946 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			946 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C++
		
	
	
	
//===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This contains code to emit Aggregate Expr nodes as LLVM code.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "CodeGenFunction.h"
 | 
						|
#include "CodeGenModule.h"
 | 
						|
#include "CGObjCRuntime.h"
 | 
						|
#include "clang/AST/ASTContext.h"
 | 
						|
#include "clang/AST/DeclCXX.h"
 | 
						|
#include "clang/AST/StmtVisitor.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/GlobalVariable.h"
 | 
						|
#include "llvm/Intrinsics.h"
 | 
						|
using namespace clang;
 | 
						|
using namespace CodeGen;
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                        Aggregate Expression Emitter
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace  {
 | 
						|
class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
 | 
						|
  CodeGenFunction &CGF;
 | 
						|
  CGBuilderTy &Builder;
 | 
						|
  AggValueSlot Dest;
 | 
						|
  bool IgnoreResult;
 | 
						|
 | 
						|
  ReturnValueSlot getReturnValueSlot() const {
 | 
						|
    // If the destination slot requires garbage collection, we can't
 | 
						|
    // use the real return value slot, because we have to use the GC
 | 
						|
    // API.
 | 
						|
    if (Dest.requiresGCollection()) return ReturnValueSlot();
 | 
						|
 | 
						|
    return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile());
 | 
						|
  }
 | 
						|
 | 
						|
  AggValueSlot EnsureSlot(QualType T) {
 | 
						|
    if (!Dest.isIgnored()) return Dest;
 | 
						|
    return CGF.CreateAggTemp(T, "agg.tmp.ensured");
 | 
						|
  }
 | 
						|
 | 
						|
public:
 | 
						|
  AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest,
 | 
						|
                 bool ignore)
 | 
						|
    : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
 | 
						|
      IgnoreResult(ignore) {
 | 
						|
  }
 | 
						|
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  //                               Utilities
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
 | 
						|
  /// EmitAggLoadOfLValue - Given an expression with aggregate type that
 | 
						|
  /// represents a value lvalue, this method emits the address of the lvalue,
 | 
						|
  /// then loads the result into DestPtr.
 | 
						|
  void EmitAggLoadOfLValue(const Expr *E);
 | 
						|
 | 
						|
  /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
 | 
						|
  void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false);
 | 
						|
  void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false);
 | 
						|
 | 
						|
  void EmitGCMove(const Expr *E, RValue Src);
 | 
						|
 | 
						|
  bool TypeRequiresGCollection(QualType T);
 | 
						|
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  //                            Visitor Methods
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
 | 
						|
  void VisitStmt(Stmt *S) {
 | 
						|
    CGF.ErrorUnsupported(S, "aggregate expression");
 | 
						|
  }
 | 
						|
  void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
 | 
						|
  void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
 | 
						|
 | 
						|
  // l-values.
 | 
						|
  void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); }
 | 
						|
  void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
 | 
						|
  void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
 | 
						|
  void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
 | 
						|
  void VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
 | 
						|
    EmitAggLoadOfLValue(E);
 | 
						|
  }
 | 
						|
  void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
 | 
						|
    EmitAggLoadOfLValue(E);
 | 
						|
  }
 | 
						|
  void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
 | 
						|
    EmitAggLoadOfLValue(E);
 | 
						|
  }
 | 
						|
  void VisitPredefinedExpr(const PredefinedExpr *E) {
 | 
						|
    EmitAggLoadOfLValue(E);
 | 
						|
  }
 | 
						|
 | 
						|
  // Operators.
 | 
						|
  void VisitCastExpr(CastExpr *E);
 | 
						|
  void VisitCallExpr(const CallExpr *E);
 | 
						|
  void VisitStmtExpr(const StmtExpr *E);
 | 
						|
  void VisitBinaryOperator(const BinaryOperator *BO);
 | 
						|
  void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
 | 
						|
  void VisitBinAssign(const BinaryOperator *E);
 | 
						|
  void VisitBinComma(const BinaryOperator *E);
 | 
						|
 | 
						|
  void VisitObjCMessageExpr(ObjCMessageExpr *E);
 | 
						|
  void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
 | 
						|
    EmitAggLoadOfLValue(E);
 | 
						|
  }
 | 
						|
  void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E);
 | 
						|
 | 
						|
  void VisitConditionalOperator(const ConditionalOperator *CO);
 | 
						|
  void VisitChooseExpr(const ChooseExpr *CE);
 | 
						|
  void VisitInitListExpr(InitListExpr *E);
 | 
						|
  void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
 | 
						|
  void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
 | 
						|
    Visit(DAE->getExpr());
 | 
						|
  }
 | 
						|
  void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
 | 
						|
  void VisitCXXConstructExpr(const CXXConstructExpr *E);
 | 
						|
  void VisitExprWithCleanups(ExprWithCleanups *E);
 | 
						|
  void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
 | 
						|
  void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
 | 
						|
 | 
						|
  void VisitVAArgExpr(VAArgExpr *E);
 | 
						|
 | 
						|
  void EmitInitializationToLValue(Expr *E, LValue Address, QualType T);
 | 
						|
  void EmitNullInitializationToLValue(LValue Address, QualType T);
 | 
						|
  //  case Expr::ChooseExprClass:
 | 
						|
  void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
 | 
						|
};
 | 
						|
}  // end anonymous namespace.
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                                Utilities
