
 | |
| 
 | |
| 	total = isl_basic_set_total_dim(bset);
 | |
| 	id = isl_mat_identity(bset->ctx, 1 + total);
 | |
| 	universe = isl_basic_set_universe(isl_space_copy(bset->dim));
 | |
| 
 | |
| 	return isl_morph_alloc(universe, isl_basic_set_copy(universe),
 | |
| 		id, isl_mat_copy(id));
 | |
| }
 | |
| 
 | |
| /* Create a(n identity) morphism between empty sets of the same dimension
 | |
|  * a "bset".
 | |
|  */
 | |
| __isl_give isl_morph *isl_morph_empty(__isl_keep isl_basic_set *bset)
 | |
| {
 | |
| 	isl_mat *id;
 | |
| 	isl_basic_set *empty;
 | |
| 	unsigned total;
 | |
| 
 | |
| 	if (!bset)
 | |
| 		return NULL;
 | |
| 
 | |
| 	total = isl_basic_set_total_dim(bset);
 | |
| 	id = isl_mat_identity(bset->ctx, 1 + total);
 | |
| 	empty = isl_basic_set_empty(isl_space_copy(bset->dim));
 | |
| 
 | |
| 	return isl_morph_alloc(empty, isl_basic_set_copy(empty),
 | |
| 		id, isl_mat_copy(id));
 | |
| }
 | |
| 
 | |
| /* Construct a basic set described by the "n" equalities of "bset" starting
 | |
|  * at "first".
 | |
|  */
 | |
| static __isl_give isl_basic_set *copy_equalities(__isl_keep isl_basic_set *bset,
 | |
| 	unsigned first, unsigned n)
 | |
| {
 | |
| 	int i, k;
 | |
| 	isl_basic_set *eq;
 | |
| 	unsigned total;
 | |
| 
 | |
| 	isl_assert(bset->ctx, bset->n_div == 0, return NULL);
 | |
| 
 | |
| 	total = isl_basic_set_total_dim(bset);
 | |
| 	eq = isl_basic_set_alloc_space(isl_space_copy(bset->dim), 0, n, 0);
 | |
| 	if (!eq)
 | |
| 		return NULL;
 | |
| 	for (i = 0; i < n; ++i) {
 | |
| 		k = isl_basic_set_alloc_equality(eq);
 | |
| 		if (k < 0)
 | |
| 			goto error;
 | |
| 		isl_seq_cpy(eq->eq[k], bset->eq[first + i], 1 + total);
 | |
| 	}
 | |
| 
 | |
| 	return eq;
 | |
| error:
 | |
| 	isl_basic_set_free(eq);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* Given a basic set, exploit the equalties in the basic set to construct
 | |
|  * a morphishm that maps the basic set to a lower-dimensional space.
 | |
|  * Specifically, the morphism reduces the number of dimensions of type "type".
 | |
|  *
 | |
|  * We first select the equalities of interest, that is those that involve
 | |
|  * variables of type "type" and no later variables.
 | |
|  * Denote those equalities as
 | |
|  *
 | |
|  *		-C(p) + M x = 0
 | |
|  *
 | |
|  * where C(p) depends on the parameters if type == isl_dim_set and
 | |
|  * is a constant if type == isl_dim_param.
 | |
|  *
 | |
|  * Use isl_mat_final_variable_compression to construct a compression
 | |
|  *
 | |
|  *	x = T x'
 | |
|  *
 | |
|  *	x' = Q x
 | |
|  *
 | |
|  * If T is a zero-column matrix, then the set of equality constraints
 | |
|  * do not admit a solution.  In this case, an empty morphism is returned.
 | |
|  *
 | |
|  * Both matrices are extended to map the full original space to the full
 | |
|  * compressed space.
