2730 lines
		
	
	
		
			101 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2730 lines
		
	
	
		
			101 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- InstSelectSimple.cpp - A simple instruction selector for PowerPC --===//
 | 
						|
// 
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by the LLVM research group and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
// 
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "isel"
 | 
						|
#include "PowerPC.h"
 | 
						|
#include "PowerPCInstrBuilder.h"
 | 
						|
#include "PowerPCInstrInfo.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/CodeGen/IntrinsicLowering.h"
 | 
						|
#include "llvm/CodeGen/MachineConstantPool.h"
 | 
						|
#include "llvm/CodeGen/MachineFrameInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/SSARegMap.h"
 | 
						|
#include "llvm/Target/MRegisterInfo.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Support/GetElementPtrTypeIterator.h"
 | 
						|
#include "llvm/Support/InstVisitor.h"
 | 
						|
#include "Support/Debug.h"
 | 
						|
#include <vector>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace {
 | 
						|
  /// TypeClass - Used by the PowerPC backend to group LLVM types by their basic
 | 
						|
  /// PPC Representation.
 | 
						|
  ///
 | 
						|
  enum TypeClass {
 | 
						|
    cByte, cShort, cInt, cFP, cLong
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
/// getClass - Turn a primitive type into a "class" number which is based on the
 | 
						|
/// size of the type, and whether or not it is floating point.
 | 
						|
///
 | 
						|
static inline TypeClass getClass(const Type *Ty) {
 | 
						|
  switch (Ty->getTypeID()) {
 | 
						|
  case Type::SByteTyID:
 | 
						|
  case Type::UByteTyID:   return cByte;      // Byte operands are class #0
 | 
						|
  case Type::ShortTyID:
 | 
						|
  case Type::UShortTyID:  return cShort;     // Short operands are class #1
 | 
						|
  case Type::IntTyID:
 | 
						|
  case Type::UIntTyID:
 | 
						|
  case Type::PointerTyID: return cInt;       // Int's and pointers are class #2
 | 
						|
 | 
						|
  case Type::FloatTyID:
 | 
						|
  case Type::DoubleTyID:  return cFP;        // Floating Point is #3
 | 
						|
 | 
						|
  case Type::LongTyID:
 | 
						|
  case Type::ULongTyID:   return cLong;      // Longs are class #4
 | 
						|
  default:
 | 
						|
    assert(0 && "Invalid type to getClass!");
 | 
						|
    return cByte;  // not reached
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// getClassB - Just like getClass, but treat boolean values as ints.
 | 
						|
static inline TypeClass getClassB(const Type *Ty) {
 | 
						|
  if (Ty == Type::BoolTy) return cInt;
 | 
						|
  return getClass(Ty);
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  struct ISel : public FunctionPass, InstVisitor<ISel> {
 | 
						|
    TargetMachine &TM;
 | 
						|
    MachineFunction *F;                 // The function we are compiling into
 | 
						|
    MachineBasicBlock *BB;              // The current MBB we are compiling
 | 
						|
    int VarArgsFrameIndex;              // FrameIndex for start of varargs area
 | 
						|
    int ReturnAddressIndex;             // FrameIndex for the return address
 | 
						|
 | 
						|
    std::map<Value*, unsigned> RegMap;  // Mapping between Val's and SSA Regs
 | 
						|
 | 
						|
    // MBBMap - Mapping between LLVM BB -> Machine BB
 | 
						|
    std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
 | 
						|
 | 
						|
    // AllocaMap - Mapping from fixed sized alloca instructions to the
 | 
						|
    // FrameIndex for the alloca.
 | 
						|
    std::map<AllocaInst*, unsigned> AllocaMap;
 | 
						|
 | 
						|
    ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
 | 
						|
 | 
						|
    /// runOnFunction - Top level implementation of instruction selection for
 | 
						|
    /// the entire function.
 | 
						|
    ///
 | 
						|
    bool runOnFunction(Function &Fn) {
 | 
						|
      // First pass over the function, lower any unknown intrinsic functions
 | 
						|
      // with the IntrinsicLowering class.
 | 
						|
      LowerUnknownIntrinsicFunctionCalls(Fn);
 | 
						|
 | 
						|
      F = &MachineFunction::construct(&Fn, TM);
 | 
						|
 | 
						|
      // Create all of the machine basic blocks for the function...
 | 
						|
      for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
 | 
						|
        F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
 | 
						|
 | 
						|
      BB = &F->front();
 | 
						|
 | 
						|
      // Set up a frame object for the return address.  This is used by the
 | 
						|
      // llvm.returnaddress & llvm.frameaddress intrinisics.
 | 
						|
      ReturnAddressIndex = F->getFrameInfo()->CreateFixedObject(4, -4);
 | 
						|
 | 
						|
      // Copy incoming arguments off of the stack...
 | 
						|
      LoadArgumentsToVirtualRegs(Fn);
 | 
						|
 | 
						|
      // Instruction select everything except PHI nodes
 | 
						|
      visit(Fn);
 | 
						|
 | 
						|
      // Select the PHI nodes
 | 
						|
      SelectPHINodes();
 | 
						|
 | 
						|
      RegMap.clear();
 | 
						|
      MBBMap.clear();
 | 
						|
      AllocaMap.clear();
 | 
						|
      F = 0;
 | 
						|
      // We always build a machine code representation for the function
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    virtual const char *getPassName() const {
 | 
						|
      return "PowerPC Simple Instruction Selection";
 | 
						|
    }
 | 
						|
 | 
						|
    /// visitBasicBlock - This method is called when we are visiting a new basic
 | 
						|
    /// block.  This simply creates a new MachineBasicBlock to emit code into
 | 
						|
    /// and adds it to the current MachineFunction.  Subsequent visit* for
 | 
						|
    /// instructions will be invoked for all instructions in the basic block.
 | 
						|
    ///
 | 
						|
    void visitBasicBlock(BasicBlock &LLVM_BB) {
 | 
						|
      BB = MBBMap[&LLVM_BB];
 | 
						|
    }
 | 
						|
 | 
						|
    /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
 | 
						|
    /// function, lowering any calls to unknown intrinsic functions into the
 | 
						|
    /// equivalent LLVM code.
 | 
						|
    ///
 | 
						|
    void LowerUnknownIntrinsicFunctionCalls(Function &F);
 | 
						|
 | 
						|
    /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
 | 
						|
    /// from the stack into virtual registers.
 | 
						|
    ///
 | 
						|
    void LoadArgumentsToVirtualRegs(Function &F);
 | 
						|
 | 
						|
    /// SelectPHINodes - Insert machine code to generate phis.  This is tricky
 | 
						|
    /// because we have to generate our sources into the source basic blocks,
 | 
						|
    /// not the current one.
 | 
						|
    ///
 | 
						|
    void SelectPHINodes();
 | 
						|
 | 
						|
    // Visitation methods for various instructions.  These methods simply emit
 | 
						|
    // fixed PowerPC code for each instruction.
 | 
						|
 | 
						|
    // Control flow operators
 | 
						|
    void visitReturnInst(ReturnInst &RI);
 | 
						|
    void visitBranchInst(BranchInst &BI);
 | 
						|
 | 
						|
    struct ValueRecord {
 | 
						|
      Value *Val;
 | 
						|
      unsigned Reg;
 | 
						|
      const Type *Ty;
 | 
						|
      ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
 | 
						|
      ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
 | 
						|
    };
 | 
						|
    void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
 | 
						|
                const std::vector<ValueRecord> &Args);
 | 
						|
    void visitCallInst(CallInst &I);
 | 
						|
    void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
 | 
						|
 | 
						|
    // Arithmetic operators
 | 
						|
    void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
 | 
						|
    void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
 | 
						|
    void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
 | 
						|
    void visitMul(BinaryOperator &B);
 | 
						|
 | 
						|
    void visitDiv(BinaryOperator &B) { visitDivRem(B); }
 | 
						|
    void visitRem(BinaryOperator &B) { visitDivRem(B); }
 | 
						|
    void visitDivRem(BinaryOperator &B);
 | 
						|
 | 
						|
    // Bitwise operators
 | 
						|
    void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
 | 
						|
    void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
 | 
						|
    void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
 | 
						|
 | 
						|
    // Comparison operators...
 | 
						|
    void visitSetCondInst(SetCondInst &I);
 | 
						|
    unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
 | 
						|
                            MachineBasicBlock *MBB,
 | 
						|
                            MachineBasicBlock::iterator MBBI);
 | 
						|
    void visitSelectInst(SelectInst &SI);
 | 
						|
    
 | 
						|
    
 | 
						|
    // Memory Instructions
 | 
						|
    void visitLoadInst(LoadInst &I);
 | 
						|
    void visitStoreInst(StoreInst &I);
 | 
						|
    void visitGetElementPtrInst(GetElementPtrInst &I);
 | 
						|
    void visitAllocaInst(AllocaInst &I);
 | 
						|
    void visitMallocInst(MallocInst &I);
 | 
						|
    void visitFreeInst(FreeInst &I);
 | 
						|
    
 | 
						|
    // Other operators
 | 
						|
    void visitShiftInst(ShiftInst &I);
 | 
						|
    void visitPHINode(PHINode &I) {}      // PHI nodes handled by second pass
 | 
						|
    void visitCastInst(CastInst &I);
 | 
						|
    void visitVANextInst(VANextInst &I);
 | 
						|
    void visitVAArgInst(VAArgInst &I);
 | 
						|
 | 
						|
    void visitInstruction(Instruction &I) {
 | 
						|
      std::cerr << "Cannot instruction select: " << I;
 | 
						|
      abort();
 | 
						|
    }
 | 
						|
 | 
						|
    /// promote32 - Make a value 32-bits wide, and put it somewhere.
 | 
						|
    ///
 | 
						|
    void promote32(unsigned targetReg, const ValueRecord &VR);
 | 
						|
 | 
						|
    /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
 | 
						|
    /// constant expression GEP support.
 | 
						|
    ///
 | 
						|
    void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
 | 
						|
                          Value *Src, User::op_iterator IdxBegin,
 | 
						|
                          User::op_iterator IdxEnd, unsigned TargetReg);
 | 
						|
 | 
						|
    /// emitCastOperation - Common code shared between visitCastInst and
 | 
						|
    /// constant expression cast support.
 | 
						|
    ///
 | 
						|
    void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
 | 
						|
                           Value *Src, const Type *DestTy, unsigned TargetReg);
 | 
						|
 | 
						|
    /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
 | 
						|
    /// and constant expression support.
 | 
						|
    ///
 | 
						|
    void emitSimpleBinaryOperation(MachineBasicBlock *BB,
 | 
						|
                                   MachineBasicBlock::iterator IP,
 | 
						|
                                   Value *Op0, Value *Op1,
 | 
						|
                                   unsigned OperatorClass, unsigned TargetReg);
 | 
						|
 | 
						|
    /// emitBinaryFPOperation - This method handles emission of floating point
 | 
						|
    /// Add (0), Sub (1), Mul (2), and Div (3) operations.
 | 
						|
    void emitBinaryFPOperation(MachineBasicBlock *BB,
 | 
						|
                               MachineBasicBlock::iterator IP,
 | 
						|
                               Value *Op0, Value *Op1,
 | 
						|
                               unsigned OperatorClass, unsigned TargetReg);
 | 
						|
 | 
						|
    void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
 | 
						|
                      Value *Op0, Value *Op1, unsigned TargetReg);
 | 
						|
 | 
						|
    void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
 | 
						|
                    unsigned DestReg, const Type *DestTy,
 | 
						|
                    unsigned Op0Reg, unsigned Op1Reg);
 | 
						|
    void doMultiplyConst(MachineBasicBlock *MBB, 
 | 
						|
                         MachineBasicBlock::iterator MBBI,
 | 
						|
                         unsigned DestReg, const Type *DestTy,
 | 
						|
                         unsigned Op0Reg, unsigned Op1Val);
 | 
						|
 | 
						|
    void emitDivRemOperation(MachineBasicBlock *BB,
 | 
						|
                             MachineBasicBlock::iterator IP,
 | 
						|
                             Value *Op0, Value *Op1, bool isDiv,
 | 
						|
                             unsigned TargetReg);
 | 
						|
 | 
						|
    /// emitSetCCOperation - Common code shared between visitSetCondInst and
 | 
						|
    /// constant expression support.
 | 
						|
    ///
 | 
						|
    void emitSetCCOperation(MachineBasicBlock *BB,
 | 
						|
                            MachineBasicBlock::iterator IP,
 | 
						|
                            Value *Op0, Value *Op1, unsigned Opcode,
 | 
						|
                            unsigned TargetReg);
 | 
						|
 | 
						|
    /// emitShiftOperation - Common code shared between visitShiftInst and
 | 
						|
    /// constant expression support.
 | 
						|
    ///
 | 
						|
    void emitShiftOperation(MachineBasicBlock *MBB,
 | 
						|
                            MachineBasicBlock::iterator IP,
 | 
						|
                            Value *Op, Value *ShiftAmount, bool isLeftShift,
 | 
						|
                            const Type *ResultTy, unsigned DestReg);
 | 
						|
      
 | 
						|
    /// emitSelectOperation - Common code shared between visitSelectInst and the
 | 
						|
    /// constant expression support.
 | 
						|
    void emitSelectOperation(MachineBasicBlock *MBB,
 | 
						|
                             MachineBasicBlock::iterator IP,
 | 
						|
                             Value *Cond, Value *TrueVal, Value *FalseVal,
 | 
						|
                             unsigned DestReg);
 | 
						|
 | 
						|
    /// copyConstantToRegister - Output the instructions required to put the
 | 
						|
    /// specified constant into the specified register.
 | 
						|
    ///
 | 
						|
    void copyConstantToRegister(MachineBasicBlock *MBB,
 | 
						|
                                MachineBasicBlock::iterator MBBI,
 | 
						|
                                Constant *C, unsigned Reg);
 | 
						|
 | 
						|
    void emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
 | 
						|
                   unsigned LHS, unsigned RHS);
 | 
						|
 | 
						|
    /// makeAnotherReg - This method returns the next register number we haven't
 | 
						|
    /// yet used.
 | 
						|
    ///
 | 
						|
    /// Long values are handled somewhat specially.  They are always allocated
 | 
						|
    /// as pairs of 32 bit integer values.  The register number returned is the
 | 
						|
    /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
 | 
						|
    /// of the long value.
 | 
						|
    ///
 | 
						|
    unsigned makeAnotherReg(const Type *Ty) {
 | 
						|
      assert(dynamic_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo()) &&
 | 
						|
             "Current target doesn't have PPC reg info??");
 | 
						|
      const PowerPCRegisterInfo *MRI =
 | 
						|
        static_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo());
 | 
						|
      if (Ty == Type::LongTy || Ty == Type::ULongTy) {
 | 
						|
        const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
 | 
						|
        // Create the lower part
 | 
						|
        F->getSSARegMap()->createVirtualRegister(RC);
 | 
						|
        // Create the upper part.
 | 
						|
        return F->getSSARegMap()->createVirtualRegister(RC)-1;
 | 
						|
      }
 | 
						|
 | 
						|
      // Add the mapping of regnumber => reg class to MachineFunction
 | 
						|
      const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
 | 
						|
      return F->getSSARegMap()->createVirtualRegister(RC);
 | 
						|
    }
 | 
						|
 | 
						|
    /// getReg - This method turns an LLVM value into a register number.
 | 
						|
    ///
 | 
						|
    unsigned getReg(Value &V) { return getReg(&V); }  // Allow references
 | 
						|
    unsigned getReg(Value *V) {
 | 
						|
      // Just append to the end of the current bb.
 | 
						|
      MachineBasicBlock::iterator It = BB->end();
 | 
						|
      return getReg(V, BB, It);
 | 
						|
    }
 | 
						|
    unsigned getReg(Value *V, MachineBasicBlock *MBB,
 | 
						|
                    MachineBasicBlock::iterator IPt);
 | 
						|
 | 
						|
    /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
 | 
						|
    /// that is to be statically allocated with the initial stack frame
 | 
						|
    /// adjustment.
 | 
						|
    unsigned getFixedSizedAllocaFI(AllocaInst *AI);
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
/// dyn_castFixedAlloca - If the specified value is a fixed size alloca
 | 
						|
/// instruction in the entry block, return it.  Otherwise, return a null
 | 
						|
/// pointer.
 | 
						|
static AllocaInst *dyn_castFixedAlloca(Value *V) {
 | 
						|
  if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
 | 
						|
    BasicBlock *BB = AI->getParent();
 | 
						|
    if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front())
 | 
						|
      return AI;
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// getReg - This method turns an LLVM value into a register number.
 | 
						|
///
 | 
						|
unsigned ISel::getReg(Value *V, MachineBasicBlock *MBB,
 | 
						|
                      MachineBasicBlock::iterator IPt) {
 | 
						|
  // If this operand is a constant, emit the code to copy the constant into
 | 
						|
  // the register here...
 | 
						|
  //
 | 
						|
  if (Constant *C = dyn_cast<Constant>(V)) {
 | 
						|
    unsigned Reg = makeAnotherReg(V->getType());
 | 
						|
    copyConstantToRegister(MBB, IPt, C, Reg);
 | 
						|
    return Reg;
 | 
						|
  } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
 | 
						|
    unsigned Reg1 = makeAnotherReg(V->getType());
 | 
						|
    unsigned Reg2 = makeAnotherReg(V->getType());
 | 
						|
    // Move the address of the global into the register
 | 
						|
    BuildMI(*MBB, IPt, PPC32::LOADHiAddr, 2, Reg1).addReg(PPC32::R0).addGlobalAddress(GV);
 | 
						|
    BuildMI(*MBB, IPt, PPC32::LOADLoAddr, 2, Reg2).addReg(Reg1).addGlobalAddress(GV);
 | 
						|
    return Reg2;
 | 
						|
  } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
 | 
						|
    // Do not emit noop casts at all.
 | 
						|
    if (getClassB(CI->getType()) == getClassB(CI->getOperand(0)->getType()))
 | 
						|
      return getReg(CI->getOperand(0), MBB, IPt);
 | 
						|
  } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) {
 | 
						|
    unsigned Reg = makeAnotherReg(V->getType());
 | 
						|
    unsigned FI = getFixedSizedAllocaFI(AI);
 | 
						|
    addFrameReference(BuildMI(*MBB, IPt, PPC32::ADDI, 2, Reg), FI, 0, false);
 | 
						|
    return Reg;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned &Reg = RegMap[V];
 | 
						|
  if (Reg == 0) {
 | 
						|
    Reg = makeAnotherReg(V->getType());
 | 
						|
    RegMap[V] = Reg;
 | 
						|
  }
 | 
						|
 | 
						|
  return Reg;
 | 
						|
}
 | 
						|
 | 
						|
/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
 | 
						|
/// that is to be statically allocated with the initial stack frame
 | 
						|
/// adjustment.
 | 
						|
unsigned ISel::getFixedSizedAllocaFI(AllocaInst *AI) {
 | 
						|
  // Already computed this?
 | 
						|
  std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI);
 | 
						|
  if (I != AllocaMap.end() && I->first == AI) return I->second;
 | 
						|
 | 
						|
  const Type *Ty = AI->getAllocatedType();
 | 
						|
  ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize());
 | 
						|
  unsigned TySize = TM.getTargetData().getTypeSize(Ty);
 | 
						|
  TySize *= CUI->getValue();   // Get total allocated size...
 | 
						|
  unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
 | 
						|
      