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// EmitAggLoadOfLValue - Given an expression with aggregate type that
 | 
						|
/// represents a value lvalue, this method emits the address of the lvalue,
 | 
						|
/// then loads the result into DestPtr.
 | 
						|
void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
 | 
						|
  LValue LV = CGF.EmitLValue(E);
 | 
						|
  EmitFinalDestCopy(E, LV);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief True if the given aggregate type requires special GC API calls.
 | 
						|
bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
 | 
						|
  // Only record types have members that might require garbage collection.
 | 
						|
  const RecordType *RecordTy = T->getAs<RecordType>();
 | 
						|
  if (!RecordTy) return false;
 | 
						|
 | 
						|
  // Don't mess with non-trivial C++ types.
 | 
						|
  RecordDecl *Record = RecordTy->getDecl();
 | 
						|
  if (isa<CXXRecordDecl>(Record) &&
 | 
						|
      (!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() ||
 | 
						|
       !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check whether the type has an object member.
 | 
						|
  return Record->hasObjectMember();
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Perform the final move to DestPtr if RequiresGCollection is set.
 | 
						|
///
 | 
						|
/// The idea is that you do something like this:
 | 
						|
///   RValue Result = EmitSomething(..., getReturnValueSlot());
 | 
						|
///   EmitGCMove(E, Result);
 | 
						|
/// If GC doesn't interfere, this will cause the result to be emitted
 | 
						|
/// directly into the return value slot.  If GC does interfere, a final
 | 
						|
/// move will be performed.
 | 
						|
void AggExprEmitter::EmitGCMove(const Expr *E, RValue Src) {
 | 
						|
  if (Dest.requiresGCollection()) {
 | 
						|
    std::pair<uint64_t, unsigned> TypeInfo = 
 | 
						|
      CGF.getContext().getTypeInfo(E->getType());
 | 
						|
    unsigned long size = TypeInfo.first/8;
 | 
						|
    const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType());
 | 
						|
    llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size);
 | 
						|
    CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, Dest.getAddr(),
 | 
						|
                                                    Src.getAggregateAddr(),
 | 
						|
                                                    SizeVal);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
 | 
						|
void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore) {
 | 
						|
  assert(Src.isAggregate() && "value must be aggregate value!");
 | 
						|
 | 
						|
  // If Dest is ignored, then we're evaluating an aggregate expression
 | 
						|
  // in a context (like an expression statement) that doesn't care
 | 
						|
  // about the result.  C says that an lvalue-to-rvalue conversion is
 | 
						|
  // performed in these cases; C++ says that it is not.  In either
 | 
						|
  // case, we don't actually need to do anything unless the value is
 | 
						|
  // volatile.
 | 
						|
  if (Dest.isIgnored()) {
 | 
						|
    if (!Src.isVolatileQualified() ||
 | 
						|
        CGF.CGM.getLangOptions().CPlusPlus ||
 | 
						|
        (IgnoreResult && Ignore))
 | 
						|
      return;
 | 
						|
 | 
						|
    // If the source is volatile, we must read from it; to do that, we need
 | 
						|
    // some place to put it.
 | 
						|
    Dest = CGF.CreateAggTemp(E->getType(), "agg.tmp");
 | 
						|
  }
 | 
						|
 | 
						|
  if (Dest.requiresGCollection()) {
 | 
						|
    std::pair<uint64_t, unsigned> TypeInfo = 
 | 
						|
    CGF.getContext().getTypeInfo(E->getType());
 | 
						|
    unsigned long size = TypeInfo.first/8;
 | 
						|
    const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType());
 | 
						|
    llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size);
 | 
						|
    CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
 | 
						|
                                                      Dest.getAddr(),
 | 
						|
                                                      Src.getAggregateAddr(),
 | 
						|
                                                      SizeVal);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  // If the result of the assignment is used, copy the LHS there also.
 | 
						|
  // FIXME: Pass VolatileDest as well.  I think we also need to merge volatile
 | 
						|
  // from the source as well, as we can't eliminate it if either operand
 | 
						|
  // is volatile, unless copy has volatile for both source and destination..
 | 
						|
  CGF.EmitAggregateCopy(Dest.getAddr(), Src.getAggregateAddr(), E->getType(),
 | 
						|
                        Dest.isVolatile()|Src.isVolatileQualified());
 | 
						|
}
 | 
						|
 | 
						|
/// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
 | 
						|
void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) {
 | 
						|
  assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc");
 | 
						|
 | 
						|
  EmitFinalDestCopy(E, RValue::getAggregate(Src.getAddress(),
 | 
						|
                                            Src.isVolatileQualified()),
 | 
						|
                    Ignore);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                            Visitor Methods
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void AggExprEmitter::VisitCastExpr(CastExpr *E) {
 | 
						|
  if (Dest.isIgnored() && E->getCastKind() != CK_Dynamic) {
 | 
						|
    Visit(E->getSubExpr());
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  switch (E->getCastKind()) {
 | 
						|
  case CK_Dynamic: {
 | 
						|
    assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
 | 
						|
    LValue LV = CGF.EmitCheckedLValue(E->getSubExpr());
 | 
						|
    // FIXME: Do we also need to handle property references here?
 | 
						|
    if (LV.isSimple())
 | 
						|
      CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
 | 
						|
    else
 | 
						|
      CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
 | 
						|
    
