1561 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1561 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			C++
		
	
	
	
//===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This coordinates the per-function state used while generating code.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "CodeGenFunction.h"
 | 
						|
#include "CodeGenModule.h"
 | 
						|
#include "CGCXXABI.h"
 | 
						|
#include "CGDebugInfo.h"
 | 
						|
#include "CGException.h"
 | 
						|
#include "clang/Basic/TargetInfo.h"
 | 
						|
#include "clang/AST/APValue.h"
 | 
						|
#include "clang/AST/ASTContext.h"
 | 
						|
#include "clang/AST/Decl.h"
 | 
						|
#include "clang/AST/DeclCXX.h"
 | 
						|
#include "clang/AST/StmtCXX.h"
 | 
						|
#include "clang/Frontend/CodeGenOptions.h"
 | 
						|
#include "llvm/Target/TargetData.h"
 | 
						|
#include "llvm/Intrinsics.h"
 | 
						|
using namespace clang;
 | 
						|
using namespace CodeGen;
 | 
						|
 | 
						|
static void ResolveAllBranchFixups(CodeGenFunction &CGF,
 | 
						|
                                   llvm::SwitchInst *Switch,
 | 
						|
                                   llvm::BasicBlock *CleanupEntry);
 | 
						|
 | 
						|
CodeGenFunction::CodeGenFunction(CodeGenModule &cgm)
 | 
						|
  : BlockFunction(cgm, *this, Builder), CGM(cgm),
 | 
						|
    Target(CGM.getContext().Target),
 | 
						|
    Builder(cgm.getModule().getContext()),
 | 
						|
    NormalCleanupDest(0), EHCleanupDest(0), NextCleanupDestIndex(1),
 | 
						|
    ExceptionSlot(0), DebugInfo(0), IndirectBranch(0),
 | 
						|
    SwitchInsn(0), CaseRangeBlock(0),
 | 
						|
    DidCallStackSave(false), UnreachableBlock(0),
 | 
						|
    CXXThisDecl(0), CXXThisValue(0), CXXVTTDecl(0), CXXVTTValue(0),
 | 
						|
    ConditionalBranchLevel(0), TerminateLandingPad(0), TerminateHandler(0),
 | 
						|
    TrapBB(0) {
 | 
						|
      
 | 
						|
  // Get some frequently used types.
 | 
						|
  LLVMPointerWidth = Target.getPointerWidth(0);
 | 
						|
  llvm::LLVMContext &LLVMContext = CGM.getLLVMContext();
 | 
						|
  IntPtrTy = llvm::IntegerType::get(LLVMContext, LLVMPointerWidth);
 | 
						|
  Int32Ty  = llvm::Type::getInt32Ty(LLVMContext);
 | 
						|
  Int64Ty  = llvm::Type::getInt64Ty(LLVMContext);
 | 
						|
      
 | 
						|
  Exceptions = getContext().getLangOptions().Exceptions;
 | 
						|
  CatchUndefined = getContext().getLangOptions().CatchUndefined;
 | 
						|
  CGM.getCXXABI().getMangleContext().startNewFunction();
 | 
						|
}
 | 
						|
 | 
						|
ASTContext &CodeGenFunction::getContext() const {
 | 
						|
  return CGM.getContext();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
const llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
 | 
						|
  return CGM.getTypes().ConvertTypeForMem(T);
 | 
						|
}
 | 
						|
 | 
						|
const llvm::Type *CodeGenFunction::ConvertType(QualType T) {
 | 
						|
  return CGM.getTypes().ConvertType(T);
 | 
						|
}
 | 
						|
 | 
						|
bool CodeGenFunction::hasAggregateLLVMType(QualType T) {
 | 
						|
  return T->isRecordType() || T->isArrayType() || T->isAnyComplexType() ||
 | 
						|
    T->isObjCObjectType();
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::EmitReturnBlock() {
 | 
						|
  // For cleanliness, we try to avoid emitting the return block for
 | 
						|
  // simple cases.
 | 
						|
  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
 | 
						|
 | 
						|
  if (CurBB) {
 | 
						|
    assert(!CurBB->getTerminator() && "Unexpected terminated block.");
 | 
						|
 | 
						|
    // We have a valid insert point, reuse it if it is empty or there are no
 | 
						|
    // explicit jumps to the return block.
 | 
						|
    if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
 | 
						|
      ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
 | 
						|
      delete ReturnBlock.getBlock();
 | 
						|
    } else
 | 
						|
      EmitBlock(ReturnBlock.getBlock());
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, if the return block is the target of a single direct
 | 
						|
  // branch then we can just put the code in that block instead. This
 | 
						|
  // cleans up functions which started with a unified return block.
 | 
						|
  if (ReturnBlock.getBlock()->hasOneUse()) {
 | 
						|
    llvm::BranchInst *BI =
 | 
						|
      dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin());
 | 
						|
    if (BI && BI->isUnconditional() &&
 | 
						|
        BI->getSuccessor(0) == ReturnBlock.getBlock()) {
 | 
						|
      // Reset insertion point and delete the branch.
 | 
						|
      Builder.SetInsertPoint(BI->getParent());
 | 
						|
      BI->eraseFromParent();
 | 
						|
      delete ReturnBlock.getBlock();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: We are at an unreachable point, there is no reason to emit the block
 | 
						|
  // unless it has uses. However, we still need a place to put the debug
 | 
						|
  // region.end for now.
 | 
						|
 | 
						|
  EmitBlock(ReturnBlock.getBlock());
 | 
						|
}
 | 
						|
 | 
						|
static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
 | 
						|
  if (!BB) return;
 | 
						|
  if (!BB->use_empty())
 | 
						|
    return CGF.CurFn->getBasicBlockList().push_back(BB);
 | 
						|
  delete BB;
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
 | 
						|
  assert(BreakContinueStack.empty() &&
 | 
						|
         "mismatched push/pop in break/continue stack!");
 | 
						|
 | 
						|
  // Emit function epilog (to return).
 | 
						|
  EmitReturnBlock();
 | 
						|
 | 
						|
  EmitFunctionInstrumentation("__cyg_profile_func_exit");
 | 
						|
 | 
						|
  // Emit debug descriptor for function end.
 | 
						|
  if (CGDebugInfo *DI = getDebugInfo()) {
 | 
						|
    DI->setLocation(EndLoc);
 | 
						|
    DI->EmitFunctionEnd(Builder);
 | 
						|
  }
 | 
						|
 | 
						|
  EmitFunctionEpilog(*CurFnInfo);
 | 
						|
  EmitEndEHSpec(CurCodeDecl);
 | 
						|
 | 
						|
  assert(EHStack.empty() &&
 | 
						|
         "did not remove all scopes from cleanup stack!");
 | 
						|
 | 
						|
  // If someone did an indirect goto, emit the indirect goto block at the end of
 | 
						|
  // the function.
 | 
						|
  if (IndirectBranch) {
 | 
						|
    EmitBlock(IndirectBranch->getParent());
 | 
						|
    Builder.ClearInsertionPoint();
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Remove the AllocaInsertPt instruction, which is just a convenience for us.
 | 
						|
  llvm::Instruction *Ptr = AllocaInsertPt;
 | 
						|
  AllocaInsertPt = 0;
 | 
						|
  Ptr->eraseFromParent();
 | 
						|
  
 | 
						|
  // If someone took the address of a label but never did an indirect goto, we
 | 
						|
  // made a zero entry PHI node, which is illegal, zap it now.
 | 
						|
  if (IndirectBranch) {
 | 
						|
    llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
 | 
						|
    if (PN->getNumIncomingValues() == 0) {
 | 
						|
      PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
 | 
						|
      PN->eraseFromParent();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  EmitIfUsed(*this, RethrowBlock.getBlock());
 | 
						|
  EmitIfUsed(*this, TerminateLandingPad);
 | 
						|
  EmitIfUsed(*this, TerminateHandler);
 | 
						|
  EmitIfUsed(*this, UnreachableBlock);
 | 
						|
 | 
						|
  if (CGM.getCodeGenOpts().EmitDeclMetadata)
 | 
						|
    EmitDeclMetadata();
 | 
						|
}
 | 
						|
 | 
						|
/// ShouldInstrumentFunction - Return true if the current function should be
 | 
						|
/// instrumented with __cyg_profile_func_* calls
 | 
						|
bool CodeGenFunction::ShouldInstrumentFunction() {
 | 
						|
  if (!CGM.getCodeGenOpts().InstrumentFunctions)
 | 
						|
    return false;
 | 
						|
  if (CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
 | 
						|
    return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// EmitFunctionInstrumentation - Emit LLVM code to call the specified
 | 
						|
/// instrumentation function with the current function and the call site, if
 | 
						|
/// function instrumentation is enabled.
 | 
						|
void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
 | 
						|
  if (!ShouldInstrumentFunction())
 | 
						|
    return;
 | 
						|
 | 
						|
  const llvm::PointerType *PointerTy;
 | 
						|
  const llvm::FunctionType *FunctionTy;
 | 
						|
  std::vector<const llvm::Type*> ProfileFuncArgs;
 | 
						|
 | 
						|
  // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
 | 
						|
  PointerTy = llvm::Type::getInt8PtrTy(VMContext);
 | 
						|
  ProfileFuncArgs.push_back(PointerTy);
 | 
						|
  ProfileFuncArgs.push_back(PointerTy);
 | 
						|
  FunctionTy = llvm::FunctionType::get(
 | 
						|
    llvm::Type::getVoidTy(VMContext),
 | 
						|
    ProfileFuncArgs, false);
 | 
						|
 | 
						|
  llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
 | 
						|
  llvm::CallInst *CallSite = Builder.CreateCall(
 | 
						|
    CGM.getIntrinsic(llvm::Intrinsic::returnaddress, 0, 0),
 | 
						|
    llvm::ConstantInt::get(Int32Ty, 0),
 | 
						|
    "callsite");
 | 
						|
 | 
						|
  Builder.CreateCall2(F,
 | 
						|
                      llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
 | 
						|
                      CallSite);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
 | 
						|
                                    llvm::Function *Fn,
 | 
						|
                                    const FunctionArgList &Args,
 | 
						|
                                    SourceLocation StartLoc) {
 | 
						|
  const Decl *D = GD.getDecl();
 | 
						|
  
