312 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			312 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
//== SimpleConstraintManager.cpp --------------------------------*- C++ -*--==//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
//  This file defines SimpleConstraintManager, a class that holds code shared
 | 
						|
//  between BasicConstraintManager and RangeConstraintManager.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "SimpleConstraintManager.h"
 | 
						|
#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
 | 
						|
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
 | 
						|
 | 
						|
namespace clang {
 | 
						|
 | 
						|
namespace ento {
 | 
						|
 | 
						|
SimpleConstraintManager::~SimpleConstraintManager() {}
 | 
						|
 | 
						|
bool SimpleConstraintManager::canReasonAbout(SVal X) const {
 | 
						|
  nonloc::SymbolVal *SymVal = dyn_cast<nonloc::SymbolVal>(&X);
 | 
						|
  if (SymVal && SymVal->isExpression()) {
 | 
						|
    const SymExpr *SE = SymVal->getSymbol();
 | 
						|
 | 
						|
    if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(SE)) {
 | 
						|
      switch (SIE->getOpcode()) {
 | 
						|
          // We don't reason yet about bitwise-constraints on symbolic values.
 | 
						|
        case BO_And:
 | 
						|
        case BO_Or:
 | 
						|
        case BO_Xor:
 | 
						|
          return false;
 | 
						|
        // We don't reason yet about these arithmetic constraints on
 | 
						|
        // symbolic values.
 | 
						|
        case BO_Mul:
 | 
						|
        case BO_Div:
 | 
						|
        case BO_Rem:
 | 
						|
        case BO_Shl:
 | 
						|
        case BO_Shr:
 | 
						|
          return false;
 | 
						|
        // All other cases.
 | 
						|
        default:
 | 
						|
          return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
const ProgramState *SimpleConstraintManager::assume(const ProgramState *state,
 | 
						|
                                               DefinedSVal Cond,
 | 
						|
                                               bool Assumption) {
 | 
						|
  if (isa<NonLoc>(Cond))
 | 
						|
    return assume(state, cast<NonLoc>(Cond), Assumption);
 | 
						|
  else
 | 
						|
    return assume(state, cast<Loc>(Cond), Assumption);
 | 
						|
}
 | 
						|
 | 
						|
const ProgramState *SimpleConstraintManager::assume(const ProgramState *state, Loc cond,
 | 
						|
                                               bool assumption) {
 | 
						|
  state = assumeAux(state, cond, assumption);
 | 
						|
  return SU.processAssume(state, cond, assumption);
 | 
						|
}
 | 
						|
 | 
						|
const ProgramState *SimpleConstraintManager::assumeAux(const ProgramState *state,
 | 
						|
                                                  Loc Cond, bool Assumption) {
 | 
						|
 | 
						|
  BasicValueFactory &BasicVals = state->getBasicVals();
 | 
						|
 | 
						|
  switch (Cond.getSubKind()) {
 | 
						|
  default:
 | 
						|
    assert (false && "'Assume' not implemented for this Loc.");
 | 
						|
    return state;
 | 
						|
 | 
						|
  case loc::MemRegionKind: {
 | 
						|
    // FIXME: Should this go into the storemanager?
 | 
						|
 | 
						|
    const MemRegion *R = cast<loc::MemRegionVal>(Cond).getRegion();
 | 
						|
    const SubRegion *SubR = dyn_cast<SubRegion>(R);
 | 
						|
 | 
						|
    while (SubR) {
 | 
						|
      // FIXME: now we only find the first symbolic region.
 | 
						|
      if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(SubR)) {
 | 
						|
        const llvm::APSInt &zero = BasicVals.getZeroWithPtrWidth();
 | 
						|
        if (Assumption)
 | 
						|
          return assumeSymNE(state, SymR->getSymbol(), zero, zero);
 | 
						|
        else
 | 
						|
          return assumeSymEQ(state, SymR->getSymbol(), zero, zero);
 | 
						|
      }
 | 
						|
      SubR = dyn_cast<SubRegion>(SubR->getSuperRegion());
 | 
						|
    }
 | 
						|
 | 
						|
    // FALL-THROUGH.
 | 
						|
  }
 | 
						|
 | 
						|
  case loc::GotoLabelKind:
 | 
						|
    return Assumption ? state : NULL;
 | 
						|
 | 
						|
  case loc::ConcreteIntKind: {
 | 
						|
    bool b = cast<loc::ConcreteInt>(Cond).getValue() != 0;
 | 
						|
    bool isFeasible = b ? Assumption : !Assumption;
 | 
						|
    return isFeasible ? state : NULL;
 | 
						|
  }
 | 
						|
  } // end switch
 | 
						|
}
 | 
						|
 | 
						|
const ProgramState *SimpleConstraintManager::assume(const ProgramState *state,
 | 
						|
                                               NonLoc cond,
 | 
						|
                                               bool assumption) {
 | 
						|
  state = assumeAux(state, cond, assumption);
 | 
						|
  return SU.processAssume(state, cond, assumption);
 | 
						|
}
 | 
						|
 | 
						|
static BinaryOperator::Opcode NegateComparison(BinaryOperator::Opcode op) {
 | 
						|
  // FIXME: This should probably be part of BinaryOperator, since this isn't
 | 
						|
  // the only place it's used. (This code was copied from SimpleSValBuilder.cpp.)