 | 
						|
  // Create a new stack object using the frame manager...
 | 
						|
  int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
 | 
						|
  AllocaMap.insert(I, std::make_pair(AI, FrameIdx));
 | 
						|
  return FrameIdx;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// copyConstantToRegister - Output the instructions required to put the
 | 
						|
/// specified constant into the specified register.
 | 
						|
///
 | 
						|
void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
 | 
						|
                                  MachineBasicBlock::iterator IP,
 | 
						|
                                  Constant *C, unsigned R) {
 | 
						|
  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
 | 
						|
    unsigned Class = 0;
 | 
						|
    switch (CE->getOpcode()) {
 | 
						|
    case Instruction::GetElementPtr:
 | 
						|
      emitGEPOperation(MBB, IP, CE->getOperand(0),
 | 
						|
                       CE->op_begin()+1, CE->op_end(), R);
 | 
						|
      return;
 | 
						|
    case Instruction::Cast:
 | 
						|
      emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R);
 | 
						|
      return;
 | 
						|
 | 
						|
    case Instruction::Xor: ++Class; // FALL THROUGH
 | 
						|
    case Instruction::Or:  ++Class; // FALL THROUGH
 | 
						|
    case Instruction::And: ++Class; // FALL THROUGH
 | 
						|
    case Instruction::Sub: ++Class; // FALL THROUGH
 | 
						|
    case Instruction::Add:
 | 
						|
      emitSimpleBinaryOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
 | 
						|
                                Class, R);
 | 
						|
      return;
 | 
						|
 | 
						|
    case Instruction::Mul:
 | 
						|
      emitMultiply(MBB, IP, CE->getOperand(0), CE->getOperand(1), R);
 | 
						|
      return;
 | 
						|
 | 
						|
    case Instruction::Div:
 | 
						|
    case Instruction::Rem:
 | 
						|
      emitDivRemOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
 | 
						|
                          CE->getOpcode() == Instruction::Div, R);
 | 
						|
      return;
 | 
						|
 | 
						|
    case Instruction::SetNE:
 | 
						|
    case Instruction::SetEQ:
 | 
						|
    case Instruction::SetLT:
 | 
						|
    case Instruction::SetGT:
 | 
						|
    case Instruction::SetLE:
 | 
						|
    case Instruction::SetGE:
 | 
						|
      emitSetCCOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
 | 
						|
                         CE->getOpcode(), R);
 | 
						|
      return;
 | 
						|
 | 
						|
    case Instruction::Shl:
 | 
						|
    case Instruction::Shr:
 | 
						|
      emitShiftOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
 | 
						|
                         CE->getOpcode() == Instruction::Shl, CE->getType(), R);
 | 
						|
      return;
 | 
						|
 | 
						|
    case Instruction::Select:
 | 
						|
      emitSelectOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
 | 
						|
                          CE->getOperand(2), R);
 | 
						|
      return;
 | 
						|
 | 
						|
    default:
 | 
						|
      std::cerr << "Offending expr: " << C << "\n";
 | 
						|
      assert(0 && "Constant expression not yet handled!\n");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (C->getType()->isIntegral()) {
 | 
						|
    unsigned Class = getClassB(C->getType());
 | 
						|
 | 
						|
    if (Class == cLong) {
 | 
						|
      // Copy the value into the register pair.
 | 
						|
      uint64_t Val = cast<ConstantInt>(C)->getRawValue();
 | 
						|
      unsigned hiTmp = makeAnotherReg(Type::IntTy);
 | 
						|
      unsigned loTmp = makeAnotherReg(Type::IntTy);
 | 
						|
      BuildMI(*MBB, IP, PPC32::ADDIS, 2, loTmp).addReg(PPC32::R0).addImm(Val >> 48);
 | 
						|
      BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(loTmp).addImm((Val >> 32) & 0xFFFF);
 | 
						|
      BuildMI(*MBB, IP, PPC32::ADDIS, 2, hiTmp).addReg(PPC32::R0).addImm((Val >> 16) & 0xFFFF);
 | 
						|
      BuildMI(*MBB, IP, PPC32::ORI, 2, R+1).addReg(hiTmp).addImm(Val & 0xFFFF);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    assert(Class <= cInt && "Type not handled yet!");
 | 
						|
 | 
						|
    if (C->getType() == Type::BoolTy) {
 | 
						|
      BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0).addImm(C == ConstantBool::True);
 | 
						|
    } else if (Class == cByte || Class == cShort) {
 | 
						|
      ConstantInt *CI = cast<ConstantInt>(C);
 | 
						|
      BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0).addImm(CI->getRawValue());
 | 
						|
    } else {
 | 
						|
      ConstantInt *CI = cast<ConstantInt>(C);
 | 
						|
      int TheVal = CI->getRawValue() & 0xFFFFFFFF;
 | 
						|
      if (TheVal < 32768 && TheVal >= -32768) {
 | 
						|
        BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0).addImm(CI->getRawValue());
 | 
						|
      } else {
 | 
						|
        unsigned TmpReg = makeAnotherReg(Type::IntTy);
 | 
						|
        BuildMI(*MBB, IP, PPC32::ADDIS, 2, TmpReg).addReg(PPC32::R0).addImm(CI->getRawValue() >> 16);
 | 
						|
        BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(TmpReg).addImm(CI->getRawValue() & 0xFFFF);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
 | 
						|
      // We need to spill the constant to memory...
 | 
						|
      MachineConstantPool *CP = F->getConstantPool();
 | 
						|
      unsigned CPI = CP->getConstantPoolIndex(CFP);
 | 
						|
      const Type *Ty = CFP->getType();
 | 
						|
 | 
						|
      assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!"); 
 | 
						|
      unsigned LoadOpcode = Ty == Type::FloatTy ? PPC32::LFS : PPC32::LFD;
 | 
						|
      addConstantPoolReference(BuildMI(*MBB, IP, LoadOpcode, 2, R), CPI);
 | 
						|
  } else if (isa<ConstantPointerNull>(C)) {
 | 
						|
    // Copy zero (null pointer) to the register.
 | 
						|
    BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0).addImm(0);
 | 
						|
  } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) {
 | 
						|
    BuildMI(*MBB, IP, PPC32::ADDIS, 2, R).addReg(PPC32::R0)
 | 
						|
      .addGlobalAddress(CPR->getValue());
 | 
						|
    BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(PPC32::R0)
 | 
						|
      .addGlobalAddress(CPR->getValue());
 | 
						|
  } else {
 | 
						|
    std::cerr << "Offending constant: " << C << "\n";
 | 
						|
    assert(0 && "Type not handled yet!");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
 | 
						|
/// the stack into virtual registers.
 | 
						|
///
 | 
						|
/// FIXME: When we can calculate which args are coming in via registers
 | 
						|
/// source them from there instead.
 | 
						|
void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
 | 
						|
  unsigned ArgOffset = 0;   // Frame mechanisms handle retaddr slot
 | 
						|
  unsigned GPR_remaining = 8;
 | 
						|
  unsigned FPR_remaining = 13;
 | 
						|
  unsigned GPR_idx = 3;
 | 
						|
  unsigned FPR_idx = 1;
 | 
						|
    
 | 
						|
  MachineFrameInfo *MFI = F->getFrameInfo();
 | 
						|
 | 
						|
  for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
 | 
						|
    bool ArgLive = !I->use_empty();
 | 
						|
    unsigned Reg = ArgLive ? getReg(*I) : 0;
 | 
						|
    int FI;          // Frame object index
 | 
						|
 | 
						|
    switch (getClassB(I->getType())) {
 | 
						|
    case cByte:
 | 
						|
      if (ArgLive) {
 | 
						|
        FI = MFI->CreateFixedObject(1, ArgOffset);
 | 
						|
        if (GPR_remaining > 0) {
 | 
						|
          BuildMI(BB, PPC32::OR, 2, Reg).addReg(PPC32::R0+GPR_idx)
 | 
						|
            .addReg(PPC32::R0+GPR_idx);
 | 
						|
        } else {
 | 
						|
          addFrameReference(BuildMI(BB, PPC32::LBZ, 2, Reg), FI);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case cShort:
 | 
						|
      if (ArgLive) {
 | 
						|
        FI = MFI->CreateFixedObject(2, ArgOffset);
 | 
						|
        if (GPR_remaining > 0) {
 | 
						|
          BuildMI(BB, PPC32::OR, 2, Reg).addReg(PPC32::R0+GPR_idx)
 | 
						|
            .addReg(PPC32::R0+GPR_idx);
 | 
						|
        } else {
 | 
						|
          addFrameReference(BuildMI(BB, PPC32::LHZ, 2, Reg), FI);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case cInt:
 | 
						|
      if (ArgLive) {
 | 
						|
        FI = MFI->CreateFixedObject(4, ArgOffset);
 | 
						|
        if (GPR_remaining > 0) {
 | 
						|
          BuildMI(BB, PPC32::OR, 2, Reg).addReg(PPC32::R0+GPR_idx)
 | 
						|
            .addReg(PPC32::R0+GPR_idx);
 | 
						|
        } else {
 | 
						|
          addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case cLong:
 | 
						|
      if (ArgLive) {
 | 
						|
        FI = MFI->CreateFixedObject(8, ArgOffset);
 | 
						|
        if (GPR_remaining > 1) {
 | 
						|
            BuildMI(BB, PPC32::OR, 2, Reg).addReg(PPC32::R0+GPR_idx)
 | 
						|
              .addReg(PPC32::R0+GPR_idx);
 | 
						|
            BuildMI(BB, PPC32::OR, 2, Reg+1).addReg(PPC32::R0+GPR_idx+1)
 | 
						|
              .addReg(PPC32::R0+GPR_idx+1);
 | 
						|
        } else {
 | 
						|
            addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI);
 | 
						|
            addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg+1), FI, 4);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      ArgOffset += 4;   // longs require 4 additional bytes
 | 
						|
      if (GPR_remaining > 1) {
 | 
						|
        GPR_remaining--;    // uses up 2 GPRs
 | 
						|
        GPR_idx++;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case cFP:
 | 
						|
      if (ArgLive) {
 | 
						|
        unsigned Opcode;
 | 
						|
        if (I->getType() == Type::FloatTy) {
 | 
						|
          Opcode = PPC32::LFS;
 | 
						|
          FI = MFI->CreateFixedObject(4, ArgOffset);
 | 
						|
        } else {
 | 
						|
          Opcode = PPC32::LFD;
 | 
						|
          FI = MFI->CreateFixedObject(8, ArgOffset);
 | 
						|
        }
 | 
						|
        if (FPR_remaining > 0) {
 | 
						|
            BuildMI(BB, PPC32::FMR, 1, Reg).addReg(PPC32::F0+FPR_idx);
 | 
						|
            FPR_remaining--;
 | 
						|
            FPR_idx++;
 | 
						|
        } else {
 | 
						|
            addFrameReference(BuildMI(BB, Opcode, 2, Reg), FI);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (I->getType() == Type::DoubleTy) {
 | 
						|
        ArgOffset += 4;   // doubles require 4 additional bytes
 | 
						|
        if (GPR_remaining > 0) {
 | 
						|
            GPR_remaining--;    // uses up 2 GPRs
 | 
						|
            GPR_idx++;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      assert(0 && "Unhandled argument type!");
 | 
						|
    }
 | 
						|
    ArgOffset += 4;  // Each argument takes at least 4 bytes on the stack...
 | 
						|
    if (GPR_remaining > 0) {
 | 
						|
        GPR_remaining--;    // uses up 2 GPRs
 | 
						|
        GPR_idx++;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If the function takes variable number of arguments, add a frame offset for
 | 
						|
  // the start of the first vararg value... this is used to expand
 | 
						|
  // llvm.va_start.
 | 
						|
  if (Fn.getFunctionType()->isVarArg())
 | 
						|
    VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// SelectPHINodes - Insert machine code to generate phis.  This is tricky
 | 
						|
/// because we have to generate our sources into the source basic blocks, not
 | 
						|
/// the current one.
 | 
						|
///
 | 
						|
void ISel::SelectPHINodes() {
 | 
						|
  const TargetInstrInfo &TII = *TM.getInstrInfo();
 | 
						|
  const Function &LF = *F->getFunction();  // The LLVM function...
 | 
						|
  for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
 | 
						|
    const BasicBlock *BB = I;
 | 
						|
    MachineBasicBlock &MBB = *MBBMap[I];
 | 
						|
 | 
						|
    // Loop over all of the PHI nodes in the LLVM basic block...
 | 
						|
    MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
 | 
						|
    for (BasicBlock::const_iterator I = BB->begin();
 | 
						|
         PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
 | 
						|
 | 
						|
      // Create a new machine instr PHI node, and insert it.
 | 
						|
      unsigned PHIReg = getReg(*PN);
 | 
						|
      MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
 | 
						|
                                    PPC32::PHI, PN->getNumOperands(), PHIReg);
 | 
						|
 | 
						|
      MachineInstr *LongPhiMI = 0;
 | 
						|
      if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy)
 | 
						|
        LongPhiMI = BuildMI(MBB, PHIInsertPoint,
 | 
						|
                            PPC32::PHI, PN->getNumOperands(), PHIReg+1);
 | 
						|
 | 
						|
      // PHIValues - Map of blocks to incoming virtual registers.  We use this
 | 
						|
      // so that we only initialize one incoming value for a particular block,
 | 
						|
      // even if the block has multiple entries in the PHI node.
 | 
						|
      //
 | 
						|
      std::map<MachineBasicBlock*, unsigned> PHIValues;
 | 
						|
 | 
						|
      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | 
						|
        MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
 | 
						|
        unsigned ValReg;
 | 
						|
        std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
 | 
						|
          PHIValues.lower_bound(PredMBB);
 | 
						|
 | 
						|
        if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
 | 
						|
          // We already inserted an initialization of the register for this
 | 
						|
          // predecessor.  Recycle it.
 | 
						|
          ValReg = EntryIt->second;
 | 
						|
 | 
						|
        } else {        
 | 
						|
          // Get the incoming value into a virtual register.
 | 
						|
          //
 | 
						|
          Value *Val = PN->getIncomingValue(i);
 | 
						|
 | 
						|
          // If this is a constant or GlobalValue, we may have to insert code
 | 
						|
          // into the basic block to compute it into a virtual register.
 | 
						|
          if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val)) ||
 | 
						|
              isa<GlobalValue>(Val)) {
 | 
						|
            // Simple constants get emitted at the end of the basic block,
 | 
						|
            // before any terminator instructions.  We "know" that the code to
 | 
						|
            // move a constant into a register will never clobber any flags.
 | 
						|
            ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
 | 
						|
          } else {
 | 
						|
            // Because we don't want to clobber any values which might be in
 | 
						|
            // physical registers with the computation of this constant (which
 | 
						|
            // might be arbitrarily complex if it is a constant expression),
 | 
						|
            // just insert the computation at the top of the basic block.
 | 
						|
            MachineBasicBlock::iterator PI = PredMBB->begin();
 | 
						|
            