 | 
						|
    if (!Dest.isIgnored())
 | 
						|
      CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
 | 
						|
    break;
 | 
						|
  }
 | 
						|
      
 | 
						|
  case CK_ToUnion: {
 | 
						|
    // GCC union extension
 | 
						|
    QualType Ty = E->getSubExpr()->getType();
 | 
						|
    QualType PtrTy = CGF.getContext().getPointerType(Ty);
 | 
						|
    llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(),
 | 
						|
                                                 CGF.ConvertType(PtrTy));
 | 
						|
    EmitInitializationToLValue(E->getSubExpr(), CGF.MakeAddrLValue(CastPtr, Ty),
 | 
						|
                               Ty);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case CK_DerivedToBase:
 | 
						|
  case CK_BaseToDerived:
 | 
						|
  case CK_UncheckedDerivedToBase: {
 | 
						|
    assert(0 && "cannot perform hierarchy conversion in EmitAggExpr: "
 | 
						|
                "should have been unpacked before we got here");
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case CK_GetObjCProperty: {
 | 
						|
    LValue LV = CGF.EmitLValue(E->getSubExpr());
 | 
						|
    assert(LV.isPropertyRef());
 | 
						|
    RValue RV = CGF.EmitLoadOfPropertyRefLValue(LV, getReturnValueSlot());
 | 
						|
    EmitGCMove(E, RV);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case CK_LValueToRValue: // hope for downstream optimization
 | 
						|
  case CK_NoOp:
 | 
						|
  case CK_UserDefinedConversion:
 | 
						|
  case CK_ConstructorConversion:
 | 
						|
    assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
 | 
						|
                                                   E->getType()) &&
 | 
						|
           "Implicit cast types must be compatible");
 | 
						|
    Visit(E->getSubExpr());
 | 
						|
    break;
 | 
						|
      
 | 
						|
  case CK_LValueBitCast:
 | 
						|
    llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
 | 
						|
    break;
 | 
						|
      