 | 
						|
  switch (op) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Invalid opcode.");
 | 
						|
  case BO_LT: return BO_GE;
 | 
						|
  case BO_GT: return BO_LE;
 | 
						|
  case BO_LE: return BO_GT;
 | 
						|
  case BO_GE: return BO_LT;
 | 
						|
  case BO_EQ: return BO_NE;
 | 
						|
  case BO_NE: return BO_EQ;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
const ProgramState *SimpleConstraintManager::assumeAuxForSymbol(
 | 
						|
                                              const ProgramState *State,
 | 
						|
                                              SymbolRef Sym,
 | 
						|
                                              bool Assumption) {
 | 
						|
  QualType T =  State->getSymbolManager().getType(Sym);
 | 
						|
  const llvm::APSInt &zero = State->getBasicVals().getValue(0, T);
 | 
						|
  if (Assumption)
 | 
						|
    return assumeSymNE(State, Sym, zero, zero);
 | 
						|
  else
 | 
						|
    return assumeSymEQ(State, Sym, zero, zero);
 | 
						|
}
 | 
						|
 | 
						|
const ProgramState *SimpleConstraintManager::assumeAux(const ProgramState *state,
 | 
						|
                                                  NonLoc Cond,
 | 
						|
                                                  bool Assumption) {
 | 
						|
 | 
						|
  // We cannot reason about SymSymExprs, and can only reason about some
 | 
						|
  // SymIntExprs.
 | 
						|
  if (!canReasonAbout(Cond)) {
 | 
						|
    // Just add the constraint to the expression without trying to simplify.
 | 
						|
    SymbolRef sym = Cond.getAsSymExpr();
 | 
						|
    return assumeAuxForSymbol(state, sym, Assumption);
 | 
						|
  }
 | 
						|
 | 
						|
  BasicValueFactory &BasicVals = state->getBasicVals();
 | 
						|
  SymbolManager &SymMgr = state->getSymbolManager();
 | 
						|
 | 
						|
  switch (Cond.getSubKind()) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("'Assume' not implemented for this NonLoc");
 | 
						|
 | 
						|
  case nonloc::SymbolValKind: {
 | 
						|
    nonloc::SymbolVal& SV = cast<nonloc::SymbolVal>(Cond);
 | 
						|
    SymbolRef sym = SV.getSymbol();
 | 
						|
    assert(sym);
 | 
						|
 | 
						|
    // Handle SymbolData.
 | 
						|
    if (!SV.isExpression()) {
 | 
						|
      return assumeAuxForSymbol(state, sym, Assumption);
 | 
						|
 | 
						|
    // Handle symbolic expression.
 | 
						|
    } else {
 | 
						|
      // We can only simplify expressions whose RHS is an integer.
 | 
						|
      const SymIntExpr *SE = dyn_cast<SymIntExpr>(sym);
 | 
						|
      if (!SE)
 | 
						|
        return assumeAuxForSymbol(state, sym, Assumption);
 | 
						|
 | 
						|
      BinaryOperator::Opcode op = SE->getOpcode();
 | 
						|
      // Implicitly compare non-comparison expressions to 0.
 | 
						|
      if (!BinaryOperator::isComparisonOp(op)) {
 | 
						|
        QualType T = SymMgr.getType(SE);
 | 
						|
        const llvm::APSInt &zero = BasicVals.getValue(0, T);
 | 
						|
        op = (Assumption ? BO_NE : BO_EQ);
 | 
						|
        return assumeSymRel(state, SE, op, zero);
 | 
						|
      }
 | 
						|
      // From here on out, op is the real comparison we'll be testing.
 | 
						|
      if (!Assumption)
 | 
						|
        op = NegateComparison(op);
 | 
						|
 | 
						|
      return assumeSymRel(state, SE->getLHS(), op, SE->getRHS());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  case nonloc::ConcreteIntKind: {
 | 
						|
    bool b = cast<nonloc::ConcreteInt>(Cond).getValue() != 0;
 | 
						|
    bool isFeasible = b ? Assumption : !Assumption;
 | 
						|
    return isFeasible ? state : NULL;
 | 
						|
  }
 | 
						|
 | 
						|
  case nonloc::LocAsIntegerKind:
 | 
						|
    return assumeAux(state, cast<nonloc::LocAsInteger>(Cond).getLoc(),
 | 
						|
                     Assumption);
 | 
						|
  } // end switch
 | 
						|
}
 | 
						|
 | 
						|
static llvm::APSInt computeAdjustment(const SymExpr *LHS,
 | 
						|
                                      SymbolRef &Sym) {
 | 
						|
  llvm::APSInt DefaultAdjustment;
 | 
						|
  DefaultAdjustment = 0;
 | 
						|
 | 
						|
  // First check if the LHS is a simple symbol reference.
