935 lines
40 KiB
C++
935 lines
40 KiB
C++
//===- SparseTensorConversion.cpp - Sparse tensor primitives conversion ---===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Convert sparse tensor primitives to calls into a runtime support library.
|
|
// Note that this is a current implementation choice to keep the conversion
|
|
// simple. In principle, these primitives could also be converted to actual
|
|
// elaborate IR code that implements the primitives on the selected sparse
|
|
// tensor storage schemes.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CodegenUtils.h"
|
|
|
|
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
|
|
#include "mlir/Dialect/Func/IR/FuncOps.h"
|
|
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
|
|
#include "mlir/Dialect/Linalg/Utils/Utils.h"
|
|
#include "mlir/Dialect/MemRef/IR/MemRef.h"
|
|
#include "mlir/Dialect/SCF/SCF.h"
|
|
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
|
|
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
|
|
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
|
#include "mlir/ExecutionEngine/SparseTensorUtils.h"
|
|
#include "mlir/Transforms/DialectConversion.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::sparse_tensor;
|
|
|
|
namespace {
|
|
|
|
/// Shorthand aliases for the `emitCInterface` argument to `getFunc()`,
|
|
/// `createFuncCall()`, and `replaceOpWithFuncCall()`.
|
|
enum class EmitCInterface : bool { Off = false, On = true };
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Helper methods.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Returns the equivalent of `void*` for opaque arguments to the
|
|
/// execution engine.
|
|
static Type getOpaquePointerType(OpBuilder &builder) {
|
|
return LLVM::LLVMPointerType::get(builder.getI8Type());
|
|
}
|
|
|
|
/// Returns a function reference (first hit also inserts into module). Sets
|
|
/// the "_emit_c_interface" on the function declaration when requested,
|
|
/// so that LLVM lowering generates a wrapper function that takes care
|
|
/// of ABI complications with passing in and returning MemRefs to C functions.
|
|
static FlatSymbolRefAttr getFunc(Operation *op, StringRef name,
|
|
TypeRange resultType, ValueRange operands,
|
|
EmitCInterface emitCInterface) {
|
|
MLIRContext *context = op->getContext();
|
|
auto module = op->getParentOfType<ModuleOp>();
|
|
auto result = SymbolRefAttr::get(context, name);
|
|
auto func = module.lookupSymbol<func::FuncOp>(result.getAttr());
|
|
if (!func) {
|
|
OpBuilder moduleBuilder(module.getBodyRegion());
|
|
func = moduleBuilder.create<func::FuncOp>(
|
|
op->getLoc(), name,
|
|
FunctionType::get(context, operands.getTypes(), resultType));
|
|
func.setPrivate();
|
|
if (static_cast<bool>(emitCInterface))
|
|
func->setAttr("llvm.emit_c_interface", UnitAttr::get(context));
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/// Creates a `CallOp` to the function reference returned by `getFunc()`.
|
|
static func::CallOp createFuncCall(OpBuilder &builder, Operation *op,
|
|
StringRef name, TypeRange resultType,
|
|
ValueRange operands,
|
|
EmitCInterface emitCInterface) {
|
|
auto fn = getFunc(op, name, resultType, operands, emitCInterface);
|
|
return builder.create<func::CallOp>(op->getLoc(), resultType, fn, operands);
|
|
}
|
|
|
|
/// Replaces the `op` with a `CallOp` to the function reference returned
|
|
/// by `getFunc()`.
|
|
static func::CallOp replaceOpWithFuncCall(RewriterBase &rewriter, Operation *op,
|
|
StringRef name, TypeRange resultType,
|
|
ValueRange operands,
|
|
EmitCInterface emitCInterface) {
|
|
auto fn = getFunc(op, name, resultType, operands, emitCInterface);
|
|
return rewriter.replaceOpWithNewOp<func::CallOp>(op, resultType, fn,
|
|
operands);
|
|
}
|
|
|
|
/// Generates dimension size call.
|
|
static Value genDimSizeCall(OpBuilder &builder, Operation *op,
|
|
SparseTensorEncodingAttr &enc, Value src,
|
|
int64_t idx) {
|
|
// Permute the index according to an optional dimension ordering.
|
|
if (AffineMap p = enc.getDimOrdering())
|
|
idx = p.getPermutedPosition(idx);
|
|
// Generate the call.
|
|
StringRef name = "sparseDimSize";
|
|
SmallVector<Value, 2> params{src, constantIndex(builder, op->getLoc(), idx)};
|
|
Type iTp = builder.getIndexType();
|
|
return createFuncCall(builder, op, name, iTp, params, EmitCInterface::Off)
|
|
.getResult(0);
|
|
}
|
|
|
|
/// Generates a call into the "swiss army knife" method of the sparse runtime
|
|
/// support library for materializing sparse tensors into the computation.
|
|
static Value genNewCall(OpBuilder &builder, Operation *op,
|
|
ArrayRef<Value> params) {
|
|
StringRef name = "newSparseTensor";
|
|
Type pTp = getOpaquePointerType(builder);
|
|
return createFuncCall(builder, op, name, pTp, params, EmitCInterface::On)
|
|
.getResult(0);
|
|
}
|
|
|
|
/// Populates given sizes array from type.
|
|
static void sizesFromType(OpBuilder &builder, SmallVector<Value, 4> &sizes,
|
|
Location loc, ShapedType stp) {
|
|
auto shape = stp.getShape();
|
|
for (unsigned i = 0, rank = stp.getRank(); i < rank; i++) {
|
|
uint64_t s = shape[i] == ShapedType::kDynamicSize ? 0 : shape[i];
|
|
sizes.push_back(constantIndex(builder, loc, s));
|
|
}
|
|
}
|
|
|
|
/// Populates given sizes array from source.