 | 
						|
            // Skip over any PHI nodes though!
 | 
						|
            while (PI != PredMBB->end() && PI->getOpcode() == PPC32::PHI)
 | 
						|
              ++PI;
 | 
						|
            
 | 
						|
            ValReg = getReg(Val, PredMBB, PI);
 | 
						|
          }
 | 
						|
 | 
						|
          // Remember that we inserted a value for this PHI for this predecessor
 | 
						|
          PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
 | 
						|
        }
 | 
						|
 | 
						|
        PhiMI->addRegOperand(ValReg);
 | 
						|
        PhiMI->addMachineBasicBlockOperand(PredMBB);
 | 
						|
        if (LongPhiMI) {
 | 
						|
          LongPhiMI->addRegOperand(ValReg+1);
 | 
						|
          LongPhiMI->addMachineBasicBlockOperand(PredMBB);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Now that we emitted all of the incoming values for the PHI node, make
 | 
						|
      // sure to reposition the InsertPoint after the PHI that we just added.
 | 
						|
      // This is needed because we might have inserted a constant into this
 | 
						|
      // block, right after the PHI's which is before the old insert point!
 | 
						|
      PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI;
 | 
						|
      ++PHIInsertPoint;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold
 | 
						|
// it into the conditional branch or select instruction which is the only user
 | 
						|
// of the cc instruction.  This is the case if the conditional branch is the
 | 
						|
// only user of the setcc, and if the setcc is in the same basic block as the
 | 
						|
// conditional branch.  We also don't handle long arguments below, so we reject
 | 
						|
// them here as well.
 | 
						|
//
 | 
						|
static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
 | 
						|
  if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
 | 
						|
    if (SCI->hasOneUse()) {
 | 
						|
      Instruction *User = cast<Instruction>(SCI->use_back());
 | 
						|
      if ((isa<BranchInst>(User) || isa<SelectInst>(User)) &&
 | 
						|
          SCI->getParent() == User->getParent() &&
 | 
						|
          (getClassB(SCI->getOperand(0)->getType()) != cLong ||
 | 
						|
           SCI->getOpcode() == Instruction::SetEQ ||
 | 
						|
           SCI->getOpcode() == Instruction::SetNE))
 | 
						|
        return SCI;
 | 
						|
    }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
// Return a fixed numbering for setcc instructions which does not depend on the
 | 
						|
// order of the opcodes.
 | 
						|
//
 | 
						|
static unsigned getSetCCNumber(unsigned Opcode) {
 | 
						|
  switch(Opcode) {
 | 
						|
  default: assert(0 && "Unknown setcc instruction!");
 | 
						|
  case Instruction::SetEQ: return 0;
 | 
						|
  case Instruction::SetNE: return 1;
 | 
						|
  case Instruction::SetLT: return 2;
 | 
						|
  case Instruction::SetGE: return 3;
 | 
						|
  case Instruction::SetGT: return 4;
 | 
						|
  case Instruction::SetLE: return 5;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// emitUCOM - emits an unordered FP compare.
 | 
						|
void ISel::emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
 | 
						|
                     unsigned LHS, unsigned RHS) {
 | 
						|
    BuildMI(*MBB, IP, PPC32::FCMPU, 2, PPC32::CR0).addReg(LHS).addReg(RHS);
 | 
						|
}
 | 
						|
 | 
						|
// EmitComparison - This function emits a comparison of the two operands,
 | 
						|
// returning the extended setcc code to use.
 | 
						|
unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
 | 
						|
                              MachineBasicBlock *MBB,
 | 
						|
                              MachineBasicBlock::iterator IP) {
 | 
						|
  // The arguments are already supposed to be of the same type.
 | 
						|
  const Type *CompTy = Op0->getType();
 | 
						|
  unsigned Class = getClassB(CompTy);
 | 
						|
  unsigned Op0r = getReg(Op0, MBB, IP);
 | 
						|
 | 
						|
  // Special case handling of: cmp R, i
 | 
						|
  if (isa<ConstantPointerNull>(Op1)) {
 | 
						|
      BuildMI(*MBB, IP, PPC32::CMPI, 2, PPC32::CR0).addReg(Op0r).addImm(0);
 | 
						|
  } else if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
 | 
						|
    if (Class == cByte || Class == cShort || Class == cInt) {
 | 
						|
      unsigned Op1v = CI->getRawValue();
 | 
						|
 | 
						|
      // Mask off any upper bits of the constant, if there are any...
 | 
						|
      Op1v &= (1ULL << (8 << Class)) - 1;
 | 
						|
 | 
						|
      // Compare immediate or promote to reg?
 | 
						|
      if (Op1v <= 32767) {
 | 
						|
        BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMPI : PPC32::CMPLI, 3, 
 | 
						|
                PPC32::CR0).addImm(0).addReg(Op0r).addImm(Op1v);
 | 
						|
      } else {
 | 
						|
        unsigned Op1r = getReg(Op1, MBB, IP);
 | 
						|
        BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMP : PPC32::CMPL, 3, 
 | 
						|
                PPC32::CR0).addImm(0).addReg(Op0r).addReg(Op1r);
 | 
						|
      }
 | 
						|
      return OpNum;
 | 
						|
    } else {
 | 
						|
      assert(Class == cLong && "Unknown integer class!");
 | 
						|
      unsigned LowCst = CI->getRawValue();
 | 
						|
      unsigned HiCst = CI->getRawValue() >> 32;
 | 
						|
      if (OpNum < 2) {    // seteq, setne
 | 
						|
        unsigned LoTmp = Op0r;
 | 
						|
        if (LowCst != 0) {
 | 
						|
          unsigned LoLow = makeAnotherReg(Type::IntTy);
 | 
						|
          unsigned LoTmp = makeAnotherReg(Type::IntTy);
 | 
						|
          BuildMI(*MBB, IP, PPC32::XORI, 2, LoLow).addReg(Op0r).addImm(LowCst);
 | 
						|
          BuildMI(*MBB, IP, PPC32::XORIS, 2, LoTmp).addReg(LoLow)
 | 
						|
            .addImm(LowCst >> 16);
 | 
						|
        }
 | 
						|
        unsigned HiTmp = Op0r+1;
 | 
						|
        if (HiCst != 0) {
 | 
						|
          unsigned HiLow = makeAnotherReg(Type::IntTy);
 | 
						|
          unsigned HiTmp = makeAnotherReg(Type::IntTy);
 | 
						|
          BuildMI(*MBB, IP, PPC32::XORI, 2, HiLow).addReg(Op0r+1).addImm(HiCst);
 | 
						|
          BuildMI(*MBB, IP, PPC32::XORIS, 2, HiTmp).addReg(HiLow)
 | 
						|
            .addImm(HiCst >> 16);
 | 
						|
        }
 | 
						|
        unsigned FinalTmp = makeAnotherReg(Type::IntTy);
 | 
						|
        BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
 | 
						|
        //BuildMI(*MBB, IP, PPC32::CMPLI, 2, PPC32::CR0).addReg(FinalTmp).addImm(0);
 | 
						|
        return OpNum;
 | 
						|
      } else {
 | 
						|
        // Emit a sequence of code which compares the high and low parts once
 | 
						|
        // each, then uses a conditional move to handle the overflow case.  For
 | 
						|
        // example, a setlt for long would generate code like this:
 | 
						|
        //
 | 
						|
        // AL = lo(op1) < lo(op2)   // Always unsigned comparison
 | 
						|
        // BL = hi(op1) < hi(op2)   // Signedness depends on operands
 | 
						|
        // dest = hi(op1) == hi(op2) ? BL : AL;
 | 
						|
        //
 | 
						|
 | 
						|
        // FIXME: Not Yet Implemented
 | 
						|
        return OpNum;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned Op1r = getReg(Op1, MBB, IP);
 | 
						|
  switch (Class) {
 | 
						|
  default: assert(0 && "Unknown type class!");
 | 
						|
  case cByte:
 | 
						|
  case cShort:
 | 
						|
  case cInt:
 | 
						|
    BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMP : PPC32::CMPL, 2, 
 | 
						|
            PPC32::CR0).addReg(Op0r).addReg(Op1r);
 | 
						|
    break;
 | 
						|
  case cFP:
 | 
						|
    emitUCOM(MBB, IP, Op0r, Op1r);
 | 
						|
    break;
 | 
						|
 | 
						|
  case cLong:
 | 
						|
    if (OpNum < 2) {    // seteq, setne
 | 
						|
      unsigned LoTmp = makeAnotherReg(Type::IntTy);
 | 
						|
      unsigned HiTmp = makeAnotherReg(Type::IntTy);
 | 
						|
      unsigned FinalTmp = makeAnotherReg(Type::IntTy);
 | 
						|
      BuildMI(*MBB, IP, PPC32::XOR, 2, LoTmp).addReg(Op0r).addReg(Op1r);
 | 
						|
      BuildMI(*MBB, IP, PPC32::XOR, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
 | 
						|
      BuildMI(*MBB, IP, PPC32::ORo,  2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
 | 
						|
      //BuildMI(*MBB, IP, PPC32::CMPLI, 2, PPC32::CR0).addReg(FinalTmp).addImm(0);
 | 
						|
      break;  // Allow the sete or setne to be generated from flags set by OR
 | 
						|
    } else {
 | 
						|
      // Emit a sequence of code which compares the high and low parts once
 | 
						|
      // each, then uses a conditional move to handle the overflow case.  For
 | 
						|
      // example, a setlt for long would generate code like this:
 | 
						|
      //
 | 
						|
      // AL = lo(op1) < lo(op2)   // Signedness depends on operands
 | 
						|
      // BL = hi(op1) < hi(op2)   // Always unsigned comparison
 | 
						|
      // dest = hi(op1) == hi(op2) ? BL : AL;
 | 
						|
      //
 | 
						|
 | 
						|
      // FIXME: Not Yet Implemented
 | 
						|
      return OpNum;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return OpNum;
 | 
						|
}
 | 
						|
 | 
						|
/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
 | 
						|
/// register, then move it to wherever the result should be. 
 | 
						|
///
 | 
						|
void ISel::visitSetCondInst(SetCondInst &I) {
 | 
						|
  if (canFoldSetCCIntoBranchOrSelect(&I))
 | 
						|
    return;  // Fold this into a branch or select.
 | 
						|
 | 
						|
  unsigned DestReg = getReg(I);
 | 
						|
  MachineBasicBlock::iterator MII = BB->end();
 | 
						|
  emitSetCCOperation(BB, MII, I.getOperand(0), I.getOperand(1), I.getOpcode(),
 | 
						|
                     DestReg);
 | 
						|
}
 | 
						|
 | 
						|
/// emitSetCCOperation - Common code shared between visitSetCondInst and
 | 
						|
/// constant expression support.
 | 
						|
///
 | 
						|
/// FIXME: this is wrong.  we should figure out a way to guarantee
 | 
						|
/// TargetReg is a CR and then make it a no-op
 | 
						|
void ISel::emitSetCCOperation(MachineBasicBlock *MBB,
 | 
						|
                              MachineBasicBlock::iterator IP,
 | 
						|
                              Value *Op0, Value *Op1, unsigned Opcode,
 | 
						|
                              unsigned TargetReg) {
 | 
						|
  unsigned OpNum = getSetCCNumber(Opcode);
 | 
						|
  OpNum = EmitComparison(OpNum, Op0, Op1, MBB, IP);
 | 
						|
 | 
						|
  // The value is already in CR0 at this point, do nothing.
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void ISel::visitSelectInst(SelectInst &SI) {
 | 
						|
  unsigned DestReg = getReg(SI);
 | 
						|
  MachineBasicBlock::iterator MII = BB->end();
 | 
						|
  emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(),
 | 
						|
                      SI.getFalseValue(), DestReg);
 | 
						|
}
 | 
						|
 
 | 
						|
/// emitSelect - Common code shared between visitSelectInst and the constant
 | 
						|
/// expression support.
 | 
						|
/// FIXME: this is most likely broken in one or more ways.  Namely, PowerPC has
 | 
						|
/// no select instruction.  FSEL only works for comparisons against zero.
 | 
						|
void ISel::emitSelectOperation(MachineBasicBlock *MBB,
 | 
						|
                               MachineBasicBlock::iterator IP,
 | 
						|
                               Value *Cond, Value *TrueVal, Value *FalseVal,
 | 
						|
                               unsigned DestReg) {
 | 
						|
  unsigned SelectClass = getClassB(TrueVal->getType());
 | 
						|
 | 
						|
  unsigned TrueReg  = getReg(TrueVal, MBB, IP);
 | 
						|
  unsigned FalseReg = getReg(FalseVal, MBB, IP);
 | 
						|
 | 
						|
  if (TrueReg == FalseReg) {
 | 
						|
    if (SelectClass == cFP) {
 | 
						|
      BuildMI(*MBB, IP, PPC32::FMR, 1, DestReg).addReg(TrueReg);
 | 
						|
    } else {
 | 
						|
      BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(TrueReg).addReg(TrueReg);
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (SelectClass == cLong)
 | 
						|
      BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(TrueReg+1)
 | 
						|
        .addReg(TrueReg+1);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned CondReg = getReg(Cond, MBB, IP);
 | 
						|
  unsigned numZeros = makeAnotherReg(Type::IntTy);
 | 
						|
  unsigned falseHi = makeAnotherReg(Type::IntTy);
 | 
						|
  unsigned falseAll = makeAnotherReg(Type::IntTy);
 | 
						|
  unsigned trueAll = makeAnotherReg(Type::IntTy);
 | 
						|
  unsigned Temp1 = makeAnotherReg(Type::IntTy);
 | 
						|
  unsigned Temp2 = makeAnotherReg(Type::IntTy);
 | 
						|
 | 
						|
  BuildMI(*MBB, IP, PPC32::CNTLZW, 1, numZeros).addReg(CondReg);
 | 
						|
  BuildMI(*MBB, IP, PPC32::RLWINM, 4, falseHi).addReg(numZeros).addImm(26)
 | 
						|
    .addImm(0).addImm(0);
 | 
						|
  BuildMI(*MBB, IP, PPC32::SRAWI, 2, falseAll).addReg(falseHi).addImm(31);
 | 
						|
  BuildMI(*MBB, IP, PPC32::NOR, 2, trueAll).addReg(falseAll).addReg(falseAll);
 | 
						|
  BuildMI(*MBB, IP, PPC32::AND, 2, Temp1).addReg(TrueReg).addReg(trueAll);
 | 
						|
  BuildMI(*MBB, IP, PPC32::AND, 2, Temp2).addReg(FalseReg).addReg(falseAll);
 | 
						|
  BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(Temp1).addReg(Temp2);
 | 
						|
  
 | 
						|
  if (SelectClass == cLong) {
 | 
						|
    unsigned Temp3 = makeAnotherReg(Type::IntTy);
 | 
						|
    unsigned Temp4 = makeAnotherReg(Type::IntTy);
 | 
						|
    BuildMI(*MBB, IP, PPC32::AND, 2, Temp3).addReg(TrueReg+1).addReg(trueAll);
 | 
						|
    BuildMI(*MBB, IP, PPC32::AND, 2, Temp4).addReg(FalseReg+1).addReg(falseAll);
 | 
						|
    BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(Temp3).addReg(Temp4);
 | 
						|
  }
 | 
						|
  