 | 
						|
  if (isa<SymbolData>(LHS))
 | 
						|
    return DefaultAdjustment;
 | 
						|
 | 
						|
  // Next, see if it's a "($sym+constant1)" expression.
 | 
						|
  const SymIntExpr *SE = dyn_cast<SymIntExpr>(LHS);
 | 
						|
 | 
						|
  // We cannot simplify "($sym1+$sym2)".
 | 
						|
  if (!SE)
 | 
						|
    return DefaultAdjustment;
 | 
						|
 | 
						|
  // Get the constant out of the expression "($sym+constant1)" or
 | 
						|
  // "<expr>+constant1".
 | 
						|
  Sym = SE->getLHS();
 | 
						|
  switch (SE->getOpcode()) {
 | 
						|
  case BO_Add:
 | 
						|
    return SE->getRHS();
 | 
						|
    break;
 | 
						|
  case BO_Sub:
 | 
						|
    return -SE->getRHS();
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    // We cannot simplify non-additive operators.
 | 
						|
    return DefaultAdjustment;
 | 
						|
  }
 | 
						|
 | 
						|
  return DefaultAdjustment;
 | 
						|
}
 | 
						|
 | 
						|
const ProgramState *SimpleConstraintManager::assumeSymRel(const ProgramState *state,
 | 
						|
                                                     const SymExpr *LHS,
 | 
						|
                                                     BinaryOperator::Opcode op,
 | 
						|
                                                     const llvm::APSInt& Int) {
 | 
						|
  assert(BinaryOperator::isComparisonOp(op) &&
 | 
						|
         "Non-comparison ops should be rewritten as comparisons to zero.");
 | 
						|
 | 
						|
  // We only handle simple comparisons of the form "$sym == constant"
 | 
						|
  // or "($sym+constant1) == constant2".
 | 
						|
  // The adjustment is "constant1" in the above expression. It's used to
 | 
						|
  // "slide" the solution range around for modular arithmetic. For example,
 | 
						|
  // x < 4 has the solution [0, 3]. x+2 < 4 has the solution [0-2, 3-2], which
 | 
						|
  // in modular arithmetic is [0, 1] U [UINT_MAX-1, UINT_MAX]. It's up to
 | 
						|
  // the subclasses of SimpleConstraintManager to handle the adjustment.
 | 
						|
  SymbolRef Sym = LHS;
 | 
						|
  llvm::APSInt Adjustment = computeAdjustment(LHS, Sym);
 | 
						|
 | 
						|
  // FIXME: This next section is a hack. It silently converts the integers to
 | 
						|
  // be of the same type as the symbol, which is not always correct. Really the
 | 
						|
  // comparisons should be performed using the Int's type, then mapped back to
 | 
						|
  // the symbol's range of values.
 | 
						|
  ProgramStateManager &StateMgr = state->getStateManager();
 | 
						|
  ASTContext &Ctx = StateMgr.getContext();
 | 
						|
 | 
						|
  QualType T = Sym->getType(Ctx);
 | 
						|
  assert(T->isIntegerType() || Loc::isLocType(T));
 | 
						|
  unsigned bitwidth = Ctx.getTypeSize(T);
 | 
						|
  bool isSymUnsigned 
 | 
						|
    = T->isUnsignedIntegerOrEnumerationType() || Loc::isLocType(T);
 | 
						|
 | 
						|
  // Convert the adjustment.
 | 
						|
  Adjustment.setIsUnsigned(isSymUnsigned);
 | 
						|
  Adjustment = Adjustment.extOrTrunc(bitwidth);
 | 
						|
 | 
						|
  // Convert the right-hand side integer.
 | 
						|
  llvm::APSInt ConvertedInt(Int, isSymUnsigned);
 | 
						|
  ConvertedInt = ConvertedInt.extOrTrunc(bitwidth);
 | 
						|
 | 
						|
  switch (op) {
 | 
						|
  default:
 | 
						|
    // No logic yet for other operators.  assume the constraint is feasible.
 | 
						|
    return state;
 | 
						|
 | 
						|
  case BO_EQ:
 | 
						|
    return assumeSymEQ(state, Sym, ConvertedInt, Adjustment);
 | 
						|
 | 
						|
  case BO_NE:
 | 
						|
    return assumeSymNE(state, Sym, ConvertedInt, Adjustment);
 | 
						|
 | 
						|
  case BO_GT:
 | 
						|
    return assumeSymGT(state, Sym, ConvertedInt, Adjustment);
 | 
						|
 | 
						|
  case BO_GE:
 | 
						|
    return assumeSymGE(state, Sym, ConvertedInt, Adjustment);
 | 
						|
 | 
						|
  case BO_LT:
 | 
						|
    return assumeSymLT(state, Sym, ConvertedInt, Adjustment);
 | 
						|
 | 
						|
  case BO_LE:
 | 
						|
    return assumeSymLE(state, Sym, ConvertedInt, Adjustment);
 | 
						|
  } // end switch
 | 
						|
}
 | 
						|
 | 
						|
} // end of namespace ento
 | 
						|
 | 
						|
} // end of namespace clang
 |