|
|
static void sizesFromSrc(OpBuilder &builder, SmallVector<Value, 4> &sizes,
|
|
Location loc, Value src) {
|
|
unsigned rank = src.getType().cast<ShapedType>().getRank();
|
|
for (unsigned i = 0; i < rank; i++)
|
|
sizes.push_back(linalg::createOrFoldDimOp(builder, loc, src, i));
|
|
}
|
|
|
|
/// Populates given sizes array from type (for static sizes) and from
|
|
/// an already converted into opague pointer source (for dynamic sizes).
|
|
static void sizesFromPtr(OpBuilder &builder, SmallVector<Value, 4> &sizes,
|
|
Operation *op, SparseTensorEncodingAttr &enc,
|
|
ShapedType stp, Value src) {
|
|
Location loc = op->getLoc();
|
|
auto shape = stp.getShape();
|
|
for (unsigned i = 0, rank = stp.getRank(); i < rank; i++)
|
|
if (shape[i] == ShapedType::kDynamicSize)
|
|
sizes.push_back(genDimSizeCall(builder, op, enc, src, i));
|
|
else
|
|
sizes.push_back(constantIndex(builder, loc, shape[i]));
|
|
}
|
|
|
|
/// Generates an uninitialized temporary buffer of the given size and
|
|
/// type, but returns it as type `memref<? x $tp>` (rather than as type
|
|
/// `memref<$sz x $tp>`).
|
|
static Value genAlloca(OpBuilder &builder, Location loc, Value sz, Type tp) {
|
|
auto memTp = MemRefType::get({ShapedType::kDynamicSize}, tp);
|
|
return builder.create<memref::AllocaOp>(loc, memTp, ValueRange{sz});
|
|
}
|
|
|
|
/// Generates an uninitialized buffer of the given size and type,
|
|
/// but returns it as type `memref<? x $tp>` (rather than as type
|
|
/// `memref<$sz x $tp>`). Unlike temporary buffers on the stack,
|
|
/// this buffer must be explicitly deallocated by client.
|
|
static Value genAlloc(RewriterBase &rewriter, Location loc, Value sz, Type tp) {
|
|
auto memTp = MemRefType::get({ShapedType::kDynamicSize}, tp);
|
|
return rewriter.create<memref::AllocOp>(loc, memTp, ValueRange{sz});
|
|
}
|
|
|
|
/// Generates an uninitialized temporary buffer of the given size and
|
|
/// type, but returns it as type `memref<? x $tp>` (rather than as type
|
|
/// `memref<$sz x $tp>`).
|
|
static Value genAlloca(OpBuilder &builder, Location loc, unsigned sz, Type tp) {
|
|
return genAlloca(builder, loc, constantIndex(builder, loc, sz), tp);
|
|
}
|
|
|
|
/// Generates an uninitialized temporary buffer with room for one value
|
|
/// of the given type, and returns the `memref<$tp>`.
|
|
static Value genAllocaScalar(OpBuilder &builder, Location loc, Type tp) {
|
|
return builder.create<memref::AllocaOp>(loc, MemRefType::get({}, tp));
|
|
}
|
|
|
|
/// Generates a temporary buffer of the given type and given contents.
|
|
static Value genBuffer(OpBuilder &builder, Location loc, ValueRange values) {
|
|
unsigned sz = values.size();
|
|
assert(sz >= 1);
|
|
Value buffer = genAlloca(builder, loc, sz, values[0].getType());
|
|
for (unsigned i = 0; i < sz; i++) {
|
|
Value idx = constantIndex(builder, loc, i);
|
|
builder.create<memref::StoreOp>(loc, values[i], buffer, idx);
|
|
}
|
|
return buffer;
|
|
}
|
|
|
|
/// Populates parameters required to call the "swiss army knife" method of the
|
|
/// sparse runtime support library for materializing sparse tensors into the
|
|
/// computation.
|
|
static void newParams(OpBuilder &builder, SmallVector<Value, 8> ¶ms,
|
|
Operation *op, ShapedType stp,
|
|
SparseTensorEncodingAttr &enc, Action action,
|
|
ValueRange szs, Value ptr = Value()) {
|
|
Location loc = op->getLoc();
|
|
ArrayRef<SparseTensorEncodingAttr::DimLevelType> dlt = enc.getDimLevelType();
|
|
unsigned sz = dlt.size();
|
|
// Sparsity annotations.
|
|
SmallVector<Value, 4> attrs;
|
|
for (unsigned i = 0; i < sz; i++)
|
|
attrs.push_back(constantDimLevelTypeEncoding(builder, loc, dlt[i]));
|
|
params.push_back(genBuffer(builder, loc, attrs));
|
|
// Dimension sizes array of the enveloping tensor. Useful for either
|
|
// verification of external data, or for construction of internal data.
|
|
params.push_back(genBuffer(builder, loc, szs));
|
|
// Dimension order permutation array. This is the "identity" permutation by
|
|
// default, or otherwise the "reverse" permutation of a given ordering, so
|
|
// that indices can be mapped quickly to the right position.
|
|
SmallVector<Value, 4> rev(sz);
|
|
if (AffineMap p = enc.getDimOrdering()) {
|
|
for (unsigned i = 0; i < sz; i++)
|
|
rev[p.getDimPosition(i)] = constantIndex(builder, loc, i);
|
|
} else {
|
|
for (unsigned i = 0; i < sz; i++)
|
|
rev[i] = constantIndex(builder, loc, i);
|
|
}
|
|
params.push_back(genBuffer(builder, loc, rev));
|
|
// Secondary and primary types encoding.