 | 
						|
  DidCallStackSave = false;
 | 
						|
  CurCodeDecl = CurFuncDecl = D;
 | 
						|
  FnRetTy = RetTy;
 | 
						|
  CurFn = Fn;
 | 
						|
  assert(CurFn->isDeclaration() && "Function already has body?");
 | 
						|
 | 
						|
  // Pass inline keyword to optimizer if it appears explicitly on any
 | 
						|
  // declaration.
 | 
						|
  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
 | 
						|
    for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(),
 | 
						|
           RE = FD->redecls_end(); RI != RE; ++RI)
 | 
						|
      if (RI->isInlineSpecified()) {
 | 
						|
        Fn->addFnAttr(llvm::Attribute::InlineHint);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
  llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
 | 
						|
 | 
						|
  // Create a marker to make it easy to insert allocas into the entryblock
 | 
						|
  // later.  Don't create this with the builder, because we don't want it
 | 
						|
  // folded.
 | 
						|
  llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
 | 
						|
  AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
 | 
						|
  if (Builder.isNamePreserving())
 | 
						|
    AllocaInsertPt->setName("allocapt");
 | 
						|
 | 
						|
  ReturnBlock = getJumpDestInCurrentScope("return");
 | 
						|
 | 
						|
  Builder.SetInsertPoint(EntryBB);
 | 
						|
 | 
						|
  // Emit subprogram debug descriptor.
 | 
						|
  if (CGDebugInfo *DI = getDebugInfo()) {
 | 
						|
    // FIXME: what is going on here and why does it ignore all these
 | 
						|
    // interesting type properties?
 | 
						|
    QualType FnType =
 | 
						|
      getContext().getFunctionType(RetTy, 0, 0,
 | 
						|
                                   FunctionProtoType::ExtProtoInfo());
 | 
						|
 | 
						|
    DI->setLocation(StartLoc);
 | 
						|
    DI->EmitFunctionStart(GD, FnType, CurFn, Builder);
 | 
						|
  }
 | 
						|
 | 
						|
  EmitFunctionInstrumentation("__cyg_profile_func_enter");
 | 
						|
 | 
						|
  // FIXME: Leaked.
 | 
						|
  // CC info is ignored, hopefully?
 | 
						|
  CurFnInfo = &CGM.getTypes().getFunctionInfo(FnRetTy, Args,
 | 
						|
                                              FunctionType::ExtInfo());
 | 
						|
 | 
						|
  if (RetTy->isVoidType()) {
 | 
						|
    // Void type; nothing to return.
 | 
						|
    ReturnValue = 0;
 | 
						|
  } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
 | 
						|
             hasAggregateLLVMType(CurFnInfo->getReturnType())) {
 | 
						|
    // Indirect aggregate return; emit returned value directly into sret slot.
 | 
						|
    // This reduces code size, and affects correctness in C++.
 | 
						|
    ReturnValue = CurFn->arg_begin();
 | 
						|
  } else {
 | 
						|
    ReturnValue = CreateIRTemp(RetTy, "retval");
 | 
						|
  }
 | 
						|
 | 
						|
  EmitStartEHSpec(CurCodeDecl);
 | 
						|
  EmitFunctionProlog(*CurFnInfo, CurFn, Args);
 | 
						|
 | 
						|
  if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance())
 | 
						|
    CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
 | 
						|
 | 
						|
  // If any of the arguments have a variably modified type, make sure to
 | 
						|
  // emit the type size.
 | 
						|
  for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
 | 
						|
       i != e; ++i) {
 | 
						|
    QualType Ty = i->second;
 | 
						|
 | 
						|
    if (Ty->isVariablyModifiedType())
 | 
						|
      EmitVLASize(Ty);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) {
 | 
						|
  const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl());
 | 
						|
  assert(FD->getBody());
 | 
						|
  EmitStmt(FD->getBody());
 | 
						|
}
 | 
						|
 | 
						|
/// Tries to mark the given function nounwind based on the
 | 
						|
/// non-existence of any throwing calls within it.  We believe this is
 | 
						|
/// lightweight enough to do at -O0.
 | 
						|
static void TryMarkNoThrow(llvm::Function *F) {
 | 
						|
  // LLVM treats 'nounwind' on a function as part of the type, so we
 | 
						|
  // can't do this on functions that can be overwritten.
 | 
						|
  if (F->mayBeOverridden()) return;
 | 
						|
 | 
						|
  for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
 | 
						|
    for (llvm::BasicBlock::iterator
 | 
						|
           BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
 | 
						|
      if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI))
 | 
						|
        if (!Call->doesNotThrow())
 | 
						|
          return;
 | 
						|
  F->setDoesNotThrow(true);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn) {
 | 
						|
  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
 | 
						|
  
