9307 lines
		
	
	
		
			380 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			9307 lines
		
	
	
		
			380 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by the LLVM research group and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// InstructionCombining - Combine instructions to form fewer, simple
 | 
						|
// instructions.  This pass does not modify the CFG This pass is where algebraic
 | 
						|
// simplification happens.
 | 
						|
//
 | 
						|
// This pass combines things like:
 | 
						|
//    %Y = add int %X, 1
 | 
						|
//    %Z = add int %Y, 1
 | 
						|
// into:
 | 
						|
//    %Z = add int %X, 2
 | 
						|
//
 | 
						|
// This is a simple worklist driven algorithm.
 | 
						|
//
 | 
						|
// This pass guarantees that the following canonicalizations are performed on
 | 
						|
// the program:
 | 
						|
//    1. If a binary operator has a constant operand, it is moved to the RHS
 | 
						|
//    2. Bitwise operators with constant operands are always grouped so that
 | 
						|
//       shifts are performed first, then or's, then and's, then xor's.
 | 
						|
//    3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
 | 
						|
//    4. All cmp instructions on boolean values are replaced with logical ops
 | 
						|
//    5. add X, X is represented as (X*2) => (X << 1)
 | 
						|
//    6. Multiplies with a power-of-two constant argument are transformed into
 | 
						|
//       shifts.
 | 
						|
//   ... etc.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "instcombine"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/IntrinsicInst.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/GlobalVariable.h"
 | 
						|
#include "llvm/Analysis/ConstantFolding.h"
 | 
						|
#include "llvm/Target/TargetData.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include "llvm/Support/CallSite.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/GetElementPtrTypeIterator.h"
 | 
						|
#include "llvm/Support/InstVisitor.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include "llvm/Support/PatternMatch.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <set>
 | 
						|
using namespace llvm;
 | 
						|
using namespace llvm::PatternMatch;
 | 
						|
 | 
						|
STATISTIC(NumCombined , "Number of insts combined");
 | 
						|
STATISTIC(NumConstProp, "Number of constant folds");
 | 
						|
STATISTIC(NumDeadInst , "Number of dead inst eliminated");
 | 
						|
STATISTIC(NumDeadStore, "Number of dead stores eliminated");
 | 
						|
STATISTIC(NumSunkInst , "Number of instructions sunk");
 | 
						|
 | 
						|
namespace {
 | 
						|
  class VISIBILITY_HIDDEN InstCombiner
 | 
						|
    : public FunctionPass,
 | 
						|
      public InstVisitor<InstCombiner, Instruction*> {
 | 
						|
    // Worklist of all of the instructions that need to be simplified.
 | 
						|
    std::vector<Instruction*> WorkList;
 | 
						|
    TargetData *TD;
 | 
						|
 | 
						|
    /// AddUsersToWorkList - When an instruction is simplified, add all users of
 | 
						|
    /// the instruction to the work lists because they might get more simplified
 | 
						|
    /// now.
 | 
						|
    ///
 | 
						|
    void AddUsersToWorkList(Value &I) {
 | 
						|
      for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
 | 
						|
           UI != UE; ++UI)
 | 
						|
        WorkList.push_back(cast<Instruction>(*UI));
 | 
						|
    }
 | 
						|
 | 
						|
    /// AddUsesToWorkList - When an instruction is simplified, add operands to
 | 
						|
    /// the work lists because they might get more simplified now.
 | 
						|
    ///
 | 
						|
    void AddUsesToWorkList(Instruction &I) {
 | 
						|
      for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
 | 
						|
        if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i)))
 | 
						|
          WorkList.push_back(Op);
 | 
						|
    }
 | 
						|
    
 | 
						|
    /// AddSoonDeadInstToWorklist - The specified instruction is about to become
 | 
						|
    /// dead.  Add all of its operands to the worklist, turning them into
 | 
						|
    /// undef's to reduce the number of uses of those instructions.
 | 
						|
    ///
 | 
						|
    /// Return the specified operand before it is turned into an undef.
 | 
						|
    ///
 | 
						|
    Value *AddSoonDeadInstToWorklist(Instruction &I, unsigned op) {
 | 
						|
      Value *R = I.getOperand(op);
 | 
						|
      
 | 
						|
      for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
 | 
						|
        if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i))) {
 | 
						|
          WorkList.push_back(Op);
 | 
						|
          // Set the operand to undef to drop the use.
 | 
						|
          I.setOperand(i, UndefValue::get(Op->getType()));
 | 
						|
        }
 | 
						|
      
 | 
						|
      return R;
 | 
						|
    }
 | 
						|
 | 
						|
    // removeFromWorkList - remove all instances of I from the worklist.
 | 
						|
    void removeFromWorkList(Instruction *I);
 | 
						|
  public:
 | 
						|
    virtual bool runOnFunction(Function &F);
 | 
						|
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      AU.addRequired<TargetData>();
 | 
						|
      AU.addPreservedID(LCSSAID);
 | 
						|
      AU.setPreservesCFG();
 | 
						|
    }
 | 
						|
 | 
						|
    TargetData &getTargetData() const { return *TD; }
 | 
						|
 | 
						|
    // Visitation implementation - Implement instruction combining for different
 | 
						|
    // instruction types.  The semantics are as follows:
 | 
						|
    // Return Value:
 | 
						|
    //    null        - No change was made
 | 
						|
    //     I          - Change was made, I is still valid, I may be dead though
 | 
						|
    //   otherwise    - Change was made, replace I with returned instruction
 | 
						|
    //
 | 
						|
    Instruction *visitAdd(BinaryOperator &I);
 | 
						|
    Instruction *visitSub(BinaryOperator &I);
 | 
						|
    Instruction *visitMul(BinaryOperator &I);
 | 
						|
    Instruction *visitURem(BinaryOperator &I);
 | 
						|
    Instruction *visitSRem(BinaryOperator &I);
 | 
						|
    Instruction *visitFRem(BinaryOperator &I);
 | 
						|
    Instruction *commonRemTransforms(BinaryOperator &I);
 | 
						|
    Instruction *commonIRemTransforms(BinaryOperator &I);
 | 
						|
    Instruction *commonDivTransforms(BinaryOperator &I);
 | 
						|
    Instruction *commonIDivTransforms(BinaryOperator &I);
 | 
						|
    Instruction *visitUDiv(BinaryOperator &I);
 | 
						|
    Instruction *visitSDiv(BinaryOperator &I);
 | 
						|
    Instruction *visitFDiv(BinaryOperator &I);
 | 
						|
    Instruction *visitAnd(BinaryOperator &I);
 | 
						|
    Instruction *visitOr (BinaryOperator &I);
 | 
						|
    Instruction *visitXor(BinaryOperator &I);
 | 
						|
    Instruction *visitShl(BinaryOperator &I);
 | 
						|
    Instruction *visitAShr(BinaryOperator &I);
 | 
						|
    Instruction *visitLShr(BinaryOperator &I);
 | 
						|
    Instruction *commonShiftTransforms(BinaryOperator &I);
 | 
						|
    Instruction *visitFCmpInst(FCmpInst &I);
 | 
						|
    Instruction *visitICmpInst(ICmpInst &I);
 | 
						|
    Instruction *visitICmpInstWithCastAndCast(ICmpInst &ICI);
 | 
						|
 | 
						|
    Instruction *FoldGEPICmp(User *GEPLHS, Value *RHS,
 | 
						|
                             ICmpInst::Predicate Cond, Instruction &I);
 | 
						|
    Instruction *FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
 | 
						|
                                     BinaryOperator &I);
 | 
						|
    Instruction *commonCastTransforms(CastInst &CI);
 | 
						|
    Instruction *commonIntCastTransforms(CastInst &CI);
 | 
						|
    Instruction *visitTrunc(CastInst &CI);
 | 
						|
    Instruction *visitZExt(CastInst &CI);
 | 
						|
    Instruction *visitSExt(CastInst &CI);
 | 
						|
    Instruction *visitFPTrunc(CastInst &CI);
 | 
						|
    Instruction *visitFPExt(CastInst &CI);
 | 
						|
    Instruction *visitFPToUI(CastInst &CI);
 | 
						|
    Instruction *visitFPToSI(CastInst &CI);
 | 
						|
    Instruction *visitUIToFP(CastInst &CI);
 | 
						|
    Instruction *visitSIToFP(CastInst &CI);
 | 
						|
    Instruction *visitPtrToInt(CastInst &CI);
 | 
						|
    Instruction *visitIntToPtr(CastInst &CI);
 | 
						|
    Instruction *visitBitCast(CastInst &CI);
 | 
						|
    Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI,
 | 
						|
                                Instruction *FI);
 | 
						|
    Instruction *visitSelectInst(SelectInst &CI);
 | 
						|
    Instruction *visitCallInst(CallInst &CI);
 | 
						|
    Instruction *visitInvokeInst(InvokeInst &II);
 | 
						|
    Instruction *visitPHINode(PHINode &PN);
 | 
						|
    Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
 | 
						|
    Instruction *visitAllocationInst(AllocationInst &AI);
 | 
						|
    Instruction *visitFreeInst(FreeInst &FI);
 | 
						|
    Instruction *visitLoadInst(LoadInst &LI);
 | 
						|
    Instruction *visitStoreInst(StoreInst &SI);
 | 
						|
    Instruction *visitBranchInst(BranchInst &BI);
 | 
						|
    Instruction *visitSwitchInst(SwitchInst &SI);
 | 
						|
    Instruction *visitInsertElementInst(InsertElementInst &IE);
 | 
						|
    Instruction *visitExtractElementInst(ExtractElementInst &EI);
 | 
						|
    Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
 | 
						|
 | 
						|
    // visitInstruction - Specify what to return for unhandled instructions...
 | 
						|
    Instruction *visitInstruction(Instruction &I) { return 0; }
 | 
						|
 | 
						|
  private:
 | 
						|
    Instruction *visitCallSite(CallSite CS);
 | 
						|
    bool transformConstExprCastCall(CallSite CS);
 | 
						|
 | 
						|
  public:
 | 
						|
    // InsertNewInstBefore - insert an instruction New before instruction Old
 | 
						|
    // in the program.  Add the new instruction to the worklist.
 | 
						|
    //
 | 
						|
    Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
 | 
						|
      assert(New && New->getParent() == 0 &&
 | 
						|
             "New instruction already inserted into a basic block!");
 | 
						|
      BasicBlock *BB = Old.getParent();
 | 
						|
      BB->getInstList().insert(&Old, New);  // Insert inst
 | 
						|
      WorkList.push_back(New);              // Add to worklist
 | 
						|
      return New;
 | 
						|
    }
 | 
						|
 | 
						|
    /// InsertCastBefore - Insert a cast of V to TY before the instruction POS.
 | 
						|
    /// This also adds the cast to the worklist.  Finally, this returns the
 | 
						|
    /// cast.
 | 
						|
    Value *InsertCastBefore(Instruction::CastOps opc, Value *V, const Type *Ty,
 | 
						|
                            Instruction &Pos) {
 | 
						|
      if (V->getType() == Ty) return V;
 | 
						|
 | 
						|
      if (Constant *CV = dyn_cast<Constant>(V))
 | 
						|
        return ConstantExpr::getCast(opc, CV, Ty);
 | 
						|
      
 | 
						|
      Instruction *C = CastInst::create(opc, V, Ty, V->getName(), &Pos);
 | 
						|
      WorkList.push_back(C);
 | 
						|
      return C;
 | 
						|
    }
 | 
						|
 | 
						|
    // ReplaceInstUsesWith - This method is to be used when an instruction is
 | 
						|
    // found to be dead, replacable with another preexisting expression.  Here
 | 
						|
    // we add all uses of I to the worklist, replace all uses of I with the new
 | 
						|
    // value, then return I, so that the inst combiner will know that I was
 | 
						|
    // modified.
 | 
						|
    //
 | 
						|
    Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
 | 
						|
      AddUsersToWorkList(I);         // Add all modified instrs to worklist
 | 
						|
      if (&I != V) {
 | 
						|
        I.replaceAllUsesWith(V);
 | 
						|
        return &I;
 | 
						|
      } else {
 | 
						|
        // If we are replacing the instruction with itself, this must be in a
 | 
						|
        // segment of unreachable code, so just clobber the instruction.
 | 
						|
        I.replaceAllUsesWith(UndefValue::get(I.getType()));
 | 
						|
        return &I;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // UpdateValueUsesWith - This method is to be used when an value is
 | 
						|
    // found to be replacable with another preexisting expression or was
 | 
						|
    // updated.  Here we add all uses of I to the worklist, replace all uses of
 | 
						|
    // I with the new value (unless the instruction was just updated), then
 | 
						|
    // return true, so that the inst combiner will know that I was modified.
 | 
						|
    //
 | 
						|
    bool UpdateValueUsesWith(Value *Old, Value *New) {
 | 
						|
      AddUsersToWorkList(*Old);         // Add all modified instrs to worklist
 | 
						|
      if (Old != New)
 | 
						|
        Old->replaceAllUsesWith(New);
 | 
						|
      if (Instruction *I = dyn_cast<Instruction>(Old))
 | 
						|
        WorkList.push_back(I);
 | 
						|
      if (Instruction *I = dyn_cast<Instruction>(New))
 | 
						|
        WorkList.push_back(I);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // EraseInstFromFunction - When dealing with an instruction that has side
 | 
						|
    // effects or produces a void value, we can't rely on DCE to delete the
 | 
						|
    // instruction.  Instead, visit methods should return the value returned by
 | 
						|
    // this function.
 | 
						|
    Instruction *EraseInstFromFunction(Instruction &I) {
 | 
						|
      assert(I.use_empty() && "Cannot erase instruction that is used!");
 | 
						|
      AddUsesToWorkList(I);
 | 
						|
      removeFromWorkList(&I);
 | 
						|
      I.eraseFromParent();
 | 
						|
      return 0;  // Don't do anything with FI
 | 
						|
    }
 | 
						|
 | 
						|
  private:
 | 
						|
    /// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
 | 
						|
    /// InsertBefore instruction.  This is specialized a bit to avoid inserting
 | 
						|
    /// casts that are known to not do anything...
 | 
						|
    ///
 | 
						|
    Value *InsertOperandCastBefore(Instruction::CastOps opcode,
 | 
						|
                                   Value *V, const Type *DestTy,
 | 
						|
                                   Instruction *InsertBefore);
 | 
						|
 | 
						|
    /// SimplifyCommutative - This performs a few simplifications for 
 | 
						|
    /// commutative operators.
 | 
						|
    bool SimplifyCommutative(BinaryOperator &I);
 | 
						|
 | 
						|
    /// SimplifyCompare - This reorders the operands of a CmpInst to get them in
 | 
						|
    /// most-complex to least-complex order.
 | 
						|
    bool SimplifyCompare(CmpInst &I);
 | 
						|
 | 
						|
    bool SimplifyDemandedBits(Value *V, uint64_t Mask, 
 | 
						|
                              uint64_t &KnownZero, uint64_t &KnownOne,
 | 
						|
                              unsigned Depth = 0);
 | 
						|
 | 
						|
    Value *SimplifyDemandedVectorElts(Value *V, uint64_t DemandedElts,
 | 
						|
                                      uint64_t &UndefElts, unsigned Depth = 0);
 | 
						|
      
 | 
						|
    // FoldOpIntoPhi - Given a binary operator or cast instruction which has a
 | 
						|
    // PHI node as operand #0, see if we can fold the instruction into the PHI
 | 
						|
    // (which is only possible if all operands to the PHI are constants).
 | 
						|
    Instruction *FoldOpIntoPhi(Instruction &I);
 | 
						|
 | 
						|
    // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
 | 
						|
    // operator and they all are only used by the PHI, PHI together their
 | 
						|
    // inputs, and do the operation once, to the result of the PHI.
 | 
						|
    Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
 | 
						|
    Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
 | 
						|
    
 | 
						|
    
 | 
						|
    Instruction *OptAndOp(Instruction *Op, ConstantInt *OpRHS,
 | 
						|
                          ConstantInt *AndRHS, BinaryOperator &TheAnd);
 | 
						|
    
 | 
						|
    Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask,
 | 
						|
                              bool isSub, Instruction &I);
 | 
						|
    Instruction *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
 | 
						|
                                 bool isSigned, bool Inside, Instruction &IB);
 | 
						|
    Instruction *PromoteCastOfAllocation(CastInst &CI, AllocationInst &AI);
 | 
						|
    Instruction *MatchBSwap(BinaryOperator &I);
 | 
						|
 | 
						|
    Value *EvaluateInDifferentType(Value *V, const Type *Ty, bool isSigned);
 | 
						|
  };
 | 
						|
 | 
						|
  RegisterPass<InstCombiner> X("instcombine", "Combine redundant instructions");
 | 
						|
}
 | 
						|
 | 
						|
// getComplexity:  Assign a complexity or rank value to LLVM Values...
 | 
						|
//   0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst
 | 
						|
static unsigned getComplexity(Value *V) {
 | 
						|
  if (isa<Instruction>(V)) {
 | 
						|
    if (BinaryOperator::isNeg(V) || BinaryOperator::isNot(V))
 | 
						|
      return 3;
 | 
						|
    return 4;
 | 
						|
  }
 | 
						|
  if (isa<Argument>(V)) return 3;
 | 
						|
  return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
 | 
						|
}
 | 
						|
 | 
						|
// isOnlyUse - Return true if this instruction will be deleted if we stop using
 | 
						|
// it.
 | 
						|
static bool isOnlyUse(Value *V) {
 | 
						|
  return V->hasOneUse() || isa<Constant>(V);
 | 
						|
}
 | 
						|
 | 
						|
// getPromotedType - Return the specified type promoted as it would be to pass
 | 
						|
// though a va_arg area...
 | 
						|
static const Type *getPromotedType(const Type *Ty) {
 | 
						|
  if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
 | 
						|
    if (ITy->getBitWidth() < 32)
 | 
						|
      return Type::Int32Ty;
 | 
						|
  } else if (Ty == Type::FloatTy)
 | 
						|
    return Type::DoubleTy;
 | 
						|
  return Ty;
 | 
						|
}
 | 
						|
 | 
						|
/// getBitCastOperand - If the specified operand is a CastInst or a constant 
 | 
						|
/// expression bitcast,  return the operand value, otherwise return null.
 | 
						|
static Value *getBitCastOperand(Value *V) {
 | 
						|
  if (BitCastInst *I = dyn_cast<BitCastInst>(V))
 | 
						|
    return I->getOperand(0);
 | 
						|
  else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
 | 
						|
    if (CE->getOpcode() == Instruction::BitCast)
 | 
						|
      return CE->getOperand(0);
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// This function is a wrapper around CastInst::isEliminableCastPair. It
 | 
						|
/// simply extracts arguments and returns what that function returns.
 | 
						|
/// @Determine if it is valid to eliminate a Convert pair
 | 
						|
static Instruction::CastOps 
 | 
						|
isEliminableCastPair(
 | 
						|
  const CastInst *CI, ///< The first cast instruction
 | 
						|
  unsigned opcode,       ///< The opcode of the second cast instruction
 | 
						|
  const Type *DstTy,     ///< The target type for the second cast instruction
 | 
						|
  TargetData *TD         ///< The target data for pointer size
 | 
						|
) {
 | 
						|
  
 | 
						|
  const Type *SrcTy = CI->getOperand(0)->getType();   // A from above
 | 
						|
  const Type *MidTy = CI->getType();                  // B from above
 | 
						|
 | 
						|
  // Get the opcodes of the two Cast instructions
 | 
						|
  Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
 | 
						|
  Instruction::CastOps secondOp = Instruction::CastOps(opcode);
 | 
						|
 | 
						|
  return Instruction::CastOps(
 | 
						|
      CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
 | 
						|
                                     DstTy, TD->getIntPtrType()));
 | 
						|
}
 | 
						|
 | 
						|
/// ValueRequiresCast - Return true if the cast from "V to Ty" actually results
 | 
						|
/// in any code being generated.  It does not require codegen if V is simple
 | 
						|
/// enough or if the cast can be folded into other casts.
 | 
						|
static bool ValueRequiresCast(Instruction::CastOps opcode, const Value *V, 
 | 
						|
                              const Type *Ty, TargetData *TD) {
 | 
						|
  if (V->getType() == Ty || isa<Constant>(V)) return false;
 | 
						|
  
 | 
						|
  // If this is another cast that can be eliminated, it isn't codegen either.
 | 
						|
  if (const CastInst *CI = dyn_cast<CastInst>(V))
 | 
						|
    if (isEliminableCastPair(CI, opcode, Ty, TD)) 
 | 
						|
      return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
 | 
						|
/// InsertBefore instruction.  This is specialized a bit to avoid inserting
 | 
						|
/// casts that are known to not do anything...
 | 
						|
///
 | 
						|
Value *InstCombiner::InsertOperandCastBefore(Instruction::CastOps opcode,
 | 
						|
                                             Value *V, const Type *DestTy,
 | 
						|
                                             Instruction *InsertBefore) {
 | 
						|
  if (V->getType() == DestTy) return V;
 | 
						|
  if (Constant *C = dyn_cast<Constant>(V))
 | 
						|
    return ConstantExpr::getCast(opcode, C, DestTy);
 | 
						|
  
 | 
						|
  return InsertCastBefore(opcode, V, DestTy, *InsertBefore);
 | 
						|
}
 | 
						|
 | 
						|
// SimplifyCommutative - This performs a few simplifications for commutative
 | 
						|
// operators:
 | 
						|
//
 | 
						|
//  1. Order operands such that they are listed from right (least complex) to
 | 
						|
//     left (most complex).  This puts constants before unary operators before
 | 
						|
//     binary operators.
 | 
						|
//
 | 
						|
//  2. Transform: (op (op V, C1), C2) ==> (op V, (op C1, C2))
 | 
						|
//  3. Transform: (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
 | 
						|
//
 | 
						|
bool InstCombiner::SimplifyCommutative(BinaryOperator &I) {
 | 
						|
  bool Changed = false;
 | 
						|
  if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1)))
 | 
						|
    Changed = !I.swapOperands();
 | 
						|
 | 
						|
  if (!I.isAssociative()) return Changed;
 | 
						|
  Instruction::BinaryOps Opcode = I.getOpcode();
 | 
						|
  if (BinaryOperator *Op = dyn_cast<BinaryOperator>(I.getOperand(0)))
 | 
						|
    if (Op->getOpcode() == Opcode && isa<Constant>(Op->getOperand(1))) {
 | 
						|
      if (isa<Constant>(I.getOperand(1))) {
 | 
						|
        Constant *Folded = ConstantExpr::get(I.getOpcode(),
 | 
						|
                                             cast<Constant>(I.getOperand(1)),
 | 
						|
                                             cast<Constant>(Op->getOperand(1)));
 | 
						|
        I.setOperand(0, Op->getOperand(0));
 | 
						|
        I.setOperand(1, Folded);
 | 
						|
        return true;
 | 
						|
      } else if (BinaryOperator *Op1=dyn_cast<BinaryOperator>(I.getOperand(1)))
 | 
						|
        if (Op1->getOpcode() == Opcode && isa<Constant>(Op1->getOperand(1)) &&
 | 
						|
            isOnlyUse(Op) && isOnlyUse(Op1)) {
 | 
						|
          Constant *C1 = cast<Constant>(Op->getOperand(1));
 | 
						|
          Constant *C2 = cast<Constant>(Op1->getOperand(1));
 | 
						|
 | 
						|
          // Fold (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
 | 
						|
          Constant *Folded = ConstantExpr::get(I.getOpcode(), C1, C2);
 | 
						|
          Instruction *New = BinaryOperator::create(Opcode, Op->getOperand(0),
 | 
						|
                                                    Op1->getOperand(0),
 | 
						|
                                                    Op1->getName(), &I);
 | 
						|
          WorkList.push_back(New);
 | 
						|
          I.setOperand(0, New);
 | 
						|
          I.setOperand(1, Folded);
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
    }
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
/// SimplifyCompare - For a CmpInst this function just orders the operands
 | 
						|
/// so that theyare listed from right (least complex) to left (most complex).
 | 
						|
/// This puts constants before unary operators before binary operators.
 | 
						|
bool InstCombiner::SimplifyCompare(CmpInst &I) {
 | 
						|
  if (getComplexity(I.getOperand(0)) >= getComplexity(I.getOperand(1)))
 | 
						|
    return false;
 | 
						|
  I.swapOperands();
 | 
						|
  // Compare instructions are not associative so there's nothing else we can do.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
 | 
						|
// if the LHS is a constant zero (which is the 'negate' form).
 | 
						|
//
 | 
						|
static inline Value *dyn_castNegVal(Value *V) {
 | 
						|
  if (BinaryOperator::isNeg(V))
 | 
						|
    return BinaryOperator::getNegArgument(V);
 | 
						|
 | 
						|
  // Constants can be considered to be negated values if they can be folded.
 | 
						|
  if (ConstantInt *C = dyn_cast<ConstantInt>(V))
 | 
						|
    return ConstantExpr::getNeg(C);
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
static inline Value *dyn_castNotVal(Value *V) {
 | 
						|
  if (BinaryOperator::isNot(V))
 | 
						|
    return BinaryOperator::getNotArgument(V);
 | 
						|
 | 
						|
  // Constants can be considered to be not'ed values...
 | 
						|
  if (ConstantInt *C = dyn_cast<ConstantInt>(V))
 | 
						|
    return ConstantExpr::getNot(C);
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
// dyn_castFoldableMul - If this value is a multiply that can be folded into
 | 
						|
// other computations (because it has a constant operand), return the
 | 
						|
// non-constant operand of the multiply, and set CST to point to the multiplier.
 | 
						|
// Otherwise, return null.
 | 
						|
//
 | 
						|
static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
 | 
						|
  if (V->hasOneUse() && V->getType()->isInteger())
 | 
						|
    if (Instruction *I = dyn_cast<Instruction>(V)) {
 | 
						|
      if (I->getOpcode() == Instruction::Mul)
 | 
						|
        if ((CST = dyn_cast<ConstantInt>(I->getOperand(1))))
 | 
						|
          return I->getOperand(0);
 | 
						|
      if (I->getOpcode() == Instruction::Shl)
 | 
						|
        if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) {
 | 
						|
          // The multiplier is really 1 << CST.
 | 
						|
          Constant *One = ConstantInt::get(V->getType(), 1);
 | 
						|
          CST = cast<ConstantInt>(ConstantExpr::getShl(One, CST));
 | 
						|
          return I->getOperand(0);
 | 
						|
        }
 | 
						|
    }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// dyn_castGetElementPtr - If this is a getelementptr instruction or constant
 | 
						|
/// expression, return it.
 | 
						|
static User *dyn_castGetElementPtr(Value *V) {
 | 
						|
  if (isa<GetElementPtrInst>(V)) return cast<User>(V);
 | 
						|
  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
 | 
						|
    if (CE->getOpcode() == Instruction::GetElementPtr)
 | 
						|
      return cast<User>(V);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// AddOne, SubOne - Add or subtract a constant one from an integer constant...
 | 
						|
static ConstantInt *AddOne(ConstantInt *C) {
 | 
						|
  return cast<ConstantInt>(ConstantExpr::getAdd(C,
 | 
						|
                                         ConstantInt::get(C->getType(), 1)));
 | 
						|
}
 | 
						|
static ConstantInt *SubOne(ConstantInt *C) {
 | 
						|
  return cast<ConstantInt>(ConstantExpr::getSub(C,
 | 
						|
                                         ConstantInt::get(C->getType(), 1)));
 | 
						|
}
 | 
						|
 | 
						|
/// ComputeMaskedBits - Determine which of the bits specified in Mask are
 | 
						|
/// known to be either zero or one and return them in the KnownZero/KnownOne
 | 
						|
/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
 | 
						|
/// processing.
 | 
						|
static void ComputeMaskedBits(Value *V, uint64_t Mask, uint64_t &KnownZero,
 | 
						|
                              uint64_t &KnownOne, unsigned Depth = 0) {
 | 
						|
  // Note, we cannot consider 'undef' to be "IsZero" here.  The problem is that
 | 
						|
  // we cannot optimize based on the assumption that it is zero without changing
 | 
						|
  // it to be an explicit zero.  If we don't change it to zero, other code could
 | 
						|
  // optimized based on the contradictory assumption that it is non-zero.
 | 
						|
  // Because instcombine aggressively folds operations with undef args anyway,
 | 
						|
  // this won't lose us code quality.
 | 
						|
  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
 | 
						|
    // We know all of the bits for a constant!
 | 
						|
    KnownOne = CI->getZExtValue() & Mask;
 | 
						|
    KnownZero = ~KnownOne & Mask;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  KnownZero = KnownOne = 0;   // Don't know anything.
 | 
						|
  if (Depth == 6 || Mask == 0)
 | 
						|
    return;  // Limit search depth.
 | 
						|
 | 
						|
  uint64_t KnownZero2, KnownOne2;
 | 
						|
  Instruction *I = dyn_cast<Instruction>(V);
 | 
						|
  if (!I) return;
 | 
						|
 | 
						|
  Mask &= cast<IntegerType>(V->getType())->getBitMask();
 | 
						|
  
 | 
						|
  switch (I->getOpcode()) {
 | 
						|
  case Instruction::And:
 | 
						|
    // If either the LHS or the RHS are Zero, the result is zero.
 | 
						|
    ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
 | 
						|
    Mask &= ~KnownZero;
 | 
						|
    ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
 | 
						|
    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | 
						|
    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
 | 
						|
    
 | 
						|
    // Output known-1 bits are only known if set in both the LHS & RHS.
 | 
						|
    KnownOne &= KnownOne2;
 | 
						|
    // Output known-0 are known to be clear if zero in either the LHS | RHS.
 | 
						|
    KnownZero |= KnownZero2;
 | 
						|
    return;
 | 
						|
  case Instruction::Or:
 | 
						|
    ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
 | 
						|
    Mask &= ~KnownOne;
 | 
						|
    ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
 | 
						|
    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | 
						|
    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
 | 
						|
    
 | 
						|
    // Output known-0 bits are only known if clear in both the LHS & RHS.
 | 
						|
    KnownZero &= KnownZero2;
 | 
						|
    // Output known-1 are known to be set if set in either the LHS | RHS.
 | 
						|
    KnownOne |= KnownOne2;
 | 
						|
    return;
 | 
						|
  case Instruction::Xor: {
 | 
						|
    ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
 | 
						|
    ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
 | 
						|
    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | 
						|
    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
 | 
						|
    
 | 
						|
    // Output known-0 bits are known if clear or set in both the LHS & RHS.
 | 
						|
    uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
 | 
						|
    // Output known-1 are known to be set if set in only one of the LHS, RHS.
 | 
						|
    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
 | 
						|
    KnownZero = KnownZeroOut;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  case Instruction::Select:
 | 
						|
    ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
 | 
						|
    ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
 | 
						|
    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | 
						|
    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
 | 
						|
 | 
						|
    // Only known if known in both the LHS and RHS.
 | 
						|
    KnownOne &= KnownOne2;
 | 
						|
    KnownZero &= KnownZero2;
 | 
						|
    return;
 | 
						|
  case Instruction::FPTrunc:
 | 
						|
  case Instruction::FPExt:
 | 
						|
  case Instruction::FPToUI:
 | 
						|
  case Instruction::FPToSI:
 | 
						|
  case Instruction::SIToFP:
 | 
						|
  case Instruction::PtrToInt:
 | 
						|
  case Instruction::UIToFP:
 | 
						|
  case Instruction::IntToPtr:
 | 
						|
    return; // Can't work with floating point or pointers
 | 
						|
  case Instruction::Trunc: 
 | 
						|
    // All these have integer operands
 | 
						|
    ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
 | 
						|
    return;
 | 
						|
  case Instruction::BitCast: {
 | 
						|
    const Type *SrcTy = I->getOperand(0)->getType();
 | 
						|
    if (SrcTy->isInteger()) {
 | 
						|
      ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Instruction::ZExt:  {
 | 
						|
    // Compute the bits in the result that are not present in the input.
 | 
						|
    const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
 | 
						|
    uint64_t NotIn = ~SrcTy->getBitMask();
 | 
						|
    uint64_t NewBits = cast<IntegerType>(I->getType())->getBitMask() & NotIn;
 | 
						|
      
 | 
						|
    Mask &= SrcTy->getBitMask();
 | 
						|
    ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
 | 
						|
    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | 
						|
    // The top bits are known to be zero.
 | 
						|
    KnownZero |= NewBits;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  case Instruction::SExt: {
 | 
						|
    // Compute the bits in the result that are not present in the input.
 | 
						|
    const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
 | 
						|
    uint64_t NotIn = ~SrcTy->getBitMask();
 | 
						|
    uint64_t NewBits = cast<IntegerType>(I->getType())->getBitMask() & NotIn;
 | 
						|
      
 | 
						|
    Mask &= SrcTy->getBitMask();
 | 
						|
    ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
 | 
						|
    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | 
						|
 | 
						|
    // If the sign bit of the input is known set or clear, then we know the
 | 
						|
    // top bits of the result.
 | 
						|
    uint64_t InSignBit = 1ULL << (SrcTy->getPrimitiveSizeInBits()-1);
 | 
						|
    if (KnownZero & InSignBit) {          // Input sign bit known zero
 | 
						|
      KnownZero |= NewBits;
 | 
						|
      KnownOne &= ~NewBits;
 | 
						|
    } else if (KnownOne & InSignBit) {    // Input sign bit known set
 | 
						|
      KnownOne |= NewBits;
 | 
						|
      KnownZero &= ~NewBits;
 | 
						|
    } else {                              // Input sign bit unknown
 | 
						|
      KnownZero &= ~NewBits;
 | 
						|
      KnownOne &= ~NewBits;
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  case Instruction::Shl:
 | 
						|
    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
 | 
						|
    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | 
						|
      uint64_t ShiftAmt = SA->getZExtValue();
 | 
						|
      Mask >>= ShiftAmt;
 | 
						|
      ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
 | 
						|
      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | 
						|
      KnownZero <<= ShiftAmt;
 | 
						|
      KnownOne  <<= ShiftAmt;
 | 
						|
      KnownZero |= (1ULL << ShiftAmt)-1;  // low bits known zero.
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case Instruction::LShr:
 | 
						|
    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
 | 
						|
    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | 
						|
      // Compute the new bits that are at the top now.
 | 
						|
      uint64_t ShiftAmt = SA->getZExtValue();
 | 
						|
      uint64_t HighBits = (1ULL << ShiftAmt)-1;
 | 
						|
      HighBits <<= I->getType()->getPrimitiveSizeInBits()-ShiftAmt;
 | 
						|
      
 | 
						|
      // Unsigned shift right.
 | 
						|
      Mask <<= ShiftAmt;
 | 
						|
      ComputeMaskedBits(I->getOperand(0), Mask, KnownZero,KnownOne,Depth+1);
 | 
						|
      assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?"); 
 | 
						|
      KnownZero >>= ShiftAmt;
 | 
						|
      KnownOne  >>= ShiftAmt;
 | 
						|
      KnownZero |= HighBits;  // high bits known zero.
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case Instruction::AShr:
 | 
						|
    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
 | 
						|
    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | 
						|
      // Compute the new bits that are at the top now.
 | 
						|
      uint64_t ShiftAmt = SA->getZExtValue();
 | 
						|
      uint64_t HighBits = (1ULL << ShiftAmt)-1;
 | 
						|
      HighBits <<= I->getType()->getPrimitiveSizeInBits()-ShiftAmt;
 | 
						|
      
 | 
						|
      // Signed shift right.
 | 
						|
      Mask <<= ShiftAmt;
 | 
						|
      ComputeMaskedBits(I->getOperand(0), Mask, KnownZero,KnownOne,Depth+1);
 | 
						|
      assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?"); 
 | 
						|
      KnownZero >>= ShiftAmt;
 | 
						|
      KnownOne  >>= ShiftAmt;
 | 
						|
        
 | 
						|
      // Handle the sign bits.
 | 
						|
      uint64_t SignBit = 1ULL << (I->getType()->getPrimitiveSizeInBits()-1);
 | 
						|
      SignBit >>= ShiftAmt;  // Adjust to where it is now in the mask.
 | 
						|
        
 | 
						|
      if (KnownZero & SignBit) {       // New bits are known zero.
 | 
						|
        KnownZero |= HighBits;
 | 
						|
      } else if (KnownOne & SignBit) { // New bits are known one.
 | 
						|
        KnownOne |= HighBits;
 | 
						|
      }
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
 | 
						|
/// this predicate to simplify operations downstream.  Mask is known to be zero
 | 
						|
/// for bits that V cannot have.
 | 
						|
static bool MaskedValueIsZero(Value *V, uint64_t Mask, unsigned Depth = 0) {
 | 
						|
  uint64_t KnownZero, KnownOne;
 | 
						|
  ComputeMaskedBits(V, Mask, KnownZero, KnownOne, Depth);
 | 
						|
  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | 
						|
  return (KnownZero & Mask) == Mask;
 | 
						|
}
 | 
						|
 | 
						|
/// ShrinkDemandedConstant - Check to see if the specified operand of the 
 | 
						|
/// specified instruction is a constant integer.  If so, check to see if there
 | 
						|
/// are any bits set in the constant that are not demanded.  If so, shrink the
 | 
						|
/// constant and return true.
 | 
						|
static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, 
 | 
						|
                                   uint64_t Demanded) {
 | 
						|
  ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
 | 
						|
  if (!OpC) return false;
 | 
						|
 | 
						|
  // If there are no bits set that aren't demanded, nothing to do.
 | 
						|
  if ((~Demanded & OpC->getZExtValue()) == 0)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // This is producing any bits that are not needed, shrink the RHS.
 | 
						|
  uint64_t Val = Demanded & OpC->getZExtValue();
 | 
						|
  I->setOperand(OpNo, ConstantInt::get(OpC->getType(), Val));
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a 
 | 
						|
// set of known zero and one bits, compute the maximum and minimum values that
 | 
						|
// could have the specified known zero and known one bits, returning them in
 | 
						|
// min/max.
 | 
						|
static void ComputeSignedMinMaxValuesFromKnownBits(const Type *Ty,
 | 
						|
                                                   uint64_t KnownZero,
 | 
						|
                                                   uint64_t KnownOne,
 | 
						|
                                                   int64_t &Min, int64_t &Max) {
 | 
						|
  uint64_t TypeBits = cast<IntegerType>(Ty)->getBitMask();
 | 
						|
  uint64_t UnknownBits = ~(KnownZero|KnownOne) & TypeBits;
 | 
						|
 | 
						|
  uint64_t SignBit = 1ULL << (Ty->getPrimitiveSizeInBits()-1);
 | 
						|
  