|
|
Type elemTp = stp.getElementType();
|
|
params.push_back(constantPointerTypeEncoding(builder, loc, enc));
|
|
params.push_back(constantIndexTypeEncoding(builder, loc, enc));
|
|
params.push_back(constantPrimaryTypeEncoding(builder, loc, elemTp));
|
|
// User action.
|
|
params.push_back(constantAction(builder, loc, action));
|
|
// Payload pointer.
|
|
if (!ptr)
|
|
ptr = builder.create<LLVM::NullOp>(loc, getOpaquePointerType(builder));
|
|
params.push_back(ptr);
|
|
}
|
|
|
|
/// Generates the code to read the value from tensor[ivs], and conditionally
|
|
/// stores the indices ivs to the memory in ind. The generated code looks like
|
|
/// the following and the insertion point after this routine is inside the
|
|
/// if-then branch behind the assignment to ind. This is to ensure that the
|
|
/// addEltX call generated after is inside the if-then branch.
|
|
/// if (tensor[ivs]!=0) {
|
|
/// ind = ivs
|
|
static Value genIndexAndValueForDense(OpBuilder &builder, Location loc,
|
|
Value tensor, Value ind, ValueRange ivs) {
|
|
Value val = builder.create<tensor::ExtractOp>(loc, tensor, ivs);
|
|
Value cond = genIsNonzero(builder, loc, val);
|
|
scf::IfOp ifOp = builder.create<scf::IfOp>(loc, cond, /*else*/ false);
|
|
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
|
|
unsigned i = 0;
|
|
for (auto iv : ivs) {
|
|
Value idx = constantIndex(builder, loc, i++);
|
|
builder.create<memref::StoreOp>(loc, iv, ind, idx);
|
|
}
|
|
return val;
|
|
}
|
|
|
|
/// Generates a call to release/delete a `SparseTensorCOO`.
|
|
static void genDelCOOCall(OpBuilder &builder, Operation *op, Type elemTp,
|
|
Value coo) {
|
|
SmallString<21> name{"delSparseTensorCOO", primaryTypeFunctionSuffix(elemTp)};
|
|
TypeRange noTp;
|
|
createFuncCall(builder, op, name, noTp, coo, EmitCInterface::Off);
|
|
}
|
|
|
|
/// Generates a call that adds one element to a coordinate scheme.
|
|
/// In particular, this generates code like the following:
|
|
/// val = a[i1,..,ik];
|
|
/// if val != 0
|
|
/// t->add(val, [i1,..,ik], [p1,..,pk]);
|
|
static void genAddEltCall(OpBuilder &builder, Operation *op, Type eltType,
|
|
Value ptr, Value val, Value ind, Value perm) {
|
|
SmallString<9> name{"addElt", primaryTypeFunctionSuffix(eltType)};
|
|
SmallVector<Value, 4> params{ptr, val, ind, perm};
|
|
Type pTp = getOpaquePointerType(builder);
|
|
createFuncCall(builder, op, name, pTp, params, EmitCInterface::On);
|
|
}
|
|
|
|
/// Generates a call to `iter->getNext()`. If there is a next element,
|
|
/// then it is copied into the out-parameters `ind` and `elemPtr`,
|
|
/// and the return value is true. If there isn't a next element, then
|
|
/// the memory for `iter` is freed and the return value is false.
|
|
static Value genGetNextCall(OpBuilder &builder, Operation *op, Value iter,
|
|
Value ind, Value elemPtr) {
|
|
Type elemTp = elemPtr.getType().cast<ShapedType>().getElementType();
|
|
SmallString<10> name{"getNext", primaryTypeFunctionSuffix(elemTp)};
|
|
SmallVector<Value, 3> params{iter, ind, elemPtr};
|
|
Type i1 = builder.getI1Type();
|
|
return createFuncCall(builder, op, name, i1, params, EmitCInterface::On)
|
|
.getResult(0);
|
|
}
|
|
|
|
/// If the tensor is a sparse constant, generates and returns the pair of
|
|
/// the constants for the indices and the values.
|
|
static Optional<std::pair<Value, Value>>
|
|
genSplitSparseConstant(OpBuilder &builder, Location loc, Value tensor) {
|
|
if (auto constOp = tensor.getDefiningOp<arith::ConstantOp>()) {
|
|
if (auto attr = constOp.getValue().dyn_cast<SparseElementsAttr>()) {
|
|
DenseElementsAttr indicesAttr = attr.getIndices();
|
|
Value indices = builder.create<arith::ConstantOp>(loc, indicesAttr);
|
|
DenseElementsAttr valuesAttr = attr.getValues();
|
|
Value values = builder.create<arith::ConstantOp>(loc, valuesAttr);
|
|
return std::make_pair(indices, values);
|
|
}
|
|
}
|
|
return {};
|
|
}
|
|
|
|
/// Generates the code to copy the index at indices[ivs] to ind, and return
|
|
/// the value at value[ivs].