 | 
						|
  // Check if we should generate debug info for this function.
 | 
						|
  if (CGM.getDebugInfo() && !FD->hasAttr<NoDebugAttr>())
 | 
						|
    DebugInfo = CGM.getDebugInfo();
 | 
						|
 | 
						|
  FunctionArgList Args;
 | 
						|
  QualType ResTy = FD->getResultType();
 | 
						|
 | 
						|
  CurGD = GD;
 | 
						|
  if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance())
 | 
						|
    CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args);
 | 
						|
 | 
						|
  if (FD->getNumParams()) {
 | 
						|
    const FunctionProtoType* FProto = FD->getType()->getAs<FunctionProtoType>();
 | 
						|
    assert(FProto && "Function def must have prototype!");
 | 
						|
 | 
						|
    for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
 | 
						|
      Args.push_back(std::make_pair(FD->getParamDecl(i),
 | 
						|
                                    FProto->getArgType(i)));
 | 
						|
  }
 | 
						|
 | 
						|
  SourceRange BodyRange;
 | 
						|
  if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
 | 
						|
 | 
						|
  // Emit the standard function prologue.
 | 
						|
  StartFunction(GD, ResTy, Fn, Args, BodyRange.getBegin());
 | 
						|
 | 
						|
  // Generate the body of the function.
 | 
						|
  if (isa<CXXDestructorDecl>(FD))
 | 
						|
    EmitDestructorBody(Args);
 | 
						|
  else if (isa<CXXConstructorDecl>(FD))
 | 
						|
    EmitConstructorBody(Args);
 | 
						|
  else
 | 
						|
    EmitFunctionBody(Args);
 | 
						|
 | 
						|
  // Emit the standard function epilogue.
 | 
						|
  FinishFunction(BodyRange.getEnd());
 | 
						|
 | 
						|
  // If we haven't marked the function nothrow through other means, do
 | 
						|
  // a quick pass now to see if we can.
 | 
						|
  if (!CurFn->doesNotThrow())
 | 
						|
    TryMarkNoThrow(CurFn);
 | 
						|
}
 | 
						|
 | 
						|
/// ContainsLabel - Return true if the statement contains a label in it.  If
 | 
						|
/// this statement is not executed normally, it not containing a label means
 | 
						|
/// that we can just remove the code.
 | 
						|
bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
 | 
						|
  // Null statement, not a label!
 | 
						|
  if (S == 0) return false;
 | 
						|
 | 
						|
  // If this is a label, we have to emit the code, consider something like:
 | 
						|
  // if (0) {  ...  foo:  bar(); }  goto foo;
 | 
						|
  if (isa<LabelStmt>(S))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // If this is a case/default statement, and we haven't seen a switch, we have
 | 
						|
  // to emit the code.
 | 
						|
  if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // If this is a switch statement, we want to ignore cases below it.
 | 
						|
  if (isa<SwitchStmt>(S))
 | 
						|
    IgnoreCaseStmts = true;
 | 
						|
 | 
						|
  // Scan subexpressions for verboten labels.
 | 
						|
  for (Stmt::const_child_iterator I = S->child_begin(), E = S->child_end();
 | 
						|
       I != E; ++I)
 | 
						|
    if (ContainsLabel(*I, IgnoreCaseStmts))
 | 
						|
      return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// ConstantFoldsToSimpleInteger - If the sepcified expression does not fold to
 | 
						|
/// a constant, or if it does but contains a label, return 0.  If it constant
 | 
						|
/// folds to 'true' and does not contain a label, return 1, if it constant folds
 | 
						|
/// to 'false' and does not contain a label, return -1.
 | 
						|
int CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond) {
 | 
						|
  // FIXME: Rename and handle conversion of other evaluatable things
 | 
						|
  // to bool.
 | 
						|
  Expr::EvalResult Result;
 | 
						|
  if (!Cond->Evaluate(Result, getContext()) || !Result.Val.isInt() ||
 | 
						|
      Result.HasSideEffects)
 | 
						|
    return 0;  // Not foldable, not integer or not fully evaluatable.
 | 
						|
 | 
						|
  if (CodeGenFunction::ContainsLabel(Cond))
 | 
						|
    return 0;  // Contains a label.
 | 
						|
 | 
						|
  return Result.Val.getInt().getBoolValue() ? 1 : -1;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
 | 
						|
/// statement) to the specified blocks.  Based on the condition, this might try
 | 
						|
/// to simplify the codegen of the conditional based on the branch.
 | 
						|
///
 | 
						|
void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
 | 
						|
                                           llvm::BasicBlock *TrueBlock,
 | 
						|
                                           llvm::BasicBlock *FalseBlock) {
 | 
						|
  if (const ParenExpr *PE = dyn_cast<ParenExpr>(Cond))
 | 
						|
    return EmitBranchOnBoolExpr(PE->getSubExpr(), TrueBlock, FalseBlock);
 | 
						|
 | 
						|
  if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
 | 
						|
    // Handle X && Y in a condition.
 | 
						|
    if (CondBOp->getOpcode() == BO_LAnd) {
 | 
						|
      // If we have "1 && X", simplify the code.  "0 && X" would have constant
 | 
						|
      // folded if the case was simple enough.
 | 
						|
      if (ConstantFoldsToSimpleInteger(CondBOp->getLHS()) == 1) {
 | 
						|
        // br(1 && X) -> br(X).
 | 
						|
        return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
 | 
						|
      }
 | 
						|
 | 
						|
      // If we have "X && 1", simplify the code to use an uncond branch.
 | 
						|
      // "X && 0" would have been constant folded to 0.
 | 
						|
      if (ConstantFoldsToSimpleInteger(CondBOp->getRHS()) == 1) {
 | 
						|
        // br(X && 1) -> br(X).
 | 
						|
        return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
 | 
						|
      }
 | 
						|
 | 
						|
      // Emit the LHS as a conditional.  If the LHS conditional is false, we
 | 
						|
      // want to jump to the FalseBlock.
 | 
						|
      llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
 | 
						|
      EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock);
 | 
						|
      EmitBlock(LHSTrue);
 | 
						|
 | 
						|
      // Any temporaries created here are conditional.
 | 
						|
      BeginConditionalBranch();
 | 
						|
      EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
 | 
						|
      EndConditionalBranch();
 | 
						|
 | 
						|
      return;
 | 
						|
    } else if (CondBOp->getOpcode() == BO_LOr) {
 | 
						|
      // If we have "0 || X", simplify the code.  "1 || X" would have constant
 | 
						|
      // folded if the case was simple enough.
 | 
						|
      if (ConstantFoldsToSimpleInteger(CondBOp->getLHS()) == -1) {
 | 
						|
        // br(0 || X) -> br(X).
 | 
						|
        return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
 | 
						|
      }
 | 
						|
 | 
						|
      // If we have "X || 0", simplify the code to use an uncond branch.
 | 
						|
      // "X || 1" would have been constant folded to 1.
 | 
						|
      if (ConstantFoldsToSimpleInteger(CondBOp->getRHS()) == -1) {
 | 
						|
        // br(X || 0) -> br(X).
 | 
						|
        return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
 | 
						|
      }
 | 
						|
 | 
						|
      // Emit the LHS as a conditional.  If the LHS conditional is true, we
 | 
						|
      // want to jump to the TrueBlock.
 | 
						|
      llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
 | 
						|
      EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse);
 | 
						|
      EmitBlock(LHSFalse);
 | 
						|
 | 
						|
      // Any temporaries created here are conditional.
 | 
						|
      BeginConditionalBranch();
 | 
						|
      EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
 | 
						|
      EndConditionalBranch();
 | 
						|
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
 | 
						|
    // br(!x, t, f) -> br(x, f, t)
 | 
						|
    if (CondUOp->getOpcode() == UO_LNot)
 | 
						|
      return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock);
 | 
						|
  }
 | 
						|
 | 
						|
  if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
 | 
						|
    // Handle ?: operator.
 | 
						|
 | 
						|
    // Just ignore GNU ?: extension.
 | 
						|
    if (CondOp->getLHS()) {
 | 
						|
      // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
 | 
						|
      llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
 | 
						|
      llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
 | 
						|
      EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock);
 | 
						|
      EmitBlock(LHSBlock);
 | 
						|
      EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock);
 | 
						|
      EmitBlock(RHSBlock);
 | 
						|
      EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Emit the code with the fully general case.
 | 
						|
  llvm::Value *CondV = EvaluateExprAsBool(Cond);
 | 
						|
  Builder.CreateCondBr(CondV, TrueBlock, FalseBlock);
 | 
						|
}
 | 
						|
 | 
						|
/// ErrorUnsupported - Print out an error that codegen doesn't support the
 | 
						|
/// specified stmt yet.
 | 
						|
void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type,
 | 
						|
                                       bool OmitOnError) {
 | 
						|
  CGM.ErrorUnsupported(S, Type, OmitOnError);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
 | 
						|
  // Ignore empty classes in C++.
 | 
						|
  if (getContext().getLangOptions().CPlusPlus) {
 | 
						|
    if (const RecordType *RT = Ty->getAs<RecordType>()) {
 | 
						|
      if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
 | 
						|
        return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Cast the dest ptr to the appropriate i8 pointer type.
 | 
						|
  unsigned DestAS =
 | 
						|
    cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
 | 
						|
  const llvm::Type *BP =
 | 
						|
    llvm::Type::getInt8PtrTy(VMContext, DestAS);
 | 
						|
  if (DestPtr->getType() != BP)
 | 
						|
    DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp");
 | 
						|
 | 
						|
  // Get size and alignment info for this aggregate.
 | 
						|
  std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty);
 | 
						|
  uint64_t Size = TypeInfo.first;
 | 
						|
  unsigned Align = TypeInfo.second;
 | 
						|
 | 
						|
  // Don't bother emitting a zero-byte memset.
 | 
						|
  if (Size == 0)
 | 
						|
    return;
 | 
						|
 | 
						|
  llvm::ConstantInt *SizeVal = llvm::ConstantInt::get(IntPtrTy, Size / 8);
 | 
						|
  llvm::ConstantInt *AlignVal = Builder.getInt32(Align / 8);
 | 
						|
 | 
						|
  // If the type contains a pointer to data member we can't memset it to zero.
 | 
						|
  // Instead, create a null constant and copy it to the destination.
 | 
						|
  if (!CGM.getTypes().isZeroInitializable(Ty)) {
 | 
						|
    llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
 | 
						|
 | 
						|
    llvm::GlobalVariable *NullVariable = 
 | 
						|
      new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
 | 
						|
                               /*isConstant=*/true, 
 | 
						|
                               llvm::GlobalVariable::PrivateLinkage,
 | 
						|
                               NullConstant, llvm::Twine());
 | 
						|
    llvm::Value *SrcPtr =
 | 
						|
      Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
 | 
						|
 | 
						|
    // FIXME: variable-size types?
 | 
						|
 | 
						|
    // Get and call the appropriate llvm.memcpy overload.
 | 
						|
    llvm::Constant *Memcpy =
 | 
						|
      CGM.getMemCpyFn(DestPtr->getType(), SrcPtr->getType(), IntPtrTy);
 | 
						|
    Builder.CreateCall5(Memcpy, DestPtr, SrcPtr, SizeVal, AlignVal,
 | 
						|
                        /*volatile*/ Builder.getFalse());
 | 
						|
    return;
 | 
						|
  } 
 | 
						|
  
 | 
						|
  // Otherwise, just memset the whole thing to zero.  This is legal
 | 
						|
  // because in LLVM, all default initializers (other than the ones we just
 | 
						|
  // handled above) are guaranteed to have a bit pattern of all zeros.
 | 
						|
 | 
						|
  // FIXME: Handle variable sized types.
 | 
						|
  Builder.CreateCall5(CGM.getMemSetFn(BP, IntPtrTy), DestPtr,
 | 
						|
                      Builder.getInt8(0),
 | 
						|
                      SizeVal, AlignVal, /*volatile*/ Builder.getFalse());
 | 
						|
}
 | 
						|
 | 
						|
llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelStmt *L) {
 | 
						|
  // Make sure that there is a block for the indirect goto.
 | 
						|
  if (IndirectBranch == 0)
 | 
						|
    GetIndirectGotoBlock();
 | 
						|
  
 | 
						|
  llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
 | 
						|
  
 | 
						|
  // Make sure the indirect branch includes all of the address-taken blocks.
 | 
						|
  IndirectBranch->addDestination(BB);
 | 
						|
  return llvm::BlockAddress::get(CurFn, BB);
 | 
						|
}
 | 
						|
 | 
						|
llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
 | 
						|
  // If we already made the indirect branch for indirect goto, return its block.
 | 
						|
  if (IndirectBranch) return IndirectBranch->getParent();
 | 
						|
  
 | 
						|
  CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
 | 
						|
  
 | 
						|
  const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(VMContext);
 | 
						|
 | 
						|
  // Create the PHI node that indirect gotos will add entries to.
 | 
						|
  llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, "indirect.goto.dest");
 | 
						|
  