 | 
						|
  // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
 | 
						|
  // bit if it is unknown.
 | 
						|
  Min = KnownOne;
 | 
						|
  Max = KnownOne|UnknownBits;
 | 
						|
  
 | 
						|
  if (SignBit & UnknownBits) { // Sign bit is unknown
 | 
						|
    Min |= SignBit;
 | 
						|
    Max &= ~SignBit;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Sign extend the min/max values.
 | 
						|
  int ShAmt = 64-Ty->getPrimitiveSizeInBits();
 | 
						|
  Min = (Min << ShAmt) >> ShAmt;
 | 
						|
  Max = (Max << ShAmt) >> ShAmt;
 | 
						|
}
 | 
						|
 | 
						|
// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
 | 
						|
// a set of known zero and one bits, compute the maximum and minimum values that
 | 
						|
// could have the specified known zero and known one bits, returning them in
 | 
						|
// min/max.
 | 
						|
static void ComputeUnsignedMinMaxValuesFromKnownBits(const Type *Ty,
 | 
						|
                                                     uint64_t KnownZero,
 | 
						|
                                                     uint64_t KnownOne,
 | 
						|
                                                     uint64_t &Min,
 | 
						|
                                                     uint64_t &Max) {
 | 
						|
  uint64_t TypeBits = cast<IntegerType>(Ty)->getBitMask();
 | 
						|
  uint64_t UnknownBits = ~(KnownZero|KnownOne) & TypeBits;
 | 
						|
  
 | 
						|
  // The minimum value is when the unknown bits are all zeros.
 | 
						|
  Min = KnownOne;
 | 
						|
  // The maximum value is when the unknown bits are all ones.
 | 
						|
  Max = KnownOne|UnknownBits;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// SimplifyDemandedBits - Look at V.  At this point, we know that only the
 | 
						|
/// DemandedMask bits of the result of V are ever used downstream.  If we can
 | 
						|
/// use this information to simplify V, do so and return true.  Otherwise,
 | 
						|
/// analyze the expression and return a mask of KnownOne and KnownZero bits for
 | 
						|
/// the expression (used to simplify the caller).  The KnownZero/One bits may
 | 
						|
/// only be accurate for those bits in the DemandedMask.
 | 
						|
bool InstCombiner::SimplifyDemandedBits(Value *V, uint64_t DemandedMask,
 | 
						|
                                        uint64_t &KnownZero, uint64_t &KnownOne,
 | 
						|
                                        unsigned Depth) {
 | 
						|
  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
 | 
						|
    // We know all of the bits for a constant!
 | 
						|
    KnownOne = CI->getZExtValue() & DemandedMask;
 | 
						|
    KnownZero = ~KnownOne & DemandedMask;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  
 | 
						|
  KnownZero = KnownOne = 0;
 | 
						|
  if (!V->hasOneUse()) {    // Other users may use these bits.
 | 
						|
    if (Depth != 0) {       // Not at the root.
 | 
						|
      // Just compute the KnownZero/KnownOne bits to simplify things downstream.
 | 
						|
      ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth);
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    // If this is the root being simplified, allow it to have multiple uses,
 | 
						|
    // just set the DemandedMask to all bits.
 | 
						|
    DemandedMask = cast<IntegerType>(V->getType())->getBitMask();
 | 
						|
  } else if (DemandedMask == 0) {   // Not demanding any bits from V.
 | 
						|
    if (V != UndefValue::get(V->getType()))
 | 
						|
      return UpdateValueUsesWith(V, UndefValue::get(V->getType()));
 | 
						|
    return false;
 | 
						|
  } else if (Depth == 6) {        // Limit search depth.
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  
 | 
						|
  Instruction *I = dyn_cast<Instruction>(V);
 | 
						|
  if (!I) return false;        // Only analyze instructions.
 | 
						|
 | 
						|
  DemandedMask &= cast<IntegerType>(V->getType())->getBitMask();
 | 
						|
  
 | 
						|
  uint64_t KnownZero2 = 0, KnownOne2 = 0;
 | 
						|
  switch (I->getOpcode()) {
 | 
						|
  default: break;
 | 
						|
  case Instruction::And:
 | 
						|
    // If either the LHS or the RHS are Zero, the result is zero.
 | 
						|
    if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
 | 
						|
                             KnownZero, KnownOne, Depth+1))
 | 
						|
      return true;
 | 
						|
    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | 
						|
 | 
						|
    // If something is known zero on the RHS, the bits aren't demanded on the
 | 
						|
    // LHS.
 | 
						|
    if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~KnownZero,
 | 
						|
                             KnownZero2, KnownOne2, Depth+1))
 | 
						|
      return true;
 | 
						|
    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
 | 
						|
 | 
						|
    // If all of the demanded bits are known 1 on one side, return the other.
 | 
						|
    // These bits cannot contribute to the result of the 'and'.
 | 
						|
    if ((DemandedMask & ~KnownZero2 & KnownOne) == (DemandedMask & ~KnownZero2))
 | 
						|
      return UpdateValueUsesWith(I, I->getOperand(0));
 | 
						|
    if ((DemandedMask & ~KnownZero & KnownOne2) == (DemandedMask & ~KnownZero))
 | 
						|
      return UpdateValueUsesWith(I, I->getOperand(1));
 | 
						|
    
 | 
						|
    // If all of the demanded bits in the inputs are known zeros, return zero.
 | 
						|
    if ((DemandedMask & (KnownZero|KnownZero2)) == DemandedMask)
 | 
						|
      return UpdateValueUsesWith(I, Constant::getNullValue(I->getType()));
 | 
						|
      
 | 
						|
    // If the RHS is a constant, see if we can simplify it.
 | 
						|
    if (ShrinkDemandedConstant(I, 1, DemandedMask & ~KnownZero2))
 | 
						|
      return UpdateValueUsesWith(I, I);
 | 
						|
      
 | 
						|
    // Output known-1 bits are only known if set in both the LHS & RHS.
 | 
						|
    KnownOne &= KnownOne2;
 | 
						|
    // Output known-0 are known to be clear if zero in either the LHS | RHS.
 | 
						|
    KnownZero |= KnownZero2;
 | 
						|
    break;
 | 
						|
  case Instruction::Or:
 | 
						|
    if (SimplifyDemandedBits(I->getOperand(1), DemandedMask, 
 | 
						|
                             KnownZero, KnownOne, Depth+1))
 | 
						|
      return true;
 | 
						|
    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | 
						|
    if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~KnownOne, 
 | 
						|
                             KnownZero2, KnownOne2, Depth+1))
 | 
						|
      return true;
 | 
						|
    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
 | 
						|
    
 | 
						|
    // If all of the demanded bits are known zero on one side, return the other.
 | 
						|
    // These bits cannot contribute to the result of the 'or'.
 | 
						|
    if ((DemandedMask & ~KnownOne2 & KnownZero) == (DemandedMask & ~KnownOne2))
 | 
						|
      return UpdateValueUsesWith(I, I->getOperand(0));
 | 
						|
    if ((DemandedMask & ~KnownOne & KnownZero2) == (DemandedMask & ~KnownOne))
 | 
						|
      return UpdateValueUsesWith(I, I->getOperand(1));
 | 
						|
 | 
						|
    // If all of the potentially set bits on one side are known to be set on
 | 
						|
    // the other side, just use the 'other' side.
 | 
						|
    if ((DemandedMask & (~KnownZero) & KnownOne2) == 
 | 
						|
        (DemandedMask & (~KnownZero)))
 | 
						|
      return UpdateValueUsesWith(I, I->getOperand(0));
 | 
						|
    if ((DemandedMask & (~KnownZero2) & KnownOne) == 
 | 
						|
        (DemandedMask & (~KnownZero2)))
 | 
						|
      return UpdateValueUsesWith(I, I->getOperand(1));
 | 
						|
        
 | 
						|
    // If the RHS is a constant, see if we can simplify it.
 | 
						|
    if (ShrinkDemandedConstant(I, 1, DemandedMask))
 | 
						|
      return UpdateValueUsesWith(I, I);
 | 
						|
          
 | 
						|
    // Output known-0 bits are only known if clear in both the LHS & RHS.
 | 
						|
    KnownZero &= KnownZero2;
 | 
						|
    // Output known-1 are known to be set if set in either the LHS | RHS.
 | 
						|
    KnownOne |= KnownOne2;
 | 
						|
    break;
 | 
						|
  case Instruction::Xor: {
 | 
						|
    if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
 | 
						|
                             KnownZero, KnownOne, Depth+1))
 | 
						|
      return true;
 | 
						|
    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | 
						|
    if (SimplifyDemandedBits(I->getOperand(0), DemandedMask, 
 | 
						|
                             KnownZero2, KnownOne2, Depth+1))
 | 
						|
      return true;
 | 
						|
    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
 | 
						|
    
 | 
						|
    // If all of the demanded bits are known zero on one side, return the other.
 | 
						|
    // These bits cannot contribute to the result of the 'xor'.
 | 
						|
    if ((DemandedMask & KnownZero) == DemandedMask)
 | 
						|
      return UpdateValueUsesWith(I, I->getOperand(0));
 | 
						|
    if ((DemandedMask & KnownZero2) == DemandedMask)
 | 
						|
      return UpdateValueUsesWith(I, I->getOperand(1));
 | 
						|
    
 | 
						|
    // Output known-0 bits are known if clear or set in both the LHS & RHS.
 | 
						|
    uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
 | 
						|
    // Output known-1 are known to be set if set in only one of the LHS, RHS.
 | 
						|
    uint64_t KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
 | 
						|
    
 | 
						|
    // If all of the demanded bits are known to be zero on one side or the
 | 
						|
    // other, turn this into an *inclusive* or.
 | 
						|
    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
 | 
						|
    if ((DemandedMask & ~KnownZero & ~KnownZero2) == 0) {
 | 
						|
      Instruction *Or =
 | 
						|
        BinaryOperator::createOr(I->getOperand(0), I->getOperand(1),
 | 
						|
                                 I->getName());
 | 
						|
      InsertNewInstBefore(Or, *I);
 | 
						|
      return UpdateValueUsesWith(I, Or);
 | 
						|
    }
 | 
						|
    
 | 
						|
    // If all of the demanded bits on one side are known, and all of the set
 | 
						|
    // bits on that side are also known to be set on the other side, turn this
 | 
						|
    // into an AND, as we know the bits will be cleared.
 | 
						|
    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
 | 
						|
    if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) { // all known
 | 
						|
      if ((KnownOne & KnownOne2) == KnownOne) {
 | 
						|
        Constant *AndC = ConstantInt::get(I->getType(), 
 | 
						|
                                          ~KnownOne & DemandedMask);
 | 
						|
        Instruction *And = 
 | 
						|
          BinaryOperator::createAnd(I->getOperand(0), AndC, "tmp");
 | 
						|
        InsertNewInstBefore(And, *I);
 | 
						|
        return UpdateValueUsesWith(I, And);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // If the RHS is a constant, see if we can simplify it.
 | 
						|
    // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
 | 
						|
    if (ShrinkDemandedConstant(I, 1, DemandedMask))
 | 
						|
      return UpdateValueUsesWith(I, I);
 | 
						|
    
 | 
						|
    KnownZero = KnownZeroOut;
 | 
						|
    KnownOne  = KnownOneOut;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Instruction::Select:
 | 
						|
    if (SimplifyDemandedBits(I->getOperand(2), DemandedMask,
 | 
						|
                             KnownZero, KnownOne, Depth+1))
 | 
						|
      return true;
 | 
						|
    if (SimplifyDemandedBits(I->getOperand(1), DemandedMask, 
 | 
						|
                             KnownZero2, KnownOne2, Depth+1))
 | 
						|
      return true;
 | 
						|
    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | 
						|
    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
 | 
						|
    
 | 
						|
    // If the operands are constants, see if we can simplify them.
 | 
						|
    if (ShrinkDemandedConstant(I, 1, DemandedMask))
 | 
						|
      return UpdateValueUsesWith(I, I);
 | 
						|
    if (ShrinkDemandedConstant(I, 2, DemandedMask))
 | 
						|
      return UpdateValueUsesWith(I, I);
 | 
						|
    
 | 
						|
    // Only known if known in both the LHS and RHS.
 | 
						|
    KnownOne &= KnownOne2;
 | 
						|
    KnownZero &= KnownZero2;
 | 
						|
    break;
 | 
						|
  case Instruction::Trunc:
 | 
						|
    if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
 | 
						|
                             KnownZero, KnownOne, Depth+1))
 | 
						|
      return true;
 | 
						|
    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | 
						|
    break;
 | 
						|
  case Instruction::BitCast:
 | 
						|
    if (!I->getOperand(0)->getType()->isInteger())
 | 
						|
      return false;
 | 
						|
      
 | 
						|
    if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
 | 
						|
                             KnownZero, KnownOne, Depth+1))
 | 
						|
      return true;
 | 
						|
    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | 
						|
    break;
 | 
						|
  case Instruction::ZExt: {
 | 
						|
    // Compute the bits in the result that are not present in the input.
 | 
						|
    const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
 | 
						|
    uint64_t NotIn = ~SrcTy->getBitMask();
 | 
						|
    uint64_t NewBits = cast<IntegerType>(I->getType())->getBitMask() & NotIn;
 | 
						|
    
 | 
						|
    DemandedMask &= SrcTy->getBitMask();
 | 
						|
    if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
 | 
						|
                             KnownZero, KnownOne, Depth+1))
 | 
						|
      return true;
 | 
						|
    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | 
						|
    // The top bits are known to be zero.
 | 
						|
    KnownZero |= NewBits;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Instruction::SExt: {
 | 
						|
    // Compute the bits in the result that are not present in the input.
 | 
						|
    const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
 | 
						|
    uint64_t NotIn = ~SrcTy->getBitMask();
 | 
						|
    uint64_t NewBits = cast<IntegerType>(I->getType())->getBitMask() & NotIn;
 | 
						|
    
 | 
						|
    // Get the sign bit for the source type
 | 
						|
    uint64_t InSignBit = 1ULL << (SrcTy->getPrimitiveSizeInBits()-1);
 | 
						|
    int64_t InputDemandedBits = DemandedMask & SrcTy->getBitMask();
 | 
						|
 | 
						|
    // If any of the sign extended bits are demanded, we know that the sign
 | 
						|
    // bit is demanded.
 | 
						|
    if (NewBits & DemandedMask)
 | 
						|
      InputDemandedBits |= InSignBit;
 | 
						|
      
 | 
						|
    if (SimplifyDemandedBits(I->getOperand(0), InputDemandedBits,
 | 
						|
                             KnownZero, KnownOne, Depth+1))
 | 
						|
      return true;
 | 
						|
    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | 
						|
      
 | 
						|
    // If the sign bit of the input is known set or clear, then we know the
 | 
						|
    // top bits of the result.
 | 
						|
 | 
						|
    // If the input sign bit is known zero, or if the NewBits are not demanded
 | 
						|
    // convert this into a zero extension.
 | 
						|
    if ((KnownZero & InSignBit) || (NewBits & ~DemandedMask) == NewBits) {
 | 
						|
      // Convert to ZExt cast
 | 
						|
      CastInst *NewCast = CastInst::create(
 | 
						|
        Instruction::ZExt, I->getOperand(0), I->getType(), I->getName(), I);
 | 
						|
      return UpdateValueUsesWith(I, NewCast);
 | 
						|
    } else if (KnownOne & InSignBit) {    // Input sign bit known set
 | 
						|
      KnownOne |= NewBits;
 | 
						|
      KnownZero &= ~NewBits;
 | 
						|
    } else {                              // Input sign bit unknown
 | 
						|
      KnownZero &= ~NewBits;
 | 
						|
      KnownOne &= ~NewBits;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Instruction::Add:
 | 
						|
    // If there is a constant on the RHS, there are a variety of xformations
 | 
						|
    // we can do.
 | 
						|
    if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | 
						|
      // If null, this should be simplified elsewhere.  Some of the xforms here
 | 
						|
      // won't work if the RHS is zero.
 | 
						|
      if (RHS->isNullValue())
 | 
						|
        break;
 | 
						|
      
 | 
						|
      // Figure out what the input bits are.  If the top bits of the and result
 | 
						|
      // are not demanded, then the add doesn't demand them from its input
 | 
						|
      // either.
 | 
						|
      
 | 
						|
      // Shift the demanded mask up so that it's at the top of the uint64_t.
 | 
						|
      unsigned BitWidth = I->getType()->getPrimitiveSizeInBits();
 | 
						|
      unsigned NLZ = CountLeadingZeros_64(DemandedMask << (64-BitWidth));
 | 
						|
      
 | 
						|
      // If the top bit of the output is demanded, demand everything from the
 | 
						|
      // input.  Otherwise, we demand all the input bits except NLZ top bits.
 | 
						|
      uint64_t InDemandedBits = ~0ULL >> (64-BitWidth+NLZ);
 | 
						|
 | 
						|
      // Find information about known zero/one bits in the input.
 | 
						|
      if (SimplifyDemandedBits(I->getOperand(0), InDemandedBits, 
 | 
						|
                               KnownZero2, KnownOne2, Depth+1))
 | 
						|
        return true;
 | 
						|
 | 
						|
      // If the RHS of the add has bits set that can't affect the input, reduce
 | 
						|
      // the constant.
 | 
						|
      if (ShrinkDemandedConstant(I, 1, InDemandedBits))
 | 
						|
        return UpdateValueUsesWith(I, I);
 | 
						|
      
 | 
						|
      // Avoid excess work.
 | 
						|
      if (KnownZero2 == 0 && KnownOne2 == 0)
 | 
						|
        break;
 | 
						|
      
 | 
						|
      // Turn it into OR if input bits are zero.
 | 
						|
      if ((KnownZero2 & RHS->getZExtValue()) == RHS->getZExtValue()) {
 | 
						|
        Instruction *Or =
 | 
						|
          BinaryOperator::createOr(I->getOperand(0), I->getOperand(1),
 | 
						|
                                   I->getName());
 | 
						|
        InsertNewInstBefore(Or, *I);
 | 
						|
        return UpdateValueUsesWith(I, Or);
 | 
						|
      }
 | 
						|
      
 | 
						|
      // We can say something about the output known-zero and known-one bits,
 | 
						|
      // depending on potential carries from the input constant and the
 | 
						|
      // unknowns.  For example if the LHS is known to have at most the 0x0F0F0
 | 
						|
      // bits set and the RHS constant is 0x01001, then we know we have a known
 | 
						|
      // one mask of 0x00001 and a known zero mask of 0xE0F0E.
 | 
						|
      
 | 
						|
      // To compute this, we first compute the potential carry bits.  These are
 | 
						|
      // the bits which may be modified.  I'm not aware of a better way to do
 | 
						|
      // this scan.
 | 
						|
      uint64_t RHSVal = RHS->getZExtValue();
 | 
						|
      
 | 
						|
      bool CarryIn = false;
 | 
						|
      uint64_t CarryBits = 0;
 | 
						|
      uint64_t CurBit = 1;
 | 
						|
      for (unsigned i = 0; i != BitWidth; ++i, CurBit <<= 1) {
 | 
						|
        // Record the current carry in.
 | 
						|
        if (CarryIn) CarryBits |= CurBit;
 | 
						|
        
 | 
						|
        bool CarryOut;
 | 
						|
        
 | 
						|
        // This bit has a carry out unless it is "zero + zero" or
 | 
						|
        // "zero + anything" with no carry in.
 | 
						|
        if ((KnownZero2 & CurBit) && ((RHSVal & CurBit) == 0)) {
 | 
						|
          CarryOut = false;  // 0 + 0 has no carry out, even with carry in.
 | 
						|
        } else if (!CarryIn &&
 | 
						|
                   ((KnownZero2 & CurBit) || ((RHSVal & CurBit) == 0))) {
 | 
						|
          CarryOut = false;  // 0 + anything has no carry out if no carry in.
 | 
						|
        } else {
 | 
						|
          // Otherwise, we have to assume we have a carry out.
 | 
						|
          CarryOut = true;
 | 
						|
        }
 | 
						|
        
 | 
						|
        // This stage's carry out becomes the next stage's carry-in.
 | 
						|
        CarryIn = CarryOut;
 | 
						|
      }
 | 
						|
      
 | 
						|
      // Now that we know which bits have carries, compute the known-1/0 sets.
 | 
						|
      
 | 
						|
      // Bits are known one if they are known zero in one operand and one in the
 | 
						|
      // other, and there is no input carry.
 | 
						|
      KnownOne = ((KnownZero2 & RHSVal) | (KnownOne2 & ~RHSVal)) & ~CarryBits;
 | 
						|
      
 | 
						|
      // Bits are known zero if they are known zero in both operands and there
 | 
						|
      // is no input carry.
 | 
						|
      KnownZero = KnownZero2 & ~RHSVal & ~CarryBits;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case Instruction::Shl:
 | 
						|
    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | 
						|
      uint64_t ShiftAmt = SA->getZExtValue();
 | 
						|
      if (SimplifyDemandedBits(I->getOperand(0), DemandedMask >> ShiftAmt, 
 | 
						|
                               KnownZero, KnownOne, Depth+1))
 | 
						|
        return true;
 | 
						|
      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | 
						|
      KnownZero <<= ShiftAmt;
 | 
						|
      KnownOne  <<= ShiftAmt;
 | 
						|
      KnownZero |= (1ULL << ShiftAmt) - 1;  // low bits known zero.
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case Instruction::LShr:
 | 
						|
    // For a logical shift right
 | 
						|
    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | 
						|
      unsigned ShiftAmt = SA->getZExtValue();
 | 
						|
      
 | 
						|
      // Compute the new bits that are at the top now.
 | 
						|
      uint64_t HighBits = (1ULL << ShiftAmt)-1;
 | 
						|
      HighBits <<= I->getType()->getPrimitiveSizeInBits() - ShiftAmt;
 | 
						|
      uint64_t TypeMask = cast<IntegerType>(I->getType())->getBitMask();
 | 
						|
      // Unsigned shift right.
 | 
						|
      if (SimplifyDemandedBits(I->getOperand(0),
 | 
						|
                              (DemandedMask << ShiftAmt) & TypeMask,
 | 
						|
                               KnownZero, KnownOne, Depth+1))
 | 
						|
        return true;
 | 
						|
      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | 
						|
      KnownZero &= TypeMask;
 | 
						|
      KnownOne  &= TypeMask;
 | 
						|
      KnownZero >>= ShiftAmt;
 | 
						|
      KnownOne  >>= ShiftAmt;
 | 
						|
      KnownZero |= HighBits;  // high bits known zero.
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case Instruction::AShr:
 | 
						|
    // If this is an arithmetic shift right and only the low-bit is set, we can
 | 
						|
    // always convert this into a logical shr, even if the shift amount is
 | 
						|
    // variable.  The low bit of the shift cannot be an input sign bit unless
 | 
						|
    // the shift amount is >= the size of the datatype, which is undefined.
 | 
						|
    if (DemandedMask == 1) {
 | 
						|
      // Perform the logical shift right.
 | 
						|
      Value *NewVal = BinaryOperator::createLShr(
 | 
						|
                        I->getOperand(0), I->getOperand(1), I->getName());
 | 
						|
      InsertNewInstBefore(cast<Instruction>(NewVal), *I);
 | 
						|
      return UpdateValueUsesWith(I, NewVal);
 | 
						|
    }    
 | 
						|
    
 | 
						|
    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | 
						|
      unsigned ShiftAmt = SA->getZExtValue();
 | 
						|
      
 | 
						|
      // Compute the new bits that are at the top now.
 | 
						|
      uint64_t HighBits = (1ULL << ShiftAmt)-1;
 | 
						|
      HighBits <<= I->getType()->getPrimitiveSizeInBits() - ShiftAmt;
 | 
						|
      uint64_t TypeMask = cast<IntegerType>(I->getType())->getBitMask();
 | 
						|
      // Signed shift right.
 | 
						|
      if (SimplifyDemandedBits(I->getOperand(0),
 | 
						|
                               (DemandedMask << ShiftAmt) & TypeMask,
 | 
						|
                               KnownZero, KnownOne, Depth+1))
 | 
						|
        return true;
 | 
						|
      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | 
						|
      KnownZero &= TypeMask;
 | 
						|
      KnownOne  &= TypeMask;
 | 
						|
      KnownZero >>= ShiftAmt;
 | 
						|
      KnownOne  >>= ShiftAmt;
 | 
						|
        
 | 
						|
      // Handle the sign bits.
 | 
						|
      uint64_t SignBit = 1ULL << (I->getType()->getPrimitiveSizeInBits()-1);
 | 
						|
      SignBit >>= ShiftAmt;  // Adjust to where it is now in the mask.
 | 
						|
        
 | 
						|
      // If the input sign bit is known to be zero, or if none of the top bits
 | 
						|
      // are demanded, turn this into an unsigned shift right.
 | 
						|
      if ((KnownZero & SignBit) || (HighBits & ~DemandedMask) == HighBits) {
 | 
						|
        // Perform the logical shift right.
 | 
						|
        Value *NewVal = BinaryOperator::createLShr(
 | 
						|
                          I->getOperand(0), SA, I->getName());
 | 
						|
        InsertNewInstBefore(cast<Instruction>(NewVal), *I);
 | 
						|
        return UpdateValueUsesWith(I, NewVal);
 | 
						|
      } else if (KnownOne & SignBit) { // New bits are known one.
 | 
						|
        KnownOne |= HighBits;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If the client is only demanding bits that we know, return the known
 | 
						|
  // constant.
 | 
						|
  if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
 | 
						|
    return UpdateValueUsesWith(I, ConstantInt::get(I->getType(), KnownOne));
 | 
						|
  return false;
 | 
						|
}  
 | 
						|
 | 
						|
 | 
						|
/// SimplifyDemandedVectorElts - The specified value producecs a vector with
 | 
						|
/// 64 or fewer elements.  DemandedElts contains the set of elements that are
 | 
						|
/// actually used by the caller.  This method analyzes which elements of the
 | 
						|
/// operand are undef and returns that information in UndefElts.
 | 
						|
///
 | 
						|
/// If the information about demanded elements can be used to simplify the
 | 
						|
/// operation, the operation is simplified, then the resultant value is
 | 
						|
/// returned.  This returns null if no change was made.
 | 
						|
Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, uint64_t DemandedElts,
 | 
						|
                                                uint64_t &UndefElts,
 | 
						|
                                                unsigned Depth) {
 | 
						|
  unsigned VWidth = cast<PackedType>(V->getType())->getNumElements();
 | 
						|
  assert(VWidth <= 64 && "Vector too wide to analyze!");
 | 
						|
  uint64_t EltMask = ~0ULL >> (64-VWidth);
 | 
						|
  assert(DemandedElts != EltMask && (DemandedElts & ~EltMask) == 0 &&
 | 
						|
         "Invalid DemandedElts!");
 | 
						|
 | 
						|
  if (isa<UndefValue>(V)) {
 | 
						|
    // If the entire vector is undefined, just return this info.
 | 
						|
    UndefElts = EltMask;
 | 
						|
    return 0;
 | 
						|
  } else if (DemandedElts == 0) { // If nothing is demanded, provide undef.
 | 
						|
    UndefElts = EltMask;
 | 
						|
    return UndefValue::get(V->getType());
 | 
						|
  }
 | 
						|
  
 | 
						|
  UndefElts = 0;
 | 
						|
  if (ConstantPacked *CP = dyn_cast<ConstantPacked>(V)) {
 | 
						|
    const Type *EltTy = cast<PackedType>(V->getType())->getElementType();
 | 
						|
    Constant *Undef = UndefValue::get(EltTy);
 | 
						|
 | 
						|
    std::vector<Constant*> Elts;
 | 
						|
    for (unsigned i = 0; i != VWidth; ++i)
 | 
						|
      if (!(DemandedElts & (1ULL << i))) {   // If not demanded, set to undef.
 | 
						|
        Elts.push_back(Undef);
 | 
						|
        UndefElts |= (1ULL << i);
 | 
						|
      } else if (isa<UndefValue>(CP->getOperand(i))) {   // Already undef.
 | 
						|
        Elts.push_back(Undef);
 | 
						|
        UndefElts |= (1ULL << i);
 | 
						|
      } else {                               // Otherwise, defined.
 | 
						|
        Elts.push_back(CP->getOperand(i));
 | 
						|
      }
 | 
						|
        
 | 
						|
    // If we changed the constant, return it.
 | 
						|
    Constant *NewCP = ConstantPacked::get(Elts);
 | 
						|
    return NewCP != CP ? NewCP : 0;
 | 
						|
  } else if (isa<ConstantAggregateZero>(V)) {
 | 
						|
    // Simplify the CAZ to a ConstantPacked where the non-demanded elements are
 | 
						|
    // set to undef.
 | 
						|
    const Type *EltTy = cast<PackedType>(V->getType())->getElementType();
 | 
						|
    Constant *Zero = Constant::getNullValue(EltTy);
 | 
						|
    Constant *Undef = UndefValue::get(EltTy);
 | 
						|
    std::vector<Constant*> Elts;
 | 
						|
    for (unsigned i = 0; i != VWidth; ++i)
 | 
						|
      Elts.push_back((DemandedElts & (1ULL << i)) ? Zero : Undef);
 | 
						|
    UndefElts = DemandedElts ^ EltMask;
 | 
						|
    return ConstantPacked::get(Elts);
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (!V->hasOneUse()) {    // Other users may use these bits.
 | 
						|
    if (Depth != 0) {       // Not at the root.
 | 
						|
      // TODO: Just compute the UndefElts information recursively.
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  } else if (Depth == 10) {        // Limit search depth.
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  
 | 
						|
  Instruction *I = dyn_cast<Instruction>(V);
 | 
						|
  if (!I) return false;        // Only analyze instructions.
 | 
						|
  
 | 
						|
  bool MadeChange = false;
 | 
						|
  uint64_t UndefElts2;
 | 
						|
  Value *TmpV;
 | 
						|
  switch (I->getOpcode()) {
 | 
						|
  default: break;
 | 
						|
    
 | 
						|
  case Instruction::InsertElement: {
 | 
						|
    // If this is a variable index, we don't know which element it overwrites.
 | 
						|
    // demand exactly the same input as we produce.
 | 
						|
    ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
 | 
						|
    if (Idx == 0) {
 | 
						|
      // Note that we can't propagate undef elt info, because we don't know
 | 
						|
      // which elt is getting updated.
 | 
						|
      TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
 | 
						|
                                        UndefElts2, Depth+1);
 | 
						|
      if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // If this is inserting an element that isn't demanded, remove this
 | 
						|
    // insertelement.
 | 
						|
    unsigned IdxNo = Idx->getZExtValue();
 | 
						|
    if (IdxNo >= VWidth || (DemandedElts & (1ULL << IdxNo)) == 0)
 | 
						|
      return AddSoonDeadInstToWorklist(*I, 0);
 | 
						|
    
 | 
						|
    // Otherwise, the element inserted overwrites whatever was there, so the
 | 
						|
    // input demanded set is simpler than the output set.
 | 
						|
    TmpV = SimplifyDemandedVectorElts(I->getOperand(0),
 | 
						|
                                      DemandedElts & ~(1ULL << IdxNo),
 | 
						|
                                      UndefElts, Depth+1);
 | 
						|
    if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
 | 
						|
 | 
						|
    // The inserted element is defined.
 | 
						|
    UndefElts |= 1ULL << IdxNo;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
    
 | 
						|
  case Instruction::And:
 | 
						|
  case Instruction::Or:
 | 
						|
  case Instruction::Xor:
 | 
						|
  case Instruction::Add:
 | 
						|
  case Instruction::Sub:
 | 
						|
  case Instruction::Mul:
 | 
						|
    // div/rem demand all inputs, because they don't want divide by zero.
 | 
						|
    TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
 | 
						|
                                      UndefElts, Depth+1);
 | 
						|
    if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
 | 
						|
    TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
 | 
						|
                                      UndefElts2, Depth+1);
 | 
						|
    if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
 | 
						|
      
 | 
						|
    // Output elements are undefined if both are undefined.  Consider things
 | 
						|
    // like undef&0.  The result is known zero, not undef.
 | 
						|
    UndefElts &= UndefElts2;
 | 
						|
    break;
 | 
						|
    
 | 
						|
  case Instruction::Call: {
 | 
						|
    IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
 | 
						|
    if (!II) break;
 | 
						|
    switch (II->getIntrinsicID()) {
 | 
						|
    default: break;
 | 
						|
      
 | 
						|
    // Binary vector operations that work column-wise.  A dest element is a
 | 
						|
    // function of the corresponding input elements from the two inputs.
 | 
						|
    case Intrinsic::x86_sse_sub_ss:
 | 
						|
    case Intrinsic::x86_sse_mul_ss:
 | 
						|
    case Intrinsic::x86_sse_min_ss:
 | 
						|
    case Intrinsic::x86_sse_max_ss:
 | 
						|
    case Intrinsic::x86_sse2_sub_sd:
 | 
						|
    case Intrinsic::x86_sse2_mul_sd:
 | 
						|
    case Intrinsic::x86_sse2_min_sd:
 | 
						|
    case Intrinsic::x86_sse2_max_sd:
 | 
						|
      TmpV = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts,
 | 
						|
                                        UndefElts, Depth+1);
 | 
						|
      if (TmpV) { II->setOperand(1, TmpV); MadeChange = true; }
 | 
						|
      TmpV = SimplifyDemandedVectorElts(II->getOperand(2), DemandedElts,
 | 
						|
                                        UndefElts2, Depth+1);
 | 
						|
      if (TmpV) { II->setOperand(2, TmpV); MadeChange = true; }
 | 
						|
 | 
						|
      // If only the low elt is demanded and this is a scalarizable intrinsic,
 | 
						|
      // scalarize it now.
 | 
						|
      if (DemandedElts == 1) {
 | 
						|
        switch (II->getIntrinsicID()) {
 | 
						|
        default: break;
 | 
						|
        case Intrinsic::x86_sse_sub_ss:
 | 
						|
        case Intrinsic::x86_sse_mul_ss:
 | 
						|
        case Intrinsic::x86_sse2_sub_sd:
 | 
						|
        case Intrinsic::x86_sse2_mul_sd:
 | 
						|
          // TODO: Lower MIN/MAX/ABS/etc
 | 
						|
          Value *LHS = II->getOperand(1);
 | 
						|
          Value *RHS = II->getOperand(2);
 | 
						|
          // Extract the element as scalars.
 | 
						|
          LHS = InsertNewInstBefore(new ExtractElementInst(LHS, 0U,"tmp"), *II);
 | 
						|
          RHS = InsertNewInstBefore(new ExtractElementInst(RHS, 0U,"tmp"), *II);
 | 
						|
          
 | 
						|
          switch (II->getIntrinsicID()) {
 | 
						|
          default: assert(0 && "Case stmts out of sync!");
 | 
						|
          case Intrinsic::x86_sse_sub_ss:
 | 
						|
          case Intrinsic::x86_sse2_sub_sd:
 | 
						|
            TmpV = InsertNewInstBefore(BinaryOperator::createSub(LHS, RHS,
 | 
						|
                                                        II->getName()), *II);
 | 
						|
            break;
 | 
						|
          case Intrinsic::x86_sse_mul_ss:
 | 
						|
          case Intrinsic::x86_sse2_mul_sd:
 | 
						|
            TmpV = InsertNewInstBefore(BinaryOperator::createMul(LHS, RHS,
 | 
						|
                                                         II->getName()), *II);
 | 
						|
            break;
 | 
						|
          }
 | 
						|
          
 | 
						|
          Instruction *New =
 | 
						|
            new InsertElementInst(UndefValue::get(II->getType()), TmpV, 0U,
 | 
						|
                                  II->getName());
 | 
						|
          InsertNewInstBefore(New, *II);
 | 
						|
          AddSoonDeadInstToWorklist(*II, 0);
 | 
						|
          return New;
 | 
						|
        }            
 | 
						|
      }
 | 
						|
        