|
|
static Value genIndexAndValueForSparse(OpBuilder &builder, Location loc,
|
|
Value indices, Value values, Value ind,
|
|
ValueRange ivs, unsigned rank) {
|
|
for (unsigned i = 0; i < rank; i++) {
|
|
Value idx = constantIndex(builder, loc, i);
|
|
Value val = builder.create<tensor::ExtractOp>(loc, indices,
|
|
ValueRange{ivs[0], idx});
|
|
val = builder.create<arith::IndexCastOp>(loc, builder.getIndexType(), val);
|
|
builder.create<memref::StoreOp>(loc, val, ind, idx);
|
|
}
|
|
return builder.create<tensor::ExtractOp>(loc, values, ivs[0]);
|
|
}
|
|
|
|
/// Generates code to allocate a tensor of the given type, and zero
|
|
/// initialize it. If the tensor type has any dynamic sizes, then the
|
|
/// `sizes` parameter should be as filled by sizesFromPtr(); that way
|
|
/// we can reuse the genDimSizeCall() results generated by sizesFromPtr().
|
|
static Value allocDenseTensor(OpBuilder &builder, Location loc,
|
|
RankedTensorType tensorTp, ValueRange sizes) {
|
|
Type elemTp = tensorTp.getElementType();
|
|
auto shape = tensorTp.getShape();
|
|
auto memTp = MemRefType::get(shape, elemTp);
|
|
SmallVector<Value> dynamicSizes;
|
|
for (unsigned i = 0, rank = tensorTp.getRank(); i < rank; i++) {
|
|
if (shape[i] == ShapedType::kDynamicSize)
|
|
dynamicSizes.push_back(sizes[i]);
|
|
}
|
|
Value mem = builder.create<memref::AllocOp>(loc, memTp, dynamicSizes);
|
|
Value zero = constantZero(builder, loc, elemTp);
|
|
builder.create<linalg::FillOp>(loc, ValueRange{zero}, ValueRange{mem});
|
|
return mem;
|
|
}
|
|
|
|
/// Inserts the element returned by genGetNextCall(_, ind, elemPtr) into
|
|
/// the tensor created by allocDenseTensor(). The `rank` is the rank
|
|
/// of the `tensor` and the length of `ind`.
|
|
static void insertScalarIntoDenseTensor(OpBuilder &builder, Location loc,
|
|
Value elemPtr, Value tensor,
|
|
unsigned rank, Value ind) {
|
|
SmallVector<Value, 4> ivs;
|
|
ivs.reserve(rank);
|
|
for (unsigned i = 0; i < rank; i++) {
|
|
Value idx = constantIndex(builder, loc, i);
|
|
ivs.push_back(builder.create<memref::LoadOp>(loc, ind, idx));
|
|
}
|
|
Value elemV = builder.create<memref::LoadOp>(loc, elemPtr);
|
|
builder.create<memref::StoreOp>(loc, elemV, tensor, ivs);
|
|
}
|
|
|
|
/// Determine if the runtime library supports direct conversion to the
|
|
/// given target `dimTypes`.
|
|
static bool canUseDirectConversion(
|
|
ArrayRef<SparseTensorEncodingAttr::DimLevelType> dimTypes) {
|
|
bool alreadyCompressed = false;
|
|
for (uint64_t rank = dimTypes.size(), r = 0; r < rank; r++) {
|
|
switch (dimTypes[r]) {
|
|
case SparseTensorEncodingAttr::DimLevelType::Compressed:
|
|
if (alreadyCompressed)
|
|
return false; // Multiple compressed dimensions not yet supported.
|
|
alreadyCompressed = true;
|
|
break;
|
|
case SparseTensorEncodingAttr::DimLevelType::Dense:
|
|
if (alreadyCompressed)
|
|
return false; // Dense after Compressed not yet supported.
|
|
break;
|
|
case SparseTensorEncodingAttr::DimLevelType::Singleton:
|
|
// Although Singleton isn't generally supported yet, the direct
|
|
// conversion method doesn't have any particular problems with
|
|
// singleton after compressed.
|
|
break;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Conversion rules.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Sparse conversion rule for returns.
|
|
class SparseReturnConverter : public OpConversionPattern<func::ReturnOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(func::ReturnOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
rewriter.replaceOpWithNewOp<func::ReturnOp>(op, adaptor.getOperands());
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Sparse conversion rule for dimension accesses.
|
|
class SparseTensorToDimSizeConverter
|
|
: public OpConversionPattern<tensor::DimOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(tensor::DimOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
// Only rewrite annotated DimOp with constant index.
|
|
auto enc = getSparseTensorEncoding(op.source().getType());
|
|
if (!enc)
|
|
return failure();
|
|
Optional<int64_t> index = op.getConstantIndex();
|
|
if (!index.hasValue())
|
|
return failure();
|
|
// Generate the call.
|
|
Value src = adaptor.getOperands()[0];
|
|
int64_t idx = index.getValue();
|
|
rewriter.replaceOp(op, genDimSizeCall(rewriter, op, enc, src, idx));
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Sparse conversion rule for trivial tensor casts.
|
|
class SparseCastConverter : public OpConversionPattern<tensor::CastOp> {
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(tensor::CastOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
// Only rewrite identically annotated source/dest.
|
|
auto encDst = getSparseTensorEncoding(op.getType());
|
|
auto encSrc = getSparseTensorEncoding(op.source().getType());
|
|
if (!encDst || encDst != encSrc)
|
|
return failure();
|
|
rewriter.replaceOp(op, adaptor.getOperands());
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Sparse conversion rule for the new operator.
|
|
class SparseTensorNewConverter : public OpConversionPattern<NewOp> {
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(NewOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
Type resType = op.getType();
|
|
auto enc = getSparseTensorEncoding(resType);
|
|
if (!enc)
|
|
return failure();
|
|
// Generate the call to construct tensor from ptr. The sizes are
|
|
// inferred from the result type of the new operator.