 | 
						|
  case CK_Dependent:
 | 
						|
  case CK_BitCast:
 | 
						|
  case CK_ArrayToPointerDecay:
 | 
						|
  case CK_FunctionToPointerDecay:
 | 
						|
  case CK_NullToPointer:
 | 
						|
  case CK_NullToMemberPointer:
 | 
						|
  case CK_BaseToDerivedMemberPointer:
 | 
						|
  case CK_DerivedToBaseMemberPointer:
 | 
						|
  case CK_MemberPointerToBoolean:
 | 
						|
  case CK_IntegralToPointer:
 | 
						|
  case CK_PointerToIntegral:
 | 
						|
  case CK_PointerToBoolean:
 | 
						|
  case CK_ToVoid:
 | 
						|
  case CK_VectorSplat:
 | 
						|
  case CK_IntegralCast:
 | 
						|
  case CK_IntegralToBoolean:
 | 
						|
  case CK_IntegralToFloating:
 | 
						|
  case CK_FloatingToIntegral:
 | 
						|
  case CK_FloatingToBoolean:
 | 
						|
  case CK_FloatingCast:
 | 
						|
  case CK_AnyPointerToObjCPointerCast:
 | 
						|
  case CK_AnyPointerToBlockPointerCast:
 | 
						|
  case CK_ObjCObjectLValueCast:
 | 
						|
  case CK_FloatingRealToComplex:
 | 
						|
  case CK_FloatingComplexToReal:
 | 
						|
  case CK_FloatingComplexToBoolean:
 | 
						|
  case CK_FloatingComplexCast:
 | 
						|
  case CK_FloatingComplexToIntegralComplex:
 | 
						|
  case CK_IntegralRealToComplex:
 | 
						|
  case CK_IntegralComplexToReal:
 | 
						|
  case CK_IntegralComplexToBoolean:
 | 
						|
  case CK_IntegralComplexCast:
 | 
						|
  case CK_IntegralComplexToFloatingComplex:
 | 
						|
    llvm_unreachable("cast kind invalid for aggregate types");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
 | 
						|
  if (E->getCallReturnType()->isReferenceType()) {
 | 
						|
    EmitAggLoadOfLValue(E);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot());
 | 
						|
  EmitGCMove(E, RV);
 | 
						|
}
 | 
						|
 | 
						|
void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
 | 
						|
  RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot());
 | 
						|
  EmitGCMove(E, RV);
 | 
						|
}
 | 
						|
 | 
						|
void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
 | 
						|
  llvm_unreachable("direct property access not surrounded by "
 | 
						|
                   "lvalue-to-rvalue cast");
 | 
						|
}
 | 
						|
 | 
						|
void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
 | 
						|
  CGF.EmitIgnoredExpr(E->getLHS());
 | 
						|
  Visit(E->getRHS());
 | 
						|
}
 | 
						|
 | 
						|
void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
 | 
						|
  CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
 | 
						|
}
 | 
						|
 | 
						|
void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
 | 
						|
  if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
 | 
						|
    VisitPointerToDataMemberBinaryOperator(E);
 | 
						|
  else
 | 
						|
    CGF.ErrorUnsupported(E, "aggregate binary expression");
 | 
						|
}
 | 
						|
 | 
						|
void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
 | 
						|
                                                    const BinaryOperator *E) {
 | 
						|
  LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
 | 
						|
  EmitFinalDestCopy(E, LV);
 | 
						|
}
 | 
						|
 | 
						|
void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
 | 
						|
  // For an assignment to work, the value on the right has
 | 
						|
  // to be compatible with the value on the left.
 | 
						|
  assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
 | 
						|
                                                 E->getRHS()->getType())
 | 
						|
         && "Invalid assignment");
 | 
						|
 | 
						|
  // FIXME:  __block variables need the RHS evaluated first!
 | 
						|
  LValue LHS = CGF.EmitLValue(E->getLHS());
 | 
						|
 | 
						|
  // We have to special case property setters, otherwise we must have
 | 
						|
  // a simple lvalue (no aggregates inside vectors, bitfields).
 | 
						|
  if (LHS.isPropertyRef()) {
 | 
						|
    AggValueSlot Slot = EnsureSlot(E->getRHS()->getType());
 | 
						|
    CGF.EmitAggExpr(E->getRHS(), Slot);
 | 
						|
    CGF.EmitStoreThroughPropertyRefLValue(Slot.asRValue(), LHS);
 | 
						|
  } else {
 | 
						|
    bool GCollection = false;
 | 
						|
    if (CGF.getContext().getLangOptions().getGCMode())
 | 
						|
      GCollection = TypeRequiresGCollection(E->getLHS()->getType());
 | 
						|
 | 
						|
    // Codegen the RHS so that it stores directly into the LHS.
 | 
						|
    AggValueSlot LHSSlot = AggValueSlot::forLValue(LHS, true, 
 | 
						|
                                                   GCollection);
 | 
						|
    CGF.EmitAggExpr(E->getRHS(), LHSSlot, false);
 | 
						|
    EmitFinalDestCopy(E, LHS, true);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void AggExprEmitter::VisitConditionalOperator(const ConditionalOperator *E) {
 | 
						|
  if (!E->getLHS()) {
 | 
						|
    CGF.ErrorUnsupported(E, "conditional operator with missing LHS");
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
 | 
						|
  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
 | 
						|
  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
 | 
						|
 | 
						|
  CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
 | 
						|
 | 
						|
  CGF.BeginConditionalBranch();
 | 
						|
  CGF.EmitBlock(LHSBlock);
 | 
						|
 | 
						|
  // Save whether the destination's lifetime is externally managed.
 | 
						|
  bool DestLifetimeManaged = Dest.isLifetimeExternallyManaged();
 | 
						|
 | 
						|
  Visit(E->getLHS());
 | 
						|
  CGF.EndConditionalBranch();
 | 
						|
  CGF.EmitBranch(ContBlock);
 | 
						|
 | 
						|
  CGF.BeginConditionalBranch();
 | 
						|
  CGF.EmitBlock(RHSBlock);
 | 
						|
 | 
						|
  // If the result of an agg expression is unused, then the emission
 | 
						|
  // of the LHS might need to create a destination slot.  That's fine
 | 
						|
  // with us, and we can safely emit the RHS into the same slot, but
 | 
						|
  // we shouldn't claim that its lifetime is externally managed.
 | 
						|
  Dest.setLifetimeExternallyManaged(DestLifetimeManaged);
 | 
						|
 | 
						|
  Visit(E->getRHS());
 | 
						|
  CGF.EndConditionalBranch();
 | 
						|
  CGF.EmitBranch(ContBlock);
 | 
						|
 | 
						|
  CGF.EmitBlock(ContBlock);
 | 
						|
}
 | 
						|
 | 
						|
void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
 | 
						|
  Visit(CE->getChosenSubExpr(CGF.getContext()));
 | 
						|
}
 | 
						|
 | 
						|
void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
 | 
						|
  llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
 | 
						|
  llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
 | 
						|
 | 
						|
  if (!ArgPtr) {
 | 
						|
    CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  EmitFinalDestCopy(VE, CGF.MakeAddrLValue(ArgPtr, VE->getType()));
 | 
						|
}
 | 
						|
 | 
						|
void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
 | 
						|
  // Ensure that we have a slot, but if we already do, remember
 | 
						|
  // whether its lifetime was externally managed.
 | 
						|
  bool WasManaged = Dest.isLifetimeExternallyManaged();
 | 
						|
  Dest = EnsureSlot(E->getType());
 | 
						|
  Dest.setLifetimeExternallyManaged();
 | 
						|
 | 
						|
  Visit(E->getSubExpr());
 | 
						|
 | 
						|
  // Set up the temporary's destructor if its lifetime wasn't already
 | 
						|
  // being managed.
 | 
						|
  if (!WasManaged)
 | 
						|
    CGF.EmitCXXTemporary(E->getTemporary(), Dest.getAddr());
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
 | 
						|
  AggValueSlot Slot = EnsureSlot(E->getType());
 | 
						|
  CGF.EmitCXXConstructExpr(E, Slot);
 | 
						|
}
 | 
						|
 | 
						|
void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
 | 
						|
  CGF.EmitExprWithCleanups(E, Dest);
 | 
						|
}
 | 
						|
 | 
						|
void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
 | 
						|
  QualType T = E->getType();
 | 
						|
  AggValueSlot Slot = EnsureSlot(T);
 | 
						|
  EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T), T);
 | 
						|
}
 | 
						|
 | 
						|
void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
 | 
						|
  QualType T = E->getType();
 | 
						|
  AggValueSlot Slot = EnsureSlot(T);
 | 
						|
  EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T), T);
 | 
						|
}
 | 
						|
 | 
						|
/// isSimpleZero - If emitting this value will obviously just cause a store of
 | 
						|
/// zero to memory, return true.  This can return false if uncertain, so it just
 | 
						|
/// handles simple cases.
 | 
						|
static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
 | 
						|
  // (0)
 | 
						|
  if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
 | 
						|
    return isSimpleZero(PE->getSubExpr(), CGF);
 | 
						|
  // 0
 | 
						|
  if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
 | 
						|
    return IL->getValue() == 0;
 | 
						|
  // +0.0
 | 
						|
  if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
 | 
						|
    return FL->getValue().isPosZero();
 | 
						|
  // int()
 | 
						|
  if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
 | 
						|
      CGF.getTypes().isZeroInitializable(E->getType()))
 | 
						|
    return true;
 | 
						|
  // (int*)0 - Null pointer expressions.
 | 
						|
  if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
 | 
						|
    return ICE->getCastKind() == CK_NullToPointer;
 | 
						|
  // '\0'
 | 
						|
  if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
 | 
						|
    return CL->getValue() == 0;
 | 
						|
  