 | 
						|
      // Output elements are undefined if both are undefined.  Consider things
 | 
						|
      // like undef&0.  The result is known zero, not undef.
 | 
						|
      UndefElts &= UndefElts2;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  }
 | 
						|
  return MadeChange ? I : 0;
 | 
						|
}
 | 
						|
 | 
						|
/// @returns true if the specified compare instruction is
 | 
						|
/// true when both operands are equal...
 | 
						|
/// @brief Determine if the ICmpInst returns true if both operands are equal
 | 
						|
static bool isTrueWhenEqual(ICmpInst &ICI) {
 | 
						|
  ICmpInst::Predicate pred = ICI.getPredicate();
 | 
						|
  return pred == ICmpInst::ICMP_EQ  || pred == ICmpInst::ICMP_UGE ||
 | 
						|
         pred == ICmpInst::ICMP_SGE || pred == ICmpInst::ICMP_ULE ||
 | 
						|
         pred == ICmpInst::ICMP_SLE;
 | 
						|
}
 | 
						|
 | 
						|
/// AssociativeOpt - Perform an optimization on an associative operator.  This
 | 
						|
/// function is designed to check a chain of associative operators for a
 | 
						|
/// potential to apply a certain optimization.  Since the optimization may be
 | 
						|
/// applicable if the expression was reassociated, this checks the chain, then
 | 
						|
/// reassociates the expression as necessary to expose the optimization
 | 
						|
/// opportunity.  This makes use of a special Functor, which must define
 | 
						|
/// 'shouldApply' and 'apply' methods.
 | 
						|
///
 | 
						|
template<typename Functor>
 | 
						|
Instruction *AssociativeOpt(BinaryOperator &Root, const Functor &F) {
 | 
						|
  unsigned Opcode = Root.getOpcode();
 | 
						|
  Value *LHS = Root.getOperand(0);
 | 
						|
 | 
						|
  // Quick check, see if the immediate LHS matches...
 | 
						|
  if (F.shouldApply(LHS))
 | 
						|
    return F.apply(Root);
 | 
						|
 | 
						|
  // Otherwise, if the LHS is not of the same opcode as the root, return.
 | 
						|
  Instruction *LHSI = dyn_cast<Instruction>(LHS);
 | 
						|
  while (LHSI && LHSI->getOpcode() == Opcode && LHSI->hasOneUse()) {
 | 
						|
    // Should we apply this transform to the RHS?
 | 
						|
    bool ShouldApply = F.shouldApply(LHSI->getOperand(1));
 | 
						|
 | 
						|
    // If not to the RHS, check to see if we should apply to the LHS...
 | 
						|
    if (!ShouldApply && F.shouldApply(LHSI->getOperand(0))) {
 | 
						|
      cast<BinaryOperator>(LHSI)->swapOperands();   // Make the LHS the RHS
 | 
						|
      ShouldApply = true;
 | 
						|
    }
 | 
						|
 | 
						|
    // If the functor wants to apply the optimization to the RHS of LHSI,
 | 
						|
    // reassociate the expression from ((? op A) op B) to (? op (A op B))
 | 
						|
    if (ShouldApply) {
 | 
						|
      BasicBlock *BB = Root.getParent();
 | 
						|
 | 
						|
      // Now all of the instructions are in the current basic block, go ahead
 | 
						|
      // and perform the reassociation.
 | 
						|
      Instruction *TmpLHSI = cast<Instruction>(Root.getOperand(0));
 | 
						|
 | 
						|
      // First move the selected RHS to the LHS of the root...
 | 
						|
      Root.setOperand(0, LHSI->getOperand(1));
 | 
						|
 | 
						|
      // Make what used to be the LHS of the root be the user of the root...
 | 
						|
      Value *ExtraOperand = TmpLHSI->getOperand(1);
 | 
						|
      if (&Root == TmpLHSI) {
 | 
						|
        Root.replaceAllUsesWith(Constant::getNullValue(TmpLHSI->getType()));
 | 
						|
        return 0;
 | 
						|
      }
 | 
						|
      Root.replaceAllUsesWith(TmpLHSI);          // Users now use TmpLHSI
 | 
						|
      TmpLHSI->setOperand(1, &Root);             // TmpLHSI now uses the root
 | 
						|
      TmpLHSI->getParent()->getInstList().remove(TmpLHSI);
 | 
						|
      BasicBlock::iterator ARI = &Root; ++ARI;
 | 
						|
      BB->getInstList().insert(ARI, TmpLHSI);    // Move TmpLHSI to after Root
 | 
						|
      ARI = Root;
 | 
						|
 | 
						|
      // Now propagate the ExtraOperand down the chain of instructions until we
 | 
						|
      // get to LHSI.
 | 
						|
      while (TmpLHSI != LHSI) {
 | 
						|
        Instruction *NextLHSI = cast<Instruction>(TmpLHSI->getOperand(0));
 | 
						|
        // Move the instruction to immediately before the chain we are
 | 
						|
        // constructing to avoid breaking dominance properties.
 | 
						|
        NextLHSI->getParent()->getInstList().remove(NextLHSI);
 | 
						|
        BB->getInstList().insert(ARI, NextLHSI);
 | 
						|
        ARI = NextLHSI;
 | 
						|
 | 
						|
        Value *NextOp = NextLHSI->getOperand(1);
 | 
						|
        NextLHSI->setOperand(1, ExtraOperand);
 | 
						|
        TmpLHSI = NextLHSI;
 | 
						|
        ExtraOperand = NextOp;
 | 
						|
      }
 | 
						|
 | 
						|
      // Now that the instructions are reassociated, have the functor perform
 | 
						|
      // the transformation...
 | 
						|
      return F.apply(Root);
 | 
						|
    }
 | 
						|
 | 
						|
    LHSI = dyn_cast<Instruction>(LHSI->getOperand(0));
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// AddRHS - Implements: X + X --> X << 1
 | 
						|
struct AddRHS {
 | 
						|
  Value *RHS;
 | 
						|
  AddRHS(Value *rhs) : RHS(rhs) {}
 | 
						|
  bool shouldApply(Value *LHS) const { return LHS == RHS; }
 | 
						|
  Instruction *apply(BinaryOperator &Add) const {
 | 
						|
    return BinaryOperator::createShl(Add.getOperand(0),
 | 
						|
                                  ConstantInt::get(Add.getType(), 1));
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
// AddMaskingAnd - Implements (A & C1)+(B & C2) --> (A & C1)|(B & C2)
 | 
						|
//                 iff C1&C2 == 0
 | 
						|
struct AddMaskingAnd {
 | 
						|
  Constant *C2;
 | 
						|
  AddMaskingAnd(Constant *c) : C2(c) {}
 | 
						|
  bool shouldApply(Value *LHS) const {
 | 
						|
    ConstantInt *C1;
 | 
						|
    return match(LHS, m_And(m_Value(), m_ConstantInt(C1))) &&
 | 
						|
           ConstantExpr::getAnd(C1, C2)->isNullValue();
 | 
						|
  }
 | 
						|
  Instruction *apply(BinaryOperator &Add) const {
 | 
						|
    return BinaryOperator::createOr(Add.getOperand(0), Add.getOperand(1));
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
 | 
						|
                                             InstCombiner *IC) {
 | 
						|
  if (CastInst *CI = dyn_cast<CastInst>(&I)) {
 | 
						|
    if (Constant *SOC = dyn_cast<Constant>(SO))
 | 
						|
      return ConstantExpr::getCast(CI->getOpcode(), SOC, I.getType());
 | 
						|
 | 
						|
    return IC->InsertNewInstBefore(CastInst::create(
 | 
						|
          CI->getOpcode(), SO, I.getType(), SO->getName() + ".cast"), I);
 | 
						|
  }
 | 
						|
 | 
						|
  // Figure out if the constant is the left or the right argument.
 | 
						|
  bool ConstIsRHS = isa<Constant>(I.getOperand(1));
 | 
						|
  Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
 | 
						|
 | 
						|
  if (Constant *SOC = dyn_cast<Constant>(SO)) {
 | 
						|
    if (ConstIsRHS)
 | 
						|
      return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
 | 
						|
    return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
 | 
						|
  }
 | 
						|
 | 
						|
  Value *Op0 = SO, *Op1 = ConstOperand;
 | 
						|
  if (!ConstIsRHS)
 | 
						|
    std::swap(Op0, Op1);
 | 
						|
  Instruction *New;
 | 
						|
  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
 | 
						|
    New = BinaryOperator::create(BO->getOpcode(), Op0, Op1,SO->getName()+".op");
 | 
						|
  else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
 | 
						|
    New = CmpInst::create(CI->getOpcode(), CI->getPredicate(), Op0, Op1, 
 | 
						|
                          SO->getName()+".cmp");
 | 
						|
  else {
 | 
						|
    assert(0 && "Unknown binary instruction type!");
 | 
						|
    abort();
 | 
						|
  }
 | 
						|
  return IC->InsertNewInstBefore(New, I);
 | 
						|
}
 | 
						|
 | 
						|
// FoldOpIntoSelect - Given an instruction with a select as one operand and a
 | 
						|
// constant as the other operand, try to fold the binary operator into the
 | 
						|
// select arguments.  This also works for Cast instructions, which obviously do
 | 
						|
// not have a second operand.
 | 
						|
static Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI,
 | 
						|
                                     InstCombiner *IC) {
 | 
						|
  // Don't modify shared select instructions
 | 
						|
  if (!SI->hasOneUse()) return 0;
 | 
						|
  Value *TV = SI->getOperand(1);
 | 
						|
  Value *FV = SI->getOperand(2);
 | 
						|
 | 
						|
  if (isa<Constant>(TV) || isa<Constant>(FV)) {
 | 
						|
    // Bool selects with constant operands can be folded to logical ops.
 | 
						|
    if (SI->getType() == Type::Int1Ty) return 0;
 | 
						|
 | 
						|
    Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, IC);
 | 
						|
    Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, IC);
 | 
						|
 | 
						|
    return new SelectInst(SI->getCondition(), SelectTrueVal,
 | 
						|
                          SelectFalseVal);
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// FoldOpIntoPhi - Given a binary operator or cast instruction which has a PHI
 | 
						|
/// node as operand #0, see if we can fold the instruction into the PHI (which
 | 
						|
/// is only possible if all operands to the PHI are constants).
 | 
						|
Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
 | 
						|
  PHINode *PN = cast<PHINode>(I.getOperand(0));
 | 
						|
  unsigned NumPHIValues = PN->getNumIncomingValues();
 | 
						|
  if (!PN->hasOneUse() || NumPHIValues == 0) return 0;
 | 
						|
 | 
						|
  // Check to see if all of the operands of the PHI are constants.  If there is
 | 
						|
  // one non-constant value, remember the BB it is.  If there is more than one
 | 
						|
  // bail out.
 | 
						|
  BasicBlock *NonConstBB = 0;
 | 
						|
  for (unsigned i = 0; i != NumPHIValues; ++i)
 | 
						|
    if (!isa<Constant>(PN->getIncomingValue(i))) {
 | 
						|
      if (NonConstBB) return 0;  // More than one non-const value.
 | 
						|
      NonConstBB = PN->getIncomingBlock(i);
 | 
						|
      
 | 
						|
      // If the incoming non-constant value is in I's block, we have an infinite
 | 
						|
      // loop.
 | 
						|
      if (NonConstBB == I.getParent())
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
  
 | 
						|
  // If there is exactly one non-constant value, we can insert a copy of the
 | 
						|
  // operation in that block.  However, if this is a critical edge, we would be
 | 
						|
  // inserting the computation one some other paths (e.g. inside a loop).  Only
 | 
						|
  // do this if the pred block is unconditionally branching into the phi block.
 | 
						|
  if (NonConstBB) {
 | 
						|
    BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
 | 
						|
    if (!BI || !BI->isUnconditional()) return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, we can do the transformation: create the new PHI node.
 | 
						|
  PHINode *NewPN = new PHINode(I.getType(), I.getName());
 | 
						|
  I.setName("");
 | 
						|
  NewPN->reserveOperandSpace(PN->getNumOperands()/2);
 | 
						|
  InsertNewInstBefore(NewPN, *PN);
 | 
						|
 | 
						|
  // Next, add all of the operands to the PHI.
 | 
						|
  if (I.getNumOperands() == 2) {
 | 
						|
    Constant *C = cast<Constant>(I.getOperand(1));
 | 
						|
    for (unsigned i = 0; i != NumPHIValues; ++i) {
 | 
						|
      Value *InV;
 | 
						|
      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
 | 
						|
        if (CmpInst *CI = dyn_cast<CmpInst>(&I))
 | 
						|
          InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
 | 
						|
        else
 | 
						|
          InV = ConstantExpr::get(I.getOpcode(), InC, C);
 | 
						|
      } else {
 | 
						|
        assert(PN->getIncomingBlock(i) == NonConstBB);
 | 
						|
        if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I)) 
 | 
						|
          InV = BinaryOperator::create(BO->getOpcode(),
 | 
						|
                                       PN->getIncomingValue(i), C, "phitmp",
 | 
						|
                                       NonConstBB->getTerminator());
 | 
						|
        else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
 | 
						|
          InV = CmpInst::create(CI->getOpcode(), 
 | 
						|
                                CI->getPredicate(),
 | 
						|
                                PN->getIncomingValue(i), C, "phitmp",
 | 
						|
                                NonConstBB->getTerminator());
 | 
						|
        else
 | 
						|
          assert(0 && "Unknown binop!");
 | 
						|
        
 | 
						|
        WorkList.push_back(cast<Instruction>(InV));
 | 
						|
      }
 | 
						|
      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
 | 
						|
    }
 | 
						|
  } else { 
 | 
						|
    CastInst *CI = cast<CastInst>(&I);
 | 
						|
    const Type *RetTy = CI->getType();
 | 
						|
    for (unsigned i = 0; i != NumPHIValues; ++i) {
 | 
						|
      Value *InV;
 | 
						|
      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
 | 
						|
        InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
 | 
						|
      } else {
 | 
						|
        assert(PN->getIncomingBlock(i) == NonConstBB);
 | 
						|
        InV = CastInst::create(CI->getOpcode(), PN->getIncomingValue(i), 
 | 
						|
                               I.getType(), "phitmp", 
 | 
						|
                               NonConstBB->getTerminator());
 | 
						|
        WorkList.push_back(cast<Instruction>(InV));
 | 
						|
      }
 | 
						|
      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return ReplaceInstUsesWith(I, NewPN);
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
 | 
						|
  bool Changed = SimplifyCommutative(I);
 | 
						|
  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
 | 
						|
 | 
						|
  if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
 | 
						|
    // X + undef -> undef
 | 
						|
    if (isa<UndefValue>(RHS))
 | 
						|
      return ReplaceInstUsesWith(I, RHS);
 | 
						|
 | 
						|
    // X + 0 --> X
 | 
						|
    if (!I.getType()->isFPOrFPVector()) { // NOTE: -0 + +0 = +0.
 | 
						|
      if (RHSC->isNullValue())
 | 
						|
        return ReplaceInstUsesWith(I, LHS);
 | 
						|
    } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
 | 
						|
      if (CFP->isExactlyValue(-0.0))
 | 
						|
        return ReplaceInstUsesWith(I, LHS);
 | 
						|
    }
 | 
						|
 | 
						|
    if (ConstantInt *CI = dyn_cast<ConstantInt>(RHSC)) {
 | 
						|
      // X + (signbit) --> X ^ signbit
 | 
						|
      uint64_t Val = CI->getZExtValue();
 | 
						|
      if (Val == (1ULL << (CI->getType()->getPrimitiveSizeInBits()-1)))
 | 
						|
        return BinaryOperator::createXor(LHS, RHS);
 | 
						|
      
 | 
						|
      // See if SimplifyDemandedBits can simplify this.  This handles stuff like
 | 
						|
      // (X & 254)+1 -> (X&254)|1
 | 
						|
      uint64_t KnownZero, KnownOne;
 | 
						|
      if (!isa<PackedType>(I.getType()) &&
 | 
						|
          SimplifyDemandedBits(&I, cast<IntegerType>(I.getType())->getBitMask(),
 | 
						|
                               KnownZero, KnownOne))
 | 
						|
        return &I;
 | 
						|
    }
 | 
						|
 | 
						|
    if (isa<PHINode>(LHS))
 | 
						|
      if (Instruction *NV = FoldOpIntoPhi(I))
 | 
						|
        return NV;
 | 
						|
    
 | 
						|
    ConstantInt *XorRHS = 0;
 | 
						|
    Value *XorLHS = 0;
 | 
						|
    if (isa<ConstantInt>(RHSC) &&
 | 
						|
        match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
 | 
						|
      unsigned TySizeBits = I.getType()->getPrimitiveSizeInBits();
 | 
						|
      int64_t  RHSSExt = cast<ConstantInt>(RHSC)->getSExtValue();
 | 
						|
      uint64_t RHSZExt = cast<ConstantInt>(RHSC)->getZExtValue();
 | 
						|
      
 | 
						|
      uint64_t C0080Val = 1ULL << 31;
 | 
						|
      int64_t CFF80Val = -C0080Val;
 | 
						|
      unsigned Size = 32;
 | 
						|
      do {
 | 
						|
        if (TySizeBits > Size) {
 | 
						|
          bool Found = false;
 | 
						|
          // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
 | 
						|
          // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
 | 
						|
          if (RHSSExt == CFF80Val) {
 | 
						|
            if (XorRHS->getZExtValue() == C0080Val)
 | 
						|
              Found = true;
 | 
						|
          } else if (RHSZExt == C0080Val) {
 | 
						|
            if (XorRHS->getSExtValue() == CFF80Val)
 | 
						|
              Found = true;
 | 
						|
          }
 | 
						|
          if (Found) {
 | 
						|
            // This is a sign extend if the top bits are known zero.
 | 
						|
            uint64_t Mask = ~0ULL;
 | 
						|
            Mask <<= 64-(TySizeBits-Size);
 | 
						|
            Mask &= cast<IntegerType>(XorLHS->getType())->getBitMask();
 | 
						|
            if (!MaskedValueIsZero(XorLHS, Mask))
 | 
						|
              Size = 0;  // Not a sign ext, but can't be any others either.
 | 
						|
            goto FoundSExt;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        Size >>= 1;
 | 
						|
        C0080Val >>= Size;
 | 
						|
        CFF80Val >>= Size;
 | 
						|
      } while (Size >= 8);
 | 
						|
      
 | 
						|
FoundSExt:
 | 
						|
      const Type *MiddleType = 0;
 | 
						|
      switch (Size) {
 | 
						|
      default: break;
 | 
						|
      case 32: MiddleType = Type::Int32Ty; break;
 | 
						|
      case 16: MiddleType = Type::Int16Ty; break;
 | 
						|
      case 8:  MiddleType = Type::Int8Ty; break;
 | 
						|
      }
 | 
						|
      if (MiddleType) {
 | 
						|
        Instruction *NewTrunc = new TruncInst(XorLHS, MiddleType, "sext");
 | 
						|
        InsertNewInstBefore(NewTrunc, I);
 | 
						|
        return new SExtInst(NewTrunc, I.getType());
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // X + X --> X << 1
 | 
						|
  if (I.getType()->isInteger() && I.getType() != Type::Int1Ty) {
 | 
						|
    if (Instruction *Result = AssociativeOpt(I, AddRHS(RHS))) return Result;
 | 
						|
 | 
						|
    if (Instruction *RHSI = dyn_cast<Instruction>(RHS)) {
 | 
						|
      if (RHSI->getOpcode() == Instruction::Sub)
 | 
						|
        if (LHS == RHSI->getOperand(1))                   // A + (B - A) --> B
 | 
						|
          return ReplaceInstUsesWith(I, RHSI->getOperand(0));
 | 
						|
    }
 | 
						|
    if (Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
 | 
						|
      if (LHSI->getOpcode() == Instruction::Sub)
 | 
						|
        if (RHS == LHSI->getOperand(1))                   // (B - A) + A --> B
 | 
						|
          return ReplaceInstUsesWith(I, LHSI->getOperand(0));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // -A + B  -->  B - A
 | 
						|
  if (Value *V = dyn_castNegVal(LHS))
 | 
						|
    return BinaryOperator::createSub(RHS, V);
 | 
						|
 | 
						|
  // A + -B  -->  A - B
 | 
						|
  if (!isa<Constant>(RHS))
 | 
						|
    if (Value *V = dyn_castNegVal(RHS))
 | 
						|
      return BinaryOperator::createSub(LHS, V);
 | 
						|
 | 
						|
 | 
						|
  ConstantInt *C2;
 | 
						|
  if (Value *X = dyn_castFoldableMul(LHS, C2)) {
 | 
						|
    if (X == RHS)   // X*C + X --> X * (C+1)
 | 
						|
      return BinaryOperator::createMul(RHS, AddOne(C2));
 | 
						|
 | 
						|
    // X*C1 + X*C2 --> X * (C1+C2)
 | 
						|
    ConstantInt *C1;
 | 
						|
    if (X == dyn_castFoldableMul(RHS, C1))
 | 
						|
      return BinaryOperator::createMul(X, ConstantExpr::getAdd(C1, C2));
 | 
						|
  }
 | 
						|
 | 
						|
  // X + X*C --> X * (C+1)
 | 
						|
  if (dyn_castFoldableMul(RHS, C2) == LHS)
 | 
						|
    return BinaryOperator::createMul(LHS, AddOne(C2));
 | 
						|
 | 
						|
  // X + ~X --> -1   since   ~X = -X-1
 | 
						|
  if (dyn_castNotVal(LHS) == RHS ||
 | 
						|
      dyn_castNotVal(RHS) == LHS)
 | 
						|
    return ReplaceInstUsesWith(I, ConstantInt::getAllOnesValue(I.getType()));
 | 
						|
  
 | 
						|
 | 
						|
  // (A & C1)+(B & C2) --> (A & C1)|(B & C2) iff C1&C2 == 0
 | 
						|
  if (match(RHS, m_And(m_Value(), m_ConstantInt(C2))))
 | 
						|
    if (Instruction *R = AssociativeOpt(I, AddMaskingAnd(C2)))
 | 
						|
      return R;
 | 
						|
 | 
						|
  if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
 | 
						|
    Value *X = 0;
 | 
						|
    if (match(LHS, m_Not(m_Value(X)))) {   // ~X + C --> (C-1) - X
 | 
						|
      Constant *C= ConstantExpr::getSub(CRHS, ConstantInt::get(I.getType(), 1));
 | 
						|
      return BinaryOperator::createSub(C, X);
 | 
						|
    }
 | 
						|
 | 
						|
    // (X & FF00) + xx00  -> (X+xx00) & FF00
 | 
						|
    if (LHS->hasOneUse() && match(LHS, m_And(m_Value(X), m_ConstantInt(C2)))) {
 | 
						|
      Constant *Anded = ConstantExpr::getAnd(CRHS, C2);
 | 
						|
      if (Anded == CRHS) {
 | 
						|
        // See if all bits from the first bit set in the Add RHS up are included
 | 
						|
        // in the mask.  First, get the rightmost bit.
 | 
						|
        uint64_t AddRHSV = CRHS->getZExtValue();
 | 
						|
 | 
						|
        // Form a mask of all bits from the lowest bit added through the top.
 | 
						|
        uint64_t AddRHSHighBits = ~((AddRHSV & -AddRHSV)-1);
 | 
						|
        AddRHSHighBits &= C2->getType()->getBitMask();
 | 
						|
 | 
						|
        // See if the and mask includes all of these bits.
 | 
						|
        uint64_t AddRHSHighBitsAnd = AddRHSHighBits & C2->getZExtValue();
 | 
						|
 | 
						|
        if (AddRHSHighBits == AddRHSHighBitsAnd) {
 | 
						|
          // Okay, the xform is safe.  Insert the new add pronto.
 | 
						|
          Value *NewAdd = InsertNewInstBefore(BinaryOperator::createAdd(X, CRHS,
 | 
						|
                                                            LHS->getName()), I);
 | 
						|
          return BinaryOperator::createAnd(NewAdd, C2);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Try to fold constant add into select arguments.
 | 
						|
    if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
 | 
						|
      if (Instruction *R = FoldOpIntoSelect(I, SI, this))
 | 
						|
        return R;
 | 
						|
  }
 | 
						|
 | 
						|
  // add (cast *A to intptrtype) B -> 
 | 
						|
  //   cast (GEP (cast *A to sbyte*) B) -> 
 | 
						|
  //     intptrtype
 | 
						|
  {
 | 
						|
    CastInst *CI = dyn_cast<CastInst>(LHS);
 | 
						|
    Value *Other = RHS;
 | 
						|
    if (!CI) {
 | 
						|
      CI = dyn_cast<CastInst>(RHS);
 | 
						|
      Other = LHS;
 | 
						|
    }
 | 
						|
    if (CI && CI->getType()->isSized() && 
 | 
						|
        (CI->getType()->getPrimitiveSizeInBits() == 
 | 
						|
         TD->getIntPtrType()->getPrimitiveSizeInBits()) 
 | 
						|
        && isa<PointerType>(CI->getOperand(0)->getType())) {
 | 
						|
      Value *I2 = InsertCastBefore(Instruction::BitCast, CI->getOperand(0),
 | 
						|
                                   PointerType::get(Type::Int8Ty), I);
 | 
						|
      I2 = InsertNewInstBefore(new GetElementPtrInst(I2, Other, "ctg2"), I);
 | 
						|
      return new PtrToIntInst(I2, CI->getType());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed ? &I : 0;
 | 
						|
}
 | 
						|
 | 
						|
// isSignBit - Return true if the value represented by the constant only has the
 | 
						|
// highest order bit set.
 | 
						|
static bool isSignBit(ConstantInt *CI) {
 | 
						|
  unsigned NumBits = CI->getType()->getPrimitiveSizeInBits();
 | 
						|
  return (CI->getZExtValue() & (~0ULL >> (64-NumBits))) == (1ULL << (NumBits-1));
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitSub(BinaryOperator &I) {
 | 
						|
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | 
						|
 | 
						|
  if (Op0 == Op1)         // sub X, X  -> 0
 | 
						|
    return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | 
						|
 | 
						|
  // If this is a 'B = x-(-A)', change to B = x+A...
 | 
						|
  if (Value *V = dyn_castNegVal(Op1))
 | 
						|
    return BinaryOperator::createAdd(Op0, V);
 | 
						|
 | 
						|
  if (isa<UndefValue>(Op0))
 | 
						|
    return ReplaceInstUsesWith(I, Op0);    // undef - X -> undef
 | 
						|
  if (isa<UndefValue>(Op1))
 | 
						|
    return ReplaceInstUsesWith(I, Op1);    // X - undef -> undef
 | 
						|
 | 
						|
  if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
 | 
						|
    // Replace (-1 - A) with (~A)...
 | 
						|
    if (C->isAllOnesValue())
 | 
						|
      return BinaryOperator::createNot(Op1);
 | 
						|
 | 
						|
    // C - ~X == X + (1+C)
 | 
						|
    Value *X = 0;
 | 
						|
    if (match(Op1, m_Not(m_Value(X))))
 | 
						|
      return BinaryOperator::createAdd(X,
 | 
						|
                    ConstantExpr::getAdd(C, ConstantInt::get(I.getType(), 1)));
 | 
						|
    // -(X >>u 31) -> (X >>s 31)
 | 
						|
    // -(X >>s 31) -> (X >>u 31)
 | 
						|
    if (C->isNullValue()) {
 | 
						|
      if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op1))
 | 
						|
        if (SI->getOpcode() == Instruction::LShr) {
 | 
						|
          if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
 | 
						|
            // Check to see if we are shifting out everything but the sign bit.
 | 
						|
            if (CU->getZExtValue() == 
 | 
						|
                SI->getType()->getPrimitiveSizeInBits()-1) {
 | 
						|
              // Ok, the transformation is safe.  Insert AShr.
 | 
						|
              return BinaryOperator::create(Instruction::AShr, 
 | 
						|
                                          SI->getOperand(0), CU, SI->getName());
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
        else if (SI->getOpcode() == Instruction::AShr) {
 | 
						|
          if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
 | 
						|
            // Check to see if we are shifting out everything but the sign bit.
 | 
						|
            if (CU->getZExtValue() == 
 | 
						|
                SI->getType()->getPrimitiveSizeInBits()-1) {
 | 
						|
              // Ok, the transformation is safe.  Insert LShr. 
 | 
						|
              return BinaryOperator::createLShr(
 | 
						|
                                          SI->getOperand(0), CU, SI->getName());
 | 
						|
            }
 | 
						|
          }
 | 
						|
        } 
 | 
						|
    }
 | 
						|
 | 
						|
    // Try to fold constant sub into select arguments.
 | 
						|
    if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
 | 
						|
      if (Instruction *R = FoldOpIntoSelect(I, SI, this))
 | 
						|
        return R;
 | 
						|
 | 
						|
    if (isa<PHINode>(Op0))
 | 
						|
      if (Instruction *NV = FoldOpIntoPhi(I))
 | 
						|
        return NV;
 | 
						|
  }
 | 
						|
 | 
						|
  if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
 | 
						|
    if (Op1I->getOpcode() == Instruction::Add &&
 | 
						|
        !Op0->getType()->isFPOrFPVector()) {
 | 
						|
      if (Op1I->getOperand(0) == Op0)              // X-(X+Y) == -Y
 | 
						|
        return BinaryOperator::createNeg(Op1I->getOperand(1), I.getName());
 | 
						|
      else if (Op1I->getOperand(1) == Op0)         // X-(Y+X) == -Y
 | 
						|
        return BinaryOperator::createNeg(Op1I->getOperand(0), I.getName());
 | 
						|
      else if (ConstantInt *CI1 = dyn_cast<ConstantInt>(I.getOperand(0))) {
 | 
						|
        if (ConstantInt *CI2 = dyn_cast<ConstantInt>(Op1I->getOperand(1)))
 | 
						|
          // C1-(X+C2) --> (C1-C2)-X
 | 
						|
          return BinaryOperator::createSub(ConstantExpr::getSub(CI1, CI2),
 | 
						|
                                           Op1I->getOperand(0));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (Op1I->hasOneUse()) {
 | 
						|
      // Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression
 | 
						|
      // is not used by anyone else...
 | 
						|
      //
 | 
						|
      if (Op1I->getOpcode() == Instruction::Sub &&
 | 
						|
          !Op1I->getType()->isFPOrFPVector()) {
 | 
						|
        // Swap the two operands of the subexpr...
 | 
						|
        Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1);
 | 
						|
        Op1I->setOperand(0, IIOp1);
 | 
						|
        Op1I->setOperand(1, IIOp0);
 | 
						|
 | 
						|
        // Create the new top level add instruction...
 | 
						|
        return BinaryOperator::createAdd(Op0, Op1);
 | 
						|
      }
 | 
						|
 | 
						|
      // Replace (A - (A & B)) with (A & ~B) if this is the only use of (A&B)...
 | 
						|
      //
 | 
						|
      if (Op1I->getOpcode() == Instruction::And &&
 | 
						|
          (Op1I->getOperand(0) == Op0 || Op1I->getOperand(1) == Op0)) {
 | 
						|
        Value *OtherOp = Op1I->getOperand(Op1I->getOperand(0) == Op0);
 | 
						|
 | 
						|
        Value *NewNot =
 | 
						|
          InsertNewInstBefore(BinaryOperator::createNot(OtherOp, "B.not"), I);
 | 
						|
        return BinaryOperator::createAnd(Op0, NewNot);
 | 
						|
      }
 | 
						|
 | 
						|
      // 0 - (X sdiv C)  -> (X sdiv -C)
 | 
						|
      if (Op1I->getOpcode() == Instruction::SDiv)
 | 
						|
        if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
 | 
						|
          if (CSI->isNullValue())
 | 
						|
            if (Constant *DivRHS = dyn_cast<Constant>(Op1I->getOperand(1)))
 | 
						|
              return BinaryOperator::createSDiv(Op1I->getOperand(0),
 | 
						|
                                               ConstantExpr::getNeg(DivRHS));
 | 
						|
 | 
						|
      // X - X*C --> X * (1-C)
 | 
						|
      ConstantInt *C2 = 0;
 | 
						|
      if (dyn_castFoldableMul(Op1I, C2) == Op0) {
 | 
						|
        Constant *CP1 =
 | 
						|
          ConstantExpr::getSub(ConstantInt::get(I.getType(), 1), C2);
 | 
						|
        return BinaryOperator::createMul(Op0, CP1);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Op0->getType()->isFPOrFPVector())
 | 
						|
    if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0))
 | 
						|
      if (Op0I->getOpcode() == Instruction::Add) {
 | 
						|
        if (Op0I->getOperand(0) == Op1)             // (Y+X)-Y == X
 | 
						|
          return ReplaceInstUsesWith(I, Op0I->getOperand(1));
 | 
						|
        else if (Op0I->getOperand(1) == Op1)        // (X+Y)-Y == X
 | 
						|
          return ReplaceInstUsesWith(I, Op0I->getOperand(0));
 | 
						|
      } else if (Op0I->getOpcode() == Instruction::Sub) {
 | 
						|
        if (Op0I->getOperand(0) == Op1)             // (X-Y)-X == -Y
 | 
						|
          return BinaryOperator::createNeg(Op0I->getOperand(1), I.getName());
 | 
						|
      }
 | 
						|
 | 
						|
  ConstantInt *C1;
 | 
						|
  if (Value *X = dyn_castFoldableMul(Op0, C1)) {
 | 
						|
    if (X == Op1) { // X*C - X --> X * (C-1)
 | 
						|
      Constant *CP1 = ConstantExpr::getSub(C1, ConstantInt::get(I.getType(),1));
 | 
						|
      return BinaryOperator::createMul(Op1, CP1);
 | 
						|
    }
 | 
						|
 | 
						|
    ConstantInt *C2;   // X*C1 - X*C2 -> X * (C1-C2)
 | 
						|
    if (X == dyn_castFoldableMul(Op1, C2))
 | 
						|
      return BinaryOperator::createMul(Op1, ConstantExpr::getSub(C1, C2));
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// isSignBitCheck - Given an exploded icmp instruction, return true if it
 | 
						|
/// really just returns true if the most significant (sign) bit is set.
 | 
						|
static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS) {
 | 
						|
  switch (pred) {
 | 
						|
    case ICmpInst::ICMP_SLT: 
 | 
						|
      // True if LHS s< RHS and RHS == 0
 | 
						|
      return RHS->isNullValue();
 | 
						|
    case ICmpInst::ICMP_SLE: 
 | 
						|
      // True if LHS s<= RHS and RHS == -1
 | 
						|
      return RHS->isAllOnesValue();
 | 
						|
    case ICmpInst::ICMP_UGE: 
 | 
						|
      // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
 | 
						|
      return RHS->getZExtValue() == (1ULL << 
 | 
						|
        (RHS->getType()->getPrimitiveSizeInBits()-1));
 | 
						|
    case ICmpInst::ICMP_UGT:
 | 
						|
      // True if LHS u> RHS and RHS == high-bit-mask - 1
 | 
						|
      return RHS->getZExtValue() ==
 | 
						|
        (1ULL << (RHS->getType()->getPrimitiveSizeInBits()-1))-1;
 | 
						|
    default:
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitMul(BinaryOperator &I) {
 | 
						|
  bool Changed = SimplifyCommutative(I);
 | 
						|
  Value *Op0 = I.getOperand(0);
 | 
						|
 | 
						|
  if (isa<UndefValue>(I.getOperand(1)))              // undef * X -> 0
 | 
						|
    return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | 
						|
 | 
						|
  // Simplify mul instructions with a constant RHS...
 | 
						|
  if (Constant *Op1 = dyn_cast<Constant>(I.getOperand(1))) {
 | 
						|
    if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
 | 
						|
 | 
						|
      // ((X << C1)*C2) == (X * (C2 << C1))
 | 
						|
      if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op0))
 | 
						|
        if (SI->getOpcode() == Instruction::Shl)
 | 
						|
          if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
 | 
						|
            return BinaryOperator::createMul(SI->getOperand(0),
 | 
						|
                                             ConstantExpr::getShl(CI, ShOp));
 | 
						|
 | 
						|
      if (CI->isNullValue())
 | 
						|
        return ReplaceInstUsesWith(I, Op1);  // X * 0  == 0
 | 
						|
      if (CI->equalsInt(1))                  // X * 1  == X
 | 
						|
        return ReplaceInstUsesWith(I, Op0);
 | 
						|
      if (CI->isAllOnesValue())              // X * -1 == 0 - X
 | 
						|
        return BinaryOperator::createNeg(Op0, I.getName());
 | 
						|
 | 
						|
      int64_t Val = (int64_t)cast<ConstantInt>(CI)->getZExtValue();
 | 
						|
      if (isPowerOf2_64(Val)) {          // Replace X*(2^C) with X << C
 | 
						|
        uint64_t C = Log2_64(Val);
 | 
						|
        return BinaryOperator::createShl(Op0,
 | 
						|
                                      ConstantInt::get(Op0->getType(), C));
 | 
						|
      }
 | 
						|
    } else if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1)) {
 | 
						|
      if (Op1F->isNullValue())
 | 
						|
        return ReplaceInstUsesWith(I, Op1);
 | 
						|
 | 
						|
      // "In IEEE floating point, x*1 is not equivalent to x for nans.  However,
 | 
						|
      // ANSI says we can drop signals, so we can do this anyway." (from GCC)
 | 
						|
      if (Op1F->getValue() == 1.0)
 | 
						|
        return ReplaceInstUsesWith(I, Op0);  // Eliminate 'mul double %X, 1.0'
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0))
 | 
						|
      if (Op0I->getOpcode() == Instruction::Add && Op0I->hasOneUse() &&
 | 
						|
          isa<ConstantInt>(Op0I->getOperand(1))) {
 | 
						|
        // Canonicalize (X+C1)*C2 -> X*C2+C1*C2.
 | 
						|
        Instruction *Add = BinaryOperator::createMul(Op0I->getOperand(0),
 | 
						|
                                                     Op1, "tmp");
 | 
						|
        InsertNewInstBefore(Add, I);
 | 
						|
        Value *C1C2 = ConstantExpr::getMul(Op1, 
 | 
						|
                                           cast<Constant>(Op0I->getOperand(1)));
 | 
						|
        return BinaryOperator::createAdd(Add, C1C2);
 | 
						|
        