 | 
						|
  // Create the indirect branch instruction.
 | 
						|
  IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
 | 
						|
  return IndirectBranch->getParent();
 | 
						|
}
 | 
						|
 | 
						|
llvm::Value *CodeGenFunction::GetVLASize(const VariableArrayType *VAT) {
 | 
						|
  llvm::Value *&SizeEntry = VLASizeMap[VAT->getSizeExpr()];
 | 
						|
 | 
						|
  assert(SizeEntry && "Did not emit size for type");
 | 
						|
  return SizeEntry;
 | 
						|
}
 | 
						|
 | 
						|
llvm::Value *CodeGenFunction::EmitVLASize(QualType Ty) {
 | 
						|
  assert(Ty->isVariablyModifiedType() &&
 | 
						|
         "Must pass variably modified type to EmitVLASizes!");
 | 
						|
 | 
						|
  EnsureInsertPoint();
 | 
						|
 | 
						|
  if (const VariableArrayType *VAT = getContext().getAsVariableArrayType(Ty)) {
 | 
						|
    // unknown size indication requires no size computation.
 | 
						|
    if (!VAT->getSizeExpr())
 | 
						|
      return 0;
 | 
						|
    llvm::Value *&SizeEntry = VLASizeMap[VAT->getSizeExpr()];
 | 
						|
 | 
						|
    if (!SizeEntry) {
 | 
						|
      const llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
 | 
						|
 | 
						|
      // Get the element size;
 | 
						|
      QualType ElemTy = VAT->getElementType();
 | 
						|
      llvm::Value *ElemSize;
 | 
						|
      if (ElemTy->isVariableArrayType())
 | 
						|
        ElemSize = EmitVLASize(ElemTy);
 | 
						|
      else
 | 
						|
        ElemSize = llvm::ConstantInt::get(SizeTy,
 | 
						|
            getContext().getTypeSizeInChars(ElemTy).getQuantity());
 | 
						|
 | 
						|
      llvm::Value *NumElements = EmitScalarExpr(VAT->getSizeExpr());
 | 
						|
      NumElements = Builder.CreateIntCast(NumElements, SizeTy, false, "tmp");
 | 
						|
 | 
						|
      SizeEntry = Builder.CreateMul(ElemSize, NumElements);
 | 
						|
    }
 | 
						|
 | 
						|
    return SizeEntry;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
 | 
						|
    EmitVLASize(AT->getElementType());
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const ParenType *PT = dyn_cast<ParenType>(Ty)) {
 | 
						|
    EmitVLASize(PT->getInnerType());
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  const PointerType *PT = Ty->getAs<PointerType>();
 | 
						|
  assert(PT && "unknown VM type!");
 | 
						|
  EmitVLASize(PT->getPointeeType());
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
 | 
						|
  if (getContext().getBuiltinVaListType()->isArrayType())
 | 
						|
    return EmitScalarExpr(E);
 | 
						|
  return EmitLValue(E).getAddress();
 | 
						|
}
 | 
						|
 | 
						|
/// Pops cleanup blocks until the given savepoint is reached.
 | 
						|
void CodeGenFunction::PopCleanupBlocks(EHScopeStack::stable_iterator Old) {
 | 
						|
  assert(Old.isValid());
 | 
						|
 | 
						|
  while (EHStack.stable_begin() != Old) {
 | 
						|
    EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.begin());
 | 
						|
 | 
						|
    // As long as Old strictly encloses the scope's enclosing normal
 | 
						|
    // cleanup, we're going to emit another normal cleanup which
 | 
						|
    // fallthrough can propagate through.
 | 
						|
    bool FallThroughIsBranchThrough =
 | 
						|
      Old.strictlyEncloses(Scope.getEnclosingNormalCleanup());
 | 
						|
 | 
						|
    PopCleanupBlock(FallThroughIsBranchThrough);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static llvm::BasicBlock *CreateNormalEntry(CodeGenFunction &CGF,
 | 
						|
                                           EHCleanupScope &Scope) {
 | 
						|
  assert(Scope.isNormalCleanup());
 | 
						|
  llvm::BasicBlock *Entry = Scope.getNormalBlock();
 | 
						|
  if (!Entry) {
 | 
						|
    Entry = CGF.createBasicBlock("cleanup");
 | 
						|
    Scope.setNormalBlock(Entry);
 | 
						|
  }
 | 
						|
  return Entry;
 | 
						|
}
 | 
						|
 | 
						|
static llvm::BasicBlock *CreateEHEntry(CodeGenFunction &CGF,
 | 
						|
                                       EHCleanupScope &Scope) {
 | 
						|
  assert(Scope.isEHCleanup());
 | 
						|
  llvm::BasicBlock *Entry = Scope.getEHBlock();
 | 
						|
  if (!Entry) {
 | 
						|
    Entry = CGF.createBasicBlock("eh.cleanup");
 | 
						|
    Scope.setEHBlock(Entry);
 | 
						|
  }
 | 
						|
  return Entry;
 | 
						|
}
 | 
						|
 | 
						|
/// Transitions the terminator of the given exit-block of a cleanup to
 | 
						|
/// be a cleanup switch.
 | 
						|
static llvm::SwitchInst *TransitionToCleanupSwitch(CodeGenFunction &CGF,
 | 
						|
                                                   llvm::BasicBlock *Block) {
 | 
						|
  // If it's a branch, turn it into a switch whose default
 | 
						|
  // destination is its original target.
 | 
						|
  llvm::TerminatorInst *Term = Block->getTerminator();
 | 
						|
  assert(Term && "can't transition block without terminator");
 | 
						|
 | 
						|
  if (llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Term)) {
 | 
						|
    assert(Br->isUnconditional());
 | 
						|
    llvm::LoadInst *Load =
 | 
						|
      new llvm::LoadInst(CGF.getNormalCleanupDestSlot(), "cleanup.dest", Term);
 | 
						|
    llvm::SwitchInst *Switch =
 | 
						|
      llvm::SwitchInst::Create(Load, Br->getSuccessor(0), 4, Block);
 | 
						|
    Br->eraseFromParent();
 | 
						|
    return Switch;
 | 
						|
  } else {
 | 
						|
    return cast<llvm::SwitchInst>(Term);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Attempts to reduce a cleanup's entry block to a fallthrough.  This
 | 
						|
/// is basically llvm::MergeBlockIntoPredecessor, except
 | 
						|
/// simplified/optimized for the tighter constraints on cleanup blocks.
 | 
						|
///
 | 
						|
/// Returns the new block, whatever it is.
 | 
						|
static llvm::BasicBlock *SimplifyCleanupEntry(CodeGenFunction &CGF,
 | 
						|
                                              llvm::BasicBlock *Entry) {
 | 
						|
  llvm::BasicBlock *Pred = Entry->getSinglePredecessor();
 | 
						|
  if (!Pred) return Entry;
 | 
						|
 | 
						|
  llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Pred->getTerminator());
 | 
						|
  if (!Br || Br->isConditional()) return Entry;
 | 
						|
  assert(Br->getSuccessor(0) == Entry);
 | 
						|
 | 
						|
  // If we were previously inserting at the end of the cleanup entry
 | 
						|
  // block, we'll need to continue inserting at the end of the
 | 
						|
  // predecessor.
 | 
						|
  bool WasInsertBlock = CGF.Builder.GetInsertBlock() == Entry;
 | 
						|
  assert(!WasInsertBlock || CGF.Builder.GetInsertPoint() == Entry->end());
 | 
						|
 | 
						|
  // Kill the branch.
 | 
						|
  Br->eraseFromParent();
 | 
						|
 | 
						|
  // Merge the blocks.
 | 
						|
  Pred->getInstList().splice(Pred->end(), Entry->getInstList());
 | 
						|
 | 
						|
  // Kill the entry block.
 | 
						|
  Entry->eraseFromParent();
 | 
						|
 | 
						|
  if (WasInsertBlock)
 | 
						|
    CGF.Builder.SetInsertPoint(Pred);
 | 
						|
 | 
						|
  return Pred;
 | 
						|
}
 | 
						|
 | 
						|
static void EmitCleanup(CodeGenFunction &CGF,
 | 
						|
                        EHScopeStack::Cleanup *Fn,
 | 
						|
                        bool ForEH,
 | 
						|
                        llvm::Value *ActiveFlag) {
 | 
						|
  // EH cleanups always occur within a terminate scope.
 | 
						|
  if (ForEH) CGF.EHStack.pushTerminate();
 | 
						|
 | 
						|
  // If there's an active flag, load it and skip the cleanup if it's
 | 
						|
  // false.
 | 
						|
  llvm::BasicBlock *ContBB = 0;
 | 
						|
  if (ActiveFlag) {
 | 
						|
    ContBB = CGF.createBasicBlock("cleanup.done");
 | 
						|
    llvm::BasicBlock *CleanupBB = CGF.createBasicBlock("cleanup.action");
 | 
						|
    llvm::Value *IsActive
 | 
						|
      = CGF.Builder.CreateLoad(ActiveFlag, "cleanup.is_active");
 | 
						|
    CGF.Builder.CreateCondBr(IsActive, CleanupBB, ContBB);
 | 
						|
    CGF.EmitBlock(CleanupBB);
 | 
						|
  }
 | 
						|
 | 
						|
  // Ask the cleanup to emit itself.
 | 
						|
  Fn->Emit(CGF, ForEH);
 | 
						|