 | 
						|
  return;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
 | 
						|
/// operand, in the specified target register.
 | 
						|
///
 | 
						|
void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
 | 
						|
  bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy;
 | 
						|
 | 
						|
  Value *Val = VR.Val;
 | 
						|
  const Type *Ty = VR.Ty;
 | 
						|
  if (Val) {
 | 
						|
    if (Constant *C = dyn_cast<Constant>(Val)) {
 | 
						|
      Val = ConstantExpr::getCast(C, Type::IntTy);
 | 
						|
      Ty = Type::IntTy;
 | 
						|
    }
 | 
						|
 | 
						|
    // If this is a simple constant, just emit a load directly to avoid the copy
 | 
						|
    if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
 | 
						|
      int TheVal = CI->getRawValue() & 0xFFFFFFFF;
 | 
						|
 | 
						|
      if (TheVal < 32768 && TheVal >= -32768) {
 | 
						|
        BuildMI(BB, PPC32::ADDI, 2, targetReg).addReg(PPC32::R0).addImm(TheVal);
 | 
						|
      } else {
 | 
						|
        unsigned TmpReg = makeAnotherReg(Type::IntTy);
 | 
						|
        BuildMI(BB, PPC32::ADDIS, 2, TmpReg).addReg(PPC32::R0)
 | 
						|
          .addImm(TheVal >> 16);
 | 
						|
        BuildMI(BB, PPC32::ORI, 2, targetReg).addReg(TmpReg)
 | 
						|
          .addImm(TheVal & 0xFFFF);
 | 
						|
      }
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Make sure we have the register number for this value...
 | 
						|
  unsigned Reg = Val ? getReg(Val) : VR.Reg;
 | 
						|
 | 
						|
  switch (getClassB(Ty)) {
 | 
						|
  case cByte:
 | 
						|
    // Extend value into target register (8->32)
 | 
						|
    if (isUnsigned)
 | 
						|
      BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
 | 
						|
        .addZImm(24).addZImm(31);
 | 
						|
    else
 | 
						|
      BuildMI(BB, PPC32::EXTSB, 1, targetReg).addReg(Reg);
 | 
						|
    break;
 | 
						|
  case cShort:
 | 
						|
    // Extend value into target register (16->32)
 | 
						|
    if (isUnsigned)
 | 
						|
      BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
 | 
						|
        .addZImm(16).addZImm(31);
 | 
						|
    else
 | 
						|
      BuildMI(BB, PPC32::EXTSH, 1, targetReg).addReg(Reg);
 | 
						|
    break;
 | 
						|
  case cInt:
 | 
						|
    // Move value into target register (32->32)
 | 
						|
    BuildMI(BB, PPC32::ORI, 2, targetReg).addReg(Reg).addReg(Reg);
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    assert(0 && "Unpromotable operand class in promote32");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// visitReturnInst - implemented with BLR
 | 
						|
///
 | 
						|
void ISel::visitReturnInst(ReturnInst &I) {
 | 
						|
  Value *RetVal = I.getOperand(0);
 | 
						|
  switch (getClassB(RetVal->getType())) {
 | 
						|
  case cByte:   // integral return values: extend or move into r3 and return
 | 
						|
  case cShort:
 | 
						|
  case cInt:
 | 
						|
    promote32(PPC32::R3, ValueRecord(RetVal));
 | 
						|
    break;
 | 
						|
  case cFP: {   // Floats & Doubles: Return in f1
 | 
						|
    unsigned RetReg = getReg(RetVal);
 | 
						|
    BuildMI(BB, PPC32::FMR, 1, PPC32::F1).addReg(RetReg);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case cLong: {
 | 
						|
    unsigned RetReg = getReg(RetVal);
 | 
						|
    BuildMI(BB, PPC32::OR, 2, PPC32::R3).addReg(RetReg).addReg(RetReg);
 | 
						|
    BuildMI(BB, PPC32::OR, 2, PPC32::R4).addReg(RetReg+1).addReg(RetReg+1);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    visitInstruction(I);
 | 
						|
  }
 | 
						|
  BuildMI(BB, PPC32::BLR, 1).addImm(0);
 | 
						|
}
 | 
						|
 | 
						|
// getBlockAfter - Return the basic block which occurs lexically after the
 | 
						|
// specified one.
 | 
						|
static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
 | 
						|
  Function::iterator I = BB; ++I;  // Get iterator to next block
 | 
						|
  return I != BB->getParent()->end() ? &*I : 0;
 | 
						|
}
 | 
						|
 | 
						|
/// visitBranchInst - Handle conditional and unconditional branches here.  Note
 | 
						|
/// that since code layout is frozen at this point, that if we are trying to
 | 
						|
/// jump to a block that is the immediate successor of the current block, we can
 | 
						|
/// just make a fall-through (but we don't currently).
 | 
						|
///
 | 
						|
void ISel::visitBranchInst(BranchInst &BI) {
 | 
						|
  // Update machine-CFG edges
 | 
						|
  BB->addSuccessor (MBBMap[BI.getSuccessor(0)]);
 | 
						|
  if (BI.isConditional())
 | 
						|
    BB->addSuccessor (MBBMap[BI.getSuccessor(1)]);
 | 
						|
  
 | 
						|
  BasicBlock *NextBB = getBlockAfter(BI.getParent());  // BB after current one
 | 
						|
  
 | 
						|
  if (!BI.isConditional()) {  // Unconditional branch?
 | 
						|
    if (BI.getSuccessor(0) != NextBB)
 | 
						|
      BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // See if we can fold the setcc into the branch itself...
 | 
						|
  SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition());
 | 
						|
  if (SCI == 0) {
 | 
						|
    // Nope, cannot fold setcc into this branch.  Emit a branch on a condition
 | 
						|
    // computed some other way...
 | 
						|
    unsigned condReg = getReg(BI.getCondition());
 | 
						|
    BuildMI(BB, PPC32::CMPLI, 3, PPC32::CR0).addImm(0).addReg(condReg)
 | 
						|
      .addImm(0);
 | 
						|
    if (BI.getSuccessor(1) == NextBB) {
 | 
						|
      if (BI.getSuccessor(0) != NextBB)
 | 
						|
        BuildMI(BB, PPC32::BC, 3).addImm(4).addImm(2)
 | 
						|
          .addMBB(MBBMap[BI.getSuccessor(0)]);
 | 
						|
    } else {
 | 
						|
      BuildMI(BB, PPC32::BC, 3).addImm(12).addImm(2)
 | 
						|
        .addMBB(MBBMap[BI.getSuccessor(1)]);
 | 
						|
      
 | 
						|
      if (BI.getSuccessor(0) != NextBB)
 | 
						|
        BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned OpNum = getSetCCNumber(SCI->getOpcode());
 | 
						|
  MachineBasicBlock::iterator MII = BB->end();
 | 
						|
  OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
 | 
						|
 | 
						|
  const Type *CompTy = SCI->getOperand(0)->getType();
 | 
						|
  bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP;
 | 
						|
  
 | 
						|
  static const unsigned BITab[6] = { 2, 2, 0, 0, 1, 1 };
 | 
						|
  unsigned BO_true = (OpNum % 2 == 0) ? 12 : 4;
 | 
						|
  unsigned BO_false = (OpNum % 2 == 0) ? 4 : 12;
 | 
						|
  unsigned BIval = BITab[0];
 | 
						|
 | 
						|
  if (BI.getSuccessor(0) != NextBB) {
 | 
						|
    BuildMI(BB, PPC32::BC, 3).addImm(BO_true).addImm(BIval)
 | 
						|
      .addMBB(MBBMap[BI.getSuccessor(0)]);
 | 
						|
    if (BI.getSuccessor(1) != NextBB)
 | 
						|
      BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
 | 
						|
  } else {
 | 
						|
    // Change to the inverse condition...
 | 
						|
    if (BI.getSuccessor(1) != NextBB) {
 | 
						|
      BuildMI(BB, PPC32::BC, 3).addImm(BO_false).addImm(BIval)
 | 
						|
        .addMBB(MBBMap[BI.getSuccessor(1)]);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// doCall - This emits an abstract call instruction, setting up the arguments
 | 
						|
/// and the return value as appropriate.  For the actual function call itself,
 | 
						|
/// it inserts the specified CallMI instruction into the stream.
 | 
						|
///
 | 
						|
/// FIXME: See Documentation at the following URL for "correct" behavior
 | 
						|
/// <http://developer.apple.com/documentation/DeveloperTools/Conceptual/MachORuntime/2rt_powerpc_abi/chapter_9_section_5.html>
 | 
						|
void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
 | 
						|
                  const std::vector<ValueRecord> &Args) {
 | 
						|
  // Count how many bytes are to be pushed on the stack...
 | 
						|
  unsigned NumBytes = 0;
 | 
						|
 | 
						|
  if (!Args.empty()) {
 | 
						|
    for (unsigned i = 0, e = Args.size(); i != e; ++i)
 | 
						|
      switch (getClassB(Args[i].Ty)) {
 | 
						|
      case cByte: case cShort: case cInt:
 | 
						|
        NumBytes += 4; break;
 | 
						|
      case cLong:
 | 
						|
        NumBytes += 8; break;
 | 
						|
      case cFP:
 | 
						|
        NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8;
 | 
						|
        break;
 | 
						|
      default: assert(0 && "Unknown class!");
 | 
						|
      }
 | 
						|
 | 
						|
    // Adjust the stack pointer for the new arguments...
 | 
						|
    BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addImm(NumBytes);
 | 
						|
 | 
						|
    // Arguments go on the stack in reverse order, as specified by the ABI.
 | 
						|
    unsigned ArgOffset = 0;
 | 
						|
    unsigned GPR_remaining = 8;
 | 
						|
    unsigned FPR_remaining = 13;
 | 
						|
    unsigned GPR_idx = 3;
 | 
						|
    unsigned FPR_idx = 1;
 | 
						|
    
 | 
						|
    for (unsigned i = 0, e = Args.size(); i != e; ++i) {
 | 
						|
      unsigned ArgReg;
 | 
						|
      switch (getClassB(Args[i].Ty)) {
 | 
						|
      case cByte:
 | 
						|
      case cShort:
 | 
						|
        // Promote arg to 32 bits wide into a temporary register...
 | 
						|
        ArgReg = makeAnotherReg(Type::UIntTy);
 | 
						|
        promote32(ArgReg, Args[i]);
 | 
						|
          
 | 
						|
        // Reg or stack?
 | 
						|
        if (GPR_remaining > 0) {
 | 
						|
          BuildMI(BB, PPC32::OR, 2, PPC32::R0 + GPR_idx).addReg(ArgReg)
 | 
						|
            .addReg(ArgReg);
 | 
						|
        } else {
 | 
						|
          BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
 | 
						|
            .addReg(PPC32::R1);
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      case cInt:
 | 
						|
        ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
 | 
						|
 | 
						|
        // Reg or stack?
 | 
						|
        if (GPR_remaining > 0) {
 | 
						|
          BuildMI(BB, PPC32::OR, 2, PPC32::R0 + GPR_idx).addReg(ArgReg)
 | 
						|
            .addReg(ArgReg);
 | 
						|
        } else {
 | 
						|
          BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
 | 
						|
            .addReg(PPC32::R1);
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      case cLong:
 | 
						|
        ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
 | 
						|
 | 
						|
        // Reg or stack?
 | 
						|
        if (GPR_remaining > 1) {
 | 
						|
          BuildMI(BB, PPC32::OR, 2, PPC32::R0 + GPR_idx).addReg(ArgReg)
 | 
						|
            .addReg(ArgReg);
 | 
						|
          BuildMI(BB, PPC32::OR, 2, PPC32::R0 + GPR_idx + 1).addReg(ArgReg+1)
 | 
						|
            .addReg(ArgReg+1);
 | 
						|
        } else {
 | 
						|
          BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
 | 
						|
            .addReg(PPC32::R1);
 | 
						|
          BuildMI(BB, PPC32::STW, 3).addReg(ArgReg+1).addImm(ArgOffset+4)
 | 
						|
            .addReg(PPC32::R1);
 | 
						|
        }
 | 
						|
 | 
						|
        ArgOffset += 4;        // 8 byte entry, not 4.
 | 
						|
        if (GPR_remaining > 0) {
 | 
						|
          GPR_remaining -= 1;    // uses up 2 GPRs
 | 
						|
          GPR_idx += 1;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      case cFP:
 | 
						|
        ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
 | 
						|
        if (Args[i].Ty == Type::FloatTy) {
 | 
						|
          // Reg or stack?
 | 
						|
          if (FPR_remaining > 0) {
 | 
						|
            BuildMI(BB, PPC32::FMR, 1, PPC32::F0 + FPR_idx).addReg(ArgReg);
 | 
						|
            FPR_remaining--;
 | 
						|
            FPR_idx++;
 | 
						|
          } else {
 | 
						|
            BuildMI(BB, PPC32::STFS, 3).addReg(ArgReg).addImm(ArgOffset)
 | 
						|
              .addReg(PPC32::R1);
 | 
						|
          }
 | 
						|
        } else {
 | 
						|
          assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
 | 
						|
          // Reg or stack?
 | 
						|
          if (FPR_remaining > 0) {
 | 
						|
            BuildMI(BB, PPC32::FMR, 1, PPC32::F0 + FPR_idx).addReg(ArgReg);
 | 
						|
            FPR_remaining--;
 | 
						|
            FPR_idx++;
 | 
						|
          } else {
 | 
						|
            BuildMI(BB, PPC32::STFD, 3).addReg(ArgReg).addImm(ArgOffset)
 | 
						|
              .addReg(PPC32::R1);
 | 
						|
          }
 | 
						|
 | 
						|
          ArgOffset += 4;       // 8 byte entry, not 4.
 | 
						|
          if (GPR_remaining > 0) {
 | 
						|
            GPR_remaining--;    // uses up 2 GPRs
 | 
						|
            GPR_idx++;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        break;
 | 
						|
 | 
						|
      default: assert(0 && "Unknown class!");
 | 
						|
      }
 | 
						|
      ArgOffset += 4;
 | 
						|
      if (GPR_remaining > 0) {
 | 
						|
        GPR_remaining--;    // uses up 2 GPRs
 | 
						|
        GPR_idx++;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addImm(0);
 | 
						|
  }
 | 
						|
 | 
						|
  BB->push_back(CallMI);
 | 
						|
 | 
						|
  BuildMI(BB, PPC32::ADJCALLSTACKUP, 1).addImm(NumBytes);
 | 
						|
 | 
						|
  // If there is a return value, scavenge the result from the location the call
 | 
						|
  // leaves it in...
 | 
						|
  //
 | 
						|
  if (Ret.Ty != Type::VoidTy) {
 | 
						|
    unsigned DestClass = getClassB(Ret.Ty);
 | 
						|
    switch (DestClass) {
 | 
						|
    case cByte:
 | 
						|
    case cShort:
 | 
						|
    case cInt:
 | 
						|
      // Integral results are in r3
 | 
						|
      BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3);
 | 
						|
      break;
 | 
						|
    case cFP:     // Floating-point return values live in f1
 | 
						|
      BuildMI(BB, PPC32::FMR, 1, Ret.Reg).addReg(PPC32::F1);
 | 
						|
      break;
 | 
						|
    case cLong:   // Long values are in r3:r4
 | 
						|
      BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3);
 | 
						|
      BuildMI(BB, PPC32::OR, 2, Ret.Reg+1).addReg(PPC32::R4).addReg(PPC32::R4);
 | 
						|
      break;
 | 
						|
    default: assert(0 && "Unknown class!");
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// visitCallInst - Push args on stack and do a procedure call instruction.
 | 
						|
void ISel::visitCallInst(CallInst &CI) {
 | 
						|
  MachineInstr *TheCall;
 | 
						|
  if (Function *F = CI.getCalledFunction()) {
 | 
						|
    // Is it an intrinsic function call?
 | 
						|
    if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
 | 
						|
      visitIntrinsicCall(ID, CI);   // Special intrinsics are not handled here
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Emit a CALL instruction with PC-relative displacement.
 | 
						|
    TheCall = BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(F, true);
 | 
						|
  } else {  // Emit an indirect call through the CTR
 | 
						|
    unsigned Reg = getReg(CI.getCalledValue());
 | 
						|
    BuildMI(PPC32::MTSPR, 2).addZImm(9).addReg(Reg);
 | 
						|
    TheCall = BuildMI(PPC32::CALLindirect, 1).addZImm(20).addZImm(0);
 | 
						|
  }
 | 
						|
 | 
						|
  std::vector<ValueRecord> Args;
 | 
						|
  for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
 | 
						|
    Args.push_back(ValueRecord(CI.getOperand(i)));
 | 
						|
 | 
						|
  unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
 | 
						|
  doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args);
 | 
						|
}         
 | 
						|
 | 
						|
 | 
						|
/// dyncastIsNan - Return the operand of an isnan operation if this is an isnan.
 | 
						|
///
 | 
						|
static Value *dyncastIsNan(Value *V) {
 | 
						|
  if (CallInst *CI = dyn_cast<CallInst>(V))
 | 
						|
    if (Function *F = CI->getCalledFunction())
 | 
						|
      if (F->getIntrinsicID() == Intrinsic::isunordered)
 | 
						|
        return CI->getOperand(1);
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// isOnlyUsedByUnorderedComparisons - Return true if this value is only used by
 | 
						|
/// or's whos operands are all calls to the isnan predicate.
 | 
						|
static bool isOnlyUsedByUnorderedComparisons(Value *V) {
 | 
						|
  assert(dyncastIsNan(V) && "The value isn't an isnan call!");
 | 
						|
 | 
						|
  // Check all uses, which will be or's of isnans if this predicate is true.
 | 
						|
  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
 | 
						|
    Instruction *I = cast<Instruction>(*UI);
 | 
						|
    if (I->getOpcode() != Instruction::Or) return false;
 | 
						|
    if (I->getOperand(0) != V && !dyncastIsNan(I->getOperand(0))) return false;
 | 
						|
    if (I->getOperand(1) != V && !dyncastIsNan(I->getOperand(1))) return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
 | 
						|
/// function, lowering any calls to unknown intrinsic functions into the
 | 
						|
/// equivalent LLVM code.
 | 
						|
///
 | 
						|
void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
 | 
						|
  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
 | 
						|
    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
 | 
						|
      if (CallInst *CI = dyn_cast<CallInst>(I++))
 | 
						|
        if (Function *F = CI->getCalledFunction())
 | 
						|
          switch (F->getIntrinsicID()) {
 | 
						|
          case Intrinsic::not_intrinsic:
 | 
						|
          case Intrinsic::vastart:
 | 
						|
          case Intrinsic::vacopy:
 | 
						|
          case Intrinsic::vaend:
 | 
						|
          case Intrinsic::returnaddress:
 | 
						|
          case Intrinsic::frameaddress:
 | 
						|
            // FIXME: should lower this ourselves
 | 
						|
            // case Intrinsic::isunordered:
 | 
						|
            // We directly implement these intrinsics
 | 
						|
            break;
 | 
						|
          case Intrinsic::readio: {
 | 
						|
            // On PPC, memory operations are in-order.  Lower this intrinsic
 | 
						|
            // into a volatile load.
 | 
						|
            Instruction *Before = CI->getPrev();
 | 
						|
            LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI);
 | 
						|
            CI->replaceAllUsesWith(LI);
 | 
						|
            BB->getInstList().erase(CI);
 | 
						|
            break;
 | 
						|
          }
 | 
						|
          case Intrinsic::writeio: {
 | 
						|
            // On PPC, memory operations are in-order.  Lower this intrinsic
 | 
						|
            // into a volatile store.
 | 
						|
            Instruction *Before = CI->getPrev();
 | 
						|
            StoreInst *LI = new StoreInst(CI->getOperand(1),
 | 
						|
                                          CI->getOperand(2), true, CI);
 | 
						|
            CI->replaceAllUsesWith(LI);
 | 
						|
            BB->getInstList().erase(CI);
 | 
						|
            break;
 | 
						|
          }
 | 
						|
          default:
 | 
						|
            // All other intrinsic calls we must lower.
 | 
						|
            Instruction *Before = CI->getPrev();
 | 
						|
            TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
 | 
						|
            if (Before) {        // Move iterator to instruction after call
 | 
						|
              I = Before; ++I;
 | 
						|
            } else {
 | 
						|
              I = BB->begin();
 | 
						|
            }
 | 
						|
          }
 | 
						|
}
 | 
						|
 | 
						|
void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
 | 
						|
  unsigned TmpReg1, TmpReg2, TmpReg3;
 | 
						|
  switch (ID) {
 | 
						|
  case Intrinsic::vastart:
 | 
						|
    // Get the address of the first vararg value...
 | 
						|
    TmpReg1 = getReg(CI);
 | 
						|
    addFrameReference(BuildMI(BB, PPC32::ADDI, 2, TmpReg1), VarArgsFrameIndex);
 | 
						|
    return;
 | 
						|
 | 
						|
  case Intrinsic::vacopy:
 | 
						|
    TmpReg1 = getReg(CI);
 | 
						|
    TmpReg2 = getReg(CI.getOperand(1));
 | 
						|
    BuildMI(BB, PPC32::OR, 2, TmpReg1).addReg(TmpReg2).addReg(TmpReg2);
 | 
						|
    return;
 | 
						|
  case Intrinsic::vaend: return;
 | 
						|
 | 
						|
  case Intrinsic::returnaddress:
 | 
						|
  case Intrinsic::frameaddress:
 | 
						|
    TmpReg1 = getReg(CI);
 | 
						|
    if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
 | 
						|
      if (ID == Intrinsic::returnaddress) {
 | 
						|
        // Just load the return address
 | 
						|
        addFrameReference(BuildMI(BB, PPC32::LWZ, 2, TmpReg1),
 | 
						|
                          ReturnAddressIndex);
 | 
						|
      } else {
 | 
						|
        addFrameReference(BuildMI(BB, PPC32::ADDI, 2, TmpReg1),
 | 
						|
                          ReturnAddressIndex, -4, false);
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // Values other than zero are not implemented yet.
 | 
						|
      BuildMI(BB, PPC32::ADDI, 2, TmpReg1).addReg(PPC32::R0).addImm(0);
 | 
						|
    }
 | 
						|
    return;
 | 
						|
 | 
						|
#if 0
 | 
						|
    // This may be useful for supporting isunordered
 | 
						|
  case Intrinsic::isnan:
 | 
						|
    // If this is only used by 'isunordered' style comparisons, don't emit it.
 | 
						|
    if (isOnlyUsedByUnorderedComparisons(&CI)) return;
 | 
						|
    TmpReg1 = getReg(CI.getOperand(1));
 | 
						|
    emitUCOM(BB, BB->end(), TmpReg1, TmpReg1);
 | 
						|
    TmpReg2 = makeAnotherReg(Type::IntTy);
 | 
						|
    BuildMI(BB, PPC32::MFCR, TmpReg2);
 | 
						|
    TmpReg3 = getReg(CI);
 | 
						|
    BuildMI(BB, PPC32::RLWINM, 4, TmpReg3).addReg(TmpReg2).addImm(4).addImm(31).addImm(31);
 | 
						|
    return;
 | 
						|
#endif
 | 
						|
    