 | 
						|
      }
 | 
						|
 | 
						|
    // Try to fold constant mul into select arguments.
 | 
						|
    if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
 | 
						|
      if (Instruction *R = FoldOpIntoSelect(I, SI, this))
 | 
						|
        return R;
 | 
						|
 | 
						|
    if (isa<PHINode>(Op0))
 | 
						|
      if (Instruction *NV = FoldOpIntoPhi(I))
 | 
						|
        return NV;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Value *Op0v = dyn_castNegVal(Op0))     // -X * -Y = X*Y
 | 
						|
    if (Value *Op1v = dyn_castNegVal(I.getOperand(1)))
 | 
						|
      return BinaryOperator::createMul(Op0v, Op1v);
 | 
						|
 | 
						|
  // If one of the operands of the multiply is a cast from a boolean value, then
 | 
						|
  // we know the bool is either zero or one, so this is a 'masking' multiply.
 | 
						|
  // See if we can simplify things based on how the boolean was originally
 | 
						|
  // formed.
 | 
						|
  CastInst *BoolCast = 0;
 | 
						|
  if (ZExtInst *CI = dyn_cast<ZExtInst>(I.getOperand(0)))
 | 
						|
    if (CI->getOperand(0)->getType() == Type::Int1Ty)
 | 
						|
      BoolCast = CI;
 | 
						|
  if (!BoolCast)
 | 
						|
    if (ZExtInst *CI = dyn_cast<ZExtInst>(I.getOperand(1)))
 | 
						|
      if (CI->getOperand(0)->getType() == Type::Int1Ty)
 | 
						|
        BoolCast = CI;
 | 
						|
  if (BoolCast) {
 | 
						|
    if (ICmpInst *SCI = dyn_cast<ICmpInst>(BoolCast->getOperand(0))) {
 | 
						|
      Value *SCIOp0 = SCI->getOperand(0), *SCIOp1 = SCI->getOperand(1);
 | 
						|
      const Type *SCOpTy = SCIOp0->getType();
 | 
						|
 | 
						|
      // If the icmp is true iff the sign bit of X is set, then convert this
 | 
						|
      // multiply into a shift/and combination.
 | 
						|
      if (isa<ConstantInt>(SCIOp1) &&
 | 
						|
          isSignBitCheck(SCI->getPredicate(), cast<ConstantInt>(SCIOp1))) {
 | 
						|
        // Shift the X value right to turn it into "all signbits".
 | 
						|
        Constant *Amt = ConstantInt::get(SCIOp0->getType(),
 | 
						|
                                          SCOpTy->getPrimitiveSizeInBits()-1);
 | 
						|
        Value *V =
 | 
						|
          InsertNewInstBefore(
 | 
						|
            BinaryOperator::create(Instruction::AShr, SCIOp0, Amt,
 | 
						|
                                            BoolCast->getOperand(0)->getName()+
 | 
						|
                                            ".mask"), I);
 | 
						|
 | 
						|
        // If the multiply type is not the same as the source type, sign extend
 | 
						|
        // or truncate to the multiply type.
 | 
						|
        if (I.getType() != V->getType()) {
 | 
						|
          unsigned SrcBits = V->getType()->getPrimitiveSizeInBits();
 | 
						|
          unsigned DstBits = I.getType()->getPrimitiveSizeInBits();
 | 
						|
          Instruction::CastOps opcode = 
 | 
						|
            (SrcBits == DstBits ? Instruction::BitCast : 
 | 
						|
             (SrcBits < DstBits ? Instruction::SExt : Instruction::Trunc));
 | 
						|
          V = InsertCastBefore(opcode, V, I.getType(), I);
 | 
						|
        }
 | 
						|
 | 
						|
        Value *OtherOp = Op0 == BoolCast ? I.getOperand(1) : Op0;
 | 
						|
        return BinaryOperator::createAnd(V, OtherOp);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed ? &I : 0;
 | 
						|
}
 | 
						|
 | 
						|
/// This function implements the transforms on div instructions that work
 | 
						|
/// regardless of the kind of div instruction it is (udiv, sdiv, or fdiv). It is
 | 
						|
/// used by the visitors to those instructions.
 | 
						|
/// @brief Transforms common to all three div instructions
 | 
						|
Instruction *InstCombiner::commonDivTransforms(BinaryOperator &I) {
 | 
						|
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | 
						|
 | 
						|
  // undef / X -> 0
 | 
						|
  if (isa<UndefValue>(Op0))
 | 
						|
    return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | 
						|
 | 
						|
  // X / undef -> undef
 | 
						|
  if (isa<UndefValue>(Op1))
 | 
						|
    return ReplaceInstUsesWith(I, Op1);
 | 
						|
 | 
						|
  // Handle cases involving: div X, (select Cond, Y, Z)
 | 
						|
  if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) {
 | 
						|
    // div X, (Cond ? 0 : Y) -> div X, Y.  If the div and the select are in the
 | 
						|
    // same basic block, then we replace the select with Y, and the condition 
 | 
						|
    // of the select with false (if the cond value is in the same BB).  If the
 | 
						|
    // select has uses other than the div, this allows them to be simplified
 | 
						|
    // also. Note that div X, Y is just as good as div X, 0 (undef)
 | 
						|
    if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
 | 
						|
      if (ST->isNullValue()) {
 | 
						|
        Instruction *CondI = dyn_cast<Instruction>(SI->getOperand(0));
 | 
						|
        if (CondI && CondI->getParent() == I.getParent())
 | 
						|
          UpdateValueUsesWith(CondI, ConstantInt::getFalse());
 | 
						|
        else if (I.getParent() != SI->getParent() || SI->hasOneUse())
 | 
						|
          I.setOperand(1, SI->getOperand(2));
 | 
						|
        else
 | 
						|
          UpdateValueUsesWith(SI, SI->getOperand(2));
 | 
						|
        return &I;
 | 
						|
      }
 | 
						|
 | 
						|
    // Likewise for: div X, (Cond ? Y : 0) -> div X, Y
 | 
						|
    if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
 | 
						|
      if (ST->isNullValue()) {
 | 
						|
        Instruction *CondI = dyn_cast<Instruction>(SI->getOperand(0));
 | 
						|
        if (CondI && CondI->getParent() == I.getParent())
 | 
						|
          UpdateValueUsesWith(CondI, ConstantInt::getTrue());
 | 
						|
        else if (I.getParent() != SI->getParent() || SI->hasOneUse())
 | 
						|
          I.setOperand(1, SI->getOperand(1));
 | 
						|
        else
 | 
						|
          UpdateValueUsesWith(SI, SI->getOperand(1));
 | 
						|
        return &I;
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// This function implements the transforms common to both integer division
 | 
						|
/// instructions (udiv and sdiv). It is called by the visitors to those integer
 | 
						|
/// division instructions.
 | 
						|
/// @brief Common integer divide transforms
 | 
						|
Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
 | 
						|
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | 
						|
 | 
						|
  if (Instruction *Common = commonDivTransforms(I))
 | 
						|
    return Common;
 | 
						|
 | 
						|
  if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
 | 
						|
    // div X, 1 == X
 | 
						|
    if (RHS->equalsInt(1))
 | 
						|
      return ReplaceInstUsesWith(I, Op0);
 | 
						|
 | 
						|
    // (X / C1) / C2  -> X / (C1*C2)
 | 
						|
    if (Instruction *LHS = dyn_cast<Instruction>(Op0))
 | 
						|
      if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode())
 | 
						|
        if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
 | 
						|
          return BinaryOperator::create(I.getOpcode(), LHS->getOperand(0),
 | 
						|
                                        ConstantExpr::getMul(RHS, LHSRHS));
 | 
						|
        }
 | 
						|
 | 
						|
    if (!RHS->isNullValue()) { // avoid X udiv 0
 | 
						|
      if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
 | 
						|
        if (Instruction *R = FoldOpIntoSelect(I, SI, this))
 | 
						|
          return R;
 | 
						|
      if (isa<PHINode>(Op0))
 | 
						|
        if (Instruction *NV = FoldOpIntoPhi(I))
 | 
						|
          return NV;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // 0 / X == 0, we don't need to preserve faults!
 | 
						|
  if (ConstantInt *LHS = dyn_cast<ConstantInt>(Op0))
 | 
						|
    if (LHS->equalsInt(0))
 | 
						|
      return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
 | 
						|
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | 
						|
 | 
						|
  // Handle the integer div common cases
 | 
						|
  if (Instruction *Common = commonIDivTransforms(I))
 | 
						|
    return Common;
 | 
						|
 | 
						|
  // X udiv C^2 -> X >> C
 | 
						|
  // Check to see if this is an unsigned division with an exact power of 2,
 | 
						|
  // if so, convert to a right shift.
 | 
						|
  if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) {
 | 
						|
    if (uint64_t Val = C->getZExtValue())    // Don't break X / 0
 | 
						|
      if (isPowerOf2_64(Val)) {
 | 
						|
        uint64_t ShiftAmt = Log2_64(Val);
 | 
						|
        return BinaryOperator::createLShr(Op0, 
 | 
						|
                                    ConstantInt::get(Op0->getType(), ShiftAmt));
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  // X udiv (C1 << N), where C1 is "1<<C2"  -->  X >> (N+C2)
 | 
						|
  if (BinaryOperator *RHSI = dyn_cast<BinaryOperator>(I.getOperand(1))) {
 | 
						|
    if (RHSI->getOpcode() == Instruction::Shl &&
 | 
						|
        isa<ConstantInt>(RHSI->getOperand(0))) {
 | 
						|
      uint64_t C1 = cast<ConstantInt>(RHSI->getOperand(0))->getZExtValue();
 | 
						|
      if (isPowerOf2_64(C1)) {
 | 
						|
        Value *N = RHSI->getOperand(1);
 | 
						|
        const Type *NTy = N->getType();
 | 
						|
        if (uint64_t C2 = Log2_64(C1)) {
 | 
						|
          Constant *C2V = ConstantInt::get(NTy, C2);
 | 
						|
          N = InsertNewInstBefore(BinaryOperator::createAdd(N, C2V, "tmp"), I);
 | 
						|
        }
 | 
						|
        return BinaryOperator::createLShr(Op0, N);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2)
 | 
						|
  // where C1&C2 are powers of two.
 | 
						|
  if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) {
 | 
						|
    if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
 | 
						|
      if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) 
 | 
						|
        if (!STO->isNullValue() && !STO->isNullValue()) {
 | 
						|
          uint64_t TVA = STO->getZExtValue(), FVA = SFO->getZExtValue();
 | 
						|
          if (isPowerOf2_64(TVA) && isPowerOf2_64(FVA)) {
 | 
						|
            // Compute the shift amounts
 | 
						|
            unsigned TSA = Log2_64(TVA), FSA = Log2_64(FVA);
 | 
						|
            // Construct the "on true" case of the select
 | 
						|
            Constant *TC = ConstantInt::get(Op0->getType(), TSA);
 | 
						|
            Instruction *TSI = BinaryOperator::createLShr(
 | 
						|
                                                   Op0, TC, SI->getName()+".t");
 | 
						|
            TSI = InsertNewInstBefore(TSI, I);
 | 
						|
    
 | 
						|
            // Construct the "on false" case of the select
 | 
						|
            Constant *FC = ConstantInt::get(Op0->getType(), FSA); 
 | 
						|
            Instruction *FSI = BinaryOperator::createLShr(
 | 
						|
                                                   Op0, FC, SI->getName()+".f");
 | 
						|
            FSI = InsertNewInstBefore(FSI, I);
 | 
						|
 | 
						|
            // construct the select instruction and return it.
 | 
						|
            return new SelectInst(SI->getOperand(0), TSI, FSI, SI->getName());
 | 
						|
          }
 | 
						|
        }
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
 | 
						|
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | 
						|
 | 
						|
  // Handle the integer div common cases
 | 
						|
  if (Instruction *Common = commonIDivTransforms(I))
 | 
						|
    return Common;
 | 
						|
 | 
						|
  if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
 | 
						|
    // sdiv X, -1 == -X
 | 
						|
    if (RHS->isAllOnesValue())
 | 
						|
      return BinaryOperator::createNeg(Op0);
 | 
						|
 | 
						|
    // -X/C -> X/-C
 | 
						|
    if (Value *LHSNeg = dyn_castNegVal(Op0))
 | 
						|
      return BinaryOperator::createSDiv(LHSNeg, ConstantExpr::getNeg(RHS));
 | 
						|
  }
 | 
						|
 | 
						|
  // If the sign bits of both operands are zero (i.e. we can prove they are
 | 
						|
  // unsigned inputs), turn this into a udiv.
 | 
						|
  if (I.getType()->isInteger()) {
 | 
						|
    uint64_t Mask = 1ULL << (I.getType()->getPrimitiveSizeInBits()-1);
 | 
						|
    if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
 | 
						|
      return BinaryOperator::createUDiv(Op0, Op1, I.getName());
 | 
						|
    }
 | 
						|
  }      
 | 
						|
  
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
 | 
						|
  return commonDivTransforms(I);
 | 
						|
}
 | 
						|
 | 
						|
/// GetFactor - If we can prove that the specified value is at least a multiple
 | 
						|
/// of some factor, return that factor.
 | 
						|
static Constant *GetFactor(Value *V) {
 | 
						|
  if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
 | 
						|
    return CI;
 | 
						|
  
 | 
						|
  // Unless we can be tricky, we know this is a multiple of 1.
 | 
						|
  Constant *Result = ConstantInt::get(V->getType(), 1);
 | 
						|
  
 | 
						|
  Instruction *I = dyn_cast<Instruction>(V);
 | 
						|
  if (!I) return Result;
 | 
						|
  
 | 
						|
  if (I->getOpcode() == Instruction::Mul) {
 | 
						|
    // Handle multiplies by a constant, etc.
 | 
						|
    return ConstantExpr::getMul(GetFactor(I->getOperand(0)),
 | 
						|
                                GetFactor(I->getOperand(1)));
 | 
						|
  } else if (I->getOpcode() == Instruction::Shl) {
 | 
						|
    // (X<<C) -> X * (1 << C)
 | 
						|
    if (Constant *ShRHS = dyn_cast<Constant>(I->getOperand(1))) {
 | 
						|
      ShRHS = ConstantExpr::getShl(Result, ShRHS);
 | 
						|
      return ConstantExpr::getMul(GetFactor(I->getOperand(0)), ShRHS);
 | 
						|
    }
 | 
						|
  } else if (I->getOpcode() == Instruction::And) {
 | 
						|
    if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | 
						|
      // X & 0xFFF0 is known to be a multiple of 16.
 | 
						|
      unsigned Zeros = CountTrailingZeros_64(RHS->getZExtValue());
 | 
						|
      if (Zeros != V->getType()->getPrimitiveSizeInBits())
 | 
						|
        return ConstantExpr::getShl(Result, 
 | 
						|
                                    ConstantInt::get(Result->getType(), Zeros));
 | 
						|
    }
 | 
						|
  } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
 | 
						|
    // Only handle int->int casts.
 | 
						|
    if (!CI->isIntegerCast())
 | 
						|
      return Result;
 | 
						|
    Value *Op = CI->getOperand(0);
 | 
						|
    return ConstantExpr::getCast(CI->getOpcode(), GetFactor(Op), V->getType());
 | 
						|
  }    
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
/// This function implements the transforms on rem instructions that work
 | 
						|
/// regardless of the kind of rem instruction it is (urem, srem, or frem). It 
 | 
						|
/// is used by the visitors to those instructions.
 | 
						|
/// @brief Transforms common to all three rem instructions
 | 
						|
Instruction *InstCombiner::commonRemTransforms(BinaryOperator &I) {
 | 
						|
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | 
						|
 | 
						|
  // 0 % X == 0, we don't need to preserve faults!
 | 
						|
  if (Constant *LHS = dyn_cast<Constant>(Op0))
 | 
						|
    if (LHS->isNullValue())
 | 
						|
      return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | 
						|
 | 
						|
  if (isa<UndefValue>(Op0))              // undef % X -> 0
 | 
						|
    return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | 
						|
  if (isa<UndefValue>(Op1))
 | 
						|
    return ReplaceInstUsesWith(I, Op1);  // X % undef -> undef
 | 
						|
 | 
						|
  // Handle cases involving: rem X, (select Cond, Y, Z)
 | 
						|
  if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) {
 | 
						|
    // rem X, (Cond ? 0 : Y) -> rem X, Y.  If the rem and the select are in
 | 
						|
    // the same basic block, then we replace the select with Y, and the
 | 
						|
    // condition of the select with false (if the cond value is in the same
 | 
						|
    // BB).  If the select has uses other than the div, this allows them to be
 | 
						|
    // simplified also.
 | 
						|
    if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
 | 
						|
      if (ST->isNullValue()) {
 | 
						|
        Instruction *CondI = dyn_cast<Instruction>(SI->getOperand(0));
 | 
						|
        if (CondI && CondI->getParent() == I.getParent())
 | 
						|
          UpdateValueUsesWith(CondI, ConstantInt::getFalse());
 | 
						|
        else if (I.getParent() != SI->getParent() || SI->hasOneUse())
 | 
						|
          I.setOperand(1, SI->getOperand(2));
 | 
						|
        else
 | 
						|
          UpdateValueUsesWith(SI, SI->getOperand(2));
 | 
						|
        return &I;
 | 
						|
      }
 | 
						|
    // Likewise for: rem X, (Cond ? Y : 0) -> rem X, Y
 | 
						|
    if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
 | 
						|
      if (ST->isNullValue()) {
 | 
						|
        Instruction *CondI = dyn_cast<Instruction>(SI->getOperand(0));
 | 
						|
        if (CondI && CondI->getParent() == I.getParent())
 | 
						|
          UpdateValueUsesWith(CondI, ConstantInt::getTrue());
 | 
						|
        else if (I.getParent() != SI->getParent() || SI->hasOneUse())
 | 
						|
          I.setOperand(1, SI->getOperand(1));
 | 
						|
        else
 | 
						|
          UpdateValueUsesWith(SI, SI->getOperand(1));
 | 
						|
        return &I;
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// This function implements the transforms common to both integer remainder
 | 
						|
/// instructions (urem and srem). It is called by the visitors to those integer
 | 
						|
/// remainder instructions.
 | 
						|
/// @brief Common integer remainder transforms
 | 
						|
Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
 | 
						|
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | 
						|
 | 
						|
  if (Instruction *common = commonRemTransforms(I))
 | 
						|
    return common;
 | 
						|
 | 
						|
  if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
 | 
						|
    // X % 0 == undef, we don't need to preserve faults!
 | 
						|
    if (RHS->equalsInt(0))
 | 
						|
      return ReplaceInstUsesWith(I, UndefValue::get(I.getType()));
 | 
						|
    
 | 
						|
    if (RHS->equalsInt(1))  // X % 1 == 0
 | 
						|
      return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | 
						|
 | 
						|
    if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
 | 
						|
      if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
 | 
						|
        if (Instruction *R = FoldOpIntoSelect(I, SI, this))
 | 
						|
          return R;
 | 
						|
      } else if (isa<PHINode>(Op0I)) {
 | 
						|
        if (Instruction *NV = FoldOpIntoPhi(I))
 | 
						|
          return NV;
 | 
						|
      }
 | 
						|
      // (X * C1) % C2 --> 0  iff  C1 % C2 == 0
 | 
						|
      if (ConstantExpr::getSRem(GetFactor(Op0I), RHS)->isNullValue())
 | 
						|
        return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitURem(BinaryOperator &I) {
 | 
						|
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | 
						|
 | 
						|
  if (Instruction *common = commonIRemTransforms(I))
 | 
						|
    return common;
 | 
						|
  
 | 
						|
  if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
 | 
						|
    // X urem C^2 -> X and C
 | 
						|
    // Check to see if this is an unsigned remainder with an exact power of 2,
 | 
						|
    // if so, convert to a bitwise and.
 | 
						|
    if (ConstantInt *C = dyn_cast<ConstantInt>(RHS))
 | 
						|
      if (isPowerOf2_64(C->getZExtValue()))
 | 
						|
        return BinaryOperator::createAnd(Op0, SubOne(C));
 | 
						|
  }
 | 
						|
 | 
						|
  if (Instruction *RHSI = dyn_cast<Instruction>(I.getOperand(1))) {
 | 
						|
    // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1)  
 | 
						|
    if (RHSI->getOpcode() == Instruction::Shl &&
 | 
						|
        isa<ConstantInt>(RHSI->getOperand(0))) {
 | 
						|
      unsigned C1 = cast<ConstantInt>(RHSI->getOperand(0))->getZExtValue();
 | 
						|
      if (isPowerOf2_64(C1)) {
 | 
						|
        Constant *N1 = ConstantInt::getAllOnesValue(I.getType());
 | 
						|
        Value *Add = InsertNewInstBefore(BinaryOperator::createAdd(RHSI, N1,
 | 
						|
                                                                   "tmp"), I);
 | 
						|
        return BinaryOperator::createAnd(Op0, Add);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // urem X, (select Cond, 2^C1, 2^C2) --> select Cond, (and X, C1), (and X, C2)
 | 
						|
  // where C1&C2 are powers of two.
 | 
						|
  if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) {
 | 
						|
    if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
 | 
						|
      if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) {
 | 
						|
        // STO == 0 and SFO == 0 handled above.
 | 
						|
        if (isPowerOf2_64(STO->getZExtValue()) && 
 | 
						|
            isPowerOf2_64(SFO->getZExtValue())) {
 | 
						|
          Value *TrueAnd = InsertNewInstBefore(
 | 
						|
            BinaryOperator::createAnd(Op0, SubOne(STO), SI->getName()+".t"), I);
 | 
						|
          Value *FalseAnd = InsertNewInstBefore(
 | 
						|
            BinaryOperator::createAnd(Op0, SubOne(SFO), SI->getName()+".f"), I);
 | 
						|
          return new SelectInst(SI->getOperand(0), TrueAnd, FalseAnd);
 | 
						|
        }
 | 
						|
      }
 | 
						|
  }
 | 
						|
  
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
 | 
						|
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | 
						|
 | 
						|
  if (Instruction *common = commonIRemTransforms(I))
 | 
						|
    return common;
 | 
						|
  
 | 
						|
  if (Value *RHSNeg = dyn_castNegVal(Op1))
 | 
						|
    if (!isa<ConstantInt>(RHSNeg) || 
 | 
						|
        cast<ConstantInt>(RHSNeg)->getSExtValue() > 0) {
 | 
						|
      // X % -Y -> X % Y
 | 
						|
      AddUsesToWorkList(I);
 | 
						|
      I.setOperand(1, RHSNeg);
 | 
						|
      return &I;
 | 
						|
    }
 | 
						|
 
 | 
						|
  // If the top bits of both operands are zero (i.e. we can prove they are
 | 
						|
  // unsigned inputs), turn this into a urem.
 | 
						|
  uint64_t Mask = 1ULL << (I.getType()->getPrimitiveSizeInBits()-1);
 | 
						|
  if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
 | 
						|
    // X srem Y -> X urem Y, iff X and Y don't have sign bit set
 | 
						|
    return BinaryOperator::createURem(Op0, Op1, I.getName());
 | 
						|
  }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
 | 
						|
  return commonRemTransforms(I);
 | 
						|
}
 | 
						|
 | 
						|
// isMaxValueMinusOne - return true if this is Max-1
 | 
						|
static bool isMaxValueMinusOne(const ConstantInt *C, bool isSigned) {
 | 
						|
  if (isSigned) {
 | 
						|
    // Calculate 0111111111..11111
 | 
						|
    unsigned TypeBits = C->getType()->getPrimitiveSizeInBits();
 | 
						|
    int64_t Val = INT64_MAX;             // All ones
 | 
						|
    Val >>= 64-TypeBits;                 // Shift out unwanted 1 bits...
 | 
						|
    return C->getSExtValue() == Val-1;
 | 
						|
  }
 | 
						|
  return C->getZExtValue() == C->getType()->getBitMask()-1;
 | 
						|
}
 | 
						|
 | 
						|
// isMinValuePlusOne - return true if this is Min+1
 | 
						|
static bool isMinValuePlusOne(const ConstantInt *C, bool isSigned) {
 | 
						|
  if (isSigned) {
 | 
						|
    // Calculate 1111111111000000000000
 | 
						|
    unsigned TypeBits = C->getType()->getPrimitiveSizeInBits();
 | 
						|
    int64_t Val = -1;                    // All ones
 | 
						|
    Val <<= TypeBits-1;                  // Shift over to the right spot
 | 
						|
    return C->getSExtValue() == Val+1;
 | 
						|
  }
 | 
						|
  return C->getZExtValue() == 1; // unsigned
 | 
						|
}
 | 
						|
 | 
						|
// isOneBitSet - Return true if there is exactly one bit set in the specified
 | 
						|
// constant.
 | 
						|
static bool isOneBitSet(const ConstantInt *CI) {
 | 
						|
  uint64_t V = CI->getZExtValue();
 | 
						|
  return V && (V & (V-1)) == 0;
 | 
						|
}
 | 
						|
 | 
						|
#if 0   // Currently unused
 | 
						|
// isLowOnes - Return true if the constant is of the form 0+1+.
 | 
						|
static bool isLowOnes(const ConstantInt *CI) {
 | 
						|
  uint64_t V = CI->getZExtValue();
 | 
						|
 | 
						|
  // There won't be bits set in parts that the type doesn't contain.
 | 
						|
  V &= ConstantInt::getAllOnesValue(CI->getType())->getZExtValue();
 | 
						|
 | 
						|
  uint64_t U = V+1;  // If it is low ones, this should be a power of two.
 | 
						|
  return U && V && (U & V) == 0;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
// isHighOnes - Return true if the constant is of the form 1+0+.
 | 
						|
// This is the same as lowones(~X).
 | 
						|
static bool isHighOnes(const ConstantInt *CI) {
 | 
						|
  uint64_t V = ~CI->getZExtValue();
 | 
						|
  if (~V == 0) return false;  // 0's does not match "1+"
 | 
						|
 | 
						|
  // There won't be bits set in parts that the type doesn't contain.
 | 
						|
  V &= ConstantInt::getAllOnesValue(CI->getType())->getZExtValue();
 | 
						|
 | 
						|
  uint64_t U = V+1;  // If it is low ones, this should be a power of two.
 | 
						|
  return U && V && (U & V) == 0;
 | 
						|
}
 | 
						|
 | 
						|
/// getICmpCode - Encode a icmp predicate into a three bit mask.  These bits
 | 
						|
/// are carefully arranged to allow folding of expressions such as:
 | 
						|
///
 | 
						|
///      (A < B) | (A > B) --> (A != B)
 | 
						|
///
 | 
						|
/// Note that this is only valid if the first and second predicates have the
 | 
						|
/// same sign. Is illegal to do: (A u< B) | (A s> B) 
 | 
						|
///
 | 
						|
/// Three bits are used to represent the condition, as follows:
 | 
						|
///   0  A > B
 | 
						|
///   1  A == B
 | 
						|
///   2  A < B
 | 
						|
///
 | 
						|
/// <=>  Value  Definition
 | 
						|
/// 000     0   Always false
 | 
						|
/// 001     1   A >  B
 | 
						|
/// 010     2   A == B
 | 
						|
/// 011     3   A >= B
 | 
						|
/// 100     4   A <  B
 | 
						|
/// 101     5   A != B
 | 
						|
/// 110     6   A <= B
 | 
						|
/// 111     7   Always true
 | 
						|
///  
 | 
						|
static unsigned getICmpCode(const ICmpInst *ICI) {
 | 
						|
  switch (ICI->getPredicate()) {
 | 
						|
    // False -> 0
 | 
						|
  case ICmpInst::ICMP_UGT: return 1;  // 001
 | 
						|
  case ICmpInst::ICMP_SGT: return 1;  // 001
 | 
						|
  case ICmpInst::ICMP_EQ:  return 2;  // 010
 | 
						|
  case ICmpInst::ICMP_UGE: return 3;  // 011
 | 
						|
  case ICmpInst::ICMP_SGE: return 3;  // 011
 | 
						|
  case ICmpInst::ICMP_ULT: return 4;  // 100
 | 
						|
  case ICmpInst::ICMP_SLT: return 4;  // 100
 | 
						|
  case ICmpInst::ICMP_NE:  return 5;  // 101
 | 
						|
  case ICmpInst::ICMP_ULE: return 6;  // 110
 | 
						|
  case ICmpInst::ICMP_SLE: return 6;  // 110
 | 
						|
    // True -> 7
 | 
						|
  default:
 | 
						|
    assert(0 && "Invalid ICmp predicate!");
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// getICmpValue - This is the complement of getICmpCode, which turns an
 | 
						|
/// opcode and two operands into either a constant true or false, or a brand 
 | 
						|
/// new /// ICmp instruction. The sign is passed in to determine which kind
 | 
						|
/// of predicate to use in new icmp instructions.
 | 
						|
static Value *getICmpValue(bool sign, unsigned code, Value *LHS, Value *RHS) {
 | 
						|
  switch (code) {
 | 
						|
  default: assert(0 && "Illegal ICmp code!");
 | 
						|
  case  0: return ConstantInt::getFalse();
 | 
						|
  case  1: 
 | 
						|
    if (sign)
 | 
						|
      return new ICmpInst(ICmpInst::ICMP_SGT, LHS, RHS);
 | 
						|
    else
 | 
						|
      return new ICmpInst(ICmpInst::ICMP_UGT, LHS, RHS);
 | 
						|
  case  2: return new ICmpInst(ICmpInst::ICMP_EQ,  LHS, RHS);
 | 
						|
  case  3: 
 | 
						|
    if (sign)
 | 
						|
      return new ICmpInst(ICmpInst::ICMP_SGE, LHS, RHS);
 | 
						|
    else
 | 
						|
      return new ICmpInst(ICmpInst::ICMP_UGE, LHS, RHS);
 | 
						|
  case  4: 
 | 
						|
    if (sign)
 | 
						|
      return new ICmpInst(ICmpInst::ICMP_SLT, LHS, RHS);
 | 
						|
    else
 | 
						|
      return new ICmpInst(ICmpInst::ICMP_ULT, LHS, RHS);
 | 
						|
  case  5: return new ICmpInst(ICmpInst::ICMP_NE,  LHS, RHS);
 | 
						|
  case  6: 
 | 
						|
    if (sign)
 | 
						|
      return new ICmpInst(ICmpInst::ICMP_SLE, LHS, RHS);
 | 
						|
    else
 | 
						|
      return new ICmpInst(ICmpInst::ICMP_ULE, LHS, RHS);
 | 
						|
  case  7: return ConstantInt::getTrue();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static bool PredicatesFoldable(ICmpInst::Predicate p1, ICmpInst::Predicate p2) {
 | 
						|
  return (ICmpInst::isSignedPredicate(p1) == ICmpInst::isSignedPredicate(p2)) ||
 | 
						|
    (ICmpInst::isSignedPredicate(p1) && 
 | 
						|
     (p2 == ICmpInst::ICMP_EQ || p2 == ICmpInst::ICMP_NE)) ||
 | 
						|
    (ICmpInst::isSignedPredicate(p2) && 
 | 
						|
     (p1 == ICmpInst::ICMP_EQ || p1 == ICmpInst::ICMP_NE));
 | 
						|
}
 | 
						|
 | 
						|
namespace { 
 | 
						|
// FoldICmpLogical - Implements (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
 | 
						|
struct FoldICmpLogical {
 | 
						|
  InstCombiner &IC;
 | 
						|
  Value *LHS, *RHS;
 | 
						|
  ICmpInst::Predicate pred;
 | 
						|
  FoldICmpLogical(InstCombiner &ic, ICmpInst *ICI)
 | 
						|
    : IC(ic), LHS(ICI->getOperand(0)), RHS(ICI->getOperand(1)),
 | 
						|
      pred(ICI->getPredicate()) {}
 | 
						|
  bool shouldApply(Value *V) const {
 | 
						|
    if (ICmpInst *ICI = dyn_cast<ICmpInst>(V))
 | 
						|
      if (PredicatesFoldable(pred, ICI->getPredicate()))
 | 
						|
        return (ICI->getOperand(0) == LHS && ICI->getOperand(1) == RHS ||
 | 
						|
                ICI->getOperand(0) == RHS && ICI->getOperand(1) == LHS);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  Instruction *apply(Instruction &Log) const {
 | 
						|
    ICmpInst *ICI = cast<ICmpInst>(Log.getOperand(0));
 | 
						|
    if (ICI->getOperand(0) != LHS) {
 | 
						|
      assert(ICI->getOperand(1) == LHS);
 | 
						|
      ICI->swapOperands();  // Swap the LHS and RHS of the ICmp
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned LHSCode = getICmpCode(ICI);
 | 
						|
    unsigned RHSCode = getICmpCode(cast<ICmpInst>(Log.getOperand(1)));
 | 
						|
    unsigned Code;
 | 
						|
    switch (Log.getOpcode()) {
 | 
						|
    case Instruction::And: Code = LHSCode & RHSCode; break;
 | 
						|
    case Instruction::Or:  Code = LHSCode | RHSCode; break;
 | 
						|
    case Instruction::Xor: Code = LHSCode ^ RHSCode; break;
 | 
						|
    default: assert(0 && "Illegal logical opcode!"); return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    Value *RV = getICmpValue(ICmpInst::isSignedPredicate(pred), Code, LHS, RHS);
 | 
						|
    if (Instruction *I = dyn_cast<Instruction>(RV))
 | 
						|
      return I;
 | 
						|
    // Otherwise, it's a constant boolean value...
 | 
						|
    return IC.ReplaceInstUsesWith(Log, RV);
 | 
						|
  }
 | 
						|
};
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
// OptAndOp - This handles expressions of the form ((val OP C1) & C2).  Where
 | 
						|
// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'.  Op is
 | 
						|
// guaranteed to be a binary operator.
 | 
						|
Instruction *InstCombiner::OptAndOp(Instruction *Op,
 | 
						|
                                    ConstantInt *OpRHS,
 | 
						|
                                    ConstantInt *AndRHS,
 | 
						|
                                    BinaryOperator &TheAnd) {
 | 
						|
  Value *X = Op->getOperand(0);
 | 
						|
  Constant *Together = 0;
 | 
						|
  if (!Op->isShift())
 | 
						|
    Together = ConstantExpr::getAnd(AndRHS, OpRHS);
 | 
						|
 | 
						|
  switch (Op->getOpcode()) {
 | 
						|
  case Instruction::Xor:
 | 
						|
    if (Op->hasOneUse()) {
 | 
						|
      // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
 | 
						|
      std::string OpName = Op->getName(); Op->setName("");
 | 
						|
      Instruction *And = BinaryOperator::createAnd(X, AndRHS, OpName);
 | 
						|
      InsertNewInstBefore(And, TheAnd);
 | 
						|
      return BinaryOperator::createXor(And, Together);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case Instruction::Or:
 | 
						|
    if (Together == AndRHS) // (X | C) & C --> C
 | 
						|
      return ReplaceInstUsesWith(TheAnd, AndRHS);
 | 
						|
 | 
						|
    if (Op->hasOneUse() && Together != OpRHS) {
 | 
						|
      // (X | C1) & C2 --> (X | (C1&C2)) & C2
 | 
						|
      std::string Op0Name = Op->getName(); Op->setName("");
 | 
						|
      Instruction *Or = BinaryOperator::createOr(X, Together, Op0Name);
 | 
						|
      InsertNewInstBefore(Or, TheAnd);
 | 
						|
      return BinaryOperator::createAnd(Or, AndRHS);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case Instruction::Add:
 | 
						|
    if (Op->hasOneUse()) {
 | 
						|
      // Adding a one to a single bit bit-field should be turned into an XOR
 | 
						|
      // of the bit.  First thing to check is to see if this AND is with a
 | 
						|
      // single bit constant.
 | 
						|
      uint64_t AndRHSV = cast<ConstantInt>(AndRHS)->getZExtValue();
 | 
						|
 | 
						|
      // Clear bits that are not part of the constant.
 | 
						|
      AndRHSV &= AndRHS->getType()->getBitMask();
 | 
						|
 | 
						|
      // If there is only one bit set...
 | 
						|
      if (isOneBitSet(cast<ConstantInt>(AndRHS))) {
 | 
						|
        // Ok, at this point, we know that we are masking the result of the
 | 
						|
        // ADD down to exactly one bit.  If the constant we are adding has
 | 
						|
        // no bits set below this bit, then we can eliminate the ADD.
 | 
						|
        uint64_t AddRHS = cast<ConstantInt>(OpRHS)->getZExtValue();
 | 
						|
 | 
						|
        // Check to see if any bits below the one bit set in AndRHSV are set.
 | 
						|
        if ((AddRHS & (AndRHSV-1)) == 0) {
 | 
						|
          // If not, the only thing that can effect the output of the AND is
 | 
						|
          // the bit specified by AndRHSV.  If that bit is set, the effect of
 | 
						|
          // the XOR is to toggle the bit.  If it is clear, then the ADD has
 | 
						|
          // no effect.
 | 
						|
          if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
 | 
						|
            TheAnd.setOperand(0, X);
 | 
						|
            return &TheAnd;
 | 
						|
          } else {
 | 
						|
            std::string Name = Op->getName(); Op->setName("");
 | 
						|
            // Pull the XOR out of the AND.
 | 
						|
            Instruction *NewAnd = BinaryOperator::createAnd(X, AndRHS, Name);
 | 
						|
            InsertNewInstBefore(NewAnd, TheAnd);
 | 
						|
            return BinaryOperator::createXor(NewAnd, AndRHS);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case Instruction::Shl: {
 | 
						|
    // We know that the AND will not produce any of the bits shifted in, so if
 | 
						|
    // the anded constant includes them, clear them now!
 | 
						|
    //
 | 
						|
    Constant *AllOne = ConstantInt::getAllOnesValue(AndRHS->getType());
 | 
						|
    Constant *ShlMask = ConstantExpr::getShl(AllOne, OpRHS);
 | 
						|
    Constant *CI = ConstantExpr::getAnd(AndRHS, ShlMask);
 | 
						|
 | 
						|
    if (CI == ShlMask) {   // Masking out bits that the shift already masks
 | 
						|
      return ReplaceInstUsesWith(TheAnd, Op);   // No need for the and.
 | 
						|
    } else if (CI != AndRHS) {                  // Reducing bits set in and.
 | 
						|
      TheAnd.setOperand(1, CI);
 | 
						|
      return &TheAnd;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Instruction::LShr:
 | 
						|
  {
 | 
						|
    // We know that the AND will not produce any of the bits shifted in, so if
 | 
						|
    // the anded constant includes them, clear them now!  This only applies to
 | 
						|
    // unsigned shifts, because a signed shr may bring in set bits!
 | 
						|
    //
 | 
						|
    Constant *AllOne = ConstantInt::getAllOnesValue(AndRHS->getType());
 | 
						|
    Constant *ShrMask = ConstantExpr::getLShr(AllOne, OpRHS);
 | 
						|
    Constant *CI = ConstantExpr::getAnd(AndRHS, ShrMask);
 | 
						|
 | 
						|
    if (CI == ShrMask) {   // Masking out bits that the shift already masks.
 | 
						|
      return ReplaceInstUsesWith(TheAnd, Op);
 | 
						|
    } else if (CI != AndRHS) {
 | 
						|
      TheAnd.setOperand(1, CI);  // Reduce bits set in and cst.
 | 
						|
      return &TheAnd;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Instruction::AShr:
 | 
						|
    // Signed shr.
 | 
						|
    // See if this is shifting in some sign extension, then masking it out
 | 
						|
    // with an and.
 | 
						|
    if (Op->hasOneUse()) {
 | 
						|
      Constant *AllOne = ConstantInt::getAllOnesValue(AndRHS->getType());
 | 
						|
      Constant *ShrMask = ConstantExpr::getLShr(AllOne, OpRHS);
 | 
						|
      Constant *C = ConstantExpr::getAnd(AndRHS, ShrMask);
 | 
						|
      if (C == AndRHS) {          // Masking out bits shifted in.
 | 
						|
        // (Val ashr C1) & C2 -> (Val lshr C1) & C2
 | 
						|
        // Make the argument unsigned.
 | 
						|
        Value *ShVal = Op->getOperand(0);
 | 
						|
        ShVal = InsertNewInstBefore(
 | 
						|
            BinaryOperator::createLShr(ShVal, OpRHS, 
 | 
						|
                                   Op->getName()), TheAnd);
 | 
						|
        return BinaryOperator::createAnd(ShVal, AndRHS, TheAnd.getName());
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is
 | 
						|
/// true, otherwise (V < Lo || V >= Hi).  In pratice, we emit the more efficient
 | 
						|
/// (V-Lo) <u Hi-Lo.  This method expects that Lo <= Hi. isSigned indicates
 | 
						|
/// whether to treat the V, Lo and HI as signed or not. IB is the location to
 | 
						|
/// insert new instructions.
 | 
						|
Instruction *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
 | 
						|
                                           bool isSigned, bool Inside, 
 | 
						|
                                           Instruction &IB) {
 | 
						|
  assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ? 
 | 
						|
            ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() &&
 | 
						|
         "Lo is not <= Hi in range emission code!");
 | 
						|
    