  assert(CGF.HaveInsertPoint() && "cleanup ended with no insertion point?");
 | 
						|
 | 
						|
  // Emit the continuation block if there was an active flag.
 | 
						|
  if (ActiveFlag)
 | 
						|
    CGF.EmitBlock(ContBB);
 | 
						|
 | 
						|
  // Leave the terminate scope.
 | 
						|
  if (ForEH) CGF.EHStack.popTerminate();
 | 
						|
}
 | 
						|
 | 
						|
static void ForwardPrebranchedFallthrough(llvm::BasicBlock *Exit,
 | 
						|
                                          llvm::BasicBlock *From,
 | 
						|
                                          llvm::BasicBlock *To) {
 | 
						|
  // Exit is the exit block of a cleanup, so it always terminates in
 | 
						|
  // an unconditional branch or a switch.
 | 
						|
  llvm::TerminatorInst *Term = Exit->getTerminator();
 | 
						|
 | 
						|
  if (llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Term)) {
 | 
						|
    assert(Br->isUnconditional() && Br->getSuccessor(0) == From);
 | 
						|
    Br->setSuccessor(0, To);
 | 
						|
  } else {
 | 
						|
    llvm::SwitchInst *Switch = cast<llvm::SwitchInst>(Term);
 | 
						|
    for (unsigned I = 0, E = Switch->getNumSuccessors(); I != E; ++I)
 | 
						|
      if (Switch->getSuccessor(I) == From)
 | 
						|
        Switch->setSuccessor(I, To);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Pops a cleanup block.  If the block includes a normal cleanup, the
 | 
						|
/// current insertion point is threaded through the cleanup, as are
 | 
						|
/// any branch fixups on the cleanup.
 | 
						|
void CodeGenFunction::PopCleanupBlock(bool FallthroughIsBranchThrough) {
 | 
						|
  assert(!EHStack.empty() && "cleanup stack is empty!");
 | 
						|
  assert(isa<EHCleanupScope>(*EHStack.begin()) && "top not a cleanup!");
 | 
						|
  EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.begin());
 | 
						|
  assert(Scope.getFixupDepth() <= EHStack.getNumBranchFixups());
 | 
						|
 | 
						|
  // Remember activation information.
 | 
						|
  bool IsActive = Scope.isActive();
 | 
						|
  llvm::Value *NormalActiveFlag =
 | 
						|
    Scope.shouldTestFlagInNormalCleanup() ? Scope.getActiveFlag() : 0;
 | 
						|
  llvm::Value *EHActiveFlag = 
 | 
						|
    Scope.shouldTestFlagInEHCleanup() ? Scope.getActiveFlag() : 0;
 | 
						|
 | 
						|
  // Check whether we need an EH cleanup.  This is only true if we've
 | 
						|
  // generated a lazy EH cleanup block.
 | 
						|
  bool RequiresEHCleanup = Scope.hasEHBranches();
 | 
						|
 | 
						|
  // Check the three conditions which might require a normal cleanup:
 | 
						|
 | 
						|
  // - whether there are branch fix-ups through this cleanup
 | 
						|
  unsigned FixupDepth = Scope.getFixupDepth();
 | 
						|
  bool HasFixups = EHStack.getNumBranchFixups() != FixupDepth;
 | 
						|
 | 
						|
  // - whether there are branch-throughs or branch-afters
 | 
						|
  bool HasExistingBranches = Scope.hasBranches();
 | 
						|
 | 
						|
  // - whether there's a fallthrough
 | 
						|
  llvm::BasicBlock *FallthroughSource = Builder.GetInsertBlock();
 | 
						|
  bool HasFallthrough = (FallthroughSource != 0 && IsActive);
 | 
						|
 | 
						|
  // Branch-through fall-throughs leave the insertion point set to the
 | 
						|
  // end of the last cleanup, which points to the current scope.  The
 | 
						|
  // rest of IR gen doesn't need to worry about this; it only happens
 | 
						|
  // during the execution of PopCleanupBlocks().
 | 
						|
  bool HasPrebranchedFallthrough =
 | 
						|
    (FallthroughSource && FallthroughSource->getTerminator());
 | 
						|
 | 
						|
  // If this is a normal cleanup, then having a prebranched
 | 
						|
  // fallthrough implies that the fallthrough source unconditionally
 | 
						|
  // jumps here.
 | 
						|
  assert(!Scope.isNormalCleanup() || !HasPrebranchedFallthrough ||
 | 
						|
         (Scope.getNormalBlock() &&
 | 
						|
          FallthroughSource->getTerminator()->getSuccessor(0)
 | 
						|
            == Scope.getNormalBlock()));
 | 
						|
 | 
						|
  bool RequiresNormalCleanup = false;
 | 
						|
  if (Scope.isNormalCleanup() &&
 | 
						|
      (HasFixups || HasExistingBranches || HasFallthrough)) {
 | 
						|
    RequiresNormalCleanup = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Even if we don't need the normal cleanup, we might still have
 | 
						|
  // prebranched fallthrough to worry about.
 | 
						|
  if (Scope.isNormalCleanup() && !RequiresNormalCleanup &&
 | 
						|
      HasPrebranchedFallthrough) {
 | 
						|
    assert(!IsActive);
 | 
						|
 | 
						|
    llvm::BasicBlock *NormalEntry = Scope.getNormalBlock();
 | 
						|
 | 
						|
    // If we're branching through this cleanup, just forward the
 | 
						|
    // prebranched fallthrough to the next cleanup, leaving the insert
 | 
						|
    // point in the old block.
 | 
						|
    if (FallthroughIsBranchThrough) {
 | 
						|
      EHScope &S = *EHStack.find(Scope.getEnclosingNormalCleanup());
 | 
						|
      llvm::BasicBlock *EnclosingEntry = 
 | 
						|
        CreateNormalEntry(*this, cast<EHCleanupScope>(S));
 | 
						|
 | 
						|
      ForwardPrebranchedFallthrough(FallthroughSource,
 | 
						|
                                    NormalEntry, EnclosingEntry);
 | 
						|
      assert(NormalEntry->use_empty() &&
 | 
						|
             "uses of entry remain after forwarding?");
 | 
						|
      delete NormalEntry;
 | 
						|
 | 
						|
    // Otherwise, we're branching out;  just emit the next block.
 | 
						|
    } else {
 | 
						|
      EmitBlock(NormalEntry);
 | 
						|
      SimplifyCleanupEntry(*this, NormalEntry);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we don't need the cleanup at all, we're done.
 | 
						|
  if (!RequiresNormalCleanup && !RequiresEHCleanup) {
 | 
						|
    EHStack.popCleanup(); // safe because there are no fixups
 | 
						|
    assert(EHStack.getNumBranchFixups() == 0 ||
 | 
						|
           EHStack.hasNormalCleanups());
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Copy the cleanup emission data out.  Note that SmallVector
 | 
						|
  // guarantees maximal alignment for its buffer regardless of its
 | 
						|
  // type parameter.
 | 
						|
  llvm::SmallVector<char, 8*sizeof(void*)> CleanupBuffer;
 | 
						|
  CleanupBuffer.reserve(Scope.getCleanupSize());
 | 
						|
  memcpy(CleanupBuffer.data(),
 | 
						|
         Scope.getCleanupBuffer(), Scope.getCleanupSize());
 | 
						|
  CleanupBuffer.set_size(Scope.getCleanupSize());
 | 
						|
  EHScopeStack::Cleanup *Fn =
 | 
						|
    reinterpret_cast<EHScopeStack::Cleanup*>(CleanupBuffer.data());
 | 
						|
 | 
						|
  // We want to emit the EH cleanup after the normal cleanup, but go
 | 
						|
  // ahead and do the setup for the EH cleanup while the scope is still
 | 
						|
  // alive.
 | 
						|
  llvm::BasicBlock *EHEntry = 0;
 | 
						|
  llvm::SmallVector<llvm::Instruction*, 2> EHInstsToAppend;
 | 
						|
  if (RequiresEHCleanup) {
 | 
						|
    EHEntry = CreateEHEntry(*this, Scope);
 | 
						|
 | 
						|
    // Figure out the branch-through dest if necessary.
 | 
						|
    llvm::BasicBlock *EHBranchThroughDest = 0;
 | 
						|
    if (Scope.hasEHBranchThroughs()) {
 | 
						|
      assert(Scope.getEnclosingEHCleanup() != EHStack.stable_end());
 | 
						|
      EHScope &S = *EHStack.find(Scope.getEnclosingEHCleanup());
 | 
						|
      EHBranchThroughDest = CreateEHEntry(*this, cast<EHCleanupScope>(S));
 | 
						|
    }
 | 
						|
 | 
						|
    // If we have exactly one branch-after and no branch-throughs, we
 | 
						|
    // can dispatch it without a switch.
 | 
						|
    if (!Scope.hasEHBranchThroughs() &&
 | 
						|
        Scope.getNumEHBranchAfters() == 1) {
 | 
						|
      assert(!EHBranchThroughDest);
 | 
						|
 | 
						|
      // TODO: remove the spurious eh.cleanup.dest stores if this edge
 | 
						|
      // never went through any switches.
 | 
						|
      llvm::BasicBlock *BranchAfterDest = Scope.getEHBranchAfterBlock(0);
 | 
						|
      EHInstsToAppend.push_back(llvm::BranchInst::Create(BranchAfterDest));
 | 
						|
    