 | |
|  */
 | |
| __isl_give isl_morph *isl_basic_set_variable_compression(
 | |
| 	__isl_keep isl_basic_set *bset, enum isl_dim_type type)
 | |
| {
 | |
| 	unsigned otype;
 | |
| 	unsigned ntype;
 | |
| 	unsigned orest;
 | |
| 	unsigned nrest;
 | |
| 	int f_eq, n_eq;
 | |
| 	isl_space *dim;
 | |
| 	isl_mat *E, *Q, *C;
 | |
| 	isl_basic_set *dom, *ran;
 | |
| 
 | |
| 	if (!bset)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (isl_basic_set_plain_is_empty(bset))
 | |
| 		return isl_morph_empty(bset);
 | |
| 
 | |
| 	isl_assert(bset->ctx, bset->n_div == 0, return NULL);
 | |
| 
 | |
| 	otype = 1 + isl_space_offset(bset->dim, type);
 | |
| 	ntype = isl_basic_set_dim(bset, type);
 | |
| 	orest = otype + ntype;
 | |
| 	nrest = isl_basic_set_total_dim(bset) - (orest - 1);
 | |
| 
 | |
| 	for (f_eq = 0; f_eq < bset->n_eq; ++f_eq)
 | |
| 		if (isl_seq_first_non_zero(bset->eq[f_eq] + orest, nrest) == -1)
 | |
| 			break;
 | |
| 	for (n_eq = 0; f_eq + n_eq < bset->n_eq; ++n_eq)
 | |
| 		if (isl_seq_first_non_zero(bset->eq[f_eq + n_eq] + otype, ntype) == -1)
 | |
| 			break;
 | |
| 	if (n_eq == 0)
 | |
| 		return isl_morph_identity(bset);
 | |
| 
 | |
| 	E = isl_mat_sub_alloc6(bset->ctx, bset->eq, f_eq, n_eq, 0, orest);
 | |
| 	C = isl_mat_final_variable_compression(E, otype - 1, &Q);
 | |
| 	if (!Q)
 | |
| 		C = isl_mat_free(C);
 | |
| 	if (C && C->n_col == 0) {
 | |
| 		isl_mat_free(C);
 | |
| 		isl_mat_free(Q);
 | |
| 		return isl_morph_empty(bset);
 | |
| 	}
 | |
| 
 | |
| 	Q = isl_mat_diagonal(Q, isl_mat_identity(bset->ctx, nrest));
 | |
| 	C = isl_mat_diagonal(C, isl_mat_identity(bset->ctx, nrest));
 | |
| 
 | |
| 	dim = isl_space_copy(bset->dim);
 | |
| 	dim = isl_space_drop_dims(dim, type, 0, ntype);
 | |
| 	dim = isl_space_add_dims(dim, type, ntype - n_eq);
 | |
| 	ran = isl_basic_set_universe(dim);
 | |
| 	dom = copy_equalities(bset, f_eq, n_eq);
 | |
| 
 | |
| 	return isl_morph_alloc(dom, ran, Q, C);
 | |
| }
 | |
| 
 | |
| /* Construct a parameter compression for "bset".
 | |
|  * We basically just call isl_mat_parameter_compression with the right input
 | |
|  * and then extend the resulting matrix to include the variables.
 | |
|  *
 | |
|  * The implementation assumes that "bset" does not have any equalities
 | |
|  * that only involve the parameters and that isl_basic_set_gauss has
 | |
|  * been applied to "bset".
 | |
|  *
 | |
|  * Let the equalities be given as
 | |
|  *
 | |
|  *	B(p) + A x = 0.
 | |
|  *
 | |
|  * We use isl_mat_parameter_compression_ext to compute the compression
 | |
|  *
 | |
|  *	p = T p'.