 | 
						|
  if (Inside) {
 | 
						|
    if (Lo == Hi)  // Trivially false.
 | 
						|
      return new ICmpInst(ICmpInst::ICMP_NE, V, V);
 | 
						|
 | 
						|
    // V >= Min && V < Hi --> V < Hi
 | 
						|
    if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
 | 
						|
    ICmpInst::Predicate pred = (isSigned ? 
 | 
						|
        ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT);
 | 
						|
      return new ICmpInst(pred, V, Hi);
 | 
						|
    }
 | 
						|
 | 
						|
    // Emit V-Lo <u Hi-Lo
 | 
						|
    Constant *NegLo = ConstantExpr::getNeg(Lo);
 | 
						|
    Instruction *Add = BinaryOperator::createAdd(V, NegLo, V->getName()+".off");
 | 
						|
    InsertNewInstBefore(Add, IB);
 | 
						|
    Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi);
 | 
						|
    return new ICmpInst(ICmpInst::ICMP_ULT, Add, UpperBound);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Lo == Hi)  // Trivially true.
 | 
						|
    return new ICmpInst(ICmpInst::ICMP_EQ, V, V);
 | 
						|
 | 
						|
  // V < Min || V >= Hi ->'V > Hi-1'
 | 
						|
  Hi = SubOne(cast<ConstantInt>(Hi));
 | 
						|
  if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
 | 
						|
    ICmpInst::Predicate pred = (isSigned ? 
 | 
						|
        ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
 | 
						|
    return new ICmpInst(pred, V, Hi);
 | 
						|
  }
 | 
						|
 | 
						|
  // Emit V-Lo > Hi-1-Lo
 | 
						|
  Constant *NegLo = ConstantExpr::getNeg(Lo);
 | 
						|
  Instruction *Add = BinaryOperator::createAdd(V, NegLo, V->getName()+".off");
 | 
						|
  InsertNewInstBefore(Add, IB);
 | 
						|
  Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi);
 | 
						|
  return new ICmpInst(ICmpInst::ICMP_UGT, Add, LowerBound);
 | 
						|
}
 | 
						|
 | 
						|
// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
 | 
						|
// any number of 0s on either side.  The 1s are allowed to wrap from LSB to
 | 
						|
// MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs.  0x0F0F0000 is
 | 
						|
// not, since all 1s are not contiguous.
 | 
						|
static bool isRunOfOnes(ConstantInt *Val, unsigned &MB, unsigned &ME) {
 | 
						|
  uint64_t V = Val->getZExtValue();
 | 
						|
  if (!isShiftedMask_64(V)) return false;
 | 
						|
 | 
						|
  // look for the first zero bit after the run of ones
 | 
						|
  MB = 64-CountLeadingZeros_64((V - 1) ^ V);
 | 
						|
  // look for the first non-zero bit
 | 
						|
  ME = 64-CountLeadingZeros_64(V);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask,
 | 
						|
/// where isSub determines whether the operator is a sub.  If we can fold one of
 | 
						|
/// the following xforms:
 | 
						|
/// 
 | 
						|
/// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
 | 
						|
/// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
 | 
						|
/// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
 | 
						|
///
 | 
						|
/// return (A +/- B).
 | 
						|
///
 | 
						|
Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
 | 
						|
                                        ConstantInt *Mask, bool isSub,
 | 
						|
                                        Instruction &I) {
 | 
						|
  Instruction *LHSI = dyn_cast<Instruction>(LHS);
 | 
						|
  if (!LHSI || LHSI->getNumOperands() != 2 ||
 | 
						|
      !isa<ConstantInt>(LHSI->getOperand(1))) return 0;
 | 
						|
 | 
						|
  ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1));
 | 
						|
 | 
						|
  switch (LHSI->getOpcode()) {
 | 
						|
  default: return 0;
 | 
						|
  case Instruction::And:
 | 
						|
    if (ConstantExpr::getAnd(N, Mask) == Mask) {
 | 
						|
      // If the AndRHS is a power of two minus one (0+1+), this is simple.
 | 
						|
      if ((Mask->getZExtValue() & Mask->getZExtValue()+1) == 0)
 | 
						|
        break;
 | 
						|
 | 
						|
      // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
 | 
						|
      // part, we don't need any explicit masks to take them out of A.  If that
 | 
						|
      // is all N is, ignore it.
 | 
						|
      unsigned MB, ME;
 | 
						|
      if (isRunOfOnes(Mask, MB, ME)) {  // begin/end bit of run, inclusive
 | 
						|
        uint64_t Mask = cast<IntegerType>(RHS->getType())->getBitMask();
 | 
						|
        Mask >>= 64-MB+1;
 | 
						|
        if (MaskedValueIsZero(RHS, Mask))
 | 
						|
          break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
  case Instruction::Or:
 | 
						|
  case Instruction::Xor:
 | 
						|
    // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
 | 
						|
    if ((Mask->getZExtValue() & Mask->getZExtValue()+1) == 0 &&
 | 
						|
        ConstantExpr::getAnd(N, Mask)->isNullValue())
 | 
						|
      break;
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  
 | 
						|
  Instruction *New;
 | 
						|
  if (isSub)
 | 
						|
    New = BinaryOperator::createSub(LHSI->getOperand(0), RHS, "fold");
 | 
						|
  else
 | 
						|
    New = BinaryOperator::createAdd(LHSI->getOperand(0), RHS, "fold");
 | 
						|
  return InsertNewInstBefore(New, I);
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
 | 
						|
  bool Changed = SimplifyCommutative(I);
 | 
						|
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | 
						|
 | 
						|
  if (isa<UndefValue>(Op1))                         // X & undef -> 0
 | 
						|
    return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | 
						|
 | 
						|
  // and X, X = X
 | 
						|
  if (Op0 == Op1)
 | 
						|
    return ReplaceInstUsesWith(I, Op1);
 | 
						|
 | 
						|
  // See if we can simplify any instructions used by the instruction whose sole 
 | 
						|
  // purpose is to compute bits we don't care about.
 | 
						|
  uint64_t KnownZero, KnownOne;
 | 
						|
  if (!isa<PackedType>(I.getType())) {
 | 
						|
    if (SimplifyDemandedBits(&I, cast<IntegerType>(I.getType())->getBitMask(),
 | 
						|
                             KnownZero, KnownOne))
 | 
						|
    return &I;
 | 
						|
  } else {
 | 
						|
    if (ConstantPacked *CP = dyn_cast<ConstantPacked>(Op1)) {
 | 
						|
      if (CP->isAllOnesValue())
 | 
						|
        return ReplaceInstUsesWith(I, I.getOperand(0));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
 | 
						|
    uint64_t AndRHSMask = AndRHS->getZExtValue();
 | 
						|
    uint64_t TypeMask = cast<IntegerType>(Op0->getType())->getBitMask();
 | 
						|
    uint64_t NotAndRHS = AndRHSMask^TypeMask;
 | 
						|
 | 
						|
    // Optimize a variety of ((val OP C1) & C2) combinations...
 | 
						|
    if (isa<BinaryOperator>(Op0)) {
 | 
						|
      Instruction *Op0I = cast<Instruction>(Op0);
 | 
						|
      Value *Op0LHS = Op0I->getOperand(0);
 | 
						|
      Value *Op0RHS = Op0I->getOperand(1);
 | 
						|
      switch (Op0I->getOpcode()) {
 | 
						|
      case Instruction::Xor:
 | 
						|
      case Instruction::Or:
 | 
						|
        // If the mask is only needed on one incoming arm, push it up.
 | 
						|
        if (Op0I->hasOneUse()) {
 | 
						|
          if (MaskedValueIsZero(Op0LHS, NotAndRHS)) {
 | 
						|
            // Not masking anything out for the LHS, move to RHS.
 | 
						|
            Instruction *NewRHS = BinaryOperator::createAnd(Op0RHS, AndRHS,
 | 
						|
                                                   Op0RHS->getName()+".masked");
 | 
						|
            InsertNewInstBefore(NewRHS, I);
 | 
						|
            return BinaryOperator::create(
 | 
						|
                       cast<BinaryOperator>(Op0I)->getOpcode(), Op0LHS, NewRHS);
 | 
						|
          }
 | 
						|
          if (!isa<Constant>(Op0RHS) &&
 | 
						|
              MaskedValueIsZero(Op0RHS, NotAndRHS)) {
 | 
						|
            // Not masking anything out for the RHS, move to LHS.
 | 
						|
            Instruction *NewLHS = BinaryOperator::createAnd(Op0LHS, AndRHS,
 | 
						|
                                                   Op0LHS->getName()+".masked");
 | 
						|
            InsertNewInstBefore(NewLHS, I);
 | 
						|
            return BinaryOperator::create(
 | 
						|
                       cast<BinaryOperator>(Op0I)->getOpcode(), NewLHS, Op0RHS);
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        break;
 | 
						|
      case Instruction::Add:
 | 
						|
        // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
 | 
						|
        // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
 | 
						|
        // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
 | 
						|
        if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I))
 | 
						|
          return BinaryOperator::createAnd(V, AndRHS);
 | 
						|
        if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I))
 | 
						|
          return BinaryOperator::createAnd(V, AndRHS);  // Add commutes
 | 
						|
        break;
 | 
						|
 | 
						|
      case Instruction::Sub:
 | 
						|
        // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
 | 
						|
        // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
 | 
						|
        // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
 | 
						|
        if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I))
 | 
						|
          return BinaryOperator::createAnd(V, AndRHS);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
 | 
						|
        if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
 | 
						|
          return Res;
 | 
						|
    } else if (CastInst *CI = dyn_cast<CastInst>(Op0)) {
 | 
						|
      // If this is an integer truncation or change from signed-to-unsigned, and
 | 
						|
      // if the source is an and/or with immediate, transform it.  This
 | 
						|
      // frequently occurs for bitfield accesses.
 | 
						|
      if (Instruction *CastOp = dyn_cast<Instruction>(CI->getOperand(0))) {
 | 
						|
        if ((isa<TruncInst>(CI) || isa<BitCastInst>(CI)) &&
 | 
						|
            CastOp->getNumOperands() == 2)
 | 
						|
          if (ConstantInt *AndCI = dyn_cast<ConstantInt>(CastOp->getOperand(1)))
 | 
						|
            if (CastOp->getOpcode() == Instruction::And) {
 | 
						|
              // Change: and (cast (and X, C1) to T), C2
 | 
						|
              // into  : and (cast X to T), trunc_or_bitcast(C1)&C2
 | 
						|
              // This will fold the two constants together, which may allow 
 | 
						|
              // other simplifications.
 | 
						|
              Instruction *NewCast = CastInst::createTruncOrBitCast(
 | 
						|
                CastOp->getOperand(0), I.getType(), 
 | 
						|
                CastOp->getName()+".shrunk");
 | 
						|
              NewCast = InsertNewInstBefore(NewCast, I);
 | 
						|
              // trunc_or_bitcast(C1)&C2
 | 
						|
              Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
 | 
						|
              C3 = ConstantExpr::getAnd(C3, AndRHS);
 | 
						|
              return BinaryOperator::createAnd(NewCast, C3);
 | 
						|
            } else if (CastOp->getOpcode() == Instruction::Or) {
 | 
						|
              // Change: and (cast (or X, C1) to T), C2
 | 
						|
              // into  : trunc(C1)&C2 iff trunc(C1)&C2 == C2
 | 
						|
              Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
 | 
						|
              if (ConstantExpr::getAnd(C3, AndRHS) == AndRHS)   // trunc(C1)&C2
 | 
						|
                return ReplaceInstUsesWith(I, AndRHS);
 | 
						|
            }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Try to fold constant and into select arguments.
 | 
						|
    if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
 | 
						|
      if (Instruction *R = FoldOpIntoSelect(I, SI, this))
 | 
						|
        return R;
 | 
						|
    if (isa<PHINode>(Op0))
 | 
						|
      if (Instruction *NV = FoldOpIntoPhi(I))
 | 
						|
        return NV;
 | 
						|
  }
 | 
						|
 | 
						|
  Value *Op0NotVal = dyn_castNotVal(Op0);
 | 
						|
  Value *Op1NotVal = dyn_castNotVal(Op1);
 | 
						|
 | 
						|
  if (Op0NotVal == Op1 || Op1NotVal == Op0)  // A & ~A  == ~A & A == 0
 | 
						|
    return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | 
						|
 | 
						|
  // (~A & ~B) == (~(A | B)) - De Morgan's Law
 | 
						|
  if (Op0NotVal && Op1NotVal && isOnlyUse(Op0) && isOnlyUse(Op1)) {
 | 
						|
    Instruction *Or = BinaryOperator::createOr(Op0NotVal, Op1NotVal,
 | 
						|
                                               I.getName()+".demorgan");
 | 
						|
    InsertNewInstBefore(Or, I);
 | 
						|
    return BinaryOperator::createNot(Or);
 | 
						|
  }
 | 
						|
  
 | 
						|
  {
 | 
						|
    Value *A = 0, *B = 0;
 | 
						|
    if (match(Op0, m_Or(m_Value(A), m_Value(B))))
 | 
						|
      if (A == Op1 || B == Op1)    // (A | ?) & A  --> A
 | 
						|
        return ReplaceInstUsesWith(I, Op1);
 | 
						|
    if (match(Op1, m_Or(m_Value(A), m_Value(B))))
 | 
						|
      if (A == Op0 || B == Op0)    // A & (A | ?)  --> A
 | 
						|
        return ReplaceInstUsesWith(I, Op0);
 | 
						|
    
 | 
						|
    if (Op0->hasOneUse() &&
 | 
						|
        match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
 | 
						|
      if (A == Op1) {                                // (A^B)&A -> A&(A^B)
 | 
						|
        I.swapOperands();     // Simplify below
 | 
						|
        std::swap(Op0, Op1);
 | 
						|
      } else if (B == Op1) {                         // (A^B)&B -> B&(B^A)
 | 
						|
        cast<BinaryOperator>(Op0)->swapOperands();
 | 
						|
        I.swapOperands();     // Simplify below
 | 
						|
        std::swap(Op0, Op1);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (Op1->hasOneUse() &&
 | 
						|
        match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
 | 
						|
      if (B == Op0) {                                // B&(A^B) -> B&(B^A)
 | 
						|
        cast<BinaryOperator>(Op1)->swapOperands();
 | 
						|
        std::swap(A, B);
 | 
						|
      }
 | 
						|
      if (A == Op0) {                                // A&(A^B) -> A & ~B
 | 
						|
        Instruction *NotB = BinaryOperator::createNot(B, "tmp");
 | 
						|
        InsertNewInstBefore(NotB, I);
 | 
						|
        return BinaryOperator::createAnd(A, NotB);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1)) {
 | 
						|
    // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
 | 
						|
    if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
 | 
						|
      return R;
 | 
						|
 | 
						|
    Value *LHSVal, *RHSVal;
 | 
						|
    ConstantInt *LHSCst, *RHSCst;
 | 
						|
    ICmpInst::Predicate LHSCC, RHSCC;
 | 
						|
    if (match(Op0, m_ICmp(LHSCC, m_Value(LHSVal), m_ConstantInt(LHSCst))))
 | 
						|
      if (match(RHS, m_ICmp(RHSCC, m_Value(RHSVal), m_ConstantInt(RHSCst))))
 | 
						|
        if (LHSVal == RHSVal &&    // Found (X icmp C1) & (X icmp C2)
 | 
						|
            // ICMP_[GL]E X, CST is folded to ICMP_[GL]T elsewhere.
 | 
						|
            LHSCC != ICmpInst::ICMP_UGE && LHSCC != ICmpInst::ICMP_ULE &&
 | 
						|
            RHSCC != ICmpInst::ICMP_UGE && RHSCC != ICmpInst::ICMP_ULE &&
 | 
						|
            LHSCC != ICmpInst::ICMP_SGE && LHSCC != ICmpInst::ICMP_SLE &&
 | 
						|
            RHSCC != ICmpInst::ICMP_SGE && RHSCC != ICmpInst::ICMP_SLE) {
 | 
						|
          // Ensure that the larger constant is on the RHS.
 | 
						|
          ICmpInst::Predicate GT = ICmpInst::isSignedPredicate(LHSCC) ? 
 | 
						|
            ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
 | 
						|
          Constant *Cmp = ConstantExpr::getICmp(GT, LHSCst, RHSCst);
 | 
						|
          ICmpInst *LHS = cast<ICmpInst>(Op0);
 | 
						|
          if (cast<ConstantInt>(Cmp)->getZExtValue()) {
 | 
						|
            std::swap(LHS, RHS);
 | 
						|
            std::swap(LHSCst, RHSCst);
 | 
						|
            std::swap(LHSCC, RHSCC);
 | 
						|
          }
 | 
						|
 | 
						|
          // At this point, we know we have have two icmp instructions
 | 
						|
          // comparing a value against two constants and and'ing the result
 | 
						|
          // together.  Because of the above check, we know that we only have
 | 
						|
          // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know 
 | 
						|
          // (from the FoldICmpLogical check above), that the two constants 
 | 
						|
          // are not equal and that the larger constant is on the RHS
 | 
						|
          assert(LHSCst != RHSCst && "Compares not folded above?");
 | 
						|
 | 
						|
          switch (LHSCC) {
 | 
						|
          default: assert(0 && "Unknown integer condition code!");
 | 
						|
          case ICmpInst::ICMP_EQ:
 | 
						|
            switch (RHSCC) {
 | 
						|
            default: assert(0 && "Unknown integer condition code!");
 | 
						|
            case ICmpInst::ICMP_EQ:         // (X == 13 & X == 15) -> false
 | 
						|
            case ICmpInst::ICMP_UGT:        // (X == 13 & X >  15) -> false
 | 
						|
            case ICmpInst::ICMP_SGT:        // (X == 13 & X >  15) -> false
 | 
						|
              return ReplaceInstUsesWith(I, ConstantInt::getFalse());
 | 
						|
            case ICmpInst::ICMP_NE:         // (X == 13 & X != 15) -> X == 13
 | 
						|
            case ICmpInst::ICMP_ULT:        // (X == 13 & X <  15) -> X == 13
 | 
						|
            case ICmpInst::ICMP_SLT:        // (X == 13 & X <  15) -> X == 13
 | 
						|
              return ReplaceInstUsesWith(I, LHS);
 | 
						|
            }
 | 
						|
          case ICmpInst::ICMP_NE:
 | 
						|
            switch (RHSCC) {
 | 
						|
            default: assert(0 && "Unknown integer condition code!");
 | 
						|
            case ICmpInst::ICMP_ULT:
 | 
						|
              if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13
 | 
						|
                return new ICmpInst(ICmpInst::ICMP_ULT, LHSVal, LHSCst);
 | 
						|
              break;                        // (X != 13 & X u< 15) -> no change
 | 
						|
            case ICmpInst::ICMP_SLT:
 | 
						|
              if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13
 | 
						|
                return new ICmpInst(ICmpInst::ICMP_SLT, LHSVal, LHSCst);
 | 
						|
              break;                        // (X != 13 & X s< 15) -> no change
 | 
						|
            case ICmpInst::ICMP_EQ:         // (X != 13 & X == 15) -> X == 15
 | 
						|
            case ICmpInst::ICMP_UGT:        // (X != 13 & X u> 15) -> X u> 15
 | 
						|
            case ICmpInst::ICMP_SGT:        // (X != 13 & X s> 15) -> X s> 15
 | 
						|
              return ReplaceInstUsesWith(I, RHS);
 | 
						|
            case ICmpInst::ICMP_NE:
 | 
						|
              if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1
 | 
						|
                Constant *AddCST = ConstantExpr::getNeg(LHSCst);
 | 
						|
                Instruction *Add = BinaryOperator::createAdd(LHSVal, AddCST,
 | 
						|
                                                      LHSVal->getName()+".off");
 | 
						|
                InsertNewInstBefore(Add, I);
 | 
						|
                return new ICmpInst(ICmpInst::ICMP_UGT, Add,
 | 
						|
                                    ConstantInt::get(Add->getType(), 1));
 | 
						|
              }
 | 
						|
              break;                        // (X != 13 & X != 15) -> no change
 | 
						|
            }
 | 
						|
            break;
 | 
						|
          case ICmpInst::ICMP_ULT:
 | 
						|
            switch (RHSCC) {
 | 
						|
            default: assert(0 && "Unknown integer condition code!");
 | 
						|
            case ICmpInst::ICMP_EQ:         // (X u< 13 & X == 15) -> false
 | 
						|
            case ICmpInst::ICMP_UGT:        // (X u< 13 & X u> 15) -> false
 | 
						|
              return ReplaceInstUsesWith(I, ConstantInt::getFalse());
 | 
						|
            case ICmpInst::ICMP_SGT:        // (X u< 13 & X s> 15) -> no change
 | 
						|
              break;
 | 
						|
            case ICmpInst::ICMP_NE:         // (X u< 13 & X != 15) -> X u< 13
 | 
						|
            case ICmpInst::ICMP_ULT:        // (X u< 13 & X u< 15) -> X u< 13
 | 
						|
              return ReplaceInstUsesWith(I, LHS);
 | 
						|
            case ICmpInst::ICMP_SLT:        // (X u< 13 & X s< 15) -> no change
 | 
						|
              break;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
          case ICmpInst::ICMP_SLT:
 | 
						|
            switch (RHSCC) {
 | 
						|
            default: assert(0 && "Unknown integer condition code!");
 | 
						|
            case ICmpInst::ICMP_EQ:         // (X s< 13 & X == 15) -> false
 | 
						|
            case ICmpInst::ICMP_SGT:        // (X s< 13 & X s> 15) -> false
 | 
						|
              return ReplaceInstUsesWith(I, ConstantInt::getFalse());
 | 
						|
            case ICmpInst::ICMP_UGT:        // (X s< 13 & X u> 15) -> no change
 | 
						|
              break;
 | 
						|
            case ICmpInst::ICMP_NE:         // (X s< 13 & X != 15) -> X < 13
 | 
						|
            case ICmpInst::ICMP_SLT:        // (X s< 13 & X s< 15) -> X < 13
 | 
						|
              return ReplaceInstUsesWith(I, LHS);
 | 
						|
            case ICmpInst::ICMP_ULT:        // (X s< 13 & X u< 15) -> no change
 | 
						|
              break;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
          case ICmpInst::ICMP_UGT:
 | 
						|
            switch (RHSCC) {
 | 
						|
            default: assert(0 && "Unknown integer condition code!");
 | 
						|
            case ICmpInst::ICMP_EQ:         // (X u> 13 & X == 15) -> X > 13
 | 
						|
              return ReplaceInstUsesWith(I, LHS);
 | 
						|
            case ICmpInst::ICMP_UGT:        // (X u> 13 & X u> 15) -> X u> 15
 | 
						|
              return ReplaceInstUsesWith(I, RHS);
 | 
						|
            case ICmpInst::ICMP_SGT:        // (X u> 13 & X s> 15) -> no change
 | 
						|
              break;
 | 
						|
            case ICmpInst::ICMP_NE:
 | 
						|
              if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14
 | 
						|
                return new ICmpInst(LHSCC, LHSVal, RHSCst);
 | 
						|
              break;                        // (X u> 13 & X != 15) -> no change
 | 
						|
            case ICmpInst::ICMP_ULT:        // (X u> 13 & X u< 15) ->(X-14) <u 1
 | 
						|
              return InsertRangeTest(LHSVal, AddOne(LHSCst), RHSCst, false, 
 | 
						|
                                     true, I);
 | 
						|
            case ICmpInst::ICMP_SLT:        // (X u> 13 & X s< 15) -> no change
 | 
						|
              break;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
          case ICmpInst::ICMP_SGT:
 | 
						|
            switch (RHSCC) {
 | 
						|
            default: assert(0 && "Unknown integer condition code!");
 | 
						|
            case ICmpInst::ICMP_EQ:         // (X s> 13 & X == 15) -> X s> 13
 | 
						|
              return ReplaceInstUsesWith(I, LHS);
 | 
						|
            case ICmpInst::ICMP_SGT:        // (X s> 13 & X s> 15) -> X s> 15
 | 
						|
              return ReplaceInstUsesWith(I, RHS);
 | 
						|
            case ICmpInst::ICMP_UGT:        // (X s> 13 & X u> 15) -> no change
 | 
						|
              break;
 | 
						|
            case ICmpInst::ICMP_NE:
 | 
						|
              if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14
 | 
						|
                return new ICmpInst(LHSCC, LHSVal, RHSCst);
 | 
						|
              break;                        // (X s> 13 & X != 15) -> no change
 | 
						|
            case ICmpInst::ICMP_SLT:        // (X s> 13 & X s< 15) ->(X-14) s< 1
 | 
						|
              return InsertRangeTest(LHSVal, AddOne(LHSCst), RHSCst, true, 
 | 
						|
                                     true, I);
 | 
						|
            case ICmpInst::ICMP_ULT:        // (X s> 13 & X u< 15) -> no change
 | 
						|
              break;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
  }
 | 
						|
 | 
						|
  // fold (and (cast A), (cast B)) -> (cast (and A, B))
 | 
						|
  if (CastInst *Op0C = dyn_cast<CastInst>(Op0))
 | 
						|
    if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
 | 
						|
      if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind ?
 | 
						|
        const Type *SrcTy = Op0C->getOperand(0)->getType();
 | 
						|
        if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
 | 
						|
            // Only do this if the casts both really cause code to be generated.
 | 
						|
            ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0), 
 | 
						|
                              I.getType(), TD) &&
 | 
						|
            ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0), 
 | 
						|
                              I.getType(), TD)) {
 | 
						|
          Instruction *NewOp = BinaryOperator::createAnd(Op0C->getOperand(0),
 | 
						|
                                                         Op1C->getOperand(0),
 | 
						|
                                                         I.getName());
 | 
						|
          InsertNewInstBefore(NewOp, I);
 | 
						|
          return CastInst::create(Op0C->getOpcode(), NewOp, I.getType());
 | 
						|
        }
 | 
						|
      }
 | 
						|
    
 | 
						|
  // (X >> Z) & (Y >> Z)  -> (X&Y) >> Z  for all shifts.
 | 
						|
  if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
 | 
						|
    if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
 | 
						|
      if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() && 
 | 
						|
          SI0->getOperand(1) == SI1->getOperand(1) &&
 | 
						|
          (SI0->hasOneUse() || SI1->hasOneUse())) {
 | 
						|
        Instruction *NewOp =
 | 
						|
          InsertNewInstBefore(BinaryOperator::createAnd(SI0->getOperand(0),
 | 
						|
                                                        SI1->getOperand(0),
 | 
						|
                                                        SI0->getName()), I);
 | 
						|
        return BinaryOperator::create(SI1->getOpcode(), NewOp, 
 | 
						|
                                      SI1->getOperand(1));
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed ? &I : 0;
 | 
						|
}
 | 
						|
 | 
						|
/// CollectBSwapParts - Look to see if the specified value defines a single byte
 | 
						|
/// in the result.  If it does, and if the specified byte hasn't been filled in
 | 
						|
/// yet, fill it in and return false.
 | 
						|
static bool CollectBSwapParts(Value *V, std::vector<Value*> &ByteValues) {
 | 
						|
  Instruction *I = dyn_cast<Instruction>(V);
 | 
						|
  if (I == 0) return true;
 | 
						|
 | 
						|
  // If this is an or instruction, it is an inner node of the bswap.
 | 
						|
  if (I->getOpcode() == Instruction::Or)
 | 
						|
    return CollectBSwapParts(I->getOperand(0), ByteValues) ||
 | 
						|
           CollectBSwapParts(I->getOperand(1), ByteValues);
 | 
						|
  
 | 
						|
  // If this is a shift by a constant int, and it is "24", then its operand
 | 
						|
  // defines a byte.  We only handle unsigned types here.
 | 
						|
  if (I->isShift() && isa<ConstantInt>(I->getOperand(1))) {
 | 
						|
    // Not shifting the entire input by N-1 bytes?
 | 
						|
    if (cast<ConstantInt>(I->getOperand(1))->getZExtValue() !=
 | 
						|
        8*(ByteValues.size()-1))
 | 
						|
      return true;
 | 
						|
    
 | 
						|
    unsigned DestNo;
 | 
						|
    if (I->getOpcode() == Instruction::Shl) {
 | 
						|
      // X << 24 defines the top byte with the lowest of the input bytes.
 | 
						|
      DestNo = ByteValues.size()-1;
 | 
						|
    } else {
 | 
						|
      // X >>u 24 defines the low byte with the highest of the input bytes.
 | 
						|
      DestNo = 0;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // If the destination byte value is already defined, the values are or'd
 | 
						|
    // together, which isn't a bswap (unless it's an or of the same bits).
 | 
						|
    if (ByteValues[DestNo] && ByteValues[DestNo] != I->getOperand(0))
 | 
						|
      return true;
 | 
						|
    ByteValues[DestNo] = I->getOperand(0);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Otherwise, we can only handle and(shift X, imm), imm).  Bail out of if we
 | 
						|
  // don't have this.
 | 
						|
  Value *Shift = 0, *ShiftLHS = 0;
 | 
						|
  ConstantInt *AndAmt = 0, *ShiftAmt = 0;
 | 
						|
  if (!match(I, m_And(m_Value(Shift), m_ConstantInt(AndAmt))) ||
 | 
						|
      !match(Shift, m_Shift(m_Value(ShiftLHS), m_ConstantInt(ShiftAmt))))
 | 
						|
    return true;
 | 
						|
  Instruction *SI = cast<Instruction>(Shift);
 | 
						|
 | 
						|
  // Make sure that the shift amount is by a multiple of 8 and isn't too big.
 | 
						|
  if (ShiftAmt->getZExtValue() & 7 ||
 | 
						|
      ShiftAmt->getZExtValue() > 8*ByteValues.size())
 | 
						|
    return true;
 | 
						|
  
 | 
						|
  // Turn 0xFF -> 0, 0xFF00 -> 1, 0xFF0000 -> 2, etc.
 | 
						|
  unsigned DestByte;
 | 
						|
  for (DestByte = 0; DestByte != ByteValues.size(); ++DestByte)
 | 
						|
    if (AndAmt->getZExtValue() == uint64_t(0xFF) << 8*DestByte)
 | 
						|
      break;
 | 
						|
  // Unknown mask for bswap.
 | 
						|
  if (DestByte == ByteValues.size()) return true;
 | 
						|
  
 | 
						|
  unsigned ShiftBytes = ShiftAmt->getZExtValue()/8;
 | 
						|
  unsigned SrcByte;
 | 
						|
  if (SI->getOpcode() == Instruction::Shl)
 | 
						|
    SrcByte = DestByte - ShiftBytes;
 | 
						|
  else
 | 
						|
    SrcByte = DestByte + ShiftBytes;
 | 
						|
  
 | 
						|
  // If the SrcByte isn't a bswapped value from the DestByte, reject it.
 | 
						|
  if (SrcByte != ByteValues.size()-DestByte-1)
 | 
						|
    return true;
 | 
						|
  
 | 
						|
  // If the destination byte value is already defined, the values are or'd
 | 
						|
  // together, which isn't a bswap (unless it's an or of the same bits).
 | 
						|
  if (ByteValues[DestByte] && ByteValues[DestByte] != SI->getOperand(0))
 | 
						|
    return true;
 | 
						|
  ByteValues[DestByte] = SI->getOperand(0);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// MatchBSwap - Given an OR instruction, check to see if this is a bswap idiom.
 | 
						|
/// If so, insert the new bswap intrinsic and return it.
 | 
						|
Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) {
 | 
						|
  // We cannot bswap one byte.
 | 
						|
  if (I.getType() == Type::Int8Ty)
 | 
						|
    return 0;
 | 
						|
  
 | 
						|
  /// ByteValues - For each byte of the result, we keep track of which value
 | 
						|
  /// defines each byte.
 | 
						|
  std::vector<Value*> ByteValues;
 | 
						|
  ByteValues.resize(TD->getTypeSize(I.getType()));
 | 
						|
    
 | 
						|
  // Try to find all the pieces corresponding to the bswap.
 | 
						|
  if (CollectBSwapParts(I.getOperand(0), ByteValues) ||
 | 
						|
      CollectBSwapParts(I.getOperand(1), ByteValues))
 | 
						|
    return 0;
 | 
						|
  
 | 
						|
  // Check to see if all of the bytes come from the same value.
 | 
						|
  Value *V = ByteValues[0];
 | 
						|
  if (V == 0) return 0;  // Didn't find a byte?  Must be zero.
 | 
						|
  
 | 
						|
  // Check to make sure that all of the bytes come from the same value.
 | 
						|
  for (unsigned i = 1, e = ByteValues.size(); i != e; ++i)
 | 
						|
    if (ByteValues[i] != V)
 | 
						|
      return 0;
 | 
						|
    
 | 
						|
  // If they do then *success* we can turn this into a bswap.  Figure out what
 | 
						|
  // bswap to make it into.
 | 
						|
  Module *M = I.getParent()->getParent()->getParent();
 | 
						|
  const char *FnName = 0;
 | 
						|
  if (I.getType() == Type::Int16Ty)
 | 
						|
    FnName = "llvm.bswap.i16";
 | 
						|
  else if (I.getType() == Type::Int32Ty)
 | 
						|
    FnName = "llvm.bswap.i32";
 | 
						|
  else if (I.getType() == Type::Int64Ty)
 | 
						|
    FnName = "llvm.bswap.i64";
 | 
						|
  else
 | 
						|
    assert(0 && "Unknown integer type!");
 | 
						|
  Constant *F = M->getOrInsertFunction(FnName, I.getType(), I.getType(), NULL);
 | 
						|
  return new CallInst(F, V);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
Instruction *InstCombiner::visitOr(BinaryOperator &I) {
 | 
						|
  bool Changed = SimplifyCommutative(I);
 | 
						|
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | 
						|
 | 
						|
  if (isa<UndefValue>(Op1))
 | 
						|
    return ReplaceInstUsesWith(I,                         // X | undef -> -1
 | 
						|
                               ConstantInt::getAllOnesValue(I.getType()));
 | 
						|
 | 
						|
  // or X, X = X
 | 
						|
  if (Op0 == Op1)
 | 
						|
    return ReplaceInstUsesWith(I, Op0);
 | 
						|
 | 
						|
  // See if we can simplify any instructions used by the instruction whose sole 
 | 
						|
  // purpose is to compute bits we don't care about.
 | 
						|
  uint64_t KnownZero, KnownOne;
 | 
						|
  if (!isa<PackedType>(I.getType()) &&
 | 
						|
      SimplifyDemandedBits(&I, cast<IntegerType>(I.getType())->getBitMask(),
 | 
						|
                           KnownZero, KnownOne))
 | 
						|
    return &I;
 | 
						|
  