|
|
SmallVector<Value, 4> sizes;
|
|
SmallVector<Value, 8> params;
|
|
ShapedType stp = resType.cast<ShapedType>();
|
|
sizesFromType(rewriter, sizes, op.getLoc(), stp);
|
|
Value ptr = adaptor.getOperands()[0];
|
|
newParams(rewriter, params, op, stp, enc, Action::kFromFile, sizes, ptr);
|
|
rewriter.replaceOp(op, genNewCall(rewriter, op, params));
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Sparse conversion rule for the alloc operator.
|
|
class SparseTensorAllocConverter
|
|
: public OpConversionPattern<bufferization::AllocTensorOp> {
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(bufferization::AllocTensorOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
RankedTensorType resType = op.getType();
|
|
auto enc = getSparseTensorEncoding(resType);
|
|
if (!enc)
|
|
return failure();
|
|
// Gather all dimension sizes as SSA values.
|
|
SmallVector<Value> sizes;
|
|
unsigned int operandCtr = 0;
|
|
for (int64_t i = 0; i < resType.getRank(); ++i) {
|
|
if (resType.isDynamicDim(i)) {
|
|
sizes.push_back(adaptor.getOperands()[operandCtr++]);
|
|
} else {
|
|
sizes.push_back(rewriter.create<arith::ConstantIndexOp>(
|
|
op.getLoc(), op.getStaticSize(i)));
|
|
}
|
|
}
|
|
// Generate the call to construct empty tensor. The sizes are
|
|
// explicitly defined by the arguments to the alloc operator.
|
|
SmallVector<Value, 8> params;
|
|
ShapedType stp = resType.cast<ShapedType>();
|
|
newParams(rewriter, params, op, stp, enc, Action::kEmpty, sizes);
|
|
rewriter.replaceOp(op, genNewCall(rewriter, op, params));
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Sparse conversion rule for the convert operator.
|
|
class SparseTensorConvertConverter : public OpConversionPattern<ConvertOp> {
|
|
/// Options to control sparse code generation.
|
|
SparseTensorConversionOptions options;
|
|
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
SparseTensorConvertConverter(MLIRContext *context,
|
|
SparseTensorConversionOptions o)
|
|
: OpConversionPattern<ConvertOp>(context), options(o) {}
|
|
SparseTensorConvertConverter(TypeConverter &typeConv, MLIRContext *context,
|
|
SparseTensorConversionOptions o)
|
|
: OpConversionPattern<ConvertOp>(typeConv, context), options(o) {}
|
|
|
|
LogicalResult
|
|
matchAndRewrite(ConvertOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
Location loc = op->getLoc();
|
|
Type resType = op.getType();
|
|
Type srcType = op.source().getType();
|
|
auto encDst = getSparseTensorEncoding(resType);
|
|
auto encSrc = getSparseTensorEncoding(srcType);
|
|
Value src = adaptor.getOperands()[0];
|
|
if (encDst && encSrc) {
|
|
// This is a sparse => sparse conversion, which is handled as follows:
|
|
// t = src->toCOO(); ; src to COO in dst order
|
|
// dst = newSparseTensor(t)
|
|
// Using the coordinate scheme as an intermediate does not always
|
|
// yield the fastest conversion but avoids the need for a full
|
|
// O(N^2) conversion matrix.
|
|
if (encDst == encSrc) {
|
|
rewriter.replaceOp(op, adaptor.getOperands()); // hidden nop cast
|
|
return success();
|
|
}
|
|
SmallVector<Value, 4> sizes;
|
|
SmallVector<Value, 8> params;
|
|
ShapedType stp = srcType.cast<ShapedType>();
|
|
sizesFromPtr(rewriter, sizes, op, encSrc, stp, src);
|
|
bool useDirectConversion;
|
|
switch (options.sparseToSparseStrategy) {
|
|
case SparseToSparseConversionStrategy::kViaCOO:
|
|
useDirectConversion = false;
|
|
break;
|
|
case SparseToSparseConversionStrategy::kDirect:
|
|
useDirectConversion = true;
|
|
assert(canUseDirectConversion(encDst.getDimLevelType()) &&
|
|
"Unsupported target for direct sparse-to-sparse conversion");
|
|
break;
|
|
case SparseToSparseConversionStrategy::kAuto:
|
|
useDirectConversion = canUseDirectConversion(encDst.getDimLevelType());
|
|
break;
|
|
}
|
|
if (useDirectConversion) {
|
|
newParams(rewriter, params, op, stp, encDst, Action::kSparseToSparse,
|
|
sizes, src);
|
|
rewriter.replaceOp(op, genNewCall(rewriter, op, params));
|
|
} else { // use via-COO conversion.
|
|
// Set up encoding with right mix of src and dst so that the two
|
|
// method calls can share most parameters, while still providing
|
|
// the correct sparsity information to either of them.
|
|
auto enc = SparseTensorEncodingAttr::get(
|
|
op->getContext(), encDst.getDimLevelType(), encDst.getDimOrdering(),
|
|
encSrc.getPointerBitWidth(), encSrc.getIndexBitWidth());
|
|
newParams(rewriter, params, op, stp, enc, Action::kToCOO, sizes, src);
|
|
Value coo = genNewCall(rewriter, op, params);
|
|
params[3] = constantPointerTypeEncoding(rewriter, loc, encDst);
|
|
params[4] = constantIndexTypeEncoding(rewriter, loc, encDst);
|
|
params[6] = constantAction(rewriter, loc, Action::kFromCOO);
|
|
params[7] = coo;
|
|
Value dst = genNewCall(rewriter, op, params);
|
|
genDelCOOCall(rewriter, op, stp.getElementType(), coo);
|
|
rewriter.replaceOp(op, dst);
|
|
}
|
|
return success();
|
|
}
|
|
if (!encDst && encSrc) {
|
|
// This is sparse => dense conversion, which is handled as follows:
|
|
// dst = new Tensor(0);
|
|
// iter = src->toCOO();
|
|
// iter->startIterator();
|
|
// while (elem = iter->getNext()) {
|
|
// dst[elem.indices] = elem.value;
|
|
// }
|
|
RankedTensorType dstTensorTp = resType.cast<RankedTensorType>();
|
|
RankedTensorType srcTensorTp = srcType.cast<RankedTensorType>();
|
|
unsigned rank = dstTensorTp.getRank();
|
|
Type elemTp = dstTensorTp.getElementType();
|
|
// Fabricate a no-permutation encoding for newParams().