 | 
						|
    // Otherwise, if we have any branch-afters, we need a switch.
 | 
						|
    } else if (Scope.getNumEHBranchAfters()) {
 | 
						|
      // The default of the switch belongs to the branch-throughs if
 | 
						|
      // they exist.
 | 
						|
      llvm::BasicBlock *Default =
 | 
						|
        (EHBranchThroughDest ? EHBranchThroughDest : getUnreachableBlock());
 | 
						|
 | 
						|
      const unsigned SwitchCapacity = Scope.getNumEHBranchAfters();
 | 
						|
 | 
						|
      llvm::LoadInst *Load =
 | 
						|
        new llvm::LoadInst(getEHCleanupDestSlot(), "cleanup.dest");
 | 
						|
      llvm::SwitchInst *Switch =
 | 
						|
        llvm::SwitchInst::Create(Load, Default, SwitchCapacity);
 | 
						|
 | 
						|
      EHInstsToAppend.push_back(Load);
 | 
						|
      EHInstsToAppend.push_back(Switch);
 | 
						|
 | 
						|
      for (unsigned I = 0, E = Scope.getNumEHBranchAfters(); I != E; ++I)
 | 
						|
        Switch->addCase(Scope.getEHBranchAfterIndex(I),
 | 
						|
                        Scope.getEHBranchAfterBlock(I));
 | 
						|
 | 
						|
    // Otherwise, we have only branch-throughs; jump to the next EH
 | 
						|
    // cleanup.
 | 
						|
    } else {
 | 
						|
      assert(EHBranchThroughDest);
 | 
						|
      EHInstsToAppend.push_back(llvm::BranchInst::Create(EHBranchThroughDest));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!RequiresNormalCleanup) {
 | 
						|
    EHStack.popCleanup();
 | 
						|
  } else {
 | 
						|
    // If we have a fallthrough and no other need for the cleanup,
 | 
						|
    // emit it directly.
 | 
						|
    if (HasFallthrough && !HasPrebranchedFallthrough &&
 | 
						|
        !HasFixups && !HasExistingBranches) {
 | 
						|
 | 
						|
      // Fixups can cause us to optimistically create a normal block,
 | 
						|
      // only to later have no real uses for it.  Just delete it in
 | 
						|
      // this case.
 | 
						|
      // TODO: we can potentially simplify all the uses after this.
 | 
						|
      if (Scope.getNormalBlock()) {
 | 
						|
        Scope.getNormalBlock()->replaceAllUsesWith(getUnreachableBlock());
 | 
						|
        delete Scope.getNormalBlock();
 | 
						|
      }
 | 
						|
 | 
						|
      EHStack.popCleanup();
 | 
						|
 | 
						|
      EmitCleanup(*this, Fn, /*ForEH*/ false, NormalActiveFlag);
 | 
						|
 | 
						|
    // Otherwise, the best approach is to thread everything through
 | 
						|
    // the cleanup block and then try to clean up after ourselves.
 | 
						|
    } else {
 | 
						|
      // Force the entry block to exist.
 | 
						|
      llvm::BasicBlock *NormalEntry = CreateNormalEntry(*this, Scope);
 | 
						|
 | 
						|
      // I.  Set up the fallthrough edge in.
 | 
						|
 | 
						|
      // If there's a fallthrough, we need to store the cleanup
 | 
						|
      // destination index.  For fall-throughs this is always zero.
 | 
						|
      if (HasFallthrough) {
 | 
						|
        if (!HasPrebranchedFallthrough)
 | 
						|
          Builder.CreateStore(Builder.getInt32(0), getNormalCleanupDestSlot());
 | 
						|
 | 
						|
      // Otherwise, clear the IP if we don't have fallthrough because
 | 
						|
      // the cleanup is inactive.  We don't need to save it because
 | 
						|
      // it's still just FallthroughSource.
 | 
						|
      } else if (FallthroughSource) {
 | 
						|
        assert(!IsActive && "source without fallthrough for active cleanup");
 | 
						|
        Builder.ClearInsertionPoint();
 | 
						|
      }
 | 
						|
 | 
						|
      // II.  Emit the entry block.  This implicitly branches to it if
 | 
						|
      // we have fallthrough.  All the fixups and existing branches
 | 
						|
      // should already be branched to it.
 | 
						|
      EmitBlock(NormalEntry);
 | 
						|
 | 
						|
      // III.  Figure out where we're going and build the cleanup
 | 
						|
      // epilogue.
 | 
						|
 | 
						|
      bool HasEnclosingCleanups =
 | 
						|
        (Scope.getEnclosingNormalCleanup() != EHStack.stable_end());
 | 
						|
 | 
						|
      // Compute the branch-through dest if we need it:
 | 
						|
      //   - if there are branch-throughs threaded through the scope
 | 
						|
      //   - if fall-through is a branch-through
 | 
						|
      //   - if there are fixups that will be optimistically forwarded
 | 
						|
      //     to the enclosing cleanup
 | 
						|
      llvm::BasicBlock *BranchThroughDest = 0;
 | 
						|
      if (Scope.hasBranchThroughs() ||
 | 
						|
          (FallthroughSource && FallthroughIsBranchThrough) ||
 | 
						|
          (HasFixups && HasEnclosingCleanups)) {
 | 
						|
        assert(HasEnclosingCleanups);
 | 
						|
        EHScope &S = *EHStack.find(Scope.getEnclosingNormalCleanup());
 | 
						|
        BranchThroughDest = CreateNormalEntry(*this, cast<EHCleanupScope>(S));
 | 
						|
      }
 | 
						|
 | 
						|
      llvm::BasicBlock *FallthroughDest = 0;
 | 
						|
      llvm::SmallVector<llvm::Instruction*, 2> InstsToAppend;
 | 
						|
 | 
						|
      // If there's exactly one branch-after and no other threads,
 | 
						|
      // we can route it without a switch.
 | 
						|
      if (!Scope.hasBranchThroughs() && !HasFixups && !HasFallthrough &&
 | 
						|
          Scope.getNumBranchAfters() == 1) {
 | 
						|
        assert(!BranchThroughDest || !IsActive);
 | 
						|
 | 
						|
        // TODO: clean up the possibly dead stores to the cleanup dest slot.
 | 
						|
        llvm::BasicBlock *BranchAfter = Scope.getBranchAfterBlock(0);
 | 
						|
        InstsToAppend.push_back(llvm::BranchInst::Create(BranchAfter));
 | 
						|
 | 
						|
      // Build a switch-out if we need it:
 | 
						|
      //   - if there are branch-afters threaded through the scope
 | 
						|
      //   - if fall-through is a branch-after
 | 
						|
      //   - if there are fixups that have nowhere left to go and
 | 
						|
      //     so must be immediately resolved
 | 
						|
      } else if (Scope.getNumBranchAfters() ||
 | 
						|
                 (HasFallthrough && !FallthroughIsBranchThrough) ||
 | 
						|
                 (HasFixups && !HasEnclosingCleanups)) {
 | 
						|
 | 
						|
        llvm::BasicBlock *Default =
 | 
						|
          (BranchThroughDest ? BranchThroughDest : getUnreachableBlock());
 | 
						|
 | 
						|
        // TODO: base this on the number of branch-afters and fixups
 | 
						|
        const unsigned SwitchCapacity = 10;
 | 
						|
 | 
						|
        llvm::LoadInst *Load =
 | 
						|
          new llvm::LoadInst(getNormalCleanupDestSlot(), "cleanup.dest");
 | 
						|
        llvm::SwitchInst *Switch =
 | 
						|
          llvm::SwitchInst::Create(Load, Default, SwitchCapacity);
 | 
						|
 | 
						|
        InstsToAppend.push_back(Load);
 | 
						|
        InstsToAppend.push_back(Switch);
 | 
						|
 | 
						|
        // Branch-after fallthrough.
 | 
						|
        if (FallthroughSource && !FallthroughIsBranchThrough) {
 | 
						|
          FallthroughDest = createBasicBlock("cleanup.cont");
 | 
						|
          if (HasFallthrough)
 | 
						|
            Switch->addCase(Builder.getInt32(0), FallthroughDest);
 | 
						|
        }
 | 
						|
 | 
						|
        for (unsigned I = 0, E = Scope.getNumBranchAfters(); I != E; ++I) {
 | 
						|
          Switch->addCase(Scope.getBranchAfterIndex(I),
 | 
						|
                          Scope.getBranchAfterBlock(I));
 | 
						|
        }
 | 
						|
 | 
						|
        // If there aren't any enclosing cleanups, we can resolve all
 | 
						|
        // the fixups now.
 | 
						|
        if (HasFixups && !HasEnclosingCleanups)
 | 
						|
          ResolveAllBranchFixups(*this, Switch, NormalEntry);
 | 
						|
      } else {
 | 
						|
        // We should always have a branch-through destination in this case.
 | 
						|
        assert(BranchThroughDest);
 | 
						|
        InstsToAppend.push_back(llvm::BranchInst::Create(BranchThroughDest));
 | 
						|
      }
 | 
						|
 | 
						|
      // IV.  Pop the cleanup and emit it.
 | 
						|
      EHStack.popCleanup();
 | 
						|
      assert(EHStack.hasNormalCleanups() == HasEnclosingCleanups);
 | 
						|
 | 
						|
      EmitCleanup(*this, Fn, /*ForEH*/ false, NormalActiveFlag);
 | 
						|
 | 
						|
      // Append the prepared cleanup prologue from above.
 | 
						|
      llvm::BasicBlock *NormalExit = Builder.GetInsertBlock();
 | 
						|
      for (unsigned I = 0, E = InstsToAppend.size(); I != E; ++I)
 | 
						|
        NormalExit->getInstList().push_back(InstsToAppend[I]);
 | 
						|
 | 
						|
      // Optimistically hope that any fixups will continue falling through.
 | 
						|
      for (unsigned I = FixupDepth, E = EHStack.getNumBranchFixups();
 | 
						|
           I < E; ++I) {
 | 
						|
        BranchFixup &Fixup = CGF.EHStack.getBranchFixup(I);
 | 
						|
        if (!Fixup.Destination) continue;
 | 
						|
        if (!Fixup.OptimisticBranchBlock) {
 | 
						|
          new llvm::StoreInst(Builder.getInt32(Fixup.DestinationIndex),
 | 
						|
                              getNormalCleanupDestSlot(),
 | 
						|
                              Fixup.InitialBranch);
 | 
						|
          Fixup.InitialBranch->setSuccessor(0, NormalEntry);
 | 
						|
        }
 | 
						|
        Fixup.OptimisticBranchBlock = NormalExit;
 | 
						|
      }
 | 
						|
 | 
						|
      // V.  Set up the fallthrough edge out.
 | 
						|
      