 | 
						|
  // or X, -1 == -1
 | 
						|
  if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
 | 
						|
    ConstantInt *C1 = 0; Value *X = 0;
 | 
						|
    // (X & C1) | C2 --> (X | C2) & (C1|C2)
 | 
						|
    if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
 | 
						|
      Instruction *Or = BinaryOperator::createOr(X, RHS, Op0->getName());
 | 
						|
      Op0->setName("");
 | 
						|
      InsertNewInstBefore(Or, I);
 | 
						|
      return BinaryOperator::createAnd(Or, ConstantExpr::getOr(RHS, C1));
 | 
						|
    }
 | 
						|
 | 
						|
    // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
 | 
						|
    if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
 | 
						|
      std::string Op0Name = Op0->getName(); Op0->setName("");
 | 
						|
      Instruction *Or = BinaryOperator::createOr(X, RHS, Op0Name);
 | 
						|
      InsertNewInstBefore(Or, I);
 | 
						|
      return BinaryOperator::createXor(Or,
 | 
						|
                 ConstantExpr::getAnd(C1, ConstantExpr::getNot(RHS)));
 | 
						|
    }
 | 
						|
 | 
						|
    // Try to fold constant and into select arguments.
 | 
						|
    if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
 | 
						|
      if (Instruction *R = FoldOpIntoSelect(I, SI, this))
 | 
						|
        return R;
 | 
						|
    if (isa<PHINode>(Op0))
 | 
						|
      if (Instruction *NV = FoldOpIntoPhi(I))
 | 
						|
        return NV;
 | 
						|
  }
 | 
						|
 | 
						|
  Value *A = 0, *B = 0;
 | 
						|
  ConstantInt *C1 = 0, *C2 = 0;
 | 
						|
 | 
						|
  if (match(Op0, m_And(m_Value(A), m_Value(B))))
 | 
						|
    if (A == Op1 || B == Op1)    // (A & ?) | A  --> A
 | 
						|
      return ReplaceInstUsesWith(I, Op1);
 | 
						|
  if (match(Op1, m_And(m_Value(A), m_Value(B))))
 | 
						|
    if (A == Op0 || B == Op0)    // A | (A & ?)  --> A
 | 
						|
      return ReplaceInstUsesWith(I, Op0);
 | 
						|
 | 
						|
  // (A | B) | C  and  A | (B | C)                  -> bswap if possible.
 | 
						|
  // (A >> B) | (C << D)  and  (A << B) | (B >> C)  -> bswap if possible.
 | 
						|
  if (match(Op0, m_Or(m_Value(), m_Value())) ||
 | 
						|
      match(Op1, m_Or(m_Value(), m_Value())) ||
 | 
						|
      (match(Op0, m_Shift(m_Value(), m_Value())) &&
 | 
						|
       match(Op1, m_Shift(m_Value(), m_Value())))) {
 | 
						|
    if (Instruction *BSwap = MatchBSwap(I))
 | 
						|
      return BSwap;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // (X^C)|Y -> (X|Y)^C iff Y&C == 0
 | 
						|
  if (Op0->hasOneUse() && match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
 | 
						|
      MaskedValueIsZero(Op1, C1->getZExtValue())) {
 | 
						|
    Instruction *NOr = BinaryOperator::createOr(A, Op1, Op0->getName());
 | 
						|
    Op0->setName("");
 | 
						|
    return BinaryOperator::createXor(InsertNewInstBefore(NOr, I), C1);
 | 
						|
  }
 | 
						|
 | 
						|
  // Y|(X^C) -> (X|Y)^C iff Y&C == 0
 | 
						|
  if (Op1->hasOneUse() && match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
 | 
						|
      MaskedValueIsZero(Op0, C1->getZExtValue())) {
 | 
						|
    Instruction *NOr = BinaryOperator::createOr(A, Op0, Op1->getName());
 | 
						|
    Op0->setName("");
 | 
						|
    return BinaryOperator::createXor(InsertNewInstBefore(NOr, I), C1);
 | 
						|
  }
 | 
						|
 | 
						|
  // (A & C1)|(B & C2)
 | 
						|
  if (match(Op0, m_And(m_Value(A), m_ConstantInt(C1))) &&
 | 
						|
      match(Op1, m_And(m_Value(B), m_ConstantInt(C2)))) {
 | 
						|
 | 
						|
    if (A == B)  // (A & C1)|(A & C2) == A & (C1|C2)
 | 
						|
      return BinaryOperator::createAnd(A, ConstantExpr::getOr(C1, C2));
 | 
						|
 | 
						|
 | 
						|
    // If we have: ((V + N) & C1) | (V & C2)
 | 
						|
    // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
 | 
						|
    // replace with V+N.
 | 
						|
    if (C1 == ConstantExpr::getNot(C2)) {
 | 
						|
      Value *V1 = 0, *V2 = 0;
 | 
						|
      if ((C2->getZExtValue() & (C2->getZExtValue()+1)) == 0 && // C2 == 0+1+
 | 
						|
          match(A, m_Add(m_Value(V1), m_Value(V2)))) {
 | 
						|
        // Add commutes, try both ways.
 | 
						|
        if (V1 == B && MaskedValueIsZero(V2, C2->getZExtValue()))
 | 
						|
          return ReplaceInstUsesWith(I, A);
 | 
						|
        if (V2 == B && MaskedValueIsZero(V1, C2->getZExtValue()))
 | 
						|
          return ReplaceInstUsesWith(I, A);
 | 
						|
      }
 | 
						|
      // Or commutes, try both ways.
 | 
						|
      if ((C1->getZExtValue() & (C1->getZExtValue()+1)) == 0 &&
 | 
						|
          match(B, m_Add(m_Value(V1), m_Value(V2)))) {
 | 
						|
        // Add commutes, try both ways.
 | 
						|
        if (V1 == A && MaskedValueIsZero(V2, C1->getZExtValue()))
 | 
						|
          return ReplaceInstUsesWith(I, B);
 | 
						|
        if (V2 == A && MaskedValueIsZero(V1, C1->getZExtValue()))
 | 
						|
          return ReplaceInstUsesWith(I, B);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // (X >> Z) | (Y >> Z)  -> (X|Y) >> Z  for all shifts.
 | 
						|
  if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
 | 
						|
    if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
 | 
						|
      if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() && 
 | 
						|
          SI0->getOperand(1) == SI1->getOperand(1) &&
 | 
						|
          (SI0->hasOneUse() || SI1->hasOneUse())) {
 | 
						|
        Instruction *NewOp =
 | 
						|
        InsertNewInstBefore(BinaryOperator::createOr(SI0->getOperand(0),
 | 
						|
                                                     SI1->getOperand(0),
 | 
						|
                                                     SI0->getName()), I);
 | 
						|
        return BinaryOperator::create(SI1->getOpcode(), NewOp, 
 | 
						|
                                      SI1->getOperand(1));
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  if (match(Op0, m_Not(m_Value(A)))) {   // ~A | Op1
 | 
						|
    if (A == Op1)   // ~A | A == -1
 | 
						|
      return ReplaceInstUsesWith(I,
 | 
						|
                                ConstantInt::getAllOnesValue(I.getType()));
 | 
						|
  } else {
 | 
						|
    A = 0;
 | 
						|
  }
 | 
						|
  // Note, A is still live here!
 | 
						|
  if (match(Op1, m_Not(m_Value(B)))) {   // Op0 | ~B
 | 
						|
    if (Op0 == B)
 | 
						|
      return ReplaceInstUsesWith(I,
 | 
						|
                                ConstantInt::getAllOnesValue(I.getType()));
 | 
						|
 | 
						|
    // (~A | ~B) == (~(A & B)) - De Morgan's Law
 | 
						|
    if (A && isOnlyUse(Op0) && isOnlyUse(Op1)) {
 | 
						|
      Value *And = InsertNewInstBefore(BinaryOperator::createAnd(A, B,
 | 
						|
                                              I.getName()+".demorgan"), I);
 | 
						|
      return BinaryOperator::createNot(And);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
 | 
						|
  if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1))) {
 | 
						|
    if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
 | 
						|
      return R;
 | 
						|
 | 
						|
    Value *LHSVal, *RHSVal;
 | 
						|
    ConstantInt *LHSCst, *RHSCst;
 | 
						|
    ICmpInst::Predicate LHSCC, RHSCC;
 | 
						|
    if (match(Op0, m_ICmp(LHSCC, m_Value(LHSVal), m_ConstantInt(LHSCst))))
 | 
						|
      if (match(RHS, m_ICmp(RHSCC, m_Value(RHSVal), m_ConstantInt(RHSCst))))
 | 
						|
        if (LHSVal == RHSVal &&    // Found (X icmp C1) | (X icmp C2)
 | 
						|
            // icmp [us][gl]e x, cst is folded to icmp [us][gl]t elsewhere.
 | 
						|
            LHSCC != ICmpInst::ICMP_UGE && LHSCC != ICmpInst::ICMP_ULE &&
 | 
						|
            RHSCC != ICmpInst::ICMP_UGE && RHSCC != ICmpInst::ICMP_ULE &&
 | 
						|
            LHSCC != ICmpInst::ICMP_SGE && LHSCC != ICmpInst::ICMP_SLE &&
 | 
						|
            RHSCC != ICmpInst::ICMP_SGE && RHSCC != ICmpInst::ICMP_SLE) {
 | 
						|
          // Ensure that the larger constant is on the RHS.
 | 
						|
          ICmpInst::Predicate GT = ICmpInst::isSignedPredicate(LHSCC) ? 
 | 
						|
            ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
 | 
						|
          Constant *Cmp = ConstantExpr::getICmp(GT, LHSCst, RHSCst);
 | 
						|
          ICmpInst *LHS = cast<ICmpInst>(Op0);
 | 
						|
          if (cast<ConstantInt>(Cmp)->getZExtValue()) {
 | 
						|
            std::swap(LHS, RHS);
 | 
						|
            std::swap(LHSCst, RHSCst);
 | 
						|
            std::swap(LHSCC, RHSCC);
 | 
						|
          }
 | 
						|
 | 
						|
          // At this point, we know we have have two icmp instructions
 | 
						|
          // comparing a value against two constants and or'ing the result
 | 
						|
          // together.  Because of the above check, we know that we only have
 | 
						|
          // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
 | 
						|
          // FoldICmpLogical check above), that the two constants are not
 | 
						|
          // equal.
 | 
						|
          assert(LHSCst != RHSCst && "Compares not folded above?");
 | 
						|
 | 
						|
          switch (LHSCC) {
 | 
						|
          default: assert(0 && "Unknown integer condition code!");
 | 
						|
          case ICmpInst::ICMP_EQ:
 | 
						|
            switch (RHSCC) {
 | 
						|
            default: assert(0 && "Unknown integer condition code!");
 | 
						|
            case ICmpInst::ICMP_EQ:
 | 
						|
              if (LHSCst == SubOne(RHSCst)) {// (X == 13 | X == 14) -> X-13 <u 2
 | 
						|
                Constant *AddCST = ConstantExpr::getNeg(LHSCst);
 | 
						|
                Instruction *Add = BinaryOperator::createAdd(LHSVal, AddCST,
 | 
						|
                                                      LHSVal->getName()+".off");
 | 
						|
                InsertNewInstBefore(Add, I);
 | 
						|
                AddCST = ConstantExpr::getSub(AddOne(RHSCst), LHSCst);
 | 
						|
                return new ICmpInst(ICmpInst::ICMP_ULT, Add, AddCST);
 | 
						|
              }
 | 
						|
              break;                         // (X == 13 | X == 15) -> no change
 | 
						|
            case ICmpInst::ICMP_UGT:         // (X == 13 | X u> 14) -> no change
 | 
						|
            case ICmpInst::ICMP_SGT:         // (X == 13 | X s> 14) -> no change
 | 
						|
              break;
 | 
						|
            case ICmpInst::ICMP_NE:          // (X == 13 | X != 15) -> X != 15
 | 
						|
            case ICmpInst::ICMP_ULT:         // (X == 13 | X u< 15) -> X u< 15
 | 
						|
            case ICmpInst::ICMP_SLT:         // (X == 13 | X s< 15) -> X s< 15
 | 
						|
              return ReplaceInstUsesWith(I, RHS);
 | 
						|
            }
 | 
						|
            break;
 | 
						|
          case ICmpInst::ICMP_NE:
 | 
						|
            switch (RHSCC) {
 | 
						|
            default: assert(0 && "Unknown integer condition code!");
 | 
						|
            case ICmpInst::ICMP_EQ:          // (X != 13 | X == 15) -> X != 13
 | 
						|
            case ICmpInst::ICMP_UGT:         // (X != 13 | X u> 15) -> X != 13
 | 
						|
            case ICmpInst::ICMP_SGT:         // (X != 13 | X s> 15) -> X != 13
 | 
						|
              return ReplaceInstUsesWith(I, LHS);
 | 
						|
            case ICmpInst::ICMP_NE:          // (X != 13 | X != 15) -> true
 | 
						|
            case ICmpInst::ICMP_ULT:         // (X != 13 | X u< 15) -> true
 | 
						|
            case ICmpInst::ICMP_SLT:         // (X != 13 | X s< 15) -> true
 | 
						|
              return ReplaceInstUsesWith(I, ConstantInt::getTrue());
 | 
						|
            }
 | 
						|
            break;
 | 
						|
          case ICmpInst::ICMP_ULT:
 | 
						|
            switch (RHSCC) {
 | 
						|
            default: assert(0 && "Unknown integer condition code!");
 | 
						|
            case ICmpInst::ICMP_EQ:         // (X u< 13 | X == 14) -> no change
 | 
						|
              break;
 | 
						|
            case ICmpInst::ICMP_UGT:        // (X u< 13 | X u> 15) ->(X-13) u> 2
 | 
						|
              return InsertRangeTest(LHSVal, LHSCst, AddOne(RHSCst), false, 
 | 
						|
                                     false, I);
 | 
						|
            case ICmpInst::ICMP_SGT:        // (X u< 13 | X s> 15) -> no change
 | 
						|
              break;
 | 
						|
            case ICmpInst::ICMP_NE:         // (X u< 13 | X != 15) -> X != 15
 | 
						|
            case ICmpInst::ICMP_ULT:        // (X u< 13 | X u< 15) -> X u< 15
 | 
						|
              return ReplaceInstUsesWith(I, RHS);
 | 
						|
            case ICmpInst::ICMP_SLT:        // (X u< 13 | X s< 15) -> no change
 | 
						|
              break;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
          case ICmpInst::ICMP_SLT:
 | 
						|
            switch (RHSCC) {
 | 
						|
            default: assert(0 && "Unknown integer condition code!");
 | 
						|
            case ICmpInst::ICMP_EQ:         // (X s< 13 | X == 14) -> no change
 | 
						|
              break;
 | 
						|
            case ICmpInst::ICMP_SGT:        // (X s< 13 | X s> 15) ->(X-13) s> 2
 | 
						|
              return InsertRangeTest(LHSVal, LHSCst, AddOne(RHSCst), true, 
 | 
						|
                                     false, I);
 | 
						|
            case ICmpInst::ICMP_UGT:        // (X s< 13 | X u> 15) -> no change
 | 
						|
              break;
 | 
						|
            case ICmpInst::ICMP_NE:         // (X s< 13 | X != 15) -> X != 15
 | 
						|
            case ICmpInst::ICMP_SLT:        // (X s< 13 | X s< 15) -> X s< 15
 | 
						|
              return ReplaceInstUsesWith(I, RHS);
 | 
						|
            case ICmpInst::ICMP_ULT:        // (X s< 13 | X u< 15) -> no change
 | 
						|
              break;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
          case ICmpInst::ICMP_UGT:
 | 
						|
            switch (RHSCC) {
 | 
						|
            default: assert(0 && "Unknown integer condition code!");
 | 
						|
            case ICmpInst::ICMP_EQ:         // (X u> 13 | X == 15) -> X u> 13
 | 
						|
            case ICmpInst::ICMP_UGT:        // (X u> 13 | X u> 15) -> X u> 13
 | 
						|
              return ReplaceInstUsesWith(I, LHS);
 | 
						|
            case ICmpInst::ICMP_SGT:        // (X u> 13 | X s> 15) -> no change
 | 
						|
              break;
 | 
						|
            case ICmpInst::ICMP_NE:         // (X u> 13 | X != 15) -> true
 | 
						|
            case ICmpInst::ICMP_ULT:        // (X u> 13 | X u< 15) -> true
 | 
						|
              return ReplaceInstUsesWith(I, ConstantInt::getTrue());
 | 
						|
            case ICmpInst::ICMP_SLT:        // (X u> 13 | X s< 15) -> no change
 | 
						|
              break;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
          case ICmpInst::ICMP_SGT:
 | 
						|
            switch (RHSCC) {
 | 
						|
            default: assert(0 && "Unknown integer condition code!");
 | 
						|
            case ICmpInst::ICMP_EQ:         // (X s> 13 | X == 15) -> X > 13
 | 
						|
            case ICmpInst::ICMP_SGT:        // (X s> 13 | X s> 15) -> X > 13
 | 
						|
              return ReplaceInstUsesWith(I, LHS);
 | 
						|
            case ICmpInst::ICMP_UGT:        // (X s> 13 | X u> 15) -> no change
 | 
						|
              break;
 | 
						|
            case ICmpInst::ICMP_NE:         // (X s> 13 | X != 15) -> true
 | 
						|
            case ICmpInst::ICMP_SLT:        // (X s> 13 | X s< 15) -> true
 | 
						|
              return ReplaceInstUsesWith(I, ConstantInt::getTrue());
 | 
						|
            case ICmpInst::ICMP_ULT:        // (X s> 13 | X u< 15) -> no change
 | 
						|
              break;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
  }
 | 
						|
    
 | 
						|
  // fold (or (cast A), (cast B)) -> (cast (or A, B))
 | 
						|
  if (CastInst *Op0C = dyn_cast<CastInst>(Op0))
 | 
						|
    if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
 | 
						|
      if (Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ?
 | 
						|
        const Type *SrcTy = Op0C->getOperand(0)->getType();
 | 
						|
        if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
 | 
						|
            // Only do this if the casts both really cause code to be generated.
 | 
						|
            ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0), 
 | 
						|
                              I.getType(), TD) &&
 | 
						|
            ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0), 
 | 
						|
                              I.getType(), TD)) {
 | 
						|
          Instruction *NewOp = BinaryOperator::createOr(Op0C->getOperand(0),
 | 
						|
                                                        Op1C->getOperand(0),
 | 
						|
                                                        I.getName());
 | 
						|
          InsertNewInstBefore(NewOp, I);
 | 
						|
          return CastInst::create(Op0C->getOpcode(), NewOp, I.getType());
 | 
						|
        }
 | 
						|
      }
 | 
						|
      
 | 
						|
 | 
						|
  return Changed ? &I : 0;
 | 
						|
}
 | 
						|
 | 
						|
// XorSelf - Implements: X ^ X --> 0
 | 
						|
struct XorSelf {
 | 
						|
  Value *RHS;
 | 
						|
  XorSelf(Value *rhs) : RHS(rhs) {}
 | 
						|
  bool shouldApply(Value *LHS) const { return LHS == RHS; }
 | 
						|
  Instruction *apply(BinaryOperator &Xor) const {
 | 
						|
    return &Xor;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
Instruction *InstCombiner::visitXor(BinaryOperator &I) {
 | 
						|
  bool Changed = SimplifyCommutative(I);
 | 
						|
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | 
						|
 | 
						|
  if (isa<UndefValue>(Op1))
 | 
						|
    return ReplaceInstUsesWith(I, Op1);  // X ^ undef -> undef
 | 
						|
 | 
						|
  // xor X, X = 0, even if X is nested in a sequence of Xor's.
 | 
						|
  if (Instruction *Result = AssociativeOpt(I, XorSelf(Op1))) {
 | 
						|
    assert(Result == &I && "AssociativeOpt didn't work?");
 | 
						|
    return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | 
						|
  }
 | 
						|
  
 | 
						|
  // See if we can simplify any instructions used by the instruction whose sole 
 | 
						|
  // purpose is to compute bits we don't care about.
 | 
						|
  uint64_t KnownZero, KnownOne;
 | 
						|
  if (!isa<PackedType>(I.getType()) &&
 | 
						|
      SimplifyDemandedBits(&I, cast<IntegerType>(I.getType())->getBitMask(),
 | 
						|
                           KnownZero, KnownOne))
 | 
						|
    return &I;
 | 
						|
 | 
						|
  if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
 | 
						|
    // xor (icmp A, B), true = not (icmp A, B) = !icmp A, B
 | 
						|
    if (ICmpInst *ICI = dyn_cast<ICmpInst>(Op0))
 | 
						|
      if (RHS == ConstantInt::getTrue() && ICI->hasOneUse())
 | 
						|
        return new ICmpInst(ICI->getInversePredicate(),
 | 
						|
                            ICI->getOperand(0), ICI->getOperand(1));
 | 
						|
 | 
						|
    if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
 | 
						|
      // ~(c-X) == X-c-1 == X+(-c-1)
 | 
						|
      if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
 | 
						|
        if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
 | 
						|
          Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
 | 
						|
          Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
 | 
						|
                                              ConstantInt::get(I.getType(), 1));
 | 
						|
          return BinaryOperator::createAdd(Op0I->getOperand(1), ConstantRHS);
 | 
						|
        }
 | 
						|
 | 
						|
      // ~(~X & Y) --> (X | ~Y)
 | 
						|
      if (Op0I->getOpcode() == Instruction::And && RHS->isAllOnesValue()) {
 | 
						|
        if (dyn_castNotVal(Op0I->getOperand(1))) Op0I->swapOperands();
 | 
						|
        if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
 | 
						|
          Instruction *NotY =
 | 
						|
            BinaryOperator::createNot(Op0I->getOperand(1),
 | 
						|
                                      Op0I->getOperand(1)->getName()+".not");
 | 
						|
          InsertNewInstBefore(NotY, I);
 | 
						|
          return BinaryOperator::createOr(Op0NotVal, NotY);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
 | 
						|
        if (Op0I->getOpcode() == Instruction::Add) {
 | 
						|
          // ~(X-c) --> (-c-1)-X
 | 
						|
          if (RHS->isAllOnesValue()) {
 | 
						|
            Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
 | 
						|
            return BinaryOperator::createSub(
 | 
						|
                           ConstantExpr::getSub(NegOp0CI,
 | 
						|
                                             ConstantInt::get(I.getType(), 1)),
 | 
						|
                                          Op0I->getOperand(0));
 | 
						|
          }
 | 
						|
        } else if (Op0I->getOpcode() == Instruction::Or) {
 | 
						|
          // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
 | 
						|
          if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getZExtValue())) {
 | 
						|
            Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
 | 
						|
            // Anything in both C1 and C2 is known to be zero, remove it from
 | 
						|
            // NewRHS.
 | 
						|
            Constant *CommonBits = ConstantExpr::getAnd(Op0CI, RHS);
 | 
						|
            NewRHS = ConstantExpr::getAnd(NewRHS, 
 | 
						|
                                          ConstantExpr::getNot(CommonBits));
 | 
						|
            WorkList.push_back(Op0I);
 | 
						|
            I.setOperand(0, Op0I->getOperand(0));
 | 
						|
            I.setOperand(1, NewRHS);
 | 
						|
            return &I;
 | 
						|
          }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // Try to fold constant and into select arguments.
 | 
						|
    if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
 | 
						|
      if (Instruction *R = FoldOpIntoSelect(I, SI, this))
 | 
						|
        return R;
 | 
						|
    if (isa<PHINode>(Op0))
 | 
						|
      if (Instruction *NV = FoldOpIntoPhi(I))
 | 
						|
        return NV;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Value *X = dyn_castNotVal(Op0))   // ~A ^ A == -1
 | 
						|
    if (X == Op1)
 | 
						|
      return ReplaceInstUsesWith(I,
 | 
						|
                                ConstantInt::getAllOnesValue(I.getType()));
 | 
						|
 | 
						|
  if (Value *X = dyn_castNotVal(Op1))   // A ^ ~A == -1
 | 
						|
    if (X == Op0)
 | 
						|
      return ReplaceInstUsesWith(I,
 | 
						|
                                ConstantInt::getAllOnesValue(I.getType()));
 | 
						|
 | 
						|
  if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1))
 | 
						|
    if (Op1I->getOpcode() == Instruction::Or) {
 | 
						|
      if (Op1I->getOperand(0) == Op0) {              // B^(B|A) == (A|B)^B
 | 
						|
        Op1I->swapOperands();
 | 
						|
        I.swapOperands();
 | 
						|
        std::swap(Op0, Op1);
 | 
						|
      } else if (Op1I->getOperand(1) == Op0) {       // B^(A|B) == (A|B)^B
 | 
						|
        I.swapOperands();     // Simplified below.
 | 
						|
        std::swap(Op0, Op1);
 | 
						|
      }
 | 
						|
    } else if (Op1I->getOpcode() == Instruction::Xor) {
 | 
						|
      if (Op0 == Op1I->getOperand(0))                        // A^(A^B) == B
 | 
						|
        return ReplaceInstUsesWith(I, Op1I->getOperand(1));
 | 
						|
      else if (Op0 == Op1I->getOperand(1))                   // A^(B^A) == B
 | 
						|
        return ReplaceInstUsesWith(I, Op1I->getOperand(0));
 | 
						|
    } else if (Op1I->getOpcode() == Instruction::And && Op1I->hasOneUse()) {
 | 
						|
      if (Op1I->getOperand(0) == Op0)                      // A^(A&B) -> A^(B&A)
 | 
						|
        Op1I->swapOperands();
 | 
						|
      if (Op0 == Op1I->getOperand(1)) {                    // A^(B&A) -> (B&A)^A
 | 
						|
        I.swapOperands();     // Simplified below.
 | 
						|
        std::swap(Op0, Op1);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0))
 | 
						|
    if (Op0I->getOpcode() == Instruction::Or && Op0I->hasOneUse()) {
 | 
						|
      if (Op0I->getOperand(0) == Op1)                // (B|A)^B == (A|B)^B
 | 
						|
        Op0I->swapOperands();
 | 
						|
      if (Op0I->getOperand(1) == Op1) {              // (A|B)^B == A & ~B
 | 
						|
        Instruction *NotB = BinaryOperator::createNot(Op1, "tmp");
 | 
						|
        InsertNewInstBefore(NotB, I);
 | 
						|
        return BinaryOperator::createAnd(Op0I->getOperand(0), NotB);
 | 
						|
      }
 | 
						|
    } else if (Op0I->getOpcode() == Instruction::Xor) {
 | 
						|
      if (Op1 == Op0I->getOperand(0))                        // (A^B)^A == B
 | 
						|
        return ReplaceInstUsesWith(I, Op0I->getOperand(1));
 | 
						|
      else if (Op1 == Op0I->getOperand(1))                   // (B^A)^A == B
 | 
						|
        return ReplaceInstUsesWith(I, Op0I->getOperand(0));
 | 
						|
    } else if (Op0I->getOpcode() == Instruction::And && Op0I->hasOneUse()) {
 | 
						|
      if (Op0I->getOperand(0) == Op1)                      // (A&B)^A -> (B&A)^A
 | 
						|
        Op0I->swapOperands();
 | 
						|
      if (Op0I->getOperand(1) == Op1 &&                    // (B&A)^A == ~B & A
 | 
						|
          !isa<ConstantInt>(Op1)) {  // Canonical form is (B&C)^C
 | 
						|
        Instruction *N = BinaryOperator::createNot(Op0I->getOperand(0), "tmp");
 | 
						|
        InsertNewInstBefore(N, I);
 | 
						|
        return BinaryOperator::createAnd(N, Op1);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
 | 
						|
  if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
 | 
						|
    if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
 | 
						|
      return R;
 | 
						|
 | 
						|
  // fold (xor (cast A), (cast B)) -> (cast (xor A, B))
 | 
						|
  if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) 
 | 
						|
    if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
 | 
						|
      if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind?
 | 
						|
        const Type *SrcTy = Op0C->getOperand(0)->getType();
 | 
						|
        if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
 | 
						|
            // Only do this if the casts both really cause code to be generated.
 | 
						|
            ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0), 
 | 
						|
                              I.getType(), TD) &&
 | 
						|
            ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0), 
 | 
						|
                              I.getType(), TD)) {
 | 
						|
          Instruction *NewOp = BinaryOperator::createXor(Op0C->getOperand(0),
 | 
						|
                                                         Op1C->getOperand(0),
 | 
						|
                                                         I.getName());
 | 
						|
          InsertNewInstBefore(NewOp, I);
 | 
						|
          return CastInst::create(Op0C->getOpcode(), NewOp, I.getType());
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
  // (X >> Z) ^ (Y >> Z)  -> (X^Y) >> Z  for all shifts.
 | 
						|
  if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
 | 
						|
    if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
 | 
						|
      if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() && 
 | 
						|
          SI0->getOperand(1) == SI1->getOperand(1) &&
 | 
						|
          (SI0->hasOneUse() || SI1->hasOneUse())) {
 | 
						|
        Instruction *NewOp =
 | 
						|
        InsertNewInstBefore(BinaryOperator::createXor(SI0->getOperand(0),
 | 
						|
                                                      SI1->getOperand(0),
 | 
						|
                                                      SI0->getName()), I);
 | 
						|
        return BinaryOperator::create(SI1->getOpcode(), NewOp, 
 | 
						|
                                      SI1->getOperand(1));
 | 
						|
      }
 | 
						|
  }
 | 
						|
    
 | 
						|
  return Changed ? &I : 0;
 | 
						|
}
 | 
						|
 | 
						|
static bool isPositive(ConstantInt *C) {
 | 
						|
  return C->getSExtValue() >= 0;
 | 
						|
}
 | 
						|
 | 
						|
/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
 | 
						|
/// overflowed for this type.
 | 
						|
static bool AddWithOverflow(ConstantInt *&Result, ConstantInt *In1,
 | 
						|
                            ConstantInt *In2) {
 | 
						|
  Result = cast<ConstantInt>(ConstantExpr::getAdd(In1, In2));
 | 
						|
 | 
						|
  return cast<ConstantInt>(Result)->getZExtValue() <
 | 
						|
         cast<ConstantInt>(In1)->getZExtValue();
 | 
						|
}
 | 
						|
 | 
						|
/// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the
 | 
						|
/// code necessary to compute the offset from the base pointer (without adding
 | 
						|
/// in the base pointer).  Return the result as a signed integer of intptr size.
 | 
						|
static Value *EmitGEPOffset(User *GEP, Instruction &I, InstCombiner &IC) {
 | 
						|
  TargetData &TD = IC.getTargetData();
 | 
						|
  gep_type_iterator GTI = gep_type_begin(GEP);
 | 
						|
  const Type *IntPtrTy = TD.getIntPtrType();
 | 
						|
  Value *Result = Constant::getNullValue(IntPtrTy);
 | 
						|
 | 
						|
  // Build a mask for high order bits.
 | 
						|
  uint64_t PtrSizeMask = ~0ULL >> (64-TD.getPointerSize()*8);
 | 
						|
 | 
						|
  for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
 | 
						|
    Value *Op = GEP->getOperand(i);
 | 
						|
    uint64_t Size = TD.getTypeSize(GTI.getIndexedType()) & PtrSizeMask;
 | 
						|
    Constant *Scale = ConstantInt::get(IntPtrTy, Size);
 | 
						|
    if (Constant *OpC = dyn_cast<Constant>(Op)) {
 | 
						|
      if (!OpC->isNullValue()) {
 | 
						|
        OpC = ConstantExpr::getIntegerCast(OpC, IntPtrTy, true /*SExt*/);
 | 
						|
        Scale = ConstantExpr::getMul(OpC, Scale);
 | 
						|
        if (Constant *RC = dyn_cast<Constant>(Result))
 | 
						|
          Result = ConstantExpr::getAdd(RC, Scale);
 | 
						|
        else {
 | 
						|
          // Emit an add instruction.
 | 
						|
          Result = IC.InsertNewInstBefore(
 | 
						|
             BinaryOperator::createAdd(Result, Scale,
 | 
						|
                                       GEP->getName()+".offs"), I);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // Convert to correct type.
 | 
						|
      Op = IC.InsertNewInstBefore(CastInst::createSExtOrBitCast(Op, IntPtrTy,
 | 
						|
                                               Op->getName()+".c"), I);
 | 
						|
      if (Size != 1)
 | 
						|
        // We'll let instcombine(mul) convert this to a shl if possible.
 | 
						|
        Op = IC.InsertNewInstBefore(BinaryOperator::createMul(Op, Scale,
 | 
						|
                                                    GEP->getName()+".idx"), I);
 | 
						|
 | 
						|
      // Emit an add instruction.
 | 
						|
      Result = IC.InsertNewInstBefore(BinaryOperator::createAdd(Op, Result,
 | 
						|
                                                    GEP->getName()+".offs"), I);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
/// FoldGEPICmp - Fold comparisons between a GEP instruction and something
 | 
						|
/// else.  At this point we know that the GEP is on the LHS of the comparison.
 | 
						|
Instruction *InstCombiner::FoldGEPICmp(User *GEPLHS, Value *RHS,
 | 
						|
                                       ICmpInst::Predicate Cond,
 | 
						|
                                       Instruction &I) {
 | 
						|
  assert(dyn_castGetElementPtr(GEPLHS) && "LHS is not a getelementptr!");
 | 
						|
 | 
						|
  if (CastInst *CI = dyn_cast<CastInst>(RHS))
 | 
						|
    if (isa<PointerType>(CI->getOperand(0)->getType()))
 | 
						|
      RHS = CI->getOperand(0);
 | 
						|
 | 
						|
  Value *PtrBase = GEPLHS->getOperand(0);
 | 
						|
  if (PtrBase == RHS) {
 | 
						|
    // As an optimization, we don't actually have to compute the actual value of
 | 
						|
    // OFFSET if this is a icmp_eq or icmp_ne comparison, just return whether 
 | 
						|
    // each index is zero or not.
 | 
						|
    if (Cond == ICmpInst::ICMP_EQ || Cond == ICmpInst::ICMP_NE) {
 | 
						|
      Instruction *InVal = 0;
 | 
						|
      gep_type_iterator GTI = gep_type_begin(GEPLHS);
 | 
						|
      for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i, ++GTI) {
 | 
						|
        bool EmitIt = true;
 | 
						|
        if (Constant *C = dyn_cast<Constant>(GEPLHS->getOperand(i))) {
 | 
						|
          if (isa<UndefValue>(C))  // undef index -> undef.
 | 
						|
            return ReplaceInstUsesWith(I, UndefValue::get(I.getType()));
 | 
						|
          if (C->isNullValue())
 | 
						|
            EmitIt = false;
 | 
						|
          else if (TD->getTypeSize(GTI.getIndexedType()) == 0) {
 | 
						|
            EmitIt = false;  // This is indexing into a zero sized array?
 | 
						|
          } else if (isa<ConstantInt>(C))
 | 
						|
            return ReplaceInstUsesWith(I, // No comparison is needed here.
 | 
						|
                                 ConstantInt::get(Type::Int1Ty, 
 | 
						|
                                                  Cond == ICmpInst::ICMP_NE));
 | 
						|
        }
 | 
						|
 | 
						|
        if (EmitIt) {
 | 
						|
          Instruction *Comp =
 | 
						|
            new ICmpInst(Cond, GEPLHS->getOperand(i),
 | 
						|
                    Constant::getNullValue(GEPLHS->getOperand(i)->getType()));
 | 
						|
          if (InVal == 0)
 | 
						|
            InVal = Comp;
 | 
						|
          else {
 | 
						|
            InVal = InsertNewInstBefore(InVal, I);
 | 
						|
            InsertNewInstBefore(Comp, I);
 | 
						|
            if (Cond == ICmpInst::ICMP_NE)   // True if any are unequal
 | 
						|
              InVal = BinaryOperator::createOr(InVal, Comp);
 | 
						|
            else                              // True if all are equal
 | 
						|
              InVal = BinaryOperator::createAnd(InVal, Comp);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (InVal)
 | 
						|
        return InVal;
 | 
						|
      else
 | 
						|
        // No comparison is needed here, all indexes = 0
 | 
						|
        ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 
 | 
						|
                                                Cond == ICmpInst::ICMP_EQ));
 | 
						|
    }
 | 
						|
 | 
						|
    // Only lower this if the icmp is the only user of the GEP or if we expect
 | 
						|
    // the result to fold to a constant!
 | 
						|
    if (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) {
 | 
						|
      // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
 | 
						|
      Value *Offset = EmitGEPOffset(GEPLHS, I, *this);
 | 
						|
      return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
 | 
						|
                          Constant::getNullValue(Offset->getType()));
 | 
						|
    }
 | 
						|
  } else if (User *GEPRHS = dyn_castGetElementPtr(RHS)) {
 | 
						|
    // If the base pointers are different, but the indices are the same, just
 | 
						|
    // compare the base pointer.
 | 
						|
    if (PtrBase != GEPRHS->getOperand(0)) {
 | 
						|
      bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
 | 
						|
      IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
 | 
						|
                        GEPRHS->getOperand(0)->getType();
 | 
						|
      if (IndicesTheSame)
 | 
						|
        for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
 | 
						|
          if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
 | 
						|
            IndicesTheSame = false;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
 | 
						|
      // If all indices are the same, just compare the base pointers.
 | 
						|
      if (IndicesTheSame)
 | 
						|
        return new ICmpInst(ICmpInst::getSignedPredicate(Cond), 
 | 
						|
                            GEPLHS->getOperand(0), GEPRHS->getOperand(0));
 | 
						|
 | 
						|
      // Otherwise, the base pointers are different and the indices are
 | 
						|
      // different, bail out.
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    // If one of the GEPs has all zero indices, recurse.
 | 
						|
    bool AllZeros = true;
 | 
						|
    for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
 | 
						|
      if (!isa<Constant>(GEPLHS->getOperand(i)) ||
 | 
						|
          !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
 | 
						|
        AllZeros = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    if (AllZeros)
 | 
						|
      return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
 | 
						|
                          ICmpInst::getSwappedPredicate(Cond), I);
 | 
						|
 | 
						|
    // If the other GEP has all zero indices, recurse.
 | 
						|
    AllZeros = true;
 | 
						|
    for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
 | 
						|
      if (!isa<Constant>(GEPRHS->getOperand(i)) ||
 | 
						|
          !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
 | 
						|
        AllZeros = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    if (AllZeros)
 | 
						|
      return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
 | 
						|
 | 
						|
    if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
 | 
						|
      // If the GEPs only differ by one index, compare it.
 | 
						|
      unsigned NumDifferences = 0;  // Keep track of # differences.
 | 
						|
      unsigned DiffOperand = 0;     // The operand that differs.
 | 
						|
      for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
 | 
						|
        if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
 | 
						|
          if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
 | 
						|
                   GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
 | 
						|
            // Irreconcilable differences.
 | 
						|
            NumDifferences = 2;
 | 
						|
            break;
 | 
						|
          } else {
 | 
						|
            if (NumDifferences++) break;
 | 
						|
            DiffOperand = i;
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
      if (NumDifferences == 0)   // SAME GEP?
 | 
						|
        return ReplaceInstUsesWith(I, // No comparison is needed here.
 | 
						|
                                   ConstantInt::get(Type::Int1Ty, 
 | 
						|
                                                    Cond == ICmpInst::ICMP_EQ));
 | 
						|
      else if (NumDifferences == 1) {
 | 
						|
        Value *LHSV = GEPLHS->getOperand(DiffOperand);
 | 
						|
        Value *RHSV = GEPRHS->getOperand(DiffOperand);
 | 
						|
        // Make sure we do a signed comparison here.
 | 
						|
        return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Only lower this if the icmp is the only user of the GEP or if we expect
 | 
						|
    // the result to fold to a constant!
 | 
						|
    if ((isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
 | 
						|
        (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
 | 
						|
      // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
 | 
						|
      Value *L = EmitGEPOffset(GEPLHS, I, *this);
 | 
						|
      Value *R = EmitGEPOffset(GEPRHS, I, *this);
 | 
						|
      return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
 | 
						|
  bool Changed = SimplifyCompare(I);
 | 
						|
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | 
						|
 | 
						|
  // Fold trivial predicates.
 | 
						|
  if (I.getPredicate() == FCmpInst::FCMP_FALSE)
 | 
						|
    return ReplaceInstUsesWith(I, Constant::getNullValue(Type::Int1Ty));
 | 
						|
  if (I.getPredicate() == FCmpInst::FCMP_TRUE)
 | 
						|
    return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
 | 
						|
  