|
|
// The pointer/index types must be those of `src`.
|
|
// The dimLevelTypes aren't actually used by Action::kToIterator.
|
|
encDst = SparseTensorEncodingAttr::get(
|
|
op->getContext(),
|
|
SmallVector<SparseTensorEncodingAttr::DimLevelType>(
|
|
rank, SparseTensorEncodingAttr::DimLevelType::Dense),
|
|
AffineMap(), encSrc.getPointerBitWidth(), encSrc.getIndexBitWidth());
|
|
SmallVector<Value, 4> sizes;
|
|
SmallVector<Value, 8> params;
|
|
sizesFromPtr(rewriter, sizes, op, encSrc, srcTensorTp, src);
|
|
newParams(rewriter, params, op, dstTensorTp, encDst, Action::kToIterator,
|
|
sizes, src);
|
|
Value iter = genNewCall(rewriter, op, params);
|
|
Value ind = genAlloca(rewriter, loc, rank, rewriter.getIndexType());
|
|
Value elemPtr = genAllocaScalar(rewriter, loc, elemTp);
|
|
Value dst = allocDenseTensor(rewriter, loc, dstTensorTp, sizes);
|
|
SmallVector<Value> noArgs;
|
|
SmallVector<Type> noTypes;
|
|
auto whileOp = rewriter.create<scf::WhileOp>(loc, noTypes, noArgs);
|
|
Block *before = rewriter.createBlock(&whileOp.getBefore(), {}, noTypes);
|
|
rewriter.setInsertionPointToEnd(before);
|
|
Value cond = genGetNextCall(rewriter, op, iter, ind, elemPtr);
|
|
rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments());
|
|
Block *after = rewriter.createBlock(&whileOp.getAfter(), {}, noTypes);
|
|
rewriter.setInsertionPointToStart(after);
|
|
insertScalarIntoDenseTensor(rewriter, loc, elemPtr, dst, rank, ind);
|
|
rewriter.create<scf::YieldOp>(loc);
|
|
rewriter.setInsertionPointAfter(whileOp);
|
|
genDelCOOCall(rewriter, op, elemTp, iter);
|
|
rewriter.replaceOpWithNewOp<bufferization::ToTensorOp>(op, resType, dst);
|
|
return success();
|
|
}
|
|
if (!encDst && !encSrc) {
|
|
// dense => dense
|
|
return failure();
|
|
}
|
|
// This is a dense => sparse conversion or a sparse constant in COO =>
|
|
// sparse conversion, which is handled as follows:
|
|
// t = newSparseCOO()
|
|
// ...code to fill the COO tensor t...
|
|
// s = newSparseTensor(t)
|
|
//
|
|
// To fill the COO tensor from a dense tensor:
|
|
// for i1 in dim1
|
|
// ..
|
|
// for ik in dimk
|
|
// val = a[i1,..,ik]
|
|
// if val != 0
|
|
// t->add(val, [i1,..,ik], [p1,..,pk])
|
|
//
|
|
// To fill the COO tensor from a sparse constant in COO format:
|
|
// for i in range(NNZ)
|
|
// val = values[i]
|
|
// [i1,..,ik] = indices[i]
|
|
// t->add(val, [i1,..,ik], [p1,..,pk])
|
|
//
|
|
// Note that the dense tensor traversal code is actually implemented
|
|
// using MLIR IR to avoid having to expose too much low-level
|
|
// memref traversal details to the runtime support library.
|
|
// Also note that the code below only generates the "new" ops and
|
|
// the loop-nest per se; whereas the entire body of the innermost
|
|
// loop is generated by genAddElt().
|
|
ShapedType stp = resType.cast<ShapedType>();
|
|
unsigned rank = stp.getRank();
|
|
SmallVector<Value, 4> sizes;
|
|
SmallVector<Value, 8> params;
|
|
sizesFromSrc(rewriter, sizes, loc, src);
|
|
newParams(rewriter, params, op, stp, encDst, Action::kEmptyCOO, sizes);
|
|
Value coo = genNewCall(rewriter, op, params);
|
|
Value ind = genAlloca(rewriter, loc, rank, rewriter.getIndexType());
|
|
Value perm = params[2];
|
|
SmallVector<Value> lo;
|
|
SmallVector<Value> hi;
|
|
SmallVector<Value> st;
|
|
Value zero = constantIndex(rewriter, loc, 0);
|
|
Value one = constantIndex(rewriter, loc, 1);
|
|
auto indicesValues = genSplitSparseConstant(rewriter, loc, src);
|
|
bool isCOOConstant = indicesValues.hasValue();
|
|
Value indices;
|
|
Value values;
|
|
if (isCOOConstant) {
|
|
indices = indicesValues->first;
|
|
values = indicesValues->second;
|
|
lo.push_back(zero);
|
|
hi.push_back(linalg::createOrFoldDimOp(rewriter, loc, values, 0));
|
|
st.push_back(one);
|
|
} else {
|
|
for (unsigned i = 0; i < rank; i++) {
|
|
lo.push_back(zero);
|
|
hi.push_back(linalg::createOrFoldDimOp(rewriter, loc, src, i));
|
|
st.push_back(one);
|
|
}
|
|
}
|
|
Type eltType = stp.getElementType();
|
|
scf::buildLoopNest(
|
|
rewriter, op.getLoc(), lo, hi, st, {},
|
|
[&](OpBuilder &builder, Location loc, ValueRange ivs,
|
|
ValueRange args) -> scf::ValueVector {
|
|
Value val;
|
|
if (isCOOConstant)
|
|
val = genIndexAndValueForSparse(rewriter, loc, indices, values, ind,
|
|
ivs, rank);
|
|
else
|
|
val = genIndexAndValueForDense(rewriter, loc, src, ind, ivs);
|
|
genAddEltCall(rewriter, op, eltType, coo, val, ind, perm);
|
|
return {};
|
|
});
|
|
// Final call to construct sparse tensor storage.