 | |
|  */
 | |
| __isl_give isl_morph *isl_basic_set_parameter_compression(
 | |
| 	__isl_keep isl_basic_set *bset)
 | |
| {
 | |
| 	unsigned nparam;
 | |
| 	unsigned nvar;
 | |
| 	unsigned n_div;
 | |
| 	int n_eq;
 | |
| 	isl_mat *H, *B;
 | |
| 	isl_mat *map, *inv;
 | |
| 	isl_basic_set *dom, *ran;
 | |
| 
 | |
| 	if (!bset)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (isl_basic_set_plain_is_empty(bset))
 | |
| 		return isl_morph_empty(bset);
 | |
| 	if (bset->n_eq == 0)
 | |
| 		return isl_morph_identity(bset);
 | |
| 
 | |
| 	n_eq = bset->n_eq;
 | |
| 	nparam = isl_basic_set_dim(bset, isl_dim_param);
 | |
| 	nvar = isl_basic_set_dim(bset, isl_dim_set);
 | |
| 	n_div = isl_basic_set_dim(bset, isl_dim_div);
 | |
| 
 | |
| 	if (isl_seq_first_non_zero(bset->eq[bset->n_eq - 1] + 1 + nparam,
 | |
| 				    nvar + n_div) == -1)
 | |
| 		isl_die(isl_basic_set_get_ctx(bset), isl_error_invalid,
 | |
| 			"input not allowed to have parameter equalities",
 | |
| 			return NULL);
 | |
| 	if (n_eq > nvar + n_div)
 | |
| 		isl_die(isl_basic_set_get_ctx(bset), isl_error_invalid,
 | |
| 			"input not gaussed", return NULL);
 | |
| 
 | |
| 	B = isl_mat_sub_alloc6(bset->ctx, bset->eq, 0, n_eq, 0, 1 + nparam);
 | |
| 	H = isl_mat_sub_alloc6(bset->ctx, bset->eq,
 | |
| 				0, n_eq, 1 + nparam, nvar + n_div);
 | |
| 	inv = isl_mat_parameter_compression_ext(B, H);
 | |
| 	inv = isl_mat_diagonal(inv, isl_mat_identity(bset->ctx, nvar));
 | |
| 	map = isl_mat_right_inverse(isl_mat_copy(inv));
 | |
| 
 | |
| 	dom = isl_basic_set_universe(isl_space_copy(bset->dim));
 | |
| 	ran = isl_basic_set_universe(isl_space_copy(bset->dim));
 | |
| 
 | |
| 	return isl_morph_alloc(dom, ran, map, inv);
 | |
| }
 | |
| 
 | |
| /* Add stride constraints to "bset" based on the inverse mapping
 | |
|  * that was plugged in.  In particular, if morph maps x' to x,
 | |
|  * the the constraints of the original input
 | |
|  *
 | |
|  *	A x' + b >= 0
 | |
|  *
 | |
|  * have been rewritten to
 | |
|  *
 | |
|  *	A inv x + b >= 0
 | |
|  *
 | |
|  * However, this substitution may loose information on the integrality of x',
 | |
|  * so we need to impose that
 | |
|  *
 | |
|  *	inv x
 | |
|  *
 | |
|  * is integral.  If inv = B/d, this means that we need to impose that
 | |
|  *
 | |
|  *	B x = 0		mod d
 | |
|  *
 | |
|  * or
 | |
|  *
 | |
|  *	exists alpha in Z^m: B x = d alpha
 | |
|  *
 | |
|  * This function is similar to add_strides in isl_affine_hull.c
 | |
|  */
 | |
| static __isl_give isl_basic_set *add_strides(__isl_take isl_basic_set *bset,
 | |
| 	__isl_keep isl_morph *morph)
 | |
| {
 | |
| 	int i, div, k;
 | |
| 	isl_int gcd;
 | |
| 
 | |
| 	if (isl_int_is_one(morph->inv->row[0][0]))
 | |
| 		return bset;
 | |
| 
 | |
| 	isl_int_init(gcd);
 | |
| 
 | |
| 	for (i = 0; 1 + i < morph->inv->n_row; ++i) {
 | |
| 		isl_seq_gcd(morph->inv->row[1 + i], morph->inv->n_col, &gcd);
 | |
| 		if (isl_int_is_divisible_by(gcd, morph->inv->row[0][0]))
 | |
| 			continue;
 | |
| 		div = isl_basic_set_alloc_div(bset);
 | |
| 		if (div < 0)
 | |
| 			goto error;
 | |
| 		isl_int_set_si(bset->div[div][0], 0);
 | |
| 		k = isl_basic_set_alloc_equality(bset);
 | |
| 		if (k < 0)
 | |
| 			goto error;
 | |
| 		isl_seq_cpy(bset->eq[k], morph->inv->row[1 + i],
 | |
| 			    morph->inv->n_col);
 | |
| 		isl_seq_clr(bset->eq[k] + morph->inv->n_col, bset->n_div);
 | |
| 		isl_int_set(bset->eq[k][morph->inv->n_col + div],
 | |
| 			    morph->inv->row[0][0]);
 | |
| 	}
 | |
| 
 | |
| 	isl_int_clear(gcd);
 | |
| 
 | |
| 	return bset;
 | |
| error:
 | |
| 	isl_int_clear(gcd);
 | |
| 	isl_basic_set_free(bset);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* Apply the morphism to the basic set.