 | 
						|
      // Case 1: a fallthrough source exists but shouldn't branch to
 | 
						|
      // the cleanup because the cleanup is inactive.
 | 
						|
      if (!HasFallthrough && FallthroughSource) {
 | 
						|
        assert(!IsActive);
 | 
						|
 | 
						|
        // If we have a prebranched fallthrough, that needs to be
 | 
						|
        // forwarded to the right block.
 | 
						|
        if (HasPrebranchedFallthrough) {
 | 
						|
          llvm::BasicBlock *Next;
 | 
						|
          if (FallthroughIsBranchThrough) {
 | 
						|
            Next = BranchThroughDest;
 | 
						|
            assert(!FallthroughDest);
 | 
						|
          } else {
 | 
						|
            Next = FallthroughDest;
 | 
						|
          }
 | 
						|
 | 
						|
          ForwardPrebranchedFallthrough(FallthroughSource, NormalEntry, Next);
 | 
						|
        }
 | 
						|
        Builder.SetInsertPoint(FallthroughSource);
 | 
						|
 | 
						|
      // Case 2: a fallthrough source exists and should branch to the
 | 
						|
      // cleanup, but we're not supposed to branch through to the next
 | 
						|
      // cleanup.
 | 
						|
      } else if (HasFallthrough && FallthroughDest) {
 | 
						|
        assert(!FallthroughIsBranchThrough);
 | 
						|
        EmitBlock(FallthroughDest);
 | 
						|
 | 
						|
      // Case 3: a fallthrough source exists and should branch to the
 | 
						|
      // cleanup and then through to the next.
 | 
						|
      } else if (HasFallthrough) {
 | 
						|
        // Everything is already set up for this.
 | 
						|
 | 
						|
      // Case 4: no fallthrough source exists.
 | 
						|
      } else {
 | 
						|
        Builder.ClearInsertionPoint();
 | 
						|
      }
 | 
						|
 | 
						|
      // VI.  Assorted cleaning.
 | 
						|
 | 
						|
      // Check whether we can merge NormalEntry into a single predecessor.
 | 
						|
      // This might invalidate (non-IR) pointers to NormalEntry.
 | 
						|
      llvm::BasicBlock *NewNormalEntry =
 | 
						|
        SimplifyCleanupEntry(*this, NormalEntry);
 | 
						|
 | 
						|
      // If it did invalidate those pointers, and NormalEntry was the same
 | 
						|
      // as NormalExit, go back and patch up the fixups.
 | 
						|
      if (NewNormalEntry != NormalEntry && NormalEntry == NormalExit)
 | 
						|
        for (unsigned I = FixupDepth, E = EHStack.getNumBranchFixups();
 | 
						|
               I < E; ++I)
 | 
						|
          CGF.EHStack.getBranchFixup(I).OptimisticBranchBlock = NewNormalEntry;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  assert(EHStack.hasNormalCleanups() || EHStack.getNumBranchFixups() == 0);
 | 
						|
 | 
						|
  // Emit the EH cleanup if required.
 | 
						|
  if (RequiresEHCleanup) {
 | 
						|
    CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP();
 | 
						|
 | 
						|
    EmitBlock(EHEntry);
 | 
						|
    EmitCleanup(*this, Fn, /*ForEH*/ true, EHActiveFlag);
 | 
						|
 | 
						|
    // Append the prepared cleanup prologue from above.
 | 
						|
    llvm::BasicBlock *EHExit = Builder.GetInsertBlock();
 | 
						|
    for (unsigned I = 0, E = EHInstsToAppend.size(); I != E; ++I)
 | 
						|
      EHExit->getInstList().push_back(EHInstsToAppend[I]);
 | 
						|
 | 
						|
    Builder.restoreIP(SavedIP);
 | 
						|
 | 
						|
    SimplifyCleanupEntry(*this, EHEntry);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Terminate the current block by emitting a branch which might leave
 | 
						|
/// the current cleanup-protected scope.  The target scope may not yet
 | 
						|
/// be known, in which case this will require a fixup.
 | 
						|
///
 | 
						|
/// As a side-effect, this method clears the insertion point.
 | 
						|
void CodeGenFunction::EmitBranchThroughCleanup(JumpDest Dest) {
 | 
						|
  assert(Dest.getScopeDepth().encloses(EHStack.getInnermostNormalCleanup())
 | 
						|
         && "stale jump destination");
 | 
						|
 | 
						|
  if (!HaveInsertPoint())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Create the branch.
 | 
						|
  llvm::BranchInst *BI = Builder.CreateBr(Dest.getBlock());
 | 
						|
 | 
						|
  // Calculate the innermost active normal cleanup.
 | 
						|
  EHScopeStack::stable_iterator
 | 
						|
    TopCleanup = EHStack.getInnermostActiveNormalCleanup();
 | 
						|
 | 
						|
  // If we're not in an active normal cleanup scope, or if the
 | 
						|
  // destination scope is within the innermost active normal cleanup
 | 
						|
  // scope, we don't need to worry about fixups.
 | 
						|
  if (TopCleanup == EHStack.stable_end() ||
 | 
						|
      TopCleanup.encloses(Dest.getScopeDepth())) { // works for invalid
 | 
						|
    Builder.ClearInsertionPoint();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we can't resolve the destination cleanup scope, just add this
 | 
						|
  // to the current cleanup scope as a branch fixup.
 | 
						|
  if (!Dest.getScopeDepth().isValid()) {
 | 
						|
    BranchFixup &Fixup = EHStack.addBranchFixup();
 | 
						|
    Fixup.Destination = Dest.getBlock();
 | 
						|
    Fixup.DestinationIndex = Dest.getDestIndex();
 | 
						|
    Fixup.InitialBranch = BI;
 | 
						|
    Fixup.OptimisticBranchBlock = 0;
 | 
						|
 | 
						|
    Builder.ClearInsertionPoint();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, thread through all the normal cleanups in scope.
 | 
						|
 | 
						|
  // Store the index at the start.
 | 
						|
  llvm::ConstantInt *Index = Builder.getInt32(Dest.getDestIndex());
 | 
						|
  new llvm::StoreInst(Index, getNormalCleanupDestSlot(), BI);
 | 
						|
 | 
						|
  // Adjust BI to point to the first cleanup block.
 | 
						|
  {
 | 
						|
    EHCleanupScope &Scope =
 | 
						|
      cast<EHCleanupScope>(*EHStack.find(TopCleanup));
 | 
						|
    BI->setSuccessor(0, CreateNormalEntry(*this, Scope));
 | 
						|
  }
 | 
						|
 | 
						|
  // Add this destination to all the scopes involved.
 | 
						|
  EHScopeStack::stable_iterator I = TopCleanup;
 | 
						|
  EHScopeStack::stable_iterator E = Dest.getScopeDepth();
 | 
						|
  if (E.strictlyEncloses(I)) {
 | 
						|
    while (true) {
 | 
						|
      EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(I));
 | 
						|
      assert(Scope.isNormalCleanup());
 | 
						|
      I = Scope.getEnclosingNormalCleanup();
 | 
						|
 | 
						|
      // If this is the last cleanup we're propagating through, tell it
 | 
						|
      // that there's a resolved jump moving through it.
 | 
						|
      if (!E.strictlyEncloses(I)) {
 | 
						|
        Scope.addBranchAfter(Index, Dest.getBlock());
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      // Otherwise, tell the scope that there's a jump propoagating
 | 
						|
      // through it.  If this isn't new information, all the rest of
 | 
						|
      // the work has been done before.
 | 
						|
      if (!Scope.addBranchThrough(Dest.getBlock()))
 | 
						|
        break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  Builder.ClearInsertionPoint();
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::EmitBranchThroughEHCleanup(UnwindDest Dest) {
 | 
						|
  // We should never get invalid scope depths for an UnwindDest; that
 | 
						|
  // implies that the destination wasn't set up correctly.
 | 
						|
  assert(Dest.getScopeDepth().isValid() && "invalid scope depth on EH dest?");
 | 
						|
 | 
						|
  if (!HaveInsertPoint())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Create the branch.
 | 
						|
  llvm::BranchInst *BI = Builder.CreateBr(Dest.getBlock());
 | 
						|
 | 
						|
  // Calculate the innermost active cleanup.
 | 
						|
  EHScopeStack::stable_iterator
 | 
						|
    InnermostCleanup = EHStack.getInnermostActiveEHCleanup();
 | 
						|
 | 
						|
  // If the destination is in the same EH cleanup scope as us, we
 | 
						|
  // don't need to thread through anything.
 | 
						|
  if (InnermostCleanup.encloses(Dest.getScopeDepth())) {
 | 
						|
    Builder.ClearInsertionPoint();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  assert(InnermostCleanup != EHStack.stable_end());
 | 
						|
 | 
						|
  // Store the index at the start.
 | 
						|
  llvm::ConstantInt *Index = Builder.getInt32(Dest.getDestIndex());
 | 
						|
  new llvm::StoreInst(Index, getEHCleanupDestSlot(), BI);
 | 
						|
 | 
						|
  // Adjust BI to point to the first cleanup block.
 | 
						|
  {
 | 
						|
    EHCleanupScope &Scope =
 | 
						|
      cast<EHCleanupScope>(*EHStack.find(InnermostCleanup));
 | 
						|
    BI->setSuccessor(0, CreateEHEntry(*this, Scope));
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Add this destination to all the scopes involved.
 | 
						|
  for (EHScopeStack::stable_iterator
 | 
						|
         I = InnermostCleanup, E = Dest.getScopeDepth(); ; ) {
 | 
						|
    assert(E.strictlyEncloses(I));
 | 
						|
    EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(I));
 | 
						|
    assert(Scope.isEHCleanup());
 | 
						|
    I = Scope.getEnclosingEHCleanup();
 | 
						|
 | 
						|
    // If this is the last cleanup we're propagating through, add this
 | 
						|
    // as a branch-after.
 | 
						|
    if (I == E) {
 | 
						|
      Scope.addEHBranchAfter(Index, Dest.getBlock());
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, add it as a branch-through.  If this isn't new
 | 
						|
    // information, all the rest of the work has been done before.
 | 
						|
    if (!Scope.addEHBranchThrough(Dest.getBlock()))
 | 
						|
      break;
 | 
						|
  }
 | 
						|
  