|
|
params[6] = constantAction(rewriter, loc, Action::kFromCOO);
|
|
params[7] = coo;
|
|
Value dst = genNewCall(rewriter, op, params);
|
|
genDelCOOCall(rewriter, op, eltType, coo);
|
|
rewriter.replaceOp(op, dst);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Sparse conversion rule for the release operator.
|
|
class SparseTensorReleaseConverter : public OpConversionPattern<ReleaseOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(ReleaseOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
StringRef name = "delSparseTensor";
|
|
TypeRange noTp;
|
|
createFuncCall(rewriter, op, name, noTp, adaptor.getOperands(),
|
|
EmitCInterface::Off);
|
|
rewriter.eraseOp(op);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Sparse conversion rule for pointer accesses.
|
|
class SparseTensorToPointersConverter
|
|
: public OpConversionPattern<ToPointersOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(ToPointersOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
Type resType = op.getType();
|
|
Type ptrType = resType.cast<ShapedType>().getElementType();
|
|
SmallString<16> name{"sparsePointers", overheadTypeFunctionSuffix(ptrType)};
|
|
replaceOpWithFuncCall(rewriter, op, name, resType, adaptor.getOperands(),
|
|
EmitCInterface::On);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Sparse conversion rule for index accesses.
|
|
class SparseTensorToIndicesConverter : public OpConversionPattern<ToIndicesOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(ToIndicesOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
Type resType = op.getType();
|
|
Type indType = resType.cast<ShapedType>().getElementType();
|
|
SmallString<15> name{"sparseIndices", overheadTypeFunctionSuffix(indType)};
|
|
replaceOpWithFuncCall(rewriter, op, name, resType, adaptor.getOperands(),
|
|
EmitCInterface::On);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Sparse conversion rule for value accesses.
|
|
class SparseTensorToValuesConverter : public OpConversionPattern<ToValuesOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(ToValuesOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
Type resType = op.getType();
|
|
Type eltType = resType.cast<ShapedType>().getElementType();
|
|
SmallString<15> name{"sparseValues", primaryTypeFunctionSuffix(eltType)};
|
|
replaceOpWithFuncCall(rewriter, op, name, resType, adaptor.getOperands(),
|
|
EmitCInterface::On);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Sparse conversion rule for tensor rematerialization.
|
|
class SparseTensorLoadConverter : public OpConversionPattern<LoadOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(LoadOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
if (op.hasInserts()) {
|
|
// Finalize any pending insertions.
|
|
StringRef name = "endInsert";
|
|
TypeRange noTp;
|
|
createFuncCall(rewriter, op, name, noTp, adaptor.getOperands(),
|
|
EmitCInterface::Off);
|
|
}
|
|
rewriter.replaceOp(op, adaptor.getOperands());
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Sparse conversion rule for inserting in lexicographic index order.
|
|
class SparseTensorLexInsertConverter : public OpConversionPattern<LexInsertOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(LexInsertOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
Type elemTp = op.tensor().getType().cast<ShapedType>().getElementType();
|
|
SmallString<12> name{"lexInsert", primaryTypeFunctionSuffix(elemTp)};
|
|
TypeRange noTp;
|
|
replaceOpWithFuncCall(rewriter, op, name, noTp, adaptor.getOperands(),
|
|
EmitCInterface::On);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
class SparseTensorExpandConverter : public OpConversionPattern<ExpandOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(ExpandOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
Location loc = op->getLoc();
|
|
ShapedType srcType = op.tensor().getType().cast<ShapedType>();
|
|
Type eltType = srcType.getElementType();
|
|
Type boolType = rewriter.getIntegerType(1);
|
|
Type idxType = rewriter.getIndexType();
|
|
// All initialization should be done on entry of the loop nest.
|
|
rewriter.setInsertionPointAfter(op.tensor().getDefiningOp());
|
|
// Determine the size for access expansion.
|
|
auto enc = getSparseTensorEncoding(srcType);
|
|
Value src = adaptor.getOperands()[0];
|
|
Value sz = genDimSizeCall(rewriter, op, enc, src, srcType.getRank() - 1);
|
|
// Allocate temporary buffers for values, filled-switch, and indices.
|
|
// We do not use stack buffers for this, since the expanded size may
|
|
// be rather large (as it envelops a single expanded dense dimension).