 | 
						|
  default: assert(0 && "Error: unknown intrinsics should have been lowered!");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// visitSimpleBinary - Implement simple binary operators for integral types...
 | 
						|
/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
 | 
						|
/// Xor.
 | 
						|
///
 | 
						|
void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
 | 
						|
  unsigned DestReg = getReg(B);
 | 
						|
  MachineBasicBlock::iterator MI = BB->end();
 | 
						|
  Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1);
 | 
						|
  unsigned Class = getClassB(B.getType());
 | 
						|
 | 
						|
  emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg);
 | 
						|
}
 | 
						|
 | 
						|
/// emitBinaryFPOperation - This method handles emission of floating point
 | 
						|
/// Add (0), Sub (1), Mul (2), and Div (3) operations.
 | 
						|
void ISel::emitBinaryFPOperation(MachineBasicBlock *BB,
 | 
						|
                                 MachineBasicBlock::iterator IP,
 | 
						|
                                 Value *Op0, Value *Op1,
 | 
						|
                                 unsigned OperatorClass, unsigned DestReg) {
 | 
						|
 | 
						|
  // Special case: op Reg, <const fp>
 | 
						|
  if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
 | 
						|
    // Create a constant pool entry for this constant.
 | 
						|
    MachineConstantPool *CP = F->getConstantPool();
 | 
						|
    unsigned CPI = CP->getConstantPoolIndex(Op1C);
 | 
						|
    const Type *Ty = Op1->getType();
 | 
						|
 | 
						|
    static const unsigned OpcodeTab[][4] = {
 | 
						|
      { PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS },   // Float
 | 
						|
      { PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV },   // Double
 | 
						|
    };
 | 
						|
 | 
						|
    assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
 | 
						|
    unsigned TempReg = makeAnotherReg(Ty);
 | 
						|
    unsigned LoadOpcode = Ty == Type::FloatTy ? PPC32::LFS : PPC32::LFD;
 | 
						|
    addConstantPoolReference(BuildMI(*BB, IP, LoadOpcode, 2, TempReg), CPI);
 | 
						|
 | 
						|
    unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
 | 
						|
    unsigned Op0r = getReg(Op0, BB, IP);
 | 
						|
    BuildMI(*BB, IP, Opcode, DestReg).addReg(Op0r).addReg(TempReg);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Special case: R1 = op <const fp>, R2
 | 
						|
  if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op0))
 | 
						|
    if (CFP->isExactlyValue(-0.0) && OperatorClass == 1) {
 | 
						|
      // -0.0 - X === -X
 | 
						|
      unsigned op1Reg = getReg(Op1, BB, IP);
 | 
						|
      BuildMI(*BB, IP, PPC32::FNEG, 1, DestReg).addReg(op1Reg);
 | 
						|
      return;
 | 
						|
    } else {
 | 
						|
      // R1 = op CST, R2  -->  R1 = opr R2, CST
 | 
						|
 | 
						|
      // Create a constant pool entry for this constant.
 | 
						|
      MachineConstantPool *CP = F->getConstantPool();
 | 
						|
      unsigned CPI = CP->getConstantPoolIndex(CFP);
 | 
						|
      const Type *Ty = CFP->getType();
 | 
						|
 | 
						|
      static const unsigned OpcodeTab[][4] = {
 | 
						|
        { PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS },   // Float
 | 
						|
        { PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV },   // Double
 | 
						|
      };
 | 
						|
 | 
						|
      assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
 | 
						|
      unsigned TempReg = makeAnotherReg(Ty);
 | 
						|
      unsigned LoadOpcode = Ty == Type::FloatTy ? PPC32::LFS : PPC32::LFD;
 | 
						|
      addConstantPoolReference(BuildMI(*BB, IP, LoadOpcode, 2, TempReg), CPI);
 | 
						|
 | 
						|
      unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
 | 
						|
      unsigned Op1r = getReg(Op1, BB, IP);
 | 
						|
      BuildMI(*BB, IP, Opcode, DestReg).addReg(TempReg).addReg(Op1r);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
  // General case.
 | 
						|
  static const unsigned OpcodeTab[4] = {
 | 
						|
    PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV
 | 
						|
  };
 | 
						|
 | 
						|
  unsigned Opcode = OpcodeTab[OperatorClass];
 | 
						|
  unsigned Op0r = getReg(Op0, BB, IP);
 | 
						|
  unsigned Op1r = getReg(Op1, BB, IP);
 | 
						|
  BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
 | 
						|
}
 | 
						|
 | 
						|
/// emitSimpleBinaryOperation - Implement simple binary operators for integral
 | 
						|
/// types...  OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
 | 
						|
/// Or, 4 for Xor.
 | 
						|
///
 | 
						|
/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
 | 
						|
/// and constant expression support.
 | 
						|
///
 | 
						|
void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
 | 
						|
                                     MachineBasicBlock::iterator IP,
 | 
						|
                                     Value *Op0, Value *Op1,
 | 
						|
                                     unsigned OperatorClass, unsigned DestReg) {
 | 
						|
  unsigned Class = getClassB(Op0->getType());
 | 
						|
 | 
						|
  // Arithmetic and Bitwise operators
 | 
						|
  static const unsigned OpcodeTab[5] = {
 | 
						|
    PPC32::ADD, PPC32::SUB, PPC32::AND, PPC32::OR, PPC32::XOR
 | 
						|
  };
 | 
						|
  // Otherwise, code generate the full operation with a constant.
 | 
						|
  static const unsigned BottomTab[] = {
 | 
						|
    PPC32::ADDC, PPC32::SUBC, PPC32::AND, PPC32::OR, PPC32::XOR
 | 
						|
  };
 | 
						|
  static const unsigned TopTab[] = {
 | 
						|
    PPC32::ADDE, PPC32::SUBFE, PPC32::AND, PPC32::OR, PPC32::XOR
 | 
						|
  };
 | 
						|
  
 | 
						|
  if (Class == cFP) {
 | 
						|
    assert(OperatorClass < 2 && "No logical ops for FP!");
 | 
						|
    emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Op0->getType() == Type::BoolTy) {
 | 
						|
    if (OperatorClass == 3)
 | 
						|
      // If this is an or of two isnan's, emit an FP comparison directly instead
 | 
						|
      // of or'ing two isnan's together.
 | 
						|
      if (Value *LHS = dyncastIsNan(Op0))
 | 
						|
        if (Value *RHS = dyncastIsNan(Op1)) {
 | 
						|
          unsigned Op0Reg = getReg(RHS, MBB, IP), Op1Reg = getReg(LHS, MBB, IP);
 | 
						|
          unsigned TmpReg = makeAnotherReg(Type::IntTy);
 | 
						|
          emitUCOM(MBB, IP, Op0Reg, Op1Reg);
 | 
						|
          BuildMI(*MBB, IP, PPC32::MFCR, TmpReg);
 | 
						|
          BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(TmpReg).addImm(4)
 | 
						|
            .addImm(31).addImm(31);
 | 
						|
          return;
 | 
						|
        }
 | 
						|
  }
 | 
						|
 | 
						|
  // sub 0, X -> neg X
 | 
						|
  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0))
 | 
						|
    if (OperatorClass == 1 && CI->isNullValue()) {
 | 
						|
      unsigned op1Reg = getReg(Op1, MBB, IP);
 | 
						|
      BuildMI(*MBB, IP, PPC32::NEG, 1, DestReg).addReg(op1Reg);
 | 
						|
      
 | 
						|
      if (Class == cLong) {
 | 
						|
        unsigned zeroes = makeAnotherReg(Type::IntTy);
 | 
						|
        unsigned overflow = makeAnotherReg(Type::IntTy);
 | 
						|
        unsigned T = makeAnotherReg(Type::IntTy);
 | 
						|
        BuildMI(*MBB, IP, PPC32::CNTLZW, 1, zeroes).addReg(op1Reg);
 | 
						|
        BuildMI(*MBB, IP, PPC32::RLWINM, 4, overflow).addReg(zeroes).addImm(27)
 | 
						|
          .addImm(5).addImm(31);
 | 
						|
        BuildMI(*MBB, IP, PPC32::ADD, 2, T).addReg(op1Reg+1).addReg(overflow);
 | 
						|
        BuildMI(*MBB, IP, PPC32::NEG, 1, DestReg+1).addReg(T);
 | 
						|
      }
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
  // Special case: op Reg, <const int>
 | 
						|
  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
 | 
						|
    unsigned Op0r = getReg(Op0, MBB, IP);
 | 
						|
 | 
						|
    // xor X, -1 -> not X
 | 
						|
    if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
 | 
						|
      BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg).addReg(Op0r).addReg(Op0r);
 | 
						|
      if (Class == cLong)  // Invert the top part too
 | 
						|
        BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg+1).addReg(Op0r+1)
 | 
						|
          .addReg(Op0r+1);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned Opcode = OpcodeTab[OperatorClass];
 | 
						|
    unsigned Op1r = getReg(Op1, MBB, IP);
 | 
						|
 | 
						|
    if (Class != cLong) {
 | 
						|
      BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // If the constant is zero in the low 32-bits, just copy the low part
 | 
						|
    // across and apply the normal 32-bit operation to the high parts.  There
 | 
						|
    // will be no carry or borrow into the top.
 | 
						|
    if (cast<ConstantInt>(Op1C)->getRawValue() == 0) {
 | 
						|
      if (OperatorClass != 2) // All but and...
 | 
						|
        BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(Op0r).addReg(Op0r);
 | 
						|
      else
 | 
						|
        BuildMI(*MBB, IP, PPC32::ADDI, 2, DestReg).addReg(PPC32::R0).addImm(0);
 | 
						|
      BuildMI(*MBB, IP, Opcode, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // If this is a long value and the high or low bits have a special
 | 
						|
    // property, emit some special cases.
 | 
						|
    unsigned Op1h = cast<ConstantInt>(Op1C)->getRawValue() >> 32LL;
 | 
						|
    
 | 
						|
    // If this is a logical operation and the top 32-bits are zero, just
 | 
						|
    // operate on the lower 32.
 | 
						|
    if (Op1h == 0 && OperatorClass > 1) {
 | 
						|
      BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
 | 
						|
      if (OperatorClass != 2)  // All but and
 | 
						|
        BuildMI(*MBB, IP, PPC32::OR, 2,DestReg+1).addReg(Op0r+1).addReg(Op0r+1);
 | 
						|
      else
 | 
						|
        BuildMI(*MBB, IP, PPC32::ADDI, 2,DestReg+1).addReg(PPC32::R0).addImm(0);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // TODO: We could handle lots of other special cases here, such as AND'ing
 | 
						|
    // with 0xFFFFFFFF00000000 -> noop, etc.
 | 
						|
    