 | 
						|
  Builder.ClearInsertionPoint();
 | 
						|
}
 | 
						|
 | 
						|
/// All the branch fixups on the EH stack have propagated out past the
 | 
						|
/// outermost normal cleanup; resolve them all by adding cases to the
 | 
						|
/// given switch instruction.
 | 
						|
static void ResolveAllBranchFixups(CodeGenFunction &CGF,
 | 
						|
                                   llvm::SwitchInst *Switch,
 | 
						|
                                   llvm::BasicBlock *CleanupEntry) {
 | 
						|
  llvm::SmallPtrSet<llvm::BasicBlock*, 4> CasesAdded;
 | 
						|
 | 
						|
  for (unsigned I = 0, E = CGF.EHStack.getNumBranchFixups(); I != E; ++I) {
 | 
						|
    // Skip this fixup if its destination isn't set.
 | 
						|
    BranchFixup &Fixup = CGF.EHStack.getBranchFixup(I);
 | 
						|
    if (Fixup.Destination == 0) continue;
 | 
						|
 | 
						|
    // If there isn't an OptimisticBranchBlock, then InitialBranch is
 | 
						|
    // still pointing directly to its destination; forward it to the
 | 
						|
    // appropriate cleanup entry.  This is required in the specific
 | 
						|
    // case of
 | 
						|
    //   { std::string s; goto lbl; }
 | 
						|
    //   lbl:
 | 
						|
    // i.e. where there's an unresolved fixup inside a single cleanup
 | 
						|
    // entry which we're currently popping.
 | 
						|
    if (Fixup.OptimisticBranchBlock == 0) {
 | 
						|
      new llvm::StoreInst(CGF.Builder.getInt32(Fixup.DestinationIndex),
 | 
						|
                          CGF.getNormalCleanupDestSlot(),
 | 
						|
                          Fixup.InitialBranch);
 | 
						|
      Fixup.InitialBranch->setSuccessor(0, CleanupEntry);
 | 
						|
    }
 | 
						|
 | 
						|
    // Don't add this case to the switch statement twice.
 | 
						|
    if (!CasesAdded.insert(Fixup.Destination)) continue;
 | 
						|
 | 
						|
    Switch->addCase(CGF.Builder.getInt32(Fixup.DestinationIndex),
 | 
						|
                    Fixup.Destination);
 | 
						|
  }
 | 
						|
 | 
						|
  CGF.EHStack.clearFixups();
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::ResolveBranchFixups(llvm::BasicBlock *Block) {
 | 
						|
  assert(Block && "resolving a null target block");
 | 
						|
  if (!EHStack.getNumBranchFixups()) return;
 | 
						|
 | 
						|
  assert(EHStack.hasNormalCleanups() &&
 | 
						|
         "branch fixups exist with no normal cleanups on stack");
 | 
						|
 | 
						|
  llvm::SmallPtrSet<llvm::BasicBlock*, 4> ModifiedOptimisticBlocks;
 | 
						|
  bool ResolvedAny = false;
 | 
						|
 | 
						|
  for (unsigned I = 0, E = EHStack.getNumBranchFixups(); I != E; ++I) {
 | 
						|
    // Skip this fixup if its destination doesn't match.
 | 
						|
    BranchFixup &Fixup = EHStack.getBranchFixup(I);
 | 
						|
    if (Fixup.Destination != Block) continue;
 | 
						|
 | 
						|
    Fixup.Destination = 0;
 | 
						|
    ResolvedAny = true;
 | 
						|
 | 
						|
    // If it doesn't have an optimistic branch block, LatestBranch is
 | 
						|
    // already pointing to the right place.
 | 
						|
    llvm::BasicBlock *BranchBB = Fixup.OptimisticBranchBlock;
 | 
						|
    if (!BranchBB)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Don't process the same optimistic branch block twice.
 | 
						|
    if (!ModifiedOptimisticBlocks.insert(BranchBB))
 | 
						|
      continue;
 | 
						|
 | 
						|
    llvm::SwitchInst *Switch = TransitionToCleanupSwitch(*this, BranchBB);
 | 
						|
 | 
						|
    // Add a case to the switch.
 | 
						|
    Switch->addCase(Builder.getInt32(Fixup.DestinationIndex), Block);
 | 
						|
  }
 | 
						|
 | 
						|
  if (ResolvedAny)
 | 
						|
    EHStack.popNullFixups();
 | 
						|
}
 | 
						|
 | 
						|
static bool IsUsedAsNormalCleanup(EHScopeStack &EHStack,
 | 
						|
                                  EHScopeStack::stable_iterator C) {
 | 
						|
  // If we needed a normal block for any reason, that counts.
 | 
						|
  if (cast<EHCleanupScope>(*EHStack.find(C)).getNormalBlock())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Check whether any enclosed cleanups were needed.
 | 
						|
  for (EHScopeStack::stable_iterator
 | 
						|
         I = EHStack.getInnermostNormalCleanup();
 | 
						|
         I != C; ) {
 | 
						|
    assert(C.strictlyEncloses(I));
 | 
						|
    EHCleanupScope &S = cast<EHCleanupScope>(*EHStack.find(I));
 | 
						|
    if (S.getNormalBlock()) return true;
 | 
						|
    I = S.getEnclosingNormalCleanup();
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool IsUsedAsEHCleanup(EHScopeStack &EHStack,
 | 
						|
                              EHScopeStack::stable_iterator C) {
 | 
						|
  // If we needed an EH block for any reason, that counts.
 | 
						|
  if (cast<EHCleanupScope>(*EHStack.find(C)).getEHBlock())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Check whether any enclosed cleanups were needed.
 | 
						|
  for (EHScopeStack::stable_iterator
 | 
						|
         I = EHStack.getInnermostEHCleanup(); I != C; ) {
 | 
						|
    assert(C.strictlyEncloses(I));
 | 
						|
    EHCleanupScope &S = cast<EHCleanupScope>(*EHStack.find(I));
 | 
						|
    if (S.getEHBlock()) return true;
 | 
						|
    I = S.getEnclosingEHCleanup();
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
enum ForActivation_t {
 | 
						|
  ForActivation,
 | 
						|
  ForDeactivation
 | 
						|
};
 | 
						|
 | 
						|
/// The given cleanup block is changing activation state.  Configure a
 | 
						|
/// cleanup variable if necessary.
 | 
						|
///
 | 
						|
/// It would be good if we had some way of determining if there were
 | 
						|
/// extra uses *after* the change-over point.
 | 
						|
static void SetupCleanupBlockActivation(CodeGenFunction &CGF,
 | 
						|
                                        EHScopeStack::stable_iterator C,
 | 
						|
                                        ForActivation_t Kind) {
 | 
						|
  EHCleanupScope &Scope = cast<EHCleanupScope>(*CGF.EHStack.find(C));
 | 
						|
 | 
						|
  // We always need the flag if we're activating the cleanup, because
 | 
						|
  // we have to assume that the current location doesn't necessarily
 | 
						|
  // dominate all future uses of the cleanup.
 | 
						|
  bool NeedFlag = (Kind == ForActivation);
 | 
						|
 | 
						|
  // Calculate whether the cleanup was used:
 | 
						|
 | 
						|
  //   - as a normal cleanup
 | 
						|
  if (Scope.isNormalCleanup() && IsUsedAsNormalCleanup(CGF.EHStack, C)) {
 | 
						|
    Scope.setTestFlagInNormalCleanup();
 | 
						|
    NeedFlag = true;
 | 
						|
  }
 | 
						|
 | 
						|
  //  - as an EH cleanup
 | 
						|
  if (Scope.isEHCleanup() && IsUsedAsEHCleanup(CGF.EHStack, C)) {
 | 
						|
    Scope.setTestFlagInEHCleanup();
 | 
						|
    NeedFlag = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // If it hasn't yet been used as either, we're done.
 | 
						|
  if (!NeedFlag) return;
 | 
						|
 | 
						|
  llvm::AllocaInst *Var = Scope.getActiveFlag();
 | 
						|
  if (!Var) {
 | 
						|
    Var = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(), "cleanup.isactive");
 | 
						|
    Scope.setActiveFlag(Var);
 | 
						|
 | 
						|
    // Initialize to true or false depending on whether it was
 | 
						|
    // active up to this point.
 | 
						|
    CGF.InitTempAlloca(Var, CGF.Builder.getInt1(Kind == ForDeactivation));
 | 
						|
  }
 | 
						|
 | 
						|
  CGF.Builder.CreateStore(CGF.Builder.getInt1(Kind == ForActivation), Var);
 | 
						|
}
 | 
						|
 | 
						|
/// Activate a cleanup that was created in an inactivated state.
 | 
						|
void CodeGenFunction::ActivateCleanupBlock(EHScopeStack::stable_iterator C) {
 | 
						|
  assert(C != EHStack.stable_end() && "activating bottom of stack?");
 | 
						|
  EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(C));
 | 
						|
  assert(!Scope.isActive() && "double activation");
 | 
						|
 | 
						|
  SetupCleanupBlockActivation(*this, C, ForActivation);
 | 
						|
 | 
						|
  Scope.setActive(true);
 | 
						|
}
 | 
						|
 | 
						|
/// Deactive a cleanup that was created in an active state.
 | 
						|
void CodeGenFunction::DeactivateCleanupBlock(EHScopeStack::stable_iterator C) {
 | 
						|
  assert(C != EHStack.stable_end() && "deactivating bottom of stack?");
 | 
						|
  EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(C));
 | 
						|
  assert(Scope.isActive() && "double deactivation");
 | 
						|
 | 
						|
  // If it's the top of the stack, just pop it.
 | 
						|
  if (C == EHStack.stable_begin()) {
 | 
						|
    // If it's a normal cleanup, we need to pretend that the
 | 
						|
    // fallthrough is unreachable.
 | 
						|
    CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP();
 | 
						|
    PopCleanupBlock();
 | 
						|
    Builder.restoreIP(SavedIP);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, follow the general case.
 | 
						|
  SetupCleanupBlockActivation(*this, C, ForDeactivation);
 | 
						|
 | 
						|
  Scope.setActive(false);
 | 
						|
}
 | 
						|
 | 
						|
llvm::Value *CodeGenFunction::getNormalCleanupDestSlot() {
 | 
						|
  if (!NormalCleanupDest)
 | 
						|
    NormalCleanupDest =
 | 
						|
      CreateTempAlloca(Builder.getInt32Ty(), "cleanup.dest.slot");
 | 
						|
  return NormalCleanupDest;
 | 
						|
}
 | 
						|
 | 
						|
llvm::Value *CodeGenFunction::getEHCleanupDestSlot() {
 | 
						|
  if (!EHCleanupDest)
 | 
						|
    EHCleanupDest =
 | 
						|
      CreateTempAlloca(Builder.getInt32Ty(), "eh.cleanup.dest.slot");
 | 
						|
  return EHCleanupDest;
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 
 | 
						|
                                              llvm::Constant *Init) {
 | 
						|
  assert (Init && "Invalid DeclRefExpr initializer!");
 | 
						|
  if (CGDebugInfo *Dbg = getDebugInfo())
 | 
						|
    Dbg->EmitGlobalVariable(E->getDecl(), Init);
 | 
						|
}
 |