 | 
						|
  // Otherwise, hard case: conservatively return false.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void 
 | 
						|
AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV, QualType T) {
 | 
						|
  // FIXME: Ignore result?
 | 
						|
  // FIXME: Are initializers affected by volatile?
 | 
						|
  if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
 | 
						|
    // Storing "i32 0" to a zero'd memory location is a noop.
 | 
						|
  } else if (isa<ImplicitValueInitExpr>(E)) {
 | 
						|
    EmitNullInitializationToLValue(LV, T);
 | 
						|
  } else if (T->isReferenceType()) {
 | 
						|
    RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
 | 
						|
    CGF.EmitStoreThroughLValue(RV, LV, T);
 | 
						|
  } else if (T->isAnyComplexType()) {
 | 
						|
    CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false);
 | 
						|
  } else if (CGF.hasAggregateLLVMType(T)) {
 | 
						|
    CGF.EmitAggExpr(E, AggValueSlot::forAddr(LV.getAddress(), false, true,
 | 
						|
                                             false, Dest.isZeroed()));
 | 
						|
  } else {
 | 
						|
    CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV, T);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) {
 | 
						|
  // If the destination slot is already zeroed out before the aggregate is
 | 
						|
  // copied into it, we don't have to emit any zeros here.
 | 
						|
  if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(T))
 | 
						|
    return;
 | 
						|
  
 | 
						|
  if (!CGF.hasAggregateLLVMType(T)) {
 | 
						|
    // For non-aggregates, we can store zero
 | 
						|
    llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T));
 | 
						|
    CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T);
 | 
						|
  } else {
 | 
						|
    // There's a potential optimization opportunity in combining
 | 
						|
    // memsets; that would be easy for arrays, but relatively
 | 
						|
    // difficult for structures with the current code.
 | 
						|
    CGF.EmitNullInitialization(LV.getAddress(), T);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
 | 
						|
#if 0
 | 
						|
  // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
 | 
						|
  // (Length of globals? Chunks of zeroed-out space?).
 | 
						|
  //
 | 
						|
  // If we can, prefer a copy from a global; this is a lot less code for long
 | 
						|
  // globals, and it's easier for the current optimizers to analyze.
 | 
						|
  if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
 | 
						|
    llvm::GlobalVariable* GV =
 | 
						|
    new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
 | 
						|
                             llvm::GlobalValue::InternalLinkage, C, "");
 | 
						|
    EmitFinalDestCopy(E, CGF.MakeAddrLValue(GV, E->getType()));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
#endif
 | 
						|
  if (E->hadArrayRangeDesignator())
 | 
						|
    CGF.ErrorUnsupported(E, "GNU array range designator extension");
 | 
						|
 | 
						|
  llvm::Value *DestPtr = Dest.getAddr();
 | 
						|
 | 
						|
  // Handle initialization of an array.
 | 
						|
  if (E->getType()->isArrayType()) {
 | 
						|
    const llvm::PointerType *APType =
 | 
						|
      cast<llvm::PointerType>(DestPtr->getType());
 | 
						|
    const llvm::ArrayType *AType =
 | 
						|
      cast<llvm::ArrayType>(APType->getElementType());
 | 
						|
 | 
						|
    uint64_t NumInitElements = E->getNumInits();
 | 
						|
 | 
						|
    if (E->getNumInits() > 0) {
 | 
						|
      QualType T1 = E->getType();
 | 
						|
      QualType T2 = E->getInit(0)->getType();
 | 
						|
      if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) {
 | 
						|
        EmitAggLoadOfLValue(E->getInit(0));
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    uint64_t NumArrayElements = AType->getNumElements();
 | 
						|
    QualType ElementType = CGF.getContext().getCanonicalType(E->getType());
 | 
						|
    ElementType = CGF.getContext().getAsArrayType(ElementType)->getElementType();
 | 
						|
 | 
						|
    // FIXME: were we intentionally ignoring address spaces and GC attributes?
 | 
						|
 | 
						|
    for (uint64_t i = 0; i != NumArrayElements; ++i) {
 | 
						|
      // If we're done emitting initializers and the destination is known-zeroed
 | 
						|
      // then we're done.
 | 
						|
      if (i == NumInitElements &&
 | 
						|
          Dest.isZeroed() &&
 | 
						|
          CGF.getTypes().isZeroInitializable(ElementType))
 | 
						|
        break;
 | 
						|
 | 
						|
      llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array");
 | 
						|
      LValue LV = CGF.MakeAddrLValue(NextVal, ElementType);
 | 
						|
      