 | |
|  * We basically just compute the preimage of "bset" under the inverse mapping
 | |
|  * in morph, add in stride constraints and intersect with the range
 | |
|  * of the morphism.
 | |
|  */
 | |
| __isl_give isl_basic_set *isl_morph_basic_set(__isl_take isl_morph *morph,
 | |
| 	__isl_take isl_basic_set *bset)
 | |
| {
 | |
| 	isl_basic_set *res = NULL;
 | |
| 	isl_mat *mat = NULL;
 | |
| 	int i, k;
 | |
| 	int max_stride;
 | |
| 
 | |
| 	if (!morph || !bset)
 | |
| 		goto error;
 | |
| 
 | |
| 	isl_assert(bset->ctx, isl_space_is_equal(bset->dim, morph->dom->dim),
 | |
| 		    goto error);
 | |
| 
 | |
| 	max_stride = morph->inv->n_row - 1;
 | |
| 	if (isl_int_is_one(morph->inv->row[0][0]))
 | |
| 		max_stride = 0;
 | |
| 	res = isl_basic_set_alloc_space(isl_space_copy(morph->ran->dim),
 | |
| 		bset->n_div + max_stride, bset->n_eq + max_stride, bset->n_ineq);
 | |
| 
 | |
| 	for (i = 0; i < bset->n_div; ++i)
 | |
| 		if (isl_basic_set_alloc_div(res) < 0)
 | |
| 			goto error;
 | |
| 
 | |
| 	mat = isl_mat_sub_alloc6(bset->ctx, bset->eq, 0, bset->n_eq,
 | |
| 					0, morph->inv->n_row);
 | |
| 	mat = isl_mat_product(mat, isl_mat_copy(morph->inv));
 | |
| 	if (!mat)
 | |
| 		goto error;
 | |
| 	for (i = 0; i < bset->n_eq; ++i) {
 | |
| 		k = isl_basic_set_alloc_equality(res);
 | |
| 		if (k < 0)
 | |
| 			goto error;
 | |
| 		isl_seq_cpy(res->eq[k], mat->row[i], mat->n_col);
 | |
| 		isl_seq_scale(res->eq[k] + mat->n_col, bset->eq[i] + mat->n_col,
 | |
| 				morph->inv->row[0][0], bset->n_div);
 | |
| 	}
 | |
| 	isl_mat_free(mat);
 | |
| 
 | |
| 	mat = isl_mat_sub_alloc6(bset->ctx, bset->ineq, 0, bset->n_ineq,
 | |
| 					0, morph->inv->n_row);
 | |
| 	mat = isl_mat_product(mat, isl_mat_copy(morph->inv));
 | |
| 	if (!mat)
 | |
| 		goto error;
 | |
| 	for (i = 0; i < bset->n_ineq; ++i) {
 | |
| 		k = isl_basic_set_alloc_inequality(res);
 | |
| 		if (k < 0)
 | |
| 			goto error;
 | |
| 		isl_seq_cpy(res->ineq[k], mat->row[i], mat->n_col);
 | |
| 		isl_seq_scale(res->ineq[k] + mat->n_col,
 | |
| 				bset->ineq[i] + mat->n_col,
 | |
| 				morph->inv->row[0][0], bset->n_div);
 | |
| 	}
 | |
| 	isl_mat_free(mat);
 | |
| 
 | |