 | 
						|
    BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg).addReg(Op0r)
 | 
						|
      .addImm(Op1r);
 | 
						|
    BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
 | 
						|
      .addImm(Op1r+1);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned Op0r = getReg(Op0, MBB, IP);
 | 
						|
  unsigned Op1r = getReg(Op1, MBB, IP);
 | 
						|
 | 
						|
  if (Class != cLong) {
 | 
						|
    unsigned Opcode = OpcodeTab[OperatorClass];
 | 
						|
    BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
 | 
						|
  } else {
 | 
						|
    BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg).addReg(Op0r)
 | 
						|
      .addImm(Op1r);
 | 
						|
    BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
 | 
						|
      .addImm(Op1r+1);
 | 
						|
  }
 | 
						|
  return;
 | 
						|
}
 | 
						|
 | 
						|
/// doMultiply - Emit appropriate instructions to multiply together the
 | 
						|
/// registers op0Reg and op1Reg, and put the result in DestReg.  The type of the
 | 
						|
/// result should be given as DestTy.
 | 
						|
///
 | 
						|
void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
 | 
						|
                      unsigned DestReg, const Type *DestTy,
 | 
						|
                      unsigned op0Reg, unsigned op1Reg) {
 | 
						|
  unsigned Class = getClass(DestTy);
 | 
						|
  switch (Class) {
 | 
						|
  case cLong:
 | 
						|
    BuildMI(*MBB, MBBI, PPC32::MULHW, 2, DestReg+1).addReg(op0Reg+1)
 | 
						|
      .addReg(op1Reg+1);
 | 
						|
  case cInt:
 | 
						|
  case cShort:
 | 
						|
  case cByte:
 | 
						|
    BuildMI(*MBB, MBBI, PPC32::MULLW, 2, DestReg).addReg(op0Reg).addReg(op1Reg);
 | 
						|
    return;
 | 
						|
  default:
 | 
						|
    assert(0 && "doMultiply cannot operate on unknown type!");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N.  It
 | 
						|
// returns zero when the input is not exactly a power of two.
 | 
						|
static unsigned ExactLog2(unsigned Val) {
 | 
						|
  if (Val == 0 || (Val & (Val-1))) return 0;
 | 
						|
  unsigned Count = 0;
 | 
						|
  while (Val != 1) {
 | 
						|
    Val >>= 1;
 | 
						|
    ++Count;
 | 
						|
  }
 | 
						|
  return Count+1;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// doMultiplyConst - This function is specialized to efficiently codegen an 8,
 | 
						|
/// 16, or 32-bit integer multiply by a constant.
 | 
						|
///
 | 
						|
void ISel::doMultiplyConst(MachineBasicBlock *MBB,
 | 
						|
                           MachineBasicBlock::iterator IP,
 | 
						|
                           unsigned DestReg, const Type *DestTy,
 | 
						|
                           unsigned op0Reg, unsigned ConstRHS) {
 | 
						|
  unsigned Class = getClass(DestTy);
 | 
						|
  // Handle special cases here.
 | 
						|
  switch (ConstRHS) {
 | 
						|
  case 0:
 | 
						|
    BuildMI(*MBB, IP, PPC32::ADDI, 2, DestReg).addReg(PPC32::R0).addImm(0);
 | 
						|
    return;
 | 
						|
  case 1:
 | 
						|
    BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(op0Reg).addReg(op0Reg);
 | 
						|
    return;
 | 
						|
  case 2:
 | 
						|
    BuildMI(*MBB, IP, PPC32::ADD, 2,DestReg).addReg(op0Reg).addReg(op0Reg);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the element size is exactly a power of 2, use a shift to get it.
 | 
						|
  if (unsigned Shift = ExactLog2(ConstRHS)) {
 | 
						|
    switch (Class) {
 | 
						|
    default: assert(0 && "Unknown class for this function!");
 | 
						|
    case cByte:
 | 
						|
    case cShort:
 | 
						|
    case cInt:
 | 
						|
      BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(op0Reg)
 | 
						|
        .addImm(Shift-1).addImm(0).addImm(31-Shift-1);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Most general case, emit a normal multiply...
 | 
						|
  unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
 | 
						|
  unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
 | 
						|
  BuildMI(*MBB, IP, PPC32::ADDIS, 2, TmpReg1).addReg(PPC32::R0)
 | 
						|
    .addImm(ConstRHS >> 16);
 | 
						|
  BuildMI(*MBB, IP, PPC32::ORI, 2, TmpReg2).addReg(TmpReg1).addImm(ConstRHS);
 | 
						|
  
 | 
						|
  // Emit a MUL to multiply the register holding the index by
 | 
						|
  // elementSize, putting the result in OffsetReg.
 | 
						|
  doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg2);
 | 
						|
}
 | 
						|
 | 
						|
void ISel::visitMul(BinaryOperator &I) {
 | 
						|
  unsigned ResultReg = getReg(I);
 | 
						|
 | 
						|
  Value *Op0 = I.getOperand(0);
 | 
						|
  Value *Op1 = I.getOperand(1);
 | 
						|
 | 
						|
  MachineBasicBlock::iterator IP = BB->end();
 | 
						|
  emitMultiply(BB, IP, Op0, Op1, ResultReg);
 | 
						|
}
 | 
						|
 | 
						|
void ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
 | 
						|
                        Value *Op0, Value *Op1, unsigned DestReg) {
 | 
						|
  MachineBasicBlock &BB = *MBB;
 | 
						|
  TypeClass Class = getClass(Op0->getType());
 | 
						|
 | 
						|
  // Simple scalar multiply?
 | 
						|
  unsigned Op0Reg  = getReg(Op0, &BB, IP);
 | 
						|
  switch (Class) {
 | 
						|
  case cByte:
 | 
						|
  case cShort:
 | 
						|
  case cInt:
 | 
						|
    if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
 | 
						|
      unsigned Val = (unsigned)CI->getRawValue(); // Isn't a 64-bit constant
 | 
						|
      doMultiplyConst(&BB, IP, DestReg, Op0->getType(), Op0Reg, Val);
 | 
						|
    } else {
 | 
						|
      unsigned Op1Reg  = getReg(Op1, &BB, IP);
 | 
						|
      doMultiply(&BB, IP, DestReg, Op1->getType(), Op0Reg, Op1Reg);
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  case cFP:
 | 
						|
    emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg);
 | 
						|
    return;
 | 
						|
  case cLong:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Long value.  We have to do things the hard way...
 | 
						|
  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
 | 
						|
    unsigned CLow = CI->getRawValue();
 | 
						|
    unsigned CHi  = CI->getRawValue() >> 32;
 | 
						|
    
 | 
						|
    if (CLow == 0) {
 | 
						|
      // If the low part of the constant is all zeros, things are simple.
 | 
						|
      BuildMI(BB, IP, PPC32::ADDI, 2, DestReg).addReg(PPC32::R0).addImm(0);
 | 
						|
      doMultiplyConst(&BB, IP, DestReg+1, Type::UIntTy, Op0Reg, CHi);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Multiply the two low parts
 | 
						|
    unsigned OverflowReg = 0;
 | 
						|
    if (CLow == 1) {
 | 
						|
      BuildMI(BB, IP, PPC32::OR, 2, DestReg).addReg(Op0Reg).addReg(Op0Reg);
 | 
						|
    } else {
 | 
						|
      unsigned TmpRegL = makeAnotherReg(Type::UIntTy);
 | 
						|
      unsigned Op1RegL = makeAnotherReg(Type::UIntTy);
 | 
						|
      OverflowReg = makeAnotherReg(Type::UIntTy);
 | 
						|
      BuildMI(BB, IP, PPC32::ADDIS, 2, TmpRegL).addReg(PPC32::R0)
 | 
						|
        .addImm(CLow >> 16);
 | 
						|
      BuildMI(BB, IP, PPC32::ORI, 2, Op1RegL).addReg(TmpRegL).addImm(CLow);
 | 
						|
      BuildMI(BB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0Reg).addReg(Op1RegL);
 | 
						|
      BuildMI(BB, IP, PPC32::MULHW, 2, OverflowReg).addReg(Op0Reg)
 | 
						|
        .addReg(Op1RegL);
 | 
						|
    }
 | 
						|
    
 | 
						|
    unsigned AHBLReg = makeAnotherReg(Type::UIntTy);
 | 
						|
    doMultiplyConst(&BB, IP, AHBLReg, Type::UIntTy, Op0Reg+1, CLow);
 | 
						|
    
 | 
						|
    unsigned AHBLplusOverflowReg;
 | 
						|
    if (OverflowReg) {
 | 
						|
      AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
 | 
						|
      BuildMI(BB, IP, PPC32::ADD, 2,                // AH*BL+(AL*BL >> 32)
 | 
						|
              AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
 | 
						|
    } else {
 | 
						|
      AHBLplusOverflowReg = AHBLReg;
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (CHi == 0) {
 | 
						|
      BuildMI(BB, IP, PPC32::OR, 2, DestReg+1).addReg(AHBLplusOverflowReg)
 | 
						|
        .addReg(AHBLplusOverflowReg);
 | 
						|
    } else {
 | 
						|
      unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
 | 
						|
      doMultiplyConst(&BB, IP, ALBHReg, Type::UIntTy, Op0Reg, CHi);
 | 
						|
      
 | 
						|
      BuildMI(BB, IP, PPC32::ADD, 2,      // AL*BH + AH*BL + (AL*BL >> 32)
 | 
						|
              DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // General 64x64 multiply
 | 
						|
 | 
						|
  unsigned Op1Reg  = getReg(Op1, &BB, IP);
 | 
						|
  
 | 
						|
  // Multiply the two low parts... capturing carry into EDX
 | 
						|
  BuildMI(BB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0Reg).addReg(Op1Reg);  // AL*BL
 | 
						|
  
 | 
						|
  unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
 | 
						|
  BuildMI(BB, IP, PPC32::MULHW, 2, OverflowReg).addReg(Op0Reg).addReg(Op1Reg); // AL*BL >> 32
 | 
						|
  
 | 
						|
  unsigned AHBLReg = makeAnotherReg(Type::UIntTy);   // AH*BL
 | 
						|
  BuildMI(BB, IP, PPC32::MULLW, 2, AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
 | 
						|
  
 | 
						|
  unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
 | 
						|
  BuildMI(BB, IP, PPC32::ADD, 2,                // AH*BL+(AL*BL >> 32)
 | 
						|
          AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
 | 
						|
  
 | 
						|
  unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
 | 
						|
  BuildMI(BB, IP, PPC32::MULLW, 2, ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
 | 
						|
  
 | 
						|
  BuildMI(BB, IP, PPC32::ADD, 2,      // AL*BH + AH*BL + (AL*BL >> 32)
 | 
						|
          DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// visitDivRem - Handle division and remainder instructions... these
 | 
						|
/// instruction both require the same instructions to be generated, they just
 | 
						|
/// select the result from a different register.  Note that both of these
 | 
						|
/// instructions work differently for signed and unsigned operands.
 | 
						|
///
 | 
						|
void ISel::visitDivRem(BinaryOperator &I) {
 | 
						|
  unsigned ResultReg = getReg(I);
 | 
						|
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | 
						|
 | 
						|
  MachineBasicBlock::iterator IP = BB->end();
 | 
						|
  emitDivRemOperation(BB, IP, Op0, Op1, I.getOpcode() == Instruction::Div,
 | 
						|
                      ResultReg);
 | 
						|
}
 | 
						|
 | 
						|
void ISel::emitDivRemOperation(MachineBasicBlock *BB,
 | 
						|
                               MachineBasicBlock::iterator IP,
 | 
						|
                               Value *Op0, Value *Op1, bool isDiv,
 | 
						|
                               unsigned ResultReg) {
 | 
						|
  const Type *Ty = Op0->getType();
 | 
						|
  unsigned Class = getClass(Ty);
 | 
						|
  switch (Class) {
 | 
						|
  case cFP:              // Floating point divide
 | 
						|
    if (isDiv) {
 | 
						|
      emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
 | 
						|
      return;
 | 
						|
    } else {               // Floating point remainder...
 | 
						|
      unsigned Op0Reg = getReg(Op0, BB, IP);
 | 
						|
      unsigned Op1Reg = getReg(Op1, BB, IP);
 | 
						|
      MachineInstr *TheCall =
 | 
						|
        BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("fmod", true);
 | 
						|
      std::vector<ValueRecord> Args;
 | 
						|
      Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
 | 
						|
      Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
 | 
						|
      doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args);
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  case cLong: {
 | 
						|
    static const char *FnName[] =
 | 
						|
      { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };
 | 
						|
    unsigned Op0Reg = getReg(Op0, BB, IP);
 | 
						|
    unsigned Op1Reg = getReg(Op1, BB, IP);
 | 
						|
    unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
 | 
						|
    MachineInstr *TheCall =
 | 
						|
      BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol(FnName[NameIdx], true);
 | 
						|
 | 
						|
    std::vector<ValueRecord> Args;
 | 
						|
    Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
 | 
						|
    Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
 | 
						|
    doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  case cByte: case cShort: case cInt:
 | 
						|
    break;          // Small integrals, handled below...
 | 
						|
  default: assert(0 && "Unknown class!");
 | 
						|
  }
 | 
						|
 | 
						|
  // Special case signed division by power of 2.
 | 
						|
  if (isDiv)
 | 
						|
    if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1)) {
 | 
						|
      assert(Class != cLong && "This doesn't handle 64-bit divides!");
 | 
						|
      int V = CI->getValue();
 | 
						|
 | 
						|
      if (V == 1) {       // X /s 1 => X
 | 
						|
        unsigned Op0Reg = getReg(Op0, BB, IP);
 | 
						|
        BuildMI(*BB, IP, PPC32::OR, 2, ResultReg).addReg(Op0Reg).addReg(Op0Reg);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
      if (V == -1) {      // X /s -1 => -X
 | 
						|
        unsigned Op0Reg = getReg(Op0, BB, IP);
 | 
						|
        BuildMI(*BB, IP, PPC32::NEG, 1, ResultReg).addReg(Op0Reg);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
      bool isNeg = false;
 | 
						|
      if (V < 0) {         // Not a positive power of 2?
 | 
						|
        V = -V;
 | 
						|
        isNeg = true;      // Maybe it's a negative power of 2.
 | 
						|
      }
 | 
						|
      if (unsigned Log = ExactLog2(V)) {
 | 
						|
        --Log;
 | 
						|
        unsigned Op0Reg = getReg(Op0, BB, IP);
 | 
						|
        unsigned TmpReg = makeAnotherReg(Op0->getType());
 | 
						|
        if (Log != 1) 
 | 
						|
          BuildMI(*BB, IP, PPC32::SRAWI,2, TmpReg).addReg(Op0Reg).addImm(Log-1);
 | 
						|
        else
 | 
						|
          BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(Op0Reg).addReg(Op0Reg);
 | 
						|
 | 
						|
        unsigned TmpReg2 = makeAnotherReg(Op0->getType());
 | 
						|
        BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg2).addReg(TmpReg).addImm(Log)
 | 
						|
          .addImm(32-Log).addImm(31);
 | 
						|
 | 
						|
        unsigned TmpReg3 = makeAnotherReg(Op0->getType());
 | 
						|
        BuildMI(*BB, IP, PPC32::ADD, 2, TmpReg3).addReg(Op0Reg).addReg(TmpReg2);
 | 
						|
 | 
						|
        unsigned TmpReg4 = isNeg ? makeAnotherReg(Op0->getType()) : ResultReg;
 | 
						|
        BuildMI(*BB, IP, PPC32::SRAWI, 2, TmpReg4).addReg(Op0Reg).addImm(Log);
 | 
						|
 | 
						|
        if (isNeg)
 | 
						|
          BuildMI(*BB, IP, PPC32::NEG, 1, ResultReg).addReg(TmpReg4);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  unsigned Op0Reg = getReg(Op0, BB, IP);
 | 
						|
  unsigned Op1Reg = getReg(Op1, BB, IP);
 | 
						|
 | 
						|
  if (isDiv) {
 | 
						|
    if (Ty->isSigned()) {
 | 
						|
      BuildMI(*BB, IP, PPC32::DIVW, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
 | 
						|
    } else {
 | 
						|
      BuildMI(*BB, IP,PPC32::DIVWU, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
 | 
						|
    }
 | 
						|
  } else { // Remainder
 | 
						|
    unsigned TmpReg1 = makeAnotherReg(Op0->getType());
 | 
						|
    unsigned TmpReg2 = makeAnotherReg(Op0->getType());
 | 
						|
    
 | 
						|
    if (Ty->isSigned()) {
 | 
						|
      BuildMI(*BB, IP, PPC32::DIVW, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg);
 | 
						|
    } else {
 | 
						|
      BuildMI(*BB, IP, PPC32::DIVWU, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg);
 | 
						|
    }
 | 
						|
    BuildMI(*BB, IP, PPC32::MULLW, 2, TmpReg2).addReg(TmpReg1).addReg(Op1Reg);
 | 
						|
    BuildMI(*BB, IP, PPC32::SUBF, 2, ResultReg).addReg(TmpReg2).addReg(Op0Reg);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
 | 
						|
/// for constant immediate shift values, and for constant immediate
 | 
						|
/// shift values equal to 1. Even the general case is sort of special,
 | 
						|
/// because the shift amount has to be in CL, not just any old register.
 | 
						|
///
 | 
						|
void ISel::visitShiftInst(ShiftInst &I) {
 | 
						|
  MachineBasicBlock::iterator IP = BB->end ();
 | 
						|
  emitShiftOperation(BB, IP, I.getOperand (0), I.getOperand (1),
 | 
						|
                     I.getOpcode () == Instruction::Shl, I.getType (),
 | 
						|
                     getReg (I));
 | 
						|
}
 | 
						|
 | 
						|
/// emitShiftOperation - Common code shared between visitShiftInst and
 | 
						|
/// constant expression support.
 | 
						|
///
 | 
						|
void ISel::emitShiftOperation(MachineBasicBlock *MBB,
 | 
						|
                              MachineBasicBlock::iterator IP,
 | 
						|
                              Value *Op, Value *ShiftAmount, bool isLeftShift,
 | 
						|
                              const Type *ResultTy, unsigned DestReg) {
 | 
						|
  unsigned SrcReg = getReg (Op, MBB, IP);
 | 
						|
  bool isSigned = ResultTy->isSigned ();
 | 
						|
  unsigned Class = getClass (ResultTy);
 | 
						|
  