|
|
Value values = genAlloc(rewriter, loc, sz, eltType);
|
|
Value filled = genAlloc(rewriter, loc, sz, boolType);
|
|
Value indices = genAlloc(rewriter, loc, sz, idxType);
|
|
Value zero = constantZero(rewriter, loc, idxType);
|
|
// Reset the values/filled-switch to all-zero/false. Note that this
|
|
// introduces an O(N) operation into the computation, but this reset
|
|
// operation is amortized over the innermost loops for the access
|
|
// pattern expansion. As noted in the operation doc, we would like
|
|
// to amortize this setup cost even between kernels.
|
|
rewriter.create<linalg::FillOp>(
|
|
loc, ValueRange{constantZero(rewriter, loc, eltType)},
|
|
ValueRange{values});
|
|
rewriter.create<linalg::FillOp>(
|
|
loc, ValueRange{constantZero(rewriter, loc, boolType)},
|
|
ValueRange{filled});
|
|
// Replace expansion op with these buffers and initial index.
|
|
assert(op.getNumResults() == 4);
|
|
rewriter.replaceOp(op, {values, filled, indices, zero});
|
|
return success();
|
|
}
|
|
};
|
|
|
|
class SparseTensorCompressConverter : public OpConversionPattern<CompressOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(CompressOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
Location loc = op->getLoc();
|
|
// Note that this method call resets the values/filled-switch back to
|
|
// all-zero/false by only iterating over the set elements, so the
|
|
// complexity remains proportional to the sparsity of the expanded
|
|
// access pattern.
|
|
Type elemTp = op.tensor().getType().cast<ShapedType>().getElementType();
|
|
SmallString<12> name{"expInsert", primaryTypeFunctionSuffix(elemTp)};
|
|
TypeRange noTp;
|
|
replaceOpWithFuncCall(rewriter, op, name, noTp, adaptor.getOperands(),
|
|
EmitCInterface::On);
|
|
// Deallocate the buffers on exit of the loop nest.
|
|
Operation *parent = op;
|
|
for (; isa<scf::ForOp>(parent->getParentOp()) ||
|
|
isa<scf::WhileOp>(parent->getParentOp()) ||
|
|
isa<scf::ParallelOp>(parent->getParentOp()) ||
|
|
isa<scf::IfOp>(parent->getParentOp());
|
|
parent = parent->getParentOp())
|
|
;
|
|
rewriter.setInsertionPointAfter(parent);
|
|
rewriter.create<memref::DeallocOp>(loc, adaptor.getOperands()[2]);
|
|
rewriter.create<memref::DeallocOp>(loc, adaptor.getOperands()[3]);
|
|
rewriter.create<memref::DeallocOp>(loc, adaptor.getOperands()[4]);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
class SparseTensorOutConverter : public OpConversionPattern<OutOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(OutOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
Location loc = op->getLoc();
|
|
ShapedType srcType = op.tensor().getType().cast<ShapedType>();
|
|
// Convert to default permuted COO.
|
|
Value src = adaptor.getOperands()[0];
|
|
auto encSrc = getSparseTensorEncoding(srcType);
|
|
SmallVector<Value, 4> sizes;
|
|
SmallVector<Value, 8> params;
|
|
sizesFromPtr(rewriter, sizes, op, encSrc, srcType, src);
|
|
auto enc = SparseTensorEncodingAttr::get(
|
|
op->getContext(), encSrc.getDimLevelType(), AffineMap(),
|
|
encSrc.getPointerBitWidth(), encSrc.getIndexBitWidth());
|
|
newParams(rewriter, params, op, srcType, enc, Action::kToCOO, sizes, src);
|
|
Value coo = genNewCall(rewriter, op, params);
|
|
// Then output the tensor to external file with indices in the externally
|
|
// visible lexicographic index order. A sort is required if the source was
|
|
// not in that order yet (note that the sort can be dropped altogether if
|
|
// external format does not care about the order at all, but here we assume
|
|
// it does).
|
|
bool sort =
|
|
encSrc.getDimOrdering() && !encSrc.getDimOrdering().isIdentity();
|
|
params.clear();
|
|
params.push_back(coo);
|
|
params.push_back(adaptor.getOperands()[1]);
|
|
params.push_back(constantI1(rewriter, loc, sort));
|
|
Type eltType = srcType.getElementType();
|
|
SmallString<18> name{"outSparseTensor", primaryTypeFunctionSuffix(eltType)};
|
|
TypeRange noTp;
|
|
createFuncCall(rewriter, op, name, noTp, params, EmitCInterface::Off);
|
|
genDelCOOCall(rewriter, op, eltType, coo);
|
|
rewriter.eraseOp(op);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Public method for populating conversion rules.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Populates the given patterns list with conversion rules required for
|
|
/// the sparsification of linear algebra operations.
|
|
void mlir::populateSparseTensorConversionPatterns(
|
|
TypeConverter &typeConverter, RewritePatternSet &patterns,
|
|
const SparseTensorConversionOptions &options) {
|
|
patterns.add<SparseReturnConverter, SparseTensorToDimSizeConverter,
|
|
SparseCastConverter, SparseTensorNewConverter,
|
|
SparseTensorAllocConverter, SparseTensorReleaseConverter,
|
|
SparseTensorToPointersConverter, SparseTensorToIndicesConverter,
|
|
SparseTensorToValuesConverter, SparseTensorLoadConverter,
|
|
SparseTensorLexInsertConverter, SparseTensorExpandConverter,
|
|
SparseTensorCompressConverter, SparseTensorOutConverter>(
|
|
typeConverter, patterns.getContext());
|
|
patterns.add<SparseTensorConvertConverter>(typeConverter,
|
|
patterns.getContext(), options);
|
|
}
|