 | 
						|
      if (i < NumInitElements)
 | 
						|
        EmitInitializationToLValue(E->getInit(i), LV, ElementType);
 | 
						|
      else
 | 
						|
        EmitNullInitializationToLValue(LV, ElementType);
 | 
						|
      
 | 
						|
      // If the GEP didn't get used because of a dead zero init or something
 | 
						|
      // else, clean it up for -O0 builds and general tidiness.
 | 
						|
      if (llvm::GetElementPtrInst *GEP =
 | 
						|
            dyn_cast<llvm::GetElementPtrInst>(NextVal))
 | 
						|
        if (GEP->use_empty())
 | 
						|
          GEP->eraseFromParent();
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(E->getType()->isRecordType() && "Only support structs/unions here!");
 | 
						|
 | 
						|
  // Do struct initialization; this code just sets each individual member
 | 
						|
  // to the approprate value.  This makes bitfield support automatic;
 | 
						|
  // the disadvantage is that the generated code is more difficult for
 | 
						|
  // the optimizer, especially with bitfields.
 | 
						|
  unsigned NumInitElements = E->getNumInits();
 | 
						|
  RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
 | 
						|
  
 | 
						|
  if (E->getType()->isUnionType()) {
 | 
						|
    // Only initialize one field of a union. The field itself is
 | 
						|
    // specified by the initializer list.
 | 
						|
    if (!E->getInitializedFieldInUnion()) {
 | 
						|
      // Empty union; we have nothing to do.
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
      // Make sure that it's really an empty and not a failure of
 | 
						|
      // semantic analysis.
 | 
						|
      for (RecordDecl::field_iterator Field = SD->field_begin(),
 | 
						|
                                   FieldEnd = SD->field_end();
 | 
						|
           Field != FieldEnd; ++Field)
 | 
						|
        assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
 | 
						|
#endif
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // FIXME: volatility
 | 
						|
    FieldDecl *Field = E->getInitializedFieldInUnion();
 | 
						|
 | 
						|
    LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, Field, 0);
 | 
						|
    if (NumInitElements) {
 | 
						|
      // Store the initializer into the field
 | 
						|
      EmitInitializationToLValue(E->getInit(0), FieldLoc, Field->getType());
 | 
						|
    } else {
 | 
						|
      // Default-initialize to null.
 | 
						|
      EmitNullInitializationToLValue(FieldLoc, Field->getType());
 | 
						|
    }
 | 
						|
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Here we iterate over the fields; this makes it simpler to both
 | 
						|
  // default-initialize fields and skip over unnamed fields.
 | 
						|
  unsigned CurInitVal = 0;
 | 
						|
  for (RecordDecl::field_iterator Field = SD->field_begin(),
 | 
						|
                               FieldEnd = SD->field_end();
 | 
						|
       Field != FieldEnd; ++Field) {
 | 
						|
    // We're done once we hit the flexible array member
 | 
						|
    if (Field->getType()->isIncompleteArrayType())
 | 
						|
      break;
 | 
						|
 | 
						|
    if (Field->isUnnamedBitfield())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Don't emit GEP before a noop store of zero.
 | 
						|
    if (CurInitVal == NumInitElements && Dest.isZeroed() &&
 | 
						|
        CGF.getTypes().isZeroInitializable(E->getType()))
 | 
						|
      break;
 | 
						|
    
 | 
						|
    // FIXME: volatility
 | 
						|
    LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, *Field, 0);
 | 
						|
    // We never generate write-barries for initialized fields.
 | 
						|
    FieldLoc.setNonGC(true);
 | 
						|
    
 | 
						|
    if (CurInitVal < NumInitElements) {
 | 
						|
      // Store the initializer into the field.
 | 
						|
      EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc,
 | 
						|
                                 Field->getType());
 | 
						|
    } else {
 | 
						|
      // We're out of initalizers; default-initialize to null
 | 
						|
      EmitNullInitializationToLValue(FieldLoc, Field->getType());
 | 
						|
    }
 | 
						|
    