| 	mat = isl_mat_sub_alloc6(bset->ctx, bset->div, 0, bset->n_div,
 | |
| 					1, morph->inv->n_row);
 | |
| 	mat = isl_mat_product(mat, isl_mat_copy(morph->inv));
 | |
| 	if (!mat)
 | |
| 		goto error;
 | |
| 	for (i = 0; i < bset->n_div; ++i) {
 | |
| 		isl_int_mul(res->div[i][0],
 | |
| 				morph->inv->row[0][0], bset->div[i][0]);
 | |
| 		isl_seq_cpy(res->div[i] + 1, mat->row[i], mat->n_col);
 | |
| 		isl_seq_scale(res->div[i] + 1 + mat->n_col,
 | |
| 				bset->div[i] + 1 + mat->n_col,
 | |
| 				morph->inv->row[0][0], bset->n_div);
 | |
| 	}
 | |
| 	isl_mat_free(mat);
 | |
| 
 | |
| 	res = add_strides(res, morph);
 | |
| 
 | |
| 	if (isl_basic_set_is_rational(bset))
 | |
| 		res = isl_basic_set_set_rational(res);
 | |
| 
 | |
| 	res = isl_basic_set_simplify(res);
 | |
| 	res = isl_basic_set_finalize(res);
 | |
| 
 | |
| 	res = isl_basic_set_intersect(res, isl_basic_set_copy(morph->ran));
 | |
| 
 | |
| 	isl_morph_free(morph);
 | |
| 	isl_basic_set_free(bset);
 | |
| 	return res;
 | |
| error:
 | |
| 	isl_mat_free(mat);
 | |
| 	isl_morph_free(morph);
 | |
| 	isl_basic_set_free(bset);
 | |
| 	isl_basic_set_free(res);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* Apply the morphism to the set.
 | |
|  */
 | |
| __isl_give isl_set *isl_morph_set(__isl_take isl_morph *morph,
 | |
| 	__isl_take isl_set *set)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (!morph || !set)
 | |
| 		goto error;
 | |
| 
 | |
| 	isl_assert(set->ctx, isl_space_is_equal(set->dim, morph->dom->dim), goto error);
 | |
| 
 | |
| 	set = isl_set_cow(set);
 | |
| 	if (!set)
 | |
| 		goto error;
 | |
| 
 | |
| 	isl_space_free(set->dim);
 | |
| 	set->dim = isl_space_copy(morph->ran->dim);
 | |
| 	if (!set->dim)
 | |
| 		goto error;
 | |
| 
 | |
| 	for (i = 0; i < set->n; ++i) {
 | |
| 		set->p[i] = isl_morph_basic_set(isl_morph_copy(morph), set->p[i]);
 | |
| 		if (!set->p[i])
 | |
| 			goto error;
 | |
| 	}
 | |
| 
 | |
| 	isl_morph_free(morph);
 | |
| 
 | |
| 	ISL_F_CLR(set, ISL_SET_NORMALIZED);
 | |
| 
 | |
| 	return set;
 | |
| error:
 | |
| 	isl_set_free(set);
 | |
| 	isl_morph_free(morph);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* Construct a morphism that first does morph2 and then morph1.