 | 
						|
  // Simplify 'fcmp pred X, X'
 | 
						|
  if (Op0 == Op1) {
 | 
						|
    switch (I.getPredicate()) {
 | 
						|
    default: assert(0 && "Unknown predicate!");
 | 
						|
    case FCmpInst::FCMP_UEQ:    // True if unordered or equal
 | 
						|
    case FCmpInst::FCMP_UGE:    // True if unordered, greater than, or equal
 | 
						|
    case FCmpInst::FCMP_ULE:    // True if unordered, less than, or equal
 | 
						|
      return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
 | 
						|
    case FCmpInst::FCMP_OGT:    // True if ordered and greater than
 | 
						|
    case FCmpInst::FCMP_OLT:    // True if ordered and less than
 | 
						|
    case FCmpInst::FCMP_ONE:    // True if ordered and operands are unequal
 | 
						|
      return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
 | 
						|
      
 | 
						|
    case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
 | 
						|
    case FCmpInst::FCMP_ULT:    // True if unordered or less than
 | 
						|
    case FCmpInst::FCMP_UGT:    // True if unordered or greater than
 | 
						|
    case FCmpInst::FCMP_UNE:    // True if unordered or not equal
 | 
						|
      // Canonicalize these to be 'fcmp uno %X, 0.0'.
 | 
						|
      I.setPredicate(FCmpInst::FCMP_UNO);
 | 
						|
      I.setOperand(1, Constant::getNullValue(Op0->getType()));
 | 
						|
      return &I;
 | 
						|
      
 | 
						|
    case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
 | 
						|
    case FCmpInst::FCMP_OEQ:    // True if ordered and equal
 | 
						|
    case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
 | 
						|
    case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
 | 
						|
      // Canonicalize these to be 'fcmp ord %X, 0.0'.
 | 
						|
      I.setPredicate(FCmpInst::FCMP_ORD);
 | 
						|
      I.setOperand(1, Constant::getNullValue(Op0->getType()));
 | 
						|
      return &I;
 | 
						|
    }
 | 
						|
  }
 | 
						|
    
 | 
						|
  if (isa<UndefValue>(Op1))                  // fcmp pred X, undef -> undef
 | 
						|
    return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty));
 | 
						|
 | 
						|
  // Handle fcmp with constant RHS
 | 
						|
  if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
 | 
						|
    if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
 | 
						|
      switch (LHSI->getOpcode()) {
 | 
						|
      case Instruction::PHI:
 | 
						|
        if (Instruction *NV = FoldOpIntoPhi(I))
 | 
						|
          return NV;
 | 
						|
        break;
 | 
						|
      case Instruction::Select:
 | 
						|
        // If either operand of the select is a constant, we can fold the
 | 
						|
        // comparison into the select arms, which will cause one to be
 | 
						|
        // constant folded and the select turned into a bitwise or.
 | 
						|
        Value *Op1 = 0, *Op2 = 0;
 | 
						|
        if (LHSI->hasOneUse()) {
 | 
						|
          if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
 | 
						|
            // Fold the known value into the constant operand.
 | 
						|
            Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
 | 
						|
            // Insert a new FCmp of the other select operand.
 | 
						|
            Op2 = InsertNewInstBefore(new FCmpInst(I.getPredicate(),
 | 
						|
                                                      LHSI->getOperand(2), RHSC,
 | 
						|
                                                      I.getName()), I);
 | 
						|
          } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
 | 
						|
            // Fold the known value into the constant operand.
 | 
						|
            Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
 | 
						|
            // Insert a new FCmp of the other select operand.
 | 
						|
            Op1 = InsertNewInstBefore(new FCmpInst(I.getPredicate(),
 | 
						|
                                                      LHSI->getOperand(1), RHSC,
 | 
						|
                                                      I.getName()), I);
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        if (Op1)
 | 
						|
          return new SelectInst(LHSI->getOperand(0), Op1, Op2);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed ? &I : 0;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
 | 
						|
  bool Changed = SimplifyCompare(I);
 | 
						|
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | 
						|
  const Type *Ty = Op0->getType();
 | 
						|
 | 
						|
  // icmp X, X
 | 
						|
  if (Op0 == Op1)
 | 
						|
    return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 
 | 
						|
                                                   isTrueWhenEqual(I)));
 | 
						|
 | 
						|
  if (isa<UndefValue>(Op1))                  // X icmp undef -> undef
 | 
						|
    return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty));
 | 
						|
 | 
						|
  // icmp of GlobalValues can never equal each other as long as they aren't
 | 
						|
  // external weak linkage type.
 | 
						|
  if (GlobalValue *GV0 = dyn_cast<GlobalValue>(Op0))
 | 
						|
    if (GlobalValue *GV1 = dyn_cast<GlobalValue>(Op1))
 | 
						|
      if (!GV0->hasExternalWeakLinkage() || !GV1->hasExternalWeakLinkage())
 | 
						|
        return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
 | 
						|
                                                       !isTrueWhenEqual(I)));
 | 
						|
 | 
						|
  // icmp <global/alloca*/null>, <global/alloca*/null> - Global/Stack value
 | 
						|
  // addresses never equal each other!  We already know that Op0 != Op1.
 | 
						|
  if ((isa<GlobalValue>(Op0) || isa<AllocaInst>(Op0) ||
 | 
						|
       isa<ConstantPointerNull>(Op0)) &&
 | 
						|
      (isa<GlobalValue>(Op1) || isa<AllocaInst>(Op1) ||
 | 
						|
       isa<ConstantPointerNull>(Op1)))
 | 
						|
    return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 
 | 
						|
                                                   !isTrueWhenEqual(I)));
 | 
						|
 | 
						|
  // icmp's with boolean values can always be turned into bitwise operations
 | 
						|
  if (Ty == Type::Int1Ty) {
 | 
						|
    switch (I.getPredicate()) {
 | 
						|
    default: assert(0 && "Invalid icmp instruction!");
 | 
						|
    case ICmpInst::ICMP_EQ: {               // icmp eq bool %A, %B -> ~(A^B)
 | 
						|
      Instruction *Xor = BinaryOperator::createXor(Op0, Op1, I.getName()+"tmp");
 | 
						|
      InsertNewInstBefore(Xor, I);
 | 
						|
      return BinaryOperator::createNot(Xor);
 | 
						|
    }
 | 
						|
    case ICmpInst::ICMP_NE:                  // icmp eq bool %A, %B -> A^B
 | 
						|
      return BinaryOperator::createXor(Op0, Op1);
 | 
						|
 | 
						|
    case ICmpInst::ICMP_UGT:
 | 
						|
    case ICmpInst::ICMP_SGT:
 | 
						|
      std::swap(Op0, Op1);                   // Change icmp gt -> icmp lt
 | 
						|
      // FALL THROUGH
 | 
						|
    case ICmpInst::ICMP_ULT:
 | 
						|
    case ICmpInst::ICMP_SLT: {               // icmp lt bool A, B -> ~X & Y
 | 
						|
      Instruction *Not = BinaryOperator::createNot(Op0, I.getName()+"tmp");
 | 
						|
      InsertNewInstBefore(Not, I);
 | 
						|
      return BinaryOperator::createAnd(Not, Op1);
 | 
						|
    }
 | 
						|
    case ICmpInst::ICMP_UGE:
 | 
						|
    case ICmpInst::ICMP_SGE:
 | 
						|
      std::swap(Op0, Op1);                   // Change icmp ge -> icmp le
 | 
						|
      // FALL THROUGH
 | 
						|
    case ICmpInst::ICMP_ULE:
 | 
						|
    case ICmpInst::ICMP_SLE: {               //  icmp le bool %A, %B -> ~A | B
 | 
						|
      Instruction *Not = BinaryOperator::createNot(Op0, I.getName()+"tmp");
 | 
						|
      InsertNewInstBefore(Not, I);
 | 
						|
      return BinaryOperator::createOr(Not, Op1);
 | 
						|
    }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // See if we are doing a comparison between a constant and an instruction that
 | 
						|
  // can be folded into the comparison.
 | 
						|
  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
 | 
						|
    switch (I.getPredicate()) {
 | 
						|
    default: break;
 | 
						|
    case ICmpInst::ICMP_ULT:                        // A <u MIN -> FALSE
 | 
						|
      if (CI->isMinValue(false))
 | 
						|
        return ReplaceInstUsesWith(I, ConstantInt::getFalse());
 | 
						|
      if (CI->isMaxValue(false))                    // A <u MAX -> A != MAX
 | 
						|
        return new ICmpInst(ICmpInst::ICMP_NE, Op0,Op1);
 | 
						|
      if (isMinValuePlusOne(CI,false))              // A <u MIN+1 -> A == MIN
 | 
						|
        return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI));
 | 
						|
      break;
 | 
						|
 | 
						|
    case ICmpInst::ICMP_SLT:
 | 
						|
      if (CI->isMinValue(true))                    // A <s MIN -> FALSE
 | 
						|
        return ReplaceInstUsesWith(I, ConstantInt::getFalse());
 | 
						|
      if (CI->isMaxValue(true))                    // A <s MAX -> A != MAX
 | 
						|
        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
 | 
						|
      if (isMinValuePlusOne(CI,true))              // A <s MIN+1 -> A == MIN
 | 
						|
        return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI));
 | 
						|
      break;
 | 
						|
 | 
						|
    case ICmpInst::ICMP_UGT:
 | 
						|
      if (CI->isMaxValue(false))                  // A >u MAX -> FALSE
 | 
						|
        return ReplaceInstUsesWith(I, ConstantInt::getFalse());
 | 
						|
      if (CI->isMinValue(false))                  // A >u MIN -> A != MIN
 | 
						|
        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
 | 
						|
      if (isMaxValueMinusOne(CI, false))          // A >u MAX-1 -> A == MAX
 | 
						|
        return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI));
 | 
						|
      break;
 | 
						|
 | 
						|
    case ICmpInst::ICMP_SGT:
 | 
						|
      if (CI->isMaxValue(true))                   // A >s MAX -> FALSE
 | 
						|
        return ReplaceInstUsesWith(I, ConstantInt::getFalse());
 | 
						|
      if (CI->isMinValue(true))                   // A >s MIN -> A != MIN
 | 
						|
        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
 | 
						|
      if (isMaxValueMinusOne(CI, true))           // A >s MAX-1 -> A == MAX
 | 
						|
        return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI));
 | 
						|
      break;
 | 
						|
 | 
						|
    case ICmpInst::ICMP_ULE:
 | 
						|
      if (CI->isMaxValue(false))                 // A <=u MAX -> TRUE
 | 
						|
        return ReplaceInstUsesWith(I, ConstantInt::getTrue());
 | 
						|
      if (CI->isMinValue(false))                 // A <=u MIN -> A == MIN
 | 
						|
        return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
 | 
						|
      if (isMaxValueMinusOne(CI,false))          // A <=u MAX-1 -> A != MAX
 | 
						|
        return new ICmpInst(ICmpInst::ICMP_NE, Op0, AddOne(CI));
 | 
						|
      break;
 | 
						|
 | 
						|
    case ICmpInst::ICMP_SLE:
 | 
						|
      if (CI->isMaxValue(true))                  // A <=s MAX -> TRUE
 | 
						|
        return ReplaceInstUsesWith(I, ConstantInt::getTrue());
 | 
						|
      if (CI->isMinValue(true))                  // A <=s MIN -> A == MIN
 | 
						|
        return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
 | 
						|
      if (isMaxValueMinusOne(CI,true))           // A <=s MAX-1 -> A != MAX
 | 
						|
        return new ICmpInst(ICmpInst::ICMP_NE, Op0, AddOne(CI));
 | 
						|
      break;
 | 
						|
 | 
						|
    case ICmpInst::ICMP_UGE:
 | 
						|
      if (CI->isMinValue(false))                 // A >=u MIN -> TRUE
 | 
						|
        return ReplaceInstUsesWith(I, ConstantInt::getTrue());
 | 
						|
      if (CI->isMaxValue(false))                 // A >=u MAX -> A == MAX
 | 
						|
        return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
 | 
						|
      if (isMinValuePlusOne(CI,false))           // A >=u MIN-1 -> A != MIN
 | 
						|
        return new ICmpInst(ICmpInst::ICMP_NE, Op0, SubOne(CI));
 | 
						|
      break;
 | 
						|
 | 
						|
    case ICmpInst::ICMP_SGE:
 | 
						|
      if (CI->isMinValue(true))                  // A >=s MIN -> TRUE
 | 
						|
        return ReplaceInstUsesWith(I, ConstantInt::getTrue());
 | 
						|
      if (CI->isMaxValue(true))                  // A >=s MAX -> A == MAX
 | 
						|
        return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
 | 
						|
      if (isMinValuePlusOne(CI,true))            // A >=s MIN-1 -> A != MIN
 | 
						|
        return new ICmpInst(ICmpInst::ICMP_NE, Op0, SubOne(CI));
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // If we still have a icmp le or icmp ge instruction, turn it into the
 | 
						|
    // appropriate icmp lt or icmp gt instruction.  Since the border cases have
 | 
						|
    // already been handled above, this requires little checking.
 | 
						|
    //
 | 
						|
    if (I.getPredicate() == ICmpInst::ICMP_ULE)
 | 
						|
      return new ICmpInst(ICmpInst::ICMP_ULT, Op0, AddOne(CI));
 | 
						|
    if (I.getPredicate() == ICmpInst::ICMP_SLE)
 | 
						|
      return new ICmpInst(ICmpInst::ICMP_SLT, Op0, AddOne(CI));
 | 
						|
    if (I.getPredicate() == ICmpInst::ICMP_UGE)
 | 
						|
      return new ICmpInst( ICmpInst::ICMP_UGT, Op0, SubOne(CI));
 | 
						|
    if (I.getPredicate() == ICmpInst::ICMP_SGE)
 | 
						|
      return new ICmpInst(ICmpInst::ICMP_SGT, Op0, SubOne(CI));
 | 
						|
    
 | 
						|
    // See if we can fold the comparison based on bits known to be zero or one
 | 
						|
    // in the input.
 | 
						|
    uint64_t KnownZero, KnownOne;
 | 
						|
    if (SimplifyDemandedBits(Op0, cast<IntegerType>(Ty)->getBitMask(),
 | 
						|
                             KnownZero, KnownOne, 0))
 | 
						|
      return &I;
 | 
						|
        
 | 
						|
    // Given the known and unknown bits, compute a range that the LHS could be
 | 
						|
    // in.
 | 
						|
    if (KnownOne | KnownZero) {
 | 
						|
      // Compute the Min, Max and RHS values based on the known bits. For the
 | 
						|
      // EQ and NE we use unsigned values.
 | 
						|
      uint64_t UMin = 0, UMax = 0, URHSVal = 0;
 | 
						|
      int64_t SMin = 0, SMax = 0, SRHSVal = 0;
 | 
						|
      if (ICmpInst::isSignedPredicate(I.getPredicate())) {
 | 
						|
        SRHSVal = CI->getSExtValue();
 | 
						|
        ComputeSignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne, SMin, 
 | 
						|
                                               SMax);
 | 
						|
      } else {
 | 
						|
        URHSVal = CI->getZExtValue();
 | 
						|
        ComputeUnsignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne, UMin, 
 | 
						|
                                                 UMax);
 | 
						|
      }
 | 
						|
      switch (I.getPredicate()) {  // LE/GE have been folded already.
 | 
						|
      default: assert(0 && "Unknown icmp opcode!");
 | 
						|
      case ICmpInst::ICMP_EQ:
 | 
						|
        if (UMax < URHSVal || UMin > URHSVal)
 | 
						|
          return ReplaceInstUsesWith(I, ConstantInt::getFalse());
 | 
						|
        break;
 | 
						|
      case ICmpInst::ICMP_NE:
 | 
						|
        if (UMax < URHSVal || UMin > URHSVal)
 | 
						|
          return ReplaceInstUsesWith(I, ConstantInt::getTrue());
 | 
						|
        break;
 | 
						|
      case ICmpInst::ICMP_ULT:
 | 
						|
        if (UMax < URHSVal)
 | 
						|
          return ReplaceInstUsesWith(I, ConstantInt::getTrue());
 | 
						|
        if (UMin > URHSVal)
 | 
						|
          return ReplaceInstUsesWith(I, ConstantInt::getFalse());
 | 
						|
        break;
 | 
						|
      case ICmpInst::ICMP_UGT:
 | 
						|
        if (UMin > URHSVal)
 | 
						|
          return ReplaceInstUsesWith(I, ConstantInt::getTrue());
 | 
						|
        if (UMax < URHSVal)
 | 
						|
          return ReplaceInstUsesWith(I, ConstantInt::getFalse());
 | 
						|
        break;
 | 
						|
      case ICmpInst::ICMP_SLT:
 | 
						|
        if (SMax < SRHSVal)
 | 
						|
          return ReplaceInstUsesWith(I, ConstantInt::getTrue());
 | 
						|
        if (SMin > SRHSVal)
 | 
						|
          return ReplaceInstUsesWith(I, ConstantInt::getFalse());
 | 
						|
        break;
 | 
						|
      case ICmpInst::ICMP_SGT: 
 | 
						|
        if (SMin > SRHSVal)
 | 
						|
          return ReplaceInstUsesWith(I, ConstantInt::getTrue());
 | 
						|
        if (SMax < SRHSVal)
 | 
						|
          return ReplaceInstUsesWith(I, ConstantInt::getFalse());
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
          
 | 
						|
    // Since the RHS is a ConstantInt (CI), if the left hand side is an 
 | 
						|
    // instruction, see if that instruction also has constants so that the 
 | 
						|
    // instruction can be folded into the icmp 
 | 
						|
    if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
 | 
						|
      switch (LHSI->getOpcode()) {
 | 
						|
      case Instruction::And:
 | 
						|
        if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
 | 
						|
            LHSI->getOperand(0)->hasOneUse()) {
 | 
						|
          ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
 | 
						|
 | 
						|
          // If the LHS is an AND of a truncating cast, we can widen the
 | 
						|
          // and/compare to be the input width without changing the value
 | 
						|
          // produced, eliminating a cast.
 | 
						|
          if (CastInst *Cast = dyn_cast<CastInst>(LHSI->getOperand(0))) {
 | 
						|
            // We can do this transformation if either the AND constant does not
 | 
						|
            // have its sign bit set or if it is an equality comparison. 
 | 
						|
            // Extending a relational comparison when we're checking the sign
 | 
						|
            // bit would not work.
 | 
						|
            if (Cast->hasOneUse() && isa<TruncInst>(Cast) &&
 | 
						|
                (I.isEquality() ||
 | 
						|
                 (AndCST->getZExtValue() == (uint64_t)AndCST->getSExtValue()) &&
 | 
						|
                 (CI->getZExtValue() == (uint64_t)CI->getSExtValue()))) {
 | 
						|
              ConstantInt *NewCST;
 | 
						|
              ConstantInt *NewCI;
 | 
						|
              NewCST = ConstantInt::get(Cast->getOperand(0)->getType(),
 | 
						|
                                         AndCST->getZExtValue());
 | 
						|
              NewCI = ConstantInt::get(Cast->getOperand(0)->getType(),
 | 
						|
                                        CI->getZExtValue());
 | 
						|
              Instruction *NewAnd = 
 | 
						|
                BinaryOperator::createAnd(Cast->getOperand(0), NewCST, 
 | 
						|
                                          LHSI->getName());
 | 
						|
              InsertNewInstBefore(NewAnd, I);
 | 
						|
              return new ICmpInst(I.getPredicate(), NewAnd, NewCI);
 | 
						|
            }
 | 
						|
          }
 | 
						|
          
 | 
						|
          // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
 | 
						|
          // could exist), turn it into (X & (C2 << C1)) != (C3 << C1).  This
 | 
						|
          // happens a LOT in code produced by the C front-end, for bitfield
 | 
						|
          // access.
 | 
						|
          BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
 | 
						|
          if (Shift && !Shift->isShift())
 | 
						|
            Shift = 0;
 | 
						|
 | 
						|
          ConstantInt *ShAmt;
 | 
						|
          ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0;
 | 
						|
          const Type *Ty = Shift ? Shift->getType() : 0;  // Type of the shift.
 | 
						|
          const Type *AndTy = AndCST->getType();          // Type of the and.
 | 
						|
 | 
						|
          // We can fold this as long as we can't shift unknown bits
 | 
						|
          // into the mask.  This can only happen with signed shift
 | 
						|
          // rights, as they sign-extend.
 | 
						|
          if (ShAmt) {
 | 
						|
            bool CanFold = Shift->isLogicalShift();
 | 
						|
            if (!CanFold) {
 | 
						|
              // To test for the bad case of the signed shr, see if any
 | 
						|
              // of the bits shifted in could be tested after the mask.
 | 
						|
              int ShAmtVal = Ty->getPrimitiveSizeInBits()-ShAmt->getZExtValue();
 | 
						|
              if (ShAmtVal < 0) ShAmtVal = 0; // Out of range shift.
 | 
						|
 | 
						|
              Constant *OShAmt = ConstantInt::get(AndTy, ShAmtVal);
 | 
						|
              Constant *ShVal =
 | 
						|
                ConstantExpr::getShl(ConstantInt::getAllOnesValue(AndTy), 
 | 
						|
                                     OShAmt);
 | 
						|
              if (ConstantExpr::getAnd(ShVal, AndCST)->isNullValue())
 | 
						|
                CanFold = true;
 | 
						|
            }
 | 
						|
 | 
						|
            if (CanFold) {
 | 
						|
              Constant *NewCst;
 | 
						|
              if (Shift->getOpcode() == Instruction::Shl)
 | 
						|
                NewCst = ConstantExpr::getLShr(CI, ShAmt);
 | 
						|
              else
 | 
						|
                NewCst = ConstantExpr::getShl(CI, ShAmt);
 | 
						|
 | 
						|
              // Check to see if we are shifting out any of the bits being
 | 
						|
              // compared.
 | 
						|
              if (ConstantExpr::get(Shift->getOpcode(), NewCst, ShAmt) != CI){
 | 
						|
                // If we shifted bits out, the fold is not going to work out.
 | 
						|
                // As a special case, check to see if this means that the
 | 
						|
                // result is always true or false now.
 | 
						|
                if (I.getPredicate() == ICmpInst::ICMP_EQ)
 | 
						|
                  return ReplaceInstUsesWith(I, ConstantInt::getFalse());
 | 
						|
                if (I.getPredicate() == ICmpInst::ICMP_NE)
 | 
						|
                  return ReplaceInstUsesWith(I, ConstantInt::getTrue());
 | 
						|
              } else {
 | 
						|
                I.setOperand(1, NewCst);
 | 
						|
                Constant *NewAndCST;
 | 
						|
                if (Shift->getOpcode() == Instruction::Shl)
 | 
						|
                  NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt);
 | 
						|
                else
 | 
						|
                  NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
 | 
						|
                LHSI->setOperand(1, NewAndCST);
 | 
						|
                LHSI->setOperand(0, Shift->getOperand(0));
 | 
						|
                WorkList.push_back(Shift); // Shift is dead.
 | 
						|
                AddUsesToWorkList(I);
 | 
						|
                return &I;
 | 
						|
              }
 | 
						|
            }
 | 
						|
          }
 | 
						|
          
 | 
						|
          // Turn ((X >> Y) & C) == 0  into  (X & (C << Y)) == 0.  The later is
 | 
						|
          // preferable because it allows the C<<Y expression to be hoisted out
 | 
						|
          // of a loop if Y is invariant and X is not.
 | 
						|
          if (Shift && Shift->hasOneUse() && CI->isNullValue() &&
 | 
						|
              I.isEquality() && !Shift->isArithmeticShift() &&
 | 
						|
              isa<Instruction>(Shift->getOperand(0))) {
 | 
						|
            // Compute C << Y.
 | 
						|
            Value *NS;
 | 
						|
            if (Shift->getOpcode() == Instruction::LShr) {
 | 
						|
              NS = BinaryOperator::createShl(AndCST, 
 | 
						|
                                          Shift->getOperand(1), "tmp");
 | 
						|
            } else {
 | 
						|
              // Insert a logical shift.
 | 
						|
              NS = BinaryOperator::createLShr(AndCST,
 | 
						|
                                          Shift->getOperand(1), "tmp");
 | 
						|
            }
 | 
						|
            InsertNewInstBefore(cast<Instruction>(NS), I);
 | 
						|
 | 
						|
            // Compute X & (C << Y).
 | 
						|
            Instruction *NewAnd = BinaryOperator::createAnd(
 | 
						|
                Shift->getOperand(0), NS, LHSI->getName());
 | 
						|
            InsertNewInstBefore(NewAnd, I);
 | 
						|
            