 | 
						|
    // If the GEP didn't get used because of a dead zero init or something
 | 
						|
    // else, clean it up for -O0 builds and general tidiness.
 | 
						|
    if (FieldLoc.isSimple())
 | 
						|
      if (llvm::GetElementPtrInst *GEP =
 | 
						|
            dyn_cast<llvm::GetElementPtrInst>(FieldLoc.getAddress()))
 | 
						|
        if (GEP->use_empty())
 | 
						|
          GEP->eraseFromParent();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                        Entry Points into this File
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// GetNumNonZeroBytesInInit - Get an approximate count of the number of
 | 
						|
/// non-zero bytes that will be stored when outputting the initializer for the
 | 
						|
/// specified initializer expression.
 | 
						|
static uint64_t GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
 | 
						|
  if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
 | 
						|
    return GetNumNonZeroBytesInInit(PE->getSubExpr(), CGF);
 | 
						|
 | 
						|
  // 0 and 0.0 won't require any non-zero stores!
 | 
						|
  if (isSimpleZero(E, CGF)) return 0;
 | 
						|
 | 
						|
  // If this is an initlist expr, sum up the size of sizes of the (present)
 | 
						|
  // elements.  If this is something weird, assume the whole thing is non-zero.
 | 
						|
  const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
 | 
						|
  if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType()))
 | 
						|
    return CGF.getContext().getTypeSize(E->getType())/8;
 | 
						|
  
 | 
						|
  // InitListExprs for structs have to be handled carefully.  If there are
 | 
						|
  // reference members, we need to consider the size of the reference, not the
 | 
						|
  // referencee.  InitListExprs for unions and arrays can't have references.
 | 
						|
  if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
 | 
						|
    if (!RT->isUnionType()) {
 | 
						|
      RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
 | 
						|
      uint64_t NumNonZeroBytes = 0;
 | 
						|
      
 | 
						|
      unsigned ILEElement = 0;
 | 
						|
      for (RecordDecl::field_iterator Field = SD->field_begin(),
 | 
						|
           FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) {
 | 
						|
        // We're done once we hit the flexible array member or run out of
 | 
						|
        // InitListExpr elements.
 | 
						|
        if (Field->getType()->isIncompleteArrayType() ||
 | 
						|
            ILEElement == ILE->getNumInits())
 | 
						|
          break;
 | 
						|
        if (Field->isUnnamedBitfield())
 | 
						|
          continue;
 | 
						|
 | 
						|
        const Expr *E = ILE->getInit(ILEElement++);
 | 
						|
        
 | 
						|
        // Reference values are always non-null and have the width of a pointer.
 | 
						|
        if (Field->getType()->isReferenceType())
 | 
						|
          NumNonZeroBytes += CGF.getContext().Target.getPointerWidth(0);
 | 
						|
        else
 | 
						|
          NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
 | 
						|
      }
 | 
						|
      
 | 
						|
      return NumNonZeroBytes;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  
 | 
						|
  uint64_t NumNonZeroBytes = 0;
 | 
						|
  for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
 | 
						|
    NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
 | 
						|
  return NumNonZeroBytes;
 | 
						|
}
 | 
						|
 | 
						|
/// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
 | 
						|
/// zeros in it, emit a memset and avoid storing the individual zeros.
 | 
						|
///
 | 
						|
static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
 | 
						|
                                     CodeGenFunction &CGF) {
 | 
						|
  // If the slot is already known to be zeroed, nothing to do.  Don't mess with
 | 
						|
  // volatile stores.
 | 
						|
  if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return;
 | 
						|
  
 | 
						|
  // If the type is 16-bytes or smaller, prefer individual stores over memset.
 | 
						|
  std::pair<uint64_t, unsigned> TypeInfo =
 | 
						|
    CGF.getContext().getTypeInfo(E->getType());
 | 
						|
  if (TypeInfo.first/8 <= 16)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Check to see if over 3/4 of the initializer are known to be zero.  If so,
 | 
						|
  // we prefer to emit memset + individual stores for the rest.
 | 
						|
  uint64_t NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
 | 
						|
  if (NumNonZeroBytes*4 > TypeInfo.first/8)
 | 
						|
    return;
 | 
						|
  
 | 
						|
  // Okay, it seems like a good idea to use an initial memset, emit the call.
 | 
						|
  llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first/8);
 | 
						|
  llvm::ConstantInt *AlignVal = CGF.Builder.getInt32(TypeInfo.second/8);
 | 
						|
 | 
						|
  llvm::Value *Loc = Slot.getAddr();
 | 
						|
  const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
 | 
						|
  
 | 
						|
  Loc = CGF.Builder.CreateBitCast(Loc, BP);
 | 
						|
  CGF.Builder.CreateCall5(CGF.CGM.getMemSetFn(Loc->getType(),
 | 
						|
                                              SizeVal->getType()),
 | 
						|
                          Loc, CGF.Builder.getInt8(0), SizeVal, AlignVal,
 | 
						|
                          CGF.Builder.getFalse());
 | 
						|
  
 | 
						|
  // Tell the AggExprEmitter that the slot is known zero.
 | 
						|
  Slot.setZeroed();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/// EmitAggExpr - Emit the computation of the specified expression of aggregate
 | 
						|
/// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
 | 
						|
/// the value of the aggregate expression is not needed.  If VolatileDest is
 | 
						|
/// true, DestPtr cannot be 0.
 | 
						|
///
 | 
						|
/// \param IsInitializer - true if this evaluation is initializing an
 | 
						|
/// object whose lifetime is already being managed.
 | 
						|
//
 | 
						|
// FIXME: Take Qualifiers object.
 | 
						|
void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot,
 | 
						|
                                  bool IgnoreResult) {
 | 
						|
  assert(E && hasAggregateLLVMType(E->getType()) &&
 | 
						|
         "Invalid aggregate expression to emit");
 | 
						|
  assert((Slot.getAddr() != 0 || Slot.isIgnored()) &&
 | 
						|
         "slot has bits but no address");
 | 
						|
 | 
						|
  // Optimize the slot if possible.
 | 
						|
  CheckAggExprForMemSetUse(Slot, E, *this);
 | 
						|
 