 | |
|  */
 | |
| __isl_give isl_morph *isl_morph_compose(__isl_take isl_morph *morph1,
 | |
| 	__isl_take isl_morph *morph2)
 | |
| {
 | |
| 	isl_mat *map, *inv;
 | |
| 	isl_basic_set *dom, *ran;
 | |
| 
 | |
| 	if (!morph1 || !morph2)
 | |
| 		goto error;
 | |
| 
 | |
| 	map = isl_mat_product(isl_mat_copy(morph1->map), isl_mat_copy(morph2->map));
 | |
| 	inv = isl_mat_product(isl_mat_copy(morph2->inv), isl_mat_copy(morph1->inv));
 | |
| 	dom = isl_morph_basic_set(isl_morph_inverse(isl_morph_copy(morph2)),
 | |
| 				  isl_basic_set_copy(morph1->dom));
 | |
| 	dom = isl_basic_set_intersect(dom, isl_basic_set_copy(morph2->dom));
 | |
| 	ran = isl_morph_basic_set(isl_morph_copy(morph1),
 | |
| 				  isl_basic_set_copy(morph2->ran));
 | |
| 	ran = isl_basic_set_intersect(ran, isl_basic_set_copy(morph1->ran));
 | |
| 
 | |
| 	isl_morph_free(morph1);
 | |
| 	isl_morph_free(morph2);
 | |
| 
 | |
| 	return isl_morph_alloc(dom, ran, map, inv);
 | |
| error:
 | |
| 	isl_morph_free(morph1);
 | |
| 	isl_morph_free(morph2);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| __isl_give isl_morph *isl_morph_inverse(__isl_take isl_morph *morph)
 | |
| {
 | |
| 	isl_basic_set *bset;
 | |
| 	isl_mat *mat;
 | |
| 
 | |
| 	morph = isl_morph_cow(morph);
 | |
| 	if (!morph)
 | |
| 		return NULL;
 | |
| 
 | |
| 	bset = morph->dom;
 | |
| 	morph->dom = morph->ran;
 | |
| 	morph->ran = bset;
 | |
| 
 | |
| 	mat = morph->map;
 | |
| 	morph->map = morph->inv;
 | |
| 	morph->inv = mat;
 | |
| 
 | |
| 	return morph;
 | |
| }
 | |
| 
 | |
| /* We detect all the equalities first to avoid implicit equalties
 | |
|  * being discovered during the computations.  In particular,
 | |
|  * the compression on the variables could expose additional stride
 | |
|  * constraints on the parameters.  This would result in existentially
 | |
|  * quantified variables after applying the resulting morph, which
 | |
|  * in turn could break invariants of the calling functions.
 | |
|  */
 | |
| __isl_give isl_morph *isl_basic_set_full_compression(
 | |
| 	__isl_keep isl_basic_set *bset)
 | |
| {
 | |
| 	isl_morph *morph, *morph2;
 | |
| 
 | |
| 	bset = isl_basic_set_copy(bset);
 | |
| 	bset = isl_basic_set_detect_equalities(bset);
 | |
| 
 | |
| 	morph = isl_basic_set_variable_compression(bset, isl_dim_param);
 | |
| 	bset = isl_morph_basic_set(isl_morph_copy(morph), bset);
 | |
| 
 | |
| 	morph2 = isl_basic_set_parameter_compression(bset);
 | |
| 	bset = isl_morph_basic_set(isl_morph_copy(morph2), bset);
 | |
| 
 | |
| 	morph = isl_morph_compose(morph2, morph);
 | |
| 
 | |
| 	morph2 = isl_basic_set_variable_compression(bset, isl_dim_set);
 | |
| 	isl_basic_set_free(bset);
 | |
| 
 | |
| 	morph = isl_morph_compose(morph2, morph);
 | |
| 
 | |
| 	return morph;
 | |
| }
 | |
| 
 | |
| __isl_give isl_vec *isl_morph_vec(__isl_take isl_morph *morph,
 | |
| 	__isl_take isl_vec *vec)
 | |
| {
 | |
| 	if (!morph)
 | |
| 		goto error;
 | |
| 
 | |
| 	vec = isl_mat_vec_product(isl_mat_copy(morph->map), vec);
 | |
| 
 | |
| 	isl_morph_free(morph);
 | |
| 	return vec;
 | |
| error:
 | |
| 	isl_morph_free(morph);
 | |
| 	isl_vec_free(vec);
 | |
| 	return NULL;
 | |
| }
 |