 | 
						|
  // Longs, as usual, are handled specially...
 | 
						|
  if (Class == cLong) {
 | 
						|
    // If we have a constant shift, we can generate much more efficient code
 | 
						|
    // than otherwise...
 | 
						|
    //
 | 
						|
    if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
 | 
						|
      unsigned Amount = CUI->getValue();
 | 
						|
      if (Amount < 32) {
 | 
						|
        if (isLeftShift) {
 | 
						|
          // FIXME: RLWIMI is a use-and-def of DestReg+1, but that violates SSA
 | 
						|
          BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
 | 
						|
            .addImm(Amount).addImm(0).addImm(31-Amount);
 | 
						|
          BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg+1).addReg(SrcReg)
 | 
						|
            .addImm(Amount).addImm(32-Amount).addImm(31);
 | 
						|
          BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
 | 
						|
            .addImm(Amount).addImm(0).addImm(31-Amount);
 | 
						|
        } else {
 | 
						|
          // FIXME: RLWIMI is a use-and-def of DestReg, but that violates SSA
 | 
						|
          BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
 | 
						|
            .addImm(32-Amount).addImm(Amount).addImm(31);
 | 
						|
          BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg).addReg(SrcReg+1)
 | 
						|
            .addImm(32-Amount).addImm(0).addImm(Amount-1);
 | 
						|
          BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
 | 
						|
            .addImm(32-Amount).addImm(Amount).addImm(31);
 | 
						|
        }
 | 
						|
      } else {                 // Shifting more than 32 bits
 | 
						|
        Amount -= 32;
 | 
						|
        if (isLeftShift) {
 | 
						|
          if (Amount != 0) {
 | 
						|
            BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg)
 | 
						|
              .addImm(Amount).addImm(0).addImm(31-Amount);
 | 
						|
          } else {
 | 
						|
            BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg)
 | 
						|
              .addReg(SrcReg);
 | 
						|
          }
 | 
						|
          BuildMI(*MBB, IP, PPC32::ADDI, 2,DestReg).addReg(PPC32::R0).addImm(0);
 | 
						|
        } else {
 | 
						|
          if (Amount != 0) {
 | 
						|
            if (isSigned)
 | 
						|
              BuildMI(*MBB, IP, PPC32::SRAWI, 2, DestReg).addReg(SrcReg+1)
 | 
						|
                .addImm(Amount);
 | 
						|
            else
 | 
						|
              BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg+1)
 | 
						|
                .addImm(32-Amount).addImm(Amount).addImm(31);
 | 
						|
          } else {
 | 
						|
            BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg+1)
 | 
						|
              .addReg(SrcReg+1);
 | 
						|
          }
 | 
						|
          BuildMI(*MBB, IP,PPC32::ADDI,2,DestReg+1).addReg(PPC32::R0).addImm(0);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
 | 
						|
      unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
 | 
						|
      unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
 | 
						|
      unsigned TmpReg4 = makeAnotherReg(Type::IntTy);
 | 
						|
      unsigned TmpReg5 = makeAnotherReg(Type::IntTy);
 | 
						|
      unsigned TmpReg6 = makeAnotherReg(Type::IntTy);
 | 
						|
      unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
 | 
						|
      
 | 
						|
      if (isLeftShift) {
 | 
						|
        BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
 | 
						|
          .addImm(32);
 | 
						|
        BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg2).addReg(SrcReg+1)
 | 
						|
          .addReg(ShiftAmountReg);
 | 
						|
        BuildMI(*MBB, IP, PPC32::SRW, 2,TmpReg3).addReg(SrcReg).addReg(TmpReg1);
 | 
						|
        BuildMI(*MBB, IP, PPC32::OR, 2,TmpReg4).addReg(TmpReg2).addReg(TmpReg3);
 | 
						|
        BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
 | 
						|
          .addImm(-32);
 | 
						|
        BuildMI(*MBB, IP, PPC32::SLW, 2,TmpReg6).addReg(SrcReg).addReg(TmpReg5);
 | 
						|
        BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(TmpReg4)
 | 
						|
          .addReg(TmpReg6);
 | 
						|
        BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg).addReg(SrcReg)
 | 
						|
          .addReg(ShiftAmountReg);
 | 
						|
      } else {
 | 
						|
        if (isSigned) {
 | 
						|
          // FIXME: Unimplmented
 | 
						|
          // Page C-3 of the PowerPC 32bit Programming Environments Manual
 | 
						|
        } else {
 | 
						|
          BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
 | 
						|
            .addImm(32);
 | 
						|
          BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg2).addReg(SrcReg)
 | 
						|
            .addReg(ShiftAmountReg);
 | 
						|
          BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg3).addReg(SrcReg+1)
 | 
						|
            .addReg(TmpReg1);
 | 
						|
          BuildMI(*MBB, IP, PPC32::OR, 2, TmpReg4).addReg(TmpReg2)
 | 
						|
            .addReg(TmpReg3);
 | 
						|
          BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
 | 
						|
            .addImm(-32);
 | 
						|
          BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg6).addReg(SrcReg+1)
 | 
						|
            .addReg(TmpReg5);
 | 
						|
          BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(TmpReg4)
 | 
						|
            .addReg(TmpReg6);
 | 
						|
          BuildMI(*MBB, IP, PPC32::SRW, 2, DestReg+1).addReg(SrcReg+1)
 | 
						|
            .addReg(ShiftAmountReg);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
 | 
						|
    // The shift amount is constant, guaranteed to be a ubyte. Get its value.
 | 
						|
    assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
 | 
						|
    unsigned Amount = CUI->getValue();
 | 
						|
 | 
						|
    if (isLeftShift) {
 | 
						|
      BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
 | 
						|
        .addImm(Amount).addImm(0).addImm(31-Amount);
 | 
						|
    } else {
 | 
						|
      if (isSigned) {
 | 
						|
        BuildMI(*MBB, IP, PPC32::SRAWI,2,DestReg).addReg(SrcReg).addImm(Amount);
 | 
						|
      } else {
 | 
						|
        BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
 | 
						|
          .addImm(32-Amount).addImm(Amount).addImm(31);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else {                  // The shift amount is non-constant.
 | 
						|
    unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
 | 
						|
 | 
						|
    if (isLeftShift) {
 | 
						|
      BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg).addReg(SrcReg)
 | 
						|
        .addReg(ShiftAmountReg);
 | 
						|
    } else {
 | 
						|
      BuildMI(*MBB, IP, isSigned ? PPC32::SRAW : PPC32::SRW, 2, DestReg)
 | 
						|
        .addReg(SrcReg).addReg(ShiftAmountReg);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// visitLoadInst - Implement LLVM load instructions
 | 
						|
///
 | 
						|
void ISel::visitLoadInst(LoadInst &I) {
 | 
						|
  static const unsigned Opcodes[] = { 
 | 
						|
    PPC32::LBZ, PPC32::LHZ, PPC32::LWZ, PPC32::LFS 
 | 
						|
  };
 | 
						|
  unsigned Class = getClassB(I.getType());
 | 
						|
  unsigned Opcode = Opcodes[Class];
 | 
						|
  if (I.getType() == Type::DoubleTy) Opcode = PPC32::LFD;
 | 
						|
 | 
						|
  unsigned DestReg = getReg(I);
 | 
						|
 | 
						|
  if (AllocaInst *AI = dyn_castFixedAlloca(I.getOperand(0))) {
 | 
						|
    unsigned FI = getFixedSizedAllocaFI(AI);
 | 
						|
    if (Class == cLong) {
 | 
						|
      addFrameReference(BuildMI(BB, PPC32::LWZ, 2, DestReg), FI);
 | 
						|
      addFrameReference(BuildMI(BB, PPC32::LWZ, 2, DestReg+1), FI, 4);
 | 
						|
    } else {
 | 
						|
      addFrameReference(BuildMI(BB, Opcode, 2, DestReg), FI);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    unsigned SrcAddrReg = getReg(I.getOperand(0));
 | 
						|
    
 | 
						|
    if (Class == cLong) {
 | 
						|
      BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(SrcAddrReg);
 | 
						|
      BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addImm(4).addReg(SrcAddrReg);
 | 
						|
    } else {
 | 
						|
      BuildMI(BB, Opcode, 2, DestReg).addImm(0).addReg(SrcAddrReg);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// visitStoreInst - Implement LLVM store instructions
 | 
						|
///
 | 
						|
void ISel::visitStoreInst(StoreInst &I) {
 | 
						|
  unsigned ValReg      = getReg(I.getOperand(0));
 | 
						|
  unsigned AddressReg  = getReg(I.getOperand(1));
 | 
						|
 
 | 
						|
  const Type *ValTy = I.getOperand(0)->getType();
 | 
						|
  unsigned Class = getClassB(ValTy);
 | 
						|
 | 
						|
  if (Class == cLong) {
 | 
						|
    BuildMI(BB, PPC32::STW, 3).addReg(ValReg).addImm(0).addReg(AddressReg);
 | 
						|
    BuildMI(BB, PPC32::STW, 3).addReg(ValReg+1).addImm(4).addReg(AddressReg);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  static const unsigned Opcodes[] = {
 | 
						|
    PPC32::STB, PPC32::STH, PPC32::STW, PPC32::STFS
 | 
						|
  };
 | 
						|
  unsigned Opcode = Opcodes[Class];
 | 
						|
  if (ValTy == Type::DoubleTy) Opcode = PPC32::STFD;
 | 
						|
  BuildMI(BB, Opcode, 3).addReg(ValReg).addImm(0).addReg(AddressReg);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// visitCastInst - Here we have various kinds of copying with or without sign
 | 
						|
/// extension going on.
 | 
						|
///
 | 
						|
void ISel::visitCastInst(CastInst &CI) {
 | 
						|
  Value *Op = CI.getOperand(0);
 | 
						|
 | 
						|
  unsigned SrcClass = getClassB(Op->getType());
 | 
						|
  unsigned DestClass = getClassB(CI.getType());
 | 
						|
  // Noop casts are not emitted: getReg will return the source operand as the
 | 
						|
  // register to use for any uses of the noop cast.
 | 
						|
  if (DestClass == SrcClass)
 | 
						|
    return;
 | 
						|
 | 
						|
  // If this is a cast from a 32-bit integer to a Long type, and the only uses
 | 
						|
  // of the case are GEP instructions, then the cast does not need to be
 | 
						|
  // generated explicitly, it will be folded into the GEP.
 | 
						|
  if (DestClass == cLong && SrcClass == cInt) {
 | 
						|
    bool AllUsesAreGEPs = true;
 | 
						|
    for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
 | 
						|
      if (!isa<GetElementPtrInst>(*I)) {
 | 
						|
        AllUsesAreGEPs = false;
 | 
						|
        break;
 | 
						|
      }        
 | 
						|
 | 
						|
    // No need to codegen this cast if all users are getelementptr instrs...
 | 
						|
    if (AllUsesAreGEPs) return;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned DestReg = getReg(CI);
 | 
						|
  MachineBasicBlock::iterator MI = BB->end();
 | 
						|
  emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
 | 
						|
}
 | 
						|
 | 
						|
/// emitCastOperation - Common code shared between visitCastInst and constant
 | 
						|
/// expression cast support.
 | 
						|
///
 | 
						|
void ISel::emitCastOperation(MachineBasicBlock *BB,
 | 
						|
                             MachineBasicBlock::iterator IP,
 | 
						|
                             Value *Src, const Type *DestTy,
 | 
						|
                             unsigned DestReg) {
 | 
						|
  const Type *SrcTy = Src->getType();
 | 
						|
  unsigned SrcClass = getClassB(SrcTy);
 | 
						|
  unsigned DestClass = getClassB(DestTy);
 | 
						|
  unsigned SrcReg = getReg(Src, BB, IP);
 | 
						|
 | 
						|
  // Implement casts to bool by using compare on the operand followed by set if
 | 
						|
  // not zero on the result.
 | 
						|
  if (DestTy == Type::BoolTy) {
 | 
						|
    switch (SrcClass) {
 | 
						|
    case cByte:
 | 
						|
    case cShort:
 | 
						|
    case cInt: {
 | 
						|
      unsigned TmpReg = makeAnotherReg(Type::IntTy);
 | 
						|
      BuildMI(*BB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg).addImm(-1);
 | 
						|
      BuildMI(*BB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case cLong: {
 | 
						|
      unsigned TmpReg = makeAnotherReg(Type::IntTy);
 | 
						|
      unsigned SrcReg2 = makeAnotherReg(Type::IntTy);
 | 
						|
      BuildMI(*BB, IP, PPC32::OR, 2, SrcReg2).addReg(SrcReg).addReg(SrcReg+1);
 | 
						|
      BuildMI(*BB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg2).addImm(-1);
 | 
						|
      BuildMI(*BB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg2);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case cFP:
 | 
						|
      // FIXME
 | 
						|
      // Load -0.0
 | 
						|
      // Compare
 | 
						|
      // move to CR1
 | 
						|
      // Negate -0.0
 | 
						|
      // Compare
 | 
						|
      // CROR
 | 
						|
      // MFCR
 | 
						|
      // Left-align
 | 
						|
      // SRA ?
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Implement casts between values of the same type class (as determined by
 | 
						|
  // getClass) by using a register-to-register move.
 | 
						|
  if (SrcClass == DestClass) {
 | 
						|
    if (SrcClass <= cInt) {
 | 
						|
      BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
 | 
						|
    } else if (SrcClass == cFP && SrcTy == DestTy) {
 | 
						|
      BuildMI(*BB, IP, PPC32::FMR, 1, DestReg).addReg(SrcReg);
 | 
						|
    } else if (SrcClass == cFP) {
 | 
						|
      if (SrcTy == Type::FloatTy) {  // float -> double
 | 
						|
        assert(DestTy == Type::DoubleTy && "Unknown cFP member!");
 | 
						|
        BuildMI(*BB, IP, PPC32::FMR, 1, DestReg).addReg(SrcReg);
 | 
						|
      } else {                       // double -> float
 | 
						|
        assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy &&
 | 
						|
               "Unknown cFP member!");
 | 
						|
        BuildMI(*BB, IP, PPC32::FRSP, 1, DestReg).addReg(SrcReg);
 | 
						|
      }
 | 
						|
    } else if (SrcClass == cLong) {
 | 
						|
      BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
 | 
						|
      BuildMI(*BB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg+1)
 | 
						|
        .addReg(SrcReg+1);
 | 
						|
    } else {
 | 
						|
      assert(0 && "Cannot handle this type of cast instruction!");
 | 
						|
      abort();
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle cast of SMALLER int to LARGER int using a move with sign extension
 | 
						|
  // or zero extension, depending on whether the source type was signed.
 | 
						|
  if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
 | 
						|
      SrcClass < DestClass) {
 | 
						|
    bool isLong = DestClass == cLong;
 | 
						|
    if (isLong) DestClass = cInt;
 | 
						|
 | 
						|
    bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
 | 
						|
    if (SrcClass < cInt) {
 | 
						|
      if (isUnsigned) {
 | 
						|
        unsigned shift = (SrcClass == cByte) ? 24 : 16;
 | 
						|
        BuildMI(*BB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addZImm(0)
 | 
						|
          .addImm(shift).addImm(31);
 | 
						|
      } else {
 | 
						|
        BuildMI(*BB, IP, (SrcClass == cByte) ? PPC32::EXTSB : PPC32::EXTSH, 
 | 
						|
                1, DestReg).addReg(SrcReg);
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
 | 
						|
    }
 | 
						|
 | 
						|
    if (isLong) {  // Handle upper 32 bits as appropriate...
 | 
						|
      if (isUnsigned)     // Zero out top bits...
 | 
						|
        BuildMI(*BB, IP, PPC32::ADDI, 2, DestReg+1).addReg(PPC32::R0).addImm(0);
 | 
						|
      else                // Sign extend bottom half...
 | 
						|
        BuildMI(*BB, IP, PPC32::SRAWI, 2, DestReg+1).addReg(DestReg).addImm(31);
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Special case long -> int ...
 | 
						|
  if (SrcClass == cLong && DestClass == cInt) {
 | 
						|
    BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Handle cast of LARGER int to SMALLER int with a clear or sign extend
 | 
						|
  if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
 | 
						|
      && SrcClass > DestClass) {
 | 
						|
    bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
 | 
						|
    if (isUnsigned) {
 | 
						|
      unsigned shift = (SrcClass == cByte) ? 24 : 16;
 | 
						|
      BuildMI(*BB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addZImm(0)
 | 
						|
        .addImm(shift).addImm(31);
 | 
						|
    } else {
 | 
						|
      BuildMI(*BB, IP, (SrcClass == cByte) ? PPC32::EXTSB : PPC32::EXTSH, 1, 
 | 
						|
              DestReg).addReg(SrcReg);
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle casts from integer to floating point now...
 | 
						|
  if (DestClass == cFP) {
 | 
						|
 | 
						|
    // Emit a library call for long to float conversion
 | 
						|
    if (SrcClass == cLong) {
 | 
						|
      std::vector<ValueRecord> Args;
 | 
						|
      Args.push_back(ValueRecord(SrcReg, SrcTy));
 | 
						|
      MachineInstr *TheCall =
 | 
						|
        BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("__floatdidf", true);
 | 
						|
      doCall(ValueRecord(DestReg, DestTy), TheCall, Args);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned TmpReg = makeAnotherReg(Type::IntTy);
 | 
						|
    switch (SrcTy->getTypeID()) {
 | 
						|
    case Type::BoolTyID:
 | 
						|
    case Type::SByteTyID:
 | 
						|
      BuildMI(*BB, IP, PPC32::EXTSB, 1, TmpReg).addReg(SrcReg);
 | 
						|
      break;
 | 
						|
    case Type::UByteTyID:
 | 
						|
      BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg).addReg(SrcReg).addZImm(0)
 | 
						|
        .addImm(24).addImm(31);
 | 
						|
      break;
 | 
						|
    case Type::ShortTyID:
 | 
						|
      BuildMI(*BB, IP, PPC32::EXTSB, 1, TmpReg).addReg(SrcReg);
 | 
						|
      break;
 | 
						|
    case Type::UShortTyID:
 | 
						|
      BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg).addReg(SrcReg).addZImm(0)
 | 
						|
        .addImm(16).addImm(31);
 | 
						|
      break;
 | 
						|
    case Type::IntTyID:
 | 
						|
      BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(SrcReg).addReg(SrcReg);
 | 
						|
      break;
 | 
						|
    case Type::UIntTyID:
 | 
						|
      BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(SrcReg).addReg(SrcReg);
 | 
						|
      break;
 | 
						|
    default:  // No promotion needed...
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    
 | 
						|
    SrcReg = TmpReg;
 | 
						|
    