 | 
						|
  AggExprEmitter(*this, Slot, IgnoreResult).Visit(const_cast<Expr*>(E));
 | 
						|
}
 | 
						|
 | 
						|
LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
 | 
						|
  assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!");
 | 
						|
  llvm::Value *Temp = CreateMemTemp(E->getType());
 | 
						|
  LValue LV = MakeAddrLValue(Temp, E->getType());
 | 
						|
  EmitAggExpr(E, AggValueSlot::forAddr(Temp, LV.isVolatileQualified(), false));
 | 
						|
  return LV;
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr,
 | 
						|
                                        llvm::Value *SrcPtr, QualType Ty,
 | 
						|
                                        bool isVolatile) {
 | 
						|
  assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
 | 
						|
 | 
						|
  if (getContext().getLangOptions().CPlusPlus) {
 | 
						|
    if (const RecordType *RT = Ty->getAs<RecordType>()) {
 | 
						|
      CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
 | 
						|
      assert((Record->hasTrivialCopyConstructor() || 
 | 
						|
              Record->hasTrivialCopyAssignment()) &&
 | 
						|
             "Trying to aggregate-copy a type without a trivial copy "
 | 
						|
             "constructor or assignment operator");
 | 
						|
      // Ignore empty classes in C++.
 | 
						|
      if (Record->isEmpty())
 | 
						|
        return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
 | 
						|
  // C99 6.5.16.1p3, which states "If the value being stored in an object is
 | 
						|
  // read from another object that overlaps in anyway the storage of the first
 | 
						|
  // object, then the overlap shall be exact and the two objects shall have
 | 
						|
  // qualified or unqualified versions of a compatible type."
 | 
						|
  //
 | 
						|
  // memcpy is not defined if the source and destination pointers are exactly
 | 
						|
  // equal, but other compilers do this optimization, and almost every memcpy
 | 
						|
  // implementation handles this case safely.  If there is a libc that does not
 | 
						|
  // safely handle this, we can add a target hook.
 | 
						|
 | 
						|
  // Get size and alignment info for this aggregate.
 | 
						|
  std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty);
 | 
						|
 | 
						|
  // FIXME: Handle variable sized types.
 | 
						|
 | 
						|
  // FIXME: If we have a volatile struct, the optimizer can remove what might
 | 
						|
  // appear to be `extra' memory ops:
 | 
						|
  //
 | 
						|
  // volatile struct { int i; } a, b;
 | 
						|
  //
 | 
						|
  // int main() {
 | 
						|
  //   a = b;
 | 
						|
  //   a = b;
 | 
						|
  // }
 | 
						|
  //
 | 
						|
  // we need to use a different call here.  We use isVolatile to indicate when
 | 
						|
  // either the source or the destination is volatile.
 | 
						|
 | 
						|
  const llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
 | 
						|
  const llvm::Type *DBP =
 | 
						|
    llvm::Type::getInt8PtrTy(VMContext, DPT->getAddressSpace());
 | 
						|
  DestPtr = Builder.CreateBitCast(DestPtr, DBP, "tmp");
 | 
						|
 | 
						|
  const llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
 | 
						|
  const llvm::Type *SBP =
 | 
						|
    llvm::Type::getInt8PtrTy(VMContext, SPT->getAddressSpace());
 | 
						|
  SrcPtr = Builder.CreateBitCast(SrcPtr, SBP, "tmp");
 | 
						|
 | 
						|
  if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
 | 
						|
    RecordDecl *Record = RecordTy->getDecl();
 | 
						|
    if (Record->hasObjectMember()) {
 | 
						|
      unsigned long size = TypeInfo.first/8;
 | 
						|
      const llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
 | 
						|
      llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size);
 | 
						|
      CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 
 | 
						|
                                                    SizeVal);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  } else if (getContext().getAsArrayType(Ty)) {
 | 
						|
    QualType BaseType = getContext().getBaseElementType(Ty);
 | 
						|
    if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
 | 
						|
      if (RecordTy->getDecl()->hasObjectMember()) {
 | 
						|
        unsigned long size = TypeInfo.first/8;
 | 
						|
        const llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
 | 
						|
        llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size);
 | 
						|
        CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 
 | 
						|
                                                      SizeVal);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  Builder.CreateCall5(CGM.getMemCpyFn(DestPtr->getType(), SrcPtr->getType(),
 | 
						|
                                      IntPtrTy),
 | 
						|
                      DestPtr, SrcPtr,
 | 
						|
                      // TypeInfo.first describes size in bits.
 | 
						|
                      llvm::ConstantInt::get(IntPtrTy, TypeInfo.first/8),
 | 
						|
                      Builder.getInt32(TypeInfo.second/8),
 | 
						|
                      Builder.getInt1(isVolatile));
 | 
						|
}
 |