 | 
						|
    // Spill the integer to memory and reload it from there.
 | 
						|
    // Also spill room for a special conversion constant
 | 
						|
    int ConstantFrameIndex = 
 | 
						|
      F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
 | 
						|
    int ValueFrameIdx =
 | 
						|
      F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
 | 
						|
 | 
						|
    unsigned constantHi = makeAnotherReg(Type::IntTy);
 | 
						|
    unsigned constantLo = makeAnotherReg(Type::IntTy);
 | 
						|
    unsigned ConstF = makeAnotherReg(Type::DoubleTy);
 | 
						|
    unsigned TempF = makeAnotherReg(Type::DoubleTy);
 | 
						|
    
 | 
						|
    if (!SrcTy->isSigned()) {
 | 
						|
      BuildMI(*BB, IP, PPC32::ADDIS, 2, constantHi).addReg(PPC32::R0)
 | 
						|
        .addImm(0x4330);
 | 
						|
      BuildMI(*BB, IP, PPC32::ADDI, 2, constantLo).addReg(PPC32::R0).addImm(0);
 | 
						|
      addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi), 
 | 
						|
                        ConstantFrameIndex);
 | 
						|
      addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo), 
 | 
						|
                        ConstantFrameIndex, 4);
 | 
						|
      addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi), 
 | 
						|
                        ValueFrameIdx);
 | 
						|
      addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(SrcReg), 
 | 
						|
                        ValueFrameIdx, 4);
 | 
						|
      addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF), 
 | 
						|
                        ConstantFrameIndex);
 | 
						|
      addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx);
 | 
						|
      BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
 | 
						|
    } else {
 | 
						|
      unsigned TempLo = makeAnotherReg(Type::IntTy);
 | 
						|
      BuildMI(*BB, IP, PPC32::ADDIS, 2, constantHi).addReg(PPC32::R0)
 | 
						|
        .addImm(0x4330);
 | 
						|
      BuildMI(*BB, IP, PPC32::ADDIS, 2, constantLo).addReg(PPC32::R0)
 | 
						|
        .addImm(0x8000);
 | 
						|
      addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi), 
 | 
						|
                        ConstantFrameIndex);
 | 
						|
      addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo), 
 | 
						|
                        ConstantFrameIndex, 4);
 | 
						|
      addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi), 
 | 
						|
                        ValueFrameIdx);
 | 
						|
      BuildMI(*BB, IP, PPC32::XORIS, 2, TempLo).addReg(SrcReg).addImm(0x8000);
 | 
						|
      addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(TempLo), 
 | 
						|
                        ValueFrameIdx, 4);
 | 
						|
      addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF), 
 | 
						|
                        ConstantFrameIndex);
 | 
						|
      addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx);
 | 
						|
      BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF ).addReg(ConstF);
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle casts from floating point to integer now...
 | 
						|
  if (SrcClass == cFP) {
 | 
						|
 | 
						|
    // emit library call
 | 
						|
    if (DestClass == cLong) {
 | 
						|
      std::vector<ValueRecord> Args;
 | 
						|
      Args.push_back(ValueRecord(SrcReg, SrcTy));
 | 
						|
      MachineInstr *TheCall =
 | 
						|
        BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("__fixdfdi", true);
 | 
						|
      doCall(ValueRecord(DestReg, DestTy), TheCall, Args);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    int ValueFrameIdx =
 | 
						|
      F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
 | 
						|
 | 
						|
    // load into 32 bit value, and then truncate as necessary
 | 
						|
    // FIXME: This is wrong for unsigned dest types
 | 
						|
    //if (DestTy->isSigned()) {
 | 
						|
        unsigned TempReg = makeAnotherReg(Type::DoubleTy);
 | 
						|
        BuildMI(*BB, IP, PPC32::FCTIWZ, 1, TempReg).addReg(SrcReg);
 | 
						|
        addFrameReference(BuildMI(*BB, IP, PPC32::STFD, 3)
 | 
						|
                            .addReg(TempReg), ValueFrameIdx);
 | 
						|
        addFrameReference(BuildMI(*BB, IP, PPC32::LWZ, 2, DestReg), 
 | 
						|
                          ValueFrameIdx+4);
 | 
						|
    //} else {
 | 
						|
    //}
 | 
						|
    
 | 
						|
    // FIXME: Truncate return value
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Anything we haven't handled already, we can't (yet) handle at all.
 | 
						|
  assert(0 && "Unhandled cast instruction!");
 | 
						|
  abort();
 | 
						|
}
 | 
						|
 | 
						|
/// visitVANextInst - Implement the va_next instruction...
 | 
						|
///
 | 
						|
void ISel::visitVANextInst(VANextInst &I) {
 | 
						|
  unsigned VAList = getReg(I.getOperand(0));
 | 
						|
  unsigned DestReg = getReg(I);
 | 
						|
 | 
						|
  unsigned Size;
 | 
						|
  switch (I.getArgType()->getTypeID()) {
 | 
						|
  default:
 | 
						|
    std::cerr << I;
 | 
						|
    assert(0 && "Error: bad type for va_next instruction!");
 | 
						|
    return;
 | 
						|
  case Type::PointerTyID:
 | 
						|
  case Type::UIntTyID:
 | 
						|
  case Type::IntTyID:
 | 
						|
    Size = 4;
 | 
						|
    break;
 | 
						|
  case Type::ULongTyID:
 | 
						|
  case Type::LongTyID:
 | 
						|
  case Type::DoubleTyID:
 | 
						|
    Size = 8;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Increment the VAList pointer...
 | 
						|
  BuildMI(BB, PPC32::ADDI, 2, DestReg).addReg(VAList).addImm(Size);
 | 
						|
}
 | 
						|
 | 
						|
void ISel::visitVAArgInst(VAArgInst &I) {
 | 
						|
  unsigned VAList = getReg(I.getOperand(0));
 | 
						|
  unsigned DestReg = getReg(I);
 | 
						|
 | 
						|
  switch (I.getType()->getTypeID()) {
 | 
						|
  default:
 | 
						|
    std::cerr << I;
 | 
						|
    assert(0 && "Error: bad type for va_next instruction!");
 | 
						|
    return;
 | 
						|
  case Type::PointerTyID:
 | 
						|
  case Type::UIntTyID:
 | 
						|
  case Type::IntTyID:
 | 
						|
    BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(VAList);
 | 
						|
    break;
 | 
						|
  case Type::ULongTyID:
 | 
						|
  case Type::LongTyID:
 | 
						|
    BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(VAList);
 | 
						|
    BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addImm(4).addReg(VAList);
 | 
						|
    break;
 | 
						|
  case Type::DoubleTyID:
 | 
						|
    BuildMI(BB, PPC32::LFD, 2, DestReg).addImm(0).addReg(VAList);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// visitGetElementPtrInst - instruction-select GEP instructions
 | 
						|
///
 | 
						|
void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
 | 
						|
  unsigned outputReg = getReg(I);
 | 
						|
  emitGEPOperation(BB, BB->end(), I.getOperand(0), I.op_begin()+1, I.op_end(), 
 | 
						|
                   outputReg);
 | 
						|
}
 | 
						|
 | 
						|
void ISel::emitGEPOperation(MachineBasicBlock *MBB,
 | 
						|
                            MachineBasicBlock::iterator IP,
 | 
						|
                            Value *Src, User::op_iterator IdxBegin,
 | 
						|
                            User::op_iterator IdxEnd, unsigned TargetReg) {
 | 
						|
  const TargetData &TD = TM.getTargetData();
 | 
						|
  if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Src))
 | 
						|
    Src = CPR->getValue();
 | 
						|
 | 
						|
  std::vector<Value*> GEPOps;
 | 
						|
  GEPOps.resize(IdxEnd-IdxBegin+1);
 | 
						|
  GEPOps[0] = Src;
 | 
						|
  std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
 | 
						|
  
 | 
						|
  std::vector<const Type*> GEPTypes;
 | 
						|
  GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
 | 
						|
                  gep_type_end(Src->getType(), IdxBegin, IdxEnd));
 | 
						|
 | 
						|
  // Keep emitting instructions until we consume the entire GEP instruction.
 | 
						|
  while (!GEPTypes.empty()) {
 | 
						|
    // It's an array or pointer access: [ArraySize x ElementType].
 | 
						|
    const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
 | 
						|
    Value *idx = GEPOps.back();
 | 
						|
    GEPOps.pop_back();        // Consume a GEP operand
 | 
						|
    GEPTypes.pop_back();
 | 
						|
 | 
						|
    // Many GEP instructions use a [cast (int/uint) to LongTy] as their
 | 
						|
    // operand on X86.  Handle this case directly now...
 | 
						|
    if (CastInst *CI = dyn_cast<CastInst>(idx))
 | 
						|
      if (CI->getOperand(0)->getType() == Type::IntTy ||
 | 
						|
          CI->getOperand(0)->getType() == Type::UIntTy)
 | 
						|
        idx = CI->getOperand(0);
 | 
						|
 | 
						|
    // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
 | 
						|
    // must find the size of the pointed-to type (Not coincidentally, the next
 | 
						|
    // type is the type of the elements in the array).
 | 
						|
    const Type *ElTy = SqTy->getElementType();
 | 
						|
    unsigned elementSize = TD.getTypeSize(ElTy);
 | 
						|
 | 
						|
    if (elementSize == 1) {
 | 
						|
      // If the element size is 1, we don't have to multiply, just add
 | 
						|
      unsigned idxReg = getReg(idx, MBB, IP);
 | 
						|
      unsigned Reg = makeAnotherReg(Type::UIntTy);
 | 
						|
      BuildMI(*MBB, IP, PPC32::ADD, 2,TargetReg).addReg(Reg).addReg(idxReg);
 | 
						|
      --IP;            // Insert the next instruction before this one.
 | 
						|
      TargetReg = Reg; // Codegen the rest of the GEP into this
 | 
						|
    } else {
 | 
						|
      unsigned idxReg = getReg(idx, MBB, IP);
 | 
						|
      unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
 | 
						|
 | 
						|
      // Make sure we can back the iterator up to point to the first
 | 
						|
      // instruction emitted.
 | 
						|
      MachineBasicBlock::iterator BeforeIt = IP;
 | 
						|
      if (IP == MBB->begin())
 | 
						|
        BeforeIt = MBB->end();
 | 
						|
      else
 | 
						|
        --BeforeIt;
 | 
						|
      doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize);
 | 
						|
 | 
						|
      // Emit an ADD to add OffsetReg to the basePtr.
 | 
						|
      unsigned Reg = makeAnotherReg(Type::UIntTy);
 | 
						|
      BuildMI(*MBB, IP, PPC32::ADD, 2, TargetReg).addReg(Reg).addReg(OffsetReg);
 | 
						|
 | 
						|
      // Step to the first instruction of the multiply.
 | 
						|
      if (BeforeIt == MBB->end())
 | 
						|
        IP = MBB->begin();
 | 
						|
      else
 | 
						|
        IP = ++BeforeIt;
 | 
						|
 | 
						|
      TargetReg = Reg; // Codegen the rest of the GEP into this
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
 | 
						|
/// frame manager, otherwise do it the hard way.
 | 
						|
///
 | 
						|
void ISel::visitAllocaInst(AllocaInst &I) {
 | 
						|
  // If this is a fixed size alloca in the entry block for the function, we
 | 
						|
  // statically stack allocate the space, so we don't need to do anything here.
 | 
						|
  //
 | 
						|
  if (dyn_castFixedAlloca(&I)) return;
 | 
						|
  
 | 
						|
  // Find the data size of the alloca inst's getAllocatedType.
 | 
						|
  const Type *Ty = I.getAllocatedType();
 | 
						|
  unsigned TySize = TM.getTargetData().getTypeSize(Ty);
 | 
						|
 | 
						|
  // Create a register to hold the temporary result of multiplying the type size
 | 
						|
  // constant by the variable amount.
 | 
						|
  unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
 | 
						|
  unsigned SrcReg1 = getReg(I.getArraySize());
 | 
						|
  
 | 
						|
  // TotalSizeReg = mul <numelements>, <TypeSize>
 | 
						|
  MachineBasicBlock::iterator MBBI = BB->end();
 | 
						|
  doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize);
 | 
						|
 | 
						|
  // AddedSize = add <TotalSizeReg>, 15
 | 
						|
  unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
 | 
						|
  BuildMI(BB, PPC32::ADD, 2, AddedSizeReg).addReg(TotalSizeReg).addImm(15);
 | 
						|
 | 
						|
  // AlignedSize = and <AddedSize>, ~15
 | 
						|
  unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
 | 
						|
  BuildMI(BB, PPC32::RLWNM, 4, AlignedSize).addReg(AddedSizeReg).addImm(0)
 | 
						|
    .addImm(0).addImm(27);
 | 
						|
  
 | 
						|
  // Subtract size from stack pointer, thereby allocating some space.
 | 
						|
  BuildMI(BB, PPC32::SUB, 2, PPC32::R1).addReg(PPC32::R1).addReg(AlignedSize);
 | 
						|
 | 
						|
  // Put a pointer to the space into the result register, by copying
 | 
						|
  // the stack pointer.
 | 
						|
  BuildMI(BB, PPC32::OR, 2, getReg(I)).addReg(PPC32::R1).addReg(PPC32::R1);
 | 
						|
 | 
						|
  // Inform the Frame Information that we have just allocated a variable-sized
 | 
						|
  // object.
 | 
						|
  F->getFrameInfo()->CreateVariableSizedObject();
 | 
						|
}
 | 
						|
 | 
						|
/// visitMallocInst - Malloc instructions are code generated into direct calls
 | 
						|
/// to the library malloc.
 | 
						|
///
 | 
						|
void ISel::visitMallocInst(MallocInst &I) {
 | 
						|
  unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
 | 
						|
  unsigned Arg;
 | 
						|
 | 
						|
  if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
 | 
						|
    Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
 | 
						|
  } else {
 | 
						|
    Arg = makeAnotherReg(Type::UIntTy);
 | 
						|
    unsigned Op0Reg = getReg(I.getOperand(0));
 | 
						|
    MachineBasicBlock::iterator MBBI = BB->end();
 | 
						|
    doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize);
 | 
						|
  }
 | 
						|
 | 
						|
  std::vector<ValueRecord> Args;
 | 
						|
  Args.push_back(ValueRecord(Arg, Type::UIntTy));
 | 
						|
  MachineInstr *TheCall = 
 | 
						|
    BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("malloc", true);
 | 
						|
  doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// visitFreeInst - Free instructions are code gen'd to call the free libc
 | 
						|
/// function.
 | 
						|
///
 | 
						|
void ISel::visitFreeInst(FreeInst &I) {
 | 
						|
  std::vector<ValueRecord> Args;
 | 
						|
  Args.push_back(ValueRecord(I.getOperand(0)));
 | 
						|
  MachineInstr *TheCall = 
 | 
						|
    BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("free", true);
 | 
						|
  doCall(ValueRecord(0, Type::VoidTy), TheCall, Args);
 | 
						|
}
 | 
						|
   
 | 
						|
/// createPPC32SimpleInstructionSelector - This pass converts an LLVM function
 | 
						|
/// into a machine code representation is a very simple peep-hole fashion.  The
 | 
						|
/// generated code sucks but the implementation is nice and simple.
 | 
						|
///
 | 
						|
FunctionPass *llvm::createPPCSimpleInstructionSelector(TargetMachine &TM) {
 | 
						|
  return new ISel(TM);
 | 
						|
}
 |