 | 
						|
            I.setOperand(0, NewAnd);
 | 
						|
            return &I;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        break;
 | 
						|
 | 
						|
      case Instruction::Shl:         // (icmp pred (shl X, ShAmt), CI)
 | 
						|
        if (ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
 | 
						|
          if (I.isEquality()) {
 | 
						|
            unsigned TypeBits = CI->getType()->getPrimitiveSizeInBits();
 | 
						|
 | 
						|
            // Check that the shift amount is in range.  If not, don't perform
 | 
						|
            // undefined shifts.  When the shift is visited it will be
 | 
						|
            // simplified.
 | 
						|
            if (ShAmt->getZExtValue() >= TypeBits)
 | 
						|
              break;
 | 
						|
 | 
						|
            // If we are comparing against bits always shifted out, the
 | 
						|
            // comparison cannot succeed.
 | 
						|
            Constant *Comp =
 | 
						|
              ConstantExpr::getShl(ConstantExpr::getLShr(CI, ShAmt), ShAmt);
 | 
						|
            if (Comp != CI) {// Comparing against a bit that we know is zero.
 | 
						|
              bool IsICMP_NE = I.getPredicate() == ICmpInst::ICMP_NE;
 | 
						|
              Constant *Cst = ConstantInt::get(Type::Int1Ty, IsICMP_NE);
 | 
						|
              return ReplaceInstUsesWith(I, Cst);
 | 
						|
            }
 | 
						|
 | 
						|
            if (LHSI->hasOneUse()) {
 | 
						|
              // Otherwise strength reduce the shift into an and.
 | 
						|
              unsigned ShAmtVal = (unsigned)ShAmt->getZExtValue();
 | 
						|
              uint64_t Val = (1ULL << (TypeBits-ShAmtVal))-1;
 | 
						|
              Constant *Mask = ConstantInt::get(CI->getType(), Val);
 | 
						|
 | 
						|
              Instruction *AndI =
 | 
						|
                BinaryOperator::createAnd(LHSI->getOperand(0),
 | 
						|
                                          Mask, LHSI->getName()+".mask");
 | 
						|
              Value *And = InsertNewInstBefore(AndI, I);
 | 
						|
              return new ICmpInst(I.getPredicate(), And,
 | 
						|
                                     ConstantExpr::getLShr(CI, ShAmt));
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
        break;
 | 
						|
 | 
						|
      case Instruction::LShr:         // (icmp pred (shr X, ShAmt), CI)
 | 
						|
      case Instruction::AShr:
 | 
						|
        if (ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
 | 
						|
          if (I.isEquality()) {
 | 
						|
            // Check that the shift amount is in range.  If not, don't perform
 | 
						|
            // undefined shifts.  When the shift is visited it will be
 | 
						|
            // simplified.
 | 
						|
            unsigned TypeBits = CI->getType()->getPrimitiveSizeInBits();
 | 
						|
            if (ShAmt->getZExtValue() >= TypeBits)
 | 
						|
              break;
 | 
						|
 | 
						|
            // If we are comparing against bits always shifted out, the
 | 
						|
            // comparison cannot succeed.
 | 
						|
            Constant *Comp;
 | 
						|
            if (LHSI->getOpcode() == Instruction::LShr) 
 | 
						|
              Comp = ConstantExpr::getLShr(ConstantExpr::getShl(CI, ShAmt), 
 | 
						|
                                           ShAmt);
 | 
						|
            else
 | 
						|
              Comp = ConstantExpr::getAShr(ConstantExpr::getShl(CI, ShAmt), 
 | 
						|
                                           ShAmt);
 | 
						|
 | 
						|
            if (Comp != CI) {// Comparing against a bit that we know is zero.
 | 
						|
              bool IsICMP_NE = I.getPredicate() == ICmpInst::ICMP_NE;
 | 
						|
              Constant *Cst = ConstantInt::get(Type::Int1Ty, IsICMP_NE);
 | 
						|
              return ReplaceInstUsesWith(I, Cst);
 | 
						|
            }
 | 
						|
 | 
						|
            if (LHSI->hasOneUse() || CI->isNullValue()) {
 | 
						|
              unsigned ShAmtVal = (unsigned)ShAmt->getZExtValue();
 | 
						|
 | 
						|
              // Otherwise strength reduce the shift into an and.
 | 
						|
              uint64_t Val = ~0ULL;          // All ones.
 | 
						|
              Val <<= ShAmtVal;              // Shift over to the right spot.
 | 
						|
              Val &= ~0ULL >> (64-TypeBits);
 | 
						|
              Constant *Mask = ConstantInt::get(CI->getType(), Val);
 | 
						|
 | 
						|
              Instruction *AndI =
 | 
						|
                BinaryOperator::createAnd(LHSI->getOperand(0),
 | 
						|
                                          Mask, LHSI->getName()+".mask");
 | 
						|
              Value *And = InsertNewInstBefore(AndI, I);
 | 
						|
              return new ICmpInst(I.getPredicate(), And,
 | 
						|
                                     ConstantExpr::getShl(CI, ShAmt));
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
        break;
 | 
						|
 | 
						|
      case Instruction::SDiv:
 | 
						|
      case Instruction::UDiv:
 | 
						|
        // Fold: icmp pred ([us]div X, C1), C2 -> range test
 | 
						|
        // Fold this div into the comparison, producing a range check. 
 | 
						|
        // Determine, based on the divide type, what the range is being 
 | 
						|
        // checked.  If there is an overflow on the low or high side, remember 
 | 
						|
        // it, otherwise compute the range [low, hi) bounding the new value.
 | 
						|
        // See: InsertRangeTest above for the kinds of replacements possible.
 | 
						|
        if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
 | 
						|
          // FIXME: If the operand types don't match the type of the divide 
 | 
						|
          // then don't attempt this transform. The code below doesn't have the
 | 
						|
          // logic to deal with a signed divide and an unsigned compare (and
 | 
						|
          // vice versa). This is because (x /s C1) <s C2  produces different 
 | 
						|
          // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
 | 
						|
          // (x /u C1) <u C2.  Simply casting the operands and result won't 
 | 
						|
          // work. :(  The if statement below tests that condition and bails 
 | 
						|
          // if it finds it. 
 | 
						|
          bool DivIsSigned = LHSI->getOpcode() == Instruction::SDiv;
 | 
						|
          if (!I.isEquality() && DivIsSigned != I.isSignedPredicate())
 | 
						|
            break;
 | 
						|
 | 
						|
          // Initialize the variables that will indicate the nature of the
 | 
						|
          // range check.
 | 
						|
          bool LoOverflow = false, HiOverflow = false;
 | 
						|
          ConstantInt *LoBound = 0, *HiBound = 0;
 | 
						|
 | 
						|
          // Compute Prod = CI * DivRHS. We are essentially solving an equation
 | 
						|
          // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and 
 | 
						|
          // C2 (CI). By solving for X we can turn this into a range check 
 | 
						|
          // instead of computing a divide. 
 | 
						|
          ConstantInt *Prod = 
 | 
						|
            cast<ConstantInt>(ConstantExpr::getMul(CI, DivRHS));
 | 
						|
 | 
						|
          // Determine if the product overflows by seeing if the product is
 | 
						|
          // not equal to the divide. Make sure we do the same kind of divide
 | 
						|
          // as in the LHS instruction that we're folding. 
 | 
						|
          bool ProdOV = !DivRHS->isNullValue() && 
 | 
						|
            (DivIsSigned ?  ConstantExpr::getSDiv(Prod, DivRHS) :
 | 
						|
              ConstantExpr::getUDiv(Prod, DivRHS)) != CI;
 | 
						|
 | 
						|
          // Get the ICmp opcode
 | 
						|
          ICmpInst::Predicate predicate = I.getPredicate();
 | 
						|
 | 
						|
          if (DivRHS->isNullValue()) {  
 | 
						|
            // Don't hack on divide by zeros!
 | 
						|
          } else if (!DivIsSigned) {  // udiv
 | 
						|
            LoBound = Prod;
 | 
						|
            LoOverflow = ProdOV;
 | 
						|
            HiOverflow = ProdOV || AddWithOverflow(HiBound, LoBound, DivRHS);
 | 
						|
          } else if (isPositive(DivRHS)) { // Divisor is > 0.
 | 
						|
            if (CI->isNullValue()) {       // (X / pos) op 0
 | 
						|
              // Can't overflow.
 | 
						|
              LoBound = cast<ConstantInt>(ConstantExpr::getNeg(SubOne(DivRHS)));
 | 
						|
              HiBound = DivRHS;
 | 
						|
            } else if (isPositive(CI)) {   // (X / pos) op pos
 | 
						|
              LoBound = Prod;
 | 
						|
              LoOverflow = ProdOV;
 | 
						|
              HiOverflow = ProdOV || AddWithOverflow(HiBound, Prod, DivRHS);
 | 
						|
            } else {                       // (X / pos) op neg
 | 
						|
              Constant *DivRHSH = ConstantExpr::getNeg(SubOne(DivRHS));
 | 
						|
              LoOverflow = AddWithOverflow(LoBound, Prod,
 | 
						|
                                           cast<ConstantInt>(DivRHSH));
 | 
						|
              HiBound = Prod;
 | 
						|
              HiOverflow = ProdOV;
 | 
						|
            }
 | 
						|
          } else {                         // Divisor is < 0.
 | 
						|
            if (CI->isNullValue()) {       // (X / neg) op 0
 | 
						|
              LoBound = AddOne(DivRHS);
 | 
						|
              HiBound = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
 | 
						|
              if (HiBound == DivRHS)
 | 
						|
                LoBound = 0;               // - INTMIN = INTMIN
 | 
						|
            } else if (isPositive(CI)) {   // (X / neg) op pos
 | 
						|
              HiOverflow = LoOverflow = ProdOV;
 | 
						|
              if (!LoOverflow)
 | 
						|
                LoOverflow = AddWithOverflow(LoBound, Prod, AddOne(DivRHS));
 | 
						|
              HiBound = AddOne(Prod);
 | 
						|
            } else {                       // (X / neg) op neg
 | 
						|
              LoBound = Prod;
 | 
						|
              LoOverflow = HiOverflow = ProdOV;
 | 
						|
              HiBound = cast<ConstantInt>(ConstantExpr::getSub(Prod, DivRHS));
 | 
						|
            }
 | 
						|
 | 
						|
            // Dividing by a negate swaps the condition.
 | 
						|
            predicate = ICmpInst::getSwappedPredicate(predicate);
 | 
						|
          }
 | 
						|
 | 
						|
          if (LoBound) {
 | 
						|
            Value *X = LHSI->getOperand(0);
 | 
						|
            switch (predicate) {
 | 
						|
            default: assert(0 && "Unhandled icmp opcode!");
 | 
						|
            case ICmpInst::ICMP_EQ:
 | 
						|
              if (LoOverflow && HiOverflow)
 | 
						|
                return ReplaceInstUsesWith(I, ConstantInt::getFalse());
 | 
						|
              else if (HiOverflow)
 | 
						|
                return new ICmpInst(DivIsSigned ?  ICmpInst::ICMP_SGE : 
 | 
						|
                                    ICmpInst::ICMP_UGE, X, LoBound);
 | 
						|
              else if (LoOverflow)
 | 
						|
                return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 
 | 
						|
                                    ICmpInst::ICMP_ULT, X, HiBound);
 | 
						|
              else
 | 
						|
                return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, 
 | 
						|
                                       true, I);
 | 
						|
            case ICmpInst::ICMP_NE:
 | 
						|
              if (LoOverflow && HiOverflow)
 | 
						|
                return ReplaceInstUsesWith(I, ConstantInt::getTrue());
 | 
						|
              else if (HiOverflow)
 | 
						|
                return new ICmpInst(DivIsSigned ?  ICmpInst::ICMP_SLT : 
 | 
						|
                                    ICmpInst::ICMP_ULT, X, LoBound);
 | 
						|
              else if (LoOverflow)
 | 
						|
                return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 
 | 
						|
                                    ICmpInst::ICMP_UGE, X, HiBound);
 | 
						|
              else
 | 
						|
                return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, 
 | 
						|
                                       false, I);
 | 
						|
            case ICmpInst::ICMP_ULT:
 | 
						|
            case ICmpInst::ICMP_SLT:
 | 
						|
              if (LoOverflow)
 | 
						|
                return ReplaceInstUsesWith(I, ConstantInt::getFalse());
 | 
						|
              return new ICmpInst(predicate, X, LoBound);
 | 
						|
            case ICmpInst::ICMP_UGT:
 | 
						|
            case ICmpInst::ICMP_SGT:
 | 
						|
              if (HiOverflow)
 | 
						|
                return ReplaceInstUsesWith(I, ConstantInt::getFalse());
 | 
						|
              if (predicate == ICmpInst::ICMP_UGT)
 | 
						|
                return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
 | 
						|
              else
 | 
						|
                return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
    // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
 | 
						|
    if (I.isEquality()) {
 | 
						|
      bool isICMP_NE = I.getPredicate() == ICmpInst::ICMP_NE;
 | 
						|
 | 
						|
      // If the first operand is (add|sub|and|or|xor|rem) with a constant, and 
 | 
						|
      // the second operand is a constant, simplify a bit.
 | 
						|
      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0)) {
 | 
						|
        switch (BO->getOpcode()) {
 | 
						|
        case Instruction::SRem:
 | 
						|
          // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
 | 
						|
          if (CI->isNullValue() && isa<ConstantInt>(BO->getOperand(1)) &&
 | 
						|
              BO->hasOneUse()) {
 | 
						|
            int64_t V = cast<ConstantInt>(BO->getOperand(1))->getSExtValue();
 | 
						|
            if (V > 1 && isPowerOf2_64(V)) {
 | 
						|
              Value *NewRem = InsertNewInstBefore(BinaryOperator::createURem(
 | 
						|
                  BO->getOperand(0), BO->getOperand(1), BO->getName()), I);
 | 
						|
              return new ICmpInst(I.getPredicate(), NewRem, 
 | 
						|
                                  Constant::getNullValue(BO->getType()));
 | 
						|
            }
 | 
						|
          }
 | 
						|
          break;
 | 
						|
        case Instruction::Add:
 | 
						|
          // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
 | 
						|
          if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
 | 
						|
            if (BO->hasOneUse())
 | 
						|
              return new ICmpInst(I.getPredicate(), BO->getOperand(0),
 | 
						|
                                  ConstantExpr::getSub(CI, BOp1C));
 | 
						|
          } else if (CI->isNullValue()) {
 | 
						|
            // Replace ((add A, B) != 0) with (A != -B) if A or B is
 | 
						|
            // efficiently invertible, or if the add has just this one use.
 | 
						|
            Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
 | 
						|
 | 
						|
            if (Value *NegVal = dyn_castNegVal(BOp1))
 | 
						|
              return new ICmpInst(I.getPredicate(), BOp0, NegVal);
 | 
						|
            else if (Value *NegVal = dyn_castNegVal(BOp0))
 | 
						|
              return new ICmpInst(I.getPredicate(), NegVal, BOp1);
 | 
						|
            else if (BO->hasOneUse()) {
 | 
						|
              Instruction *Neg = BinaryOperator::createNeg(BOp1, BO->getName());
 | 
						|
              BO->setName("");
 | 
						|
              InsertNewInstBefore(Neg, I);
 | 
						|
              return new ICmpInst(I.getPredicate(), BOp0, Neg);
 | 
						|
            }
 | 
						|
          }
 | 
						|
          break;
 | 
						|
        case Instruction::Xor:
 | 
						|
          // For the xor case, we can xor two constants together, eliminating
 | 
						|
          // the explicit xor.
 | 
						|
          if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1)))
 | 
						|
            return new ICmpInst(I.getPredicate(), BO->getOperand(0), 
 | 
						|
                                ConstantExpr::getXor(CI, BOC));
 | 
						|
 | 
						|
          // FALLTHROUGH
 | 
						|
        case Instruction::Sub:
 | 
						|
          // Replace (([sub|xor] A, B) != 0) with (A != B)
 | 
						|
          if (CI->isNullValue())
 | 
						|
            return new ICmpInst(I.getPredicate(), BO->getOperand(0),
 | 
						|
                                BO->getOperand(1));
 | 
						|
          break;
 | 
						|
 | 
						|
        case Instruction::Or:
 | 
						|
          // If bits are being or'd in that are not present in the constant we
 | 
						|
          // are comparing against, then the comparison could never succeed!
 | 
						|
          if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
 | 
						|
            Constant *NotCI = ConstantExpr::getNot(CI);
 | 
						|
            if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
 | 
						|
              return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 
 | 
						|
                                                             isICMP_NE));
 | 
						|
          }
 | 
						|
          break;
 | 
						|
 | 
						|
        case Instruction::And:
 | 
						|
          if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
 | 
						|
            // If bits are being compared against that are and'd out, then the
 | 
						|
            // comparison can never succeed!
 | 
						|
            if (!ConstantExpr::getAnd(CI,
 | 
						|
                                      ConstantExpr::getNot(BOC))->isNullValue())
 | 
						|
              return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
 | 
						|
                                                             isICMP_NE));
 | 
						|
 | 
						|
            // If we have ((X & C) == C), turn it into ((X & C) != 0).
 | 
						|
            if (CI == BOC && isOneBitSet(CI))
 | 
						|
              return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
 | 
						|
                                  ICmpInst::ICMP_NE, Op0,
 | 
						|
                                  Constant::getNullValue(CI->getType()));
 | 
						|
 | 
						|
            // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
 | 
						|
            if (isSignBit(BOC)) {
 | 
						|
              Value *X = BO->getOperand(0);
 | 
						|
              Constant *Zero = Constant::getNullValue(X->getType());
 | 
						|
              ICmpInst::Predicate pred = isICMP_NE ? 
 | 
						|
                ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
 | 
						|
              return new ICmpInst(pred, X, Zero);
 | 
						|
            }
 | 
						|
 | 
						|
            // ((X & ~7) == 0) --> X < 8
 | 
						|
            if (CI->isNullValue() && isHighOnes(BOC)) {
 | 
						|
              Value *X = BO->getOperand(0);
 | 
						|
              Constant *NegX = ConstantExpr::getNeg(BOC);
 | 
						|
              ICmpInst::Predicate pred = isICMP_NE ? 
 | 
						|
                ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
 | 
						|
              return new ICmpInst(pred, X, NegX);
 | 
						|
            }
 | 
						|
 | 
						|
          }
 | 
						|
        default: break;
 | 
						|
        }
 | 
						|
      } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Op0)) {
 | 
						|
        // Handle set{eq|ne} <intrinsic>, intcst.
 | 
						|
        switch (II->getIntrinsicID()) {
 | 
						|
        default: break;
 | 
						|
        case Intrinsic::bswap_i16: 
 | 
						|
          // icmp eq (bswap(x)), c -> icmp eq (x,bswap(c))
 | 
						|
          WorkList.push_back(II);  // Dead?
 | 
						|
          I.setOperand(0, II->getOperand(1));
 | 
						|
          I.setOperand(1, ConstantInt::get(Type::Int16Ty,
 | 
						|
                                           ByteSwap_16(CI->getZExtValue())));
 | 
						|
          return &I;
 | 
						|
        case Intrinsic::bswap_i32:   
 | 
						|
          // icmp eq (bswap(x)), c -> icmp eq (x,bswap(c))
 | 
						|
          WorkList.push_back(II);  // Dead?
 | 
						|
          I.setOperand(0, II->getOperand(1));
 | 
						|
          I.setOperand(1, ConstantInt::get(Type::Int32Ty,
 | 
						|
                                           ByteSwap_32(CI->getZExtValue())));
 | 
						|
          return &I;
 | 
						|
        case Intrinsic::bswap_i64:   
 | 
						|
          // icmp eq (bswap(x)), c -> icmp eq (x,bswap(c))
 | 
						|
          WorkList.push_back(II);  // Dead?
 | 
						|
          I.setOperand(0, II->getOperand(1));
 | 
						|
          I.setOperand(1, ConstantInt::get(Type::Int64Ty,
 | 
						|
                                           ByteSwap_64(CI->getZExtValue())));
 | 
						|
          return &I;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else {  // Not a ICMP_EQ/ICMP_NE
 | 
						|
      // If the LHS is a cast from an integral value of the same size, then 
 | 
						|
      // since we know the RHS is a constant, try to simlify.
 | 
						|
      if (CastInst *Cast = dyn_cast<CastInst>(Op0)) {
 | 
						|
        Value *CastOp = Cast->getOperand(0);
 | 
						|
        const Type *SrcTy = CastOp->getType();
 | 
						|
        unsigned SrcTySize = SrcTy->getPrimitiveSizeInBits();
 | 
						|
        if (SrcTy->isInteger() && 
 | 
						|
            SrcTySize == Cast->getType()->getPrimitiveSizeInBits()) {
 | 
						|
          // If this is an unsigned comparison, try to make the comparison use
 | 
						|
          // smaller constant values.
 | 
						|
          switch (I.getPredicate()) {
 | 
						|
            default: break;
 | 
						|
            case ICmpInst::ICMP_ULT: { // X u< 128 => X s> -1
 | 
						|
              ConstantInt *CUI = cast<ConstantInt>(CI);
 | 
						|
              if (CUI->getZExtValue() == 1ULL << (SrcTySize-1))
 | 
						|
                return new ICmpInst(ICmpInst::ICMP_SGT, CastOp, 
 | 
						|
                                    ConstantInt::get(SrcTy, -1));
 | 
						|
              break;
 | 
						|
            }
 | 
						|
            case ICmpInst::ICMP_UGT: { // X u> 127 => X s< 0
 | 
						|
              ConstantInt *CUI = cast<ConstantInt>(CI);
 | 
						|
              if (CUI->getZExtValue() == (1ULL << (SrcTySize-1))-1)
 | 
						|
                return new ICmpInst(ICmpInst::ICMP_SLT, CastOp, 
 | 
						|
                                    Constant::getNullValue(SrcTy));
 | 
						|
              break;
 | 
						|
            }
 | 
						|
          }
 | 
						|
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle icmp with constant RHS
 | 
						|
  if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
 | 
						|
    if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
 | 
						|
      switch (LHSI->getOpcode()) {
 | 
						|
      case Instruction::GetElementPtr:
 | 
						|
        if (RHSC->isNullValue()) {
 | 
						|
          // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
 | 
						|
          bool isAllZeros = true;
 | 
						|
          for (unsigned i = 1, e = LHSI->getNumOperands(); i != e; ++i)
 | 
						|
            if (!isa<Constant>(LHSI->getOperand(i)) ||
 | 
						|
                !cast<Constant>(LHSI->getOperand(i))->isNullValue()) {
 | 
						|
              isAllZeros = false;
 | 
						|
              break;
 | 
						|
            }
 | 
						|
          if (isAllZeros)
 | 
						|
            return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
 | 
						|
                    Constant::getNullValue(LHSI->getOperand(0)->getType()));
 | 
						|
        }
 | 
						|
        break;
 | 
						|
 | 
						|
      case Instruction::PHI:
 | 
						|
        if (Instruction *NV = FoldOpIntoPhi(I))
 | 
						|
          return NV;
 | 
						|
        break;
 | 
						|
      case Instruction::Select:
 | 
						|
        // If either operand of the select is a constant, we can fold the
 | 
						|
        // comparison into the select arms, which will cause one to be
 | 
						|
        // constant folded and the select turned into a bitwise or.
 | 
						|
        Value *Op1 = 0, *Op2 = 0;
 | 
						|
        if (LHSI->hasOneUse()) {
 | 
						|
          if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
 | 
						|
            // Fold the known value into the constant operand.
 | 
						|
            Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
 | 
						|
            // Insert a new ICmp of the other select operand.
 | 
						|
            Op2 = InsertNewInstBefore(new ICmpInst(I.getPredicate(),
 | 
						|
                                                   LHSI->getOperand(2), RHSC,
 | 
						|
                                                   I.getName()), I);
 | 
						|
          } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
 | 
						|
            // Fold the known value into the constant operand.
 | 
						|
            Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
 | 
						|
            // Insert a new ICmp of the other select operand.
 | 
						|
            Op1 = InsertNewInstBefore(new ICmpInst(I.getPredicate(),
 | 
						|
                                                   LHSI->getOperand(1), RHSC,
 | 
						|
                                                   I.getName()), I);
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        if (Op1)
 | 
						|
          return new SelectInst(LHSI->getOperand(0), Op1, Op2);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
 | 
						|
  if (User *GEP = dyn_castGetElementPtr(Op0))
 | 
						|
    if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
 | 
						|
      return NI;
 | 
						|
  if (User *GEP = dyn_castGetElementPtr(Op1))
 | 
						|
    if (Instruction *NI = FoldGEPICmp(GEP, Op0,
 | 
						|
                           ICmpInst::getSwappedPredicate(I.getPredicate()), I))
 | 
						|
      return NI;
 | 
						|
 | 
						|
  // Test to see if the operands of the icmp are casted versions of other
 | 
						|
  // values.  If the ptr->ptr cast can be stripped off both arguments, we do so
 | 
						|
  // now.
 | 
						|
  if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
 | 
						|
    if (isa<PointerType>(Op0->getType()) && 
 | 
						|
        (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) { 
 | 
						|
      // We keep moving the cast from the left operand over to the right
 | 
						|
      // operand, where it can often be eliminated completely.
 | 
						|
      Op0 = CI->getOperand(0);
 | 
						|
 | 
						|
      // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
 | 
						|
      // so eliminate it as well.
 | 
						|
      if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
 | 
						|
        Op1 = CI2->getOperand(0);
 | 
						|
 | 
						|
      // If Op1 is a constant, we can fold the cast into the constant.
 | 
						|
      if (Op0->getType() != Op1->getType())
 | 
						|
        if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
 | 
						|
          Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
 | 
						|
        } else {
 | 
						|
          // Otherwise, cast the RHS right before the icmp
 | 
						|
          Op1 = InsertCastBefore(Instruction::BitCast, Op1, Op0->getType(), I);
 | 
						|
        }
 | 
						|
      return new ICmpInst(I.getPredicate(), Op0, Op1);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (isa<CastInst>(Op0)) {
 | 
						|
    // Handle the special case of: icmp (cast bool to X), <cst>
 | 
						|
    // This comes up when you have code like
 | 
						|
    //   int X = A < B;
 | 
						|
    //   if (X) ...
 | 
						|
    // For generality, we handle any zero-extension of any operand comparison
 | 
						|
    // with a constant or another cast from the same type.
 | 
						|
    if (isa<ConstantInt>(Op1) || isa<CastInst>(Op1))
 | 
						|
      if (Instruction *R = visitICmpInstWithCastAndCast(I))
 | 
						|
        return R;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (I.isEquality()) {
 | 
						|
    Value *A, *B, *C, *D;
 | 
						|
    if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
 | 
						|
      if (A == Op1 || B == Op1) {    // (A^B) == A  ->  B == 0
 | 
						|
        Value *OtherVal = A == Op1 ? B : A;
 | 
						|
        return new ICmpInst(I.getPredicate(), OtherVal,
 | 
						|
                            Constant::getNullValue(A->getType()));
 | 
						|
      }
 | 
						|
 | 
						|
      if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
 | 
						|
        // A^c1 == C^c2 --> A == C^(c1^c2)
 | 
						|
        if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
 | 
						|
          if (ConstantInt *C2 = dyn_cast<ConstantInt>(D))
 | 
						|
            if (Op1->hasOneUse()) {
 | 
						|
              Constant *NC = ConstantExpr::getXor(C1, C2);
 | 
						|
              Instruction *Xor = BinaryOperator::createXor(C, NC, "tmp");
 | 
						|
              return new ICmpInst(I.getPredicate(), A,
 | 
						|
                                  InsertNewInstBefore(Xor, I));
 | 
						|
            }
 | 
						|
        
 | 
						|
        // A^B == A^D -> B == D
 | 
						|
        if (A == C) return new ICmpInst(I.getPredicate(), B, D);
 | 
						|
        if (A == D) return new ICmpInst(I.getPredicate(), B, C);
 | 
						|
        if (B == C) return new ICmpInst(I.getPredicate(), A, D);
 | 
						|
        if (B == D) return new ICmpInst(I.getPredicate(), A, C);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
 | 
						|
        (A == Op0 || B == Op0)) {
 | 
						|
      // A == (A^B)  ->  B == 0
 | 
						|
      Value *OtherVal = A == Op0 ? B : A;
 | 
						|
      return new ICmpInst(I.getPredicate(), OtherVal,
 | 
						|
                          Constant::getNullValue(A->getType()));
 | 
						|
    }
 | 
						|
    if (match(Op0, m_Sub(m_Value(A), m_Value(B))) && A == Op1) {
 | 
						|
      // (A-B) == A  ->  B == 0
 | 
						|
      return new ICmpInst(I.getPredicate(), B,
 | 
						|
                          Constant::getNullValue(B->getType()));
 | 
						|
    }
 | 
						|
    if (match(Op1, m_Sub(m_Value(A), m_Value(B))) && A == Op0) {
 | 
						|
      // A == (A-B)  ->  B == 0
 | 
						|
      return new ICmpInst(I.getPredicate(), B,
 | 
						|
                          Constant::getNullValue(B->getType()));
 | 
						|
    }
 | 
						|
    
 | 
						|
    // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
 | 
						|
    if (Op0->hasOneUse() && Op1->hasOneUse() &&
 | 
						|
        match(Op0, m_And(m_Value(A), m_Value(B))) && 
 | 
						|
        match(Op1, m_And(m_Value(C), m_Value(D)))) {
 | 
						|
      Value *X = 0, *Y = 0, *Z = 0;
 | 
						|
      
 | 
						|
      if (A == C) {
 | 
						|
        X = B; Y = D; Z = A;
 | 
						|
      } else if (A == D) {
 | 
						|
        X = B; Y = C; Z = A;
 | 
						|
      } else if (B == C) {
 | 
						|
        X = A; Y = D; Z = B;
 | 
						|
      } else if (B == D) {
 | 
						|
        X = A; Y = C; Z = B;
 | 
						|
      }
 | 
						|
      
 | 
						|
      if (X) {   // Build (X^Y) & Z
 | 
						|
        Op1 = InsertNewInstBefore(BinaryOperator::createXor(X, Y, "tmp"), I);
 | 
						|
        Op1 = InsertNewInstBefore(BinaryOperator::createAnd(Op1, Z, "tmp"), I);
 | 
						|
        I.setOperand(0, Op1);
 | 
						|
        I.setOperand(1, Constant::getNullValue(Op1->getType()));
 | 
						|
        return &I;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Changed ? &I : 0;
 | 
						|
}
 | 
						|
 | 
						|
// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
 | 
						|
// We only handle extending casts so far.
 | 
						|
//
 | 
						|
Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
 | 
						|
  const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
 | 
						|
  Value *LHSCIOp        = LHSCI->getOperand(0);
 | 
						|
  const Type *SrcTy     = LHSCIOp->getType();
 | 
						|
  const Type *DestTy    = LHSCI->getType();
 | 
						|
  Value *RHSCIOp;
 | 
						|
 | 
						|
  // We only handle extension cast instructions, so far. Enforce this.
 | 
						|
  if (LHSCI->getOpcode() != Instruction::ZExt &&
 | 
						|
      LHSCI->getOpcode() != Instruction::SExt)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
 | 
						|
  bool isSignedCmp = ICI.isSignedPredicate();
 | 
						|
 | 
						|
  if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
 | 
						|
    // Not an extension from the same type?
 | 
						|
    RHSCIOp = CI->getOperand(0);
 | 
						|
    if (RHSCIOp->getType() != LHSCIOp->getType()) 
 | 
						|
      return 0;
 | 
						|
    
 | 
						|
    // If the signedness of the two compares doesn't agree (i.e. one is a sext
 | 
						|
    // and the other is a zext), then we can't handle this.
 | 
						|
    if (CI->getOpcode() != LHSCI->getOpcode())
 | 
						|
      return 0;
 | 
						|
 | 
						|
    // Likewise, if the signedness of the [sz]exts and the compare don't match, 
 | 
						|
    // then we can't handle this.
 | 
						|
    if (isSignedExt != isSignedCmp && !ICI.isEquality())
 | 
						|
      return 0;
 | 
						|
    
 | 
						|
    // Okay, just insert a compare of the reduced operands now!
 | 
						|
    return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
 | 
						|
  }
 | 
						|
 | 
						|
  // If we aren't dealing with a constant on the RHS, exit early
 | 
						|
  ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
 | 
						|
  if (!CI)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  // Compute the constant that would happen if we truncated to SrcTy then
 | 
						|
  // reextended to DestTy.
 | 
						|
  Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
 | 
						|
  Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), Res1, DestTy);
 | 
						|
 | 
						|
  // If the re-extended constant didn't change...
 | 
						|
  if (Res2 == CI) {
 | 
						|
    // Make sure that sign of the Cmp and the sign of the Cast are the same.
 | 
						|
    // For example, we might have:
 | 
						|
    //    %A = sext short %X to uint
 | 
						|
    //    %B = icmp ugt uint %A, 1330
 | 
						|
    // It is incorrect to transform this into 
 | 
						|
    //    %B = icmp ugt short %X, 1330 
 | 
						|
    // because %A may have negative value. 
 | 
						|
    //
 | 
						|
    // However, it is OK if SrcTy is bool (See cast-set.ll testcase)
 | 
						|
    // OR operation is EQ/NE.
 | 
						|
    if (isSignedExt == isSignedCmp || SrcTy == Type::Int1Ty || ICI.isEquality())
 | 
						|
      return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
 | 
						|
    else
 | 
						|
      return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  // The re-extended constant changed so the constant cannot be represented 
 | 
						|
  // in the shorter type. Consequently, we cannot emit a simple comparison.
 | 
						|
 | 
						|
  // First, handle some easy cases. We know the result cannot be equal at this
 | 
						|
  // point so handle the ICI.isEquality() cases
 | 
						|
  if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
 | 
						|
    return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
 | 
						|
  if (ICI.getPredicate() == ICmpInst::ICMP_NE)
 | 
						|
    return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
 | 
						|
 | 
						|
  // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
 | 
						|
  // should have been folded away previously and not enter in here.
 | 
						|
  Value *Result;
 | 
						|
  if (isSignedCmp) {
 | 
						|
    // We're performing a signed comparison.
 | 
						|
    if (cast<ConstantInt>(CI)->getSExtValue() < 0)
 | 
						|
      Result = ConstantInt::getFalse();          // X < (small) --> false
 | 
						|
    else
 | 
						|
      Result = ConstantInt::getTrue();           // X < (large) --> true
 | 
						|
  } else {
 | 
						|
    // We're performing an unsigned comparison.
 | 
						|
    if (isSignedExt) {
 | 
						|
      // We're performing an unsigned comp with a sign extended value.
 | 
						|
      // This is true if the input is >= 0. [aka >s -1]
 | 
						|
      Constant *NegOne = ConstantInt::getAllOnesValue(SrcTy);
 | 
						|
      Result = InsertNewInstBefore(new ICmpInst(ICmpInst::ICMP_SGT, LHSCIOp,
 | 
						|
                                   NegOne, ICI.getName()), ICI);
 | 
						|
    } else {
 | 
						|
      // Unsigned extend & unsigned compare -> always true.
 | 
						|
      Result = ConstantInt::getTrue();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Finally, return the value computed.
 | 
						|
  if (ICI.getPredicate() == ICmpInst::ICMP_ULT ||
 | 
						|
      ICI.getPredicate() == ICmpInst::ICMP_SLT) {
 | 
						|
    return ReplaceInstUsesWith(ICI, Result);
 | 
						|
  } else {
 | 
						|
    assert((ICI.getPredicate()==ICmpInst::ICMP_UGT || 
 | 
						|
            ICI.getPredicate()==ICmpInst::ICMP_SGT) &&
 | 
						|
           "ICmp should be folded!");
 | 
						|
    if (Constant *CI = dyn_cast<Constant>(Result))
 | 
						|
      return ReplaceInstUsesWith(ICI, ConstantExpr::getNot(CI));
 | 
						|
    else
 | 
						|
      return BinaryOperator::createNot(Result);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitShl(BinaryOperator &I) {
 | 
						|
  return commonShiftTransforms(I);
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
 | 
						|
  return commonShiftTransforms(I);
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
 | 
						|
  return commonShiftTransforms(I);
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
 | 
						|
  assert(I.getOperand(1)->getType() == I.getOperand(0)->getType());
 | 
						|
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | 
						|
 | 
						|
  // shl X, 0 == X and shr X, 0 == X
 | 
						|
  // shl 0, X == 0 and shr 0, X == 0
 | 
						|
  if (Op1 == Constant::getNullValue(Op1->getType()) ||
 | 
						|
      Op0 == Constant::getNullValue(Op0->getType()))
 | 
						|
    return ReplaceInstUsesWith(I, Op0);
 | 
						|
  
 | 
						|
  if (isa<UndefValue>(Op0)) {            
 | 
						|
    if (I.getOpcode() == Instruction::AShr) // undef >>s X -> undef
 | 
						|
      return ReplaceInstUsesWith(I, Op0);
 | 
						|
    else                                    // undef << X -> 0, undef >>u X -> 0
 | 
						|
      return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | 
						|
  }
 | 
						|
  if (isa<UndefValue>(Op1)) {
 | 
						|
    if (I.getOpcode() == Instruction::AShr)  // X >>s undef -> X
 | 
						|
      return ReplaceInstUsesWith(I, Op0);          
 | 
						|
    else                                     // X << undef, X >>u undef -> 0
 | 
						|
      return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | 
						|
  }
 | 
						|
 | 
						|
  // ashr int -1, X = -1   (for any arithmetic shift rights of ~0)
 | 
						|
  if (I.getOpcode() == Instruction::AShr)
 | 
						|
    if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
 | 
						|
      if (CSI->isAllOnesValue())
 | 
						|
        return ReplaceInstUsesWith(I, CSI);
 | 
						|
 | 
						|
  // Try to fold constant and into select arguments.
 | 
						|
  if (isa<Constant>(Op0))
 | 
						|
    if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
 | 
						|
      if (Instruction *R = FoldOpIntoSelect(I, SI, this))
 | 
						|
        return R;
 | 
						|
 | 
						|
  // See if we can turn a signed shr into an unsigned shr.
 | 
						|
  if (I.isArithmeticShift()) {
 | 
						|
    if (MaskedValueIsZero(Op0,
 | 
						|
                          1ULL << (I.getType()->getPrimitiveSizeInBits()-1))) {
 | 
						|
      return BinaryOperator::createLShr(Op0, Op1, I.getName());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (ConstantInt *CUI = dyn_cast<ConstantInt>(Op1))
 | 
						|
    if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
 | 
						|
      return Res;
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
 | 
						|
                                               BinaryOperator &I) {
 | 
						|
  bool isLeftShift    = I.getOpcode() == Instruction::Shl;
 | 
						|
 | 
						|
  // See if we can simplify any instructions used by the instruction whose sole 
 | 
						|
  // purpose is to compute bits we don't care about.
 | 
						|
  uint64_t KnownZero, KnownOne;
 | 
						|
  if (SimplifyDemandedBits(&I, cast<IntegerType>(I.getType())->getBitMask(),
 | 
						|
                           KnownZero, KnownOne))
 | 
						|
    return &I;
 | 
						|
  
 | 
						|
  // shl uint X, 32 = 0 and shr ubyte Y, 9 = 0, ... just don't eliminate shr
 | 
						|
  // of a signed value.
 | 
						|
  //
 | 
						|
  unsigned TypeBits = Op0->getType()->getPrimitiveSizeInBits();
 | 
						|
  if (Op1->getZExtValue() >= TypeBits) {
 | 
						|
    if (I.getOpcode() != Instruction::AShr)
 | 
						|
      return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType()));
 | 
						|
    else {
 | 
						|
      I.setOperand(1, ConstantInt::get(I.getType(), TypeBits-1));
 | 
						|
      return &I;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // ((X*C1) << C2) == (X * (C1 << C2))
 | 
						|
  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
 | 
						|
    if (BO->getOpcode() == Instruction::Mul && isLeftShift)
 | 
						|
      if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
 | 
						|
        return BinaryOperator::createMul(BO->getOperand(0),
 | 
						|
                                         ConstantExpr::getShl(BOOp, Op1));
 | 
						|
  
 | 
						|
  // Try to fold constant and into select arguments.
 | 
						|
  if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
 | 
						|
    if (Instruction *R = FoldOpIntoSelect(I, SI, this))
 | 
						|
      return R;
 | 
						|
  if (isa<PHINode>(Op0))
 | 
						|
    if (Instruction *NV = FoldOpIntoPhi(I))
 | 
						|
      return NV;
 | 
						|
  
 | 
						|
  if (Op0->hasOneUse()) {
 | 
						|
    if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
 | 
						|
      // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C)
 | 
						|
      Value *V1, *V2;
 | 
						|
      ConstantInt *CC;
 | 
						|
      switch (Op0BO->getOpcode()) {
 | 
						|
        default: break;
 | 
						|
        case Instruction::Add:
 | 
						|
        case Instruction::And:
 | 
						|
        case Instruction::Or:
 | 
						|
        case Instruction::Xor: {
 | 
						|
          // These operators commute.
 | 
						|
          // Turn (Y + (X >> C)) << C  ->  (X + (Y << C)) & (~0 << C)
 | 
						|
          if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
 | 
						|
              match(Op0BO->getOperand(1),
 | 
						|
                    m_Shr(m_Value(V1), m_ConstantInt(CC))) && CC == Op1) {
 | 
						|
            Instruction *YS = BinaryOperator::createShl(
 | 
						|
                                            Op0BO->getOperand(0), Op1,
 | 
						|
                                            Op0BO->getName());
 | 
						|
            InsertNewInstBefore(YS, I); // (Y << C)
 | 
						|
            Instruction *X = 
 | 
						|
              BinaryOperator::create(Op0BO->getOpcode(), YS, V1,
 | 
						|
                                     Op0BO->getOperand(1)->getName());
 | 
						|
            InsertNewInstBefore(X, I);  // (X + (Y << C))
 | 
						|
            Constant *C2 = ConstantInt::getAllOnesValue(X->getType());
 | 
						|
            C2 = ConstantExpr::getShl(C2, Op1);
 | 
						|
            return BinaryOperator::createAnd(X, C2);
 | 
						|
          }
 | 
						|
          
 | 
						|
          // Turn (Y + ((X >> C) & CC)) << C  ->  ((X & (CC << C)) + (Y << C))
 | 
						|
          Value *Op0BOOp1 = Op0BO->getOperand(1);
 | 
						|
          if (isLeftShift && Op0BOOp1->hasOneUse() && V2 == Op1 &&
 | 
						|
              match(Op0BOOp1, 
 | 
						|
                    m_And(m_Shr(m_Value(V1), m_Value(V2)),m_ConstantInt(CC))) &&
 | 
						|
              cast<BinaryOperator>(Op0BOOp1)->getOperand(0)-> hasOneUse()) {
 | 
						|
            Instruction *YS = BinaryOperator::createShl(
 | 
						|
                                                     Op0BO->getOperand(0), Op1,
 | 
						|
                                                     Op0BO->getName());
 | 
						|
            InsertNewInstBefore(YS, I); // (Y << C)
 | 
						|
            Instruction *XM =
 | 
						|
              BinaryOperator::createAnd(V1, ConstantExpr::getShl(CC, Op1),
 | 
						|
                                        V1->getName()+".mask");
 | 
						|
            InsertNewInstBefore(XM, I); // X & (CC << C)
 | 
						|
            
 | 
						|
            return BinaryOperator::create(Op0BO->getOpcode(), YS, XM);
 | 
						|
          }
 | 
						|
        }
 | 
						|
          
 | 
						|
        // FALL THROUGH.
 | 
						|
        case Instruction::Sub: {
 | 
						|
          // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C)
 | 
						|
          if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
 | 
						|
              match(Op0BO->getOperand(0),
 | 
						|
                    m_Shr(m_Value(V1), m_ConstantInt(CC))) && CC == Op1) {
 | 
						|
            Instruction *YS = BinaryOperator::createShl(
 | 
						|
                                                     Op0BO->getOperand(1), Op1,
 | 
						|
                                                     Op0BO->getName());
 | 
						|
            InsertNewInstBefore(YS, I); // (Y << C)
 | 
						|
            Instruction *X =
 | 
						|
              BinaryOperator::create(Op0BO->getOpcode(), V1, YS,
 | 
						|
                                     Op0BO->getOperand(0)->getName());
 | 
						|
            InsertNewInstBefore(X, I);  // (X + (Y << C))
 | 
						|
            Constant *C2 = ConstantInt::getAllOnesValue(X->getType());
 | 
						|
            C2 = ConstantExpr::getShl(C2, Op1);
 | 
						|
            return BinaryOperator::createAnd(X, C2);
 | 
						|
          }
 | 
						|
          
 | 
						|
          // Turn (((X >> C)&CC) + Y) << C  ->  (X + (Y << C)) & (CC << C)
 | 
						|
          if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
 | 
						|
              match(Op0BO->getOperand(0),
 | 
						|
                    m_And(m_Shr(m_Value(V1), m_Value(V2)),
 | 
						|
                          m_ConstantInt(CC))) && V2 == Op1 &&
 | 
						|
              cast<BinaryOperator>(Op0BO->getOperand(0))
 | 
						|
                  ->getOperand(0)->hasOneUse()) {
 | 
						|
            Instruction *YS = BinaryOperator::createShl(
 | 
						|
                                                     Op0BO->getOperand(1), Op1,
 | 
						|
                                                     Op0BO->getName());
 | 
						|
            InsertNewInstBefore(YS, I); // (Y << C)
 | 
						|
            Instruction *XM =
 | 
						|
              BinaryOperator::createAnd(V1, ConstantExpr::getShl(CC, Op1),
 | 
						|
                                        V1->getName()+".mask");
 | 
						|
            InsertNewInstBefore(XM, I); // X & (CC << C)
 | 
						|
            
 | 
						|
            return BinaryOperator::create(Op0BO->getOpcode(), XM, YS);
 | 
						|
          }
 | 
						|
          
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      
 | 
						|
      
 | 
						|
      // If the operand is an bitwise operator with a constant RHS, and the
 | 
						|
      // shift is the only use, we can pull it out of the shift.
 | 
						|
      if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
 | 
						|
        bool isValid = true;     // Valid only for And, Or, Xor
 | 
						|
        bool highBitSet = false; // Transform if high bit of constant set?
 | 
						|
        
 | 
						|
        switch (Op0BO->getOpcode()) {
 | 
						|
          default: isValid = false; break;   // Do not perform transform!
 | 
						|
          case Instruction::Add:
 | 
						|
            isValid = isLeftShift;
 | 
						|
            break;
 | 
						|
          case Instruction::Or:
 | 
						|
          case Instruction::Xor:
 | 
						|
            highBitSet = false;
 | 
						|
            break;
 | 
						|
          case Instruction::And:
 | 
						|
            highBitSet = true;
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        
 | 
						|
        // If this is a signed shift right, and the high bit is modified
 | 
						|
        // by the logical operation, do not perform the transformation.
 | 
						|
        // The highBitSet boolean indicates the value of the high bit of
 | 
						|
        // the constant which would cause it to be modified for this
 | 
						|
        // operation.
 | 
						|
        //
 | 
						|
        if (isValid && !isLeftShift && I.getOpcode() == Instruction::AShr) {
 | 
						|
          uint64_t Val = Op0C->getZExtValue();
 | 
						|
          isValid = ((Val & (1 << (TypeBits-1))) != 0) == highBitSet;
 | 
						|
        }
 | 
						|
        
 | 
						|
        if (isValid) {
 | 
						|
          Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1);
 | 
						|
          
 | 
						|
          Instruction *NewShift =
 | 
						|
            BinaryOperator::create(I.getOpcode(), Op0BO->getOperand(0), Op1,
 | 
						|
                                   Op0BO->getName());
 | 
						|
          Op0BO->setName("");
 | 
						|
          InsertNewInstBefore(NewShift, I);
 | 
						|
          
 | 
						|
          return BinaryOperator::create(Op0BO->getOpcode(), NewShift,
 | 
						|
                                        NewRHS);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Find out if this is a shift of a shift by a constant.
 | 
						|
  BinaryOperator *ShiftOp = dyn_cast<BinaryOperator>(Op0);
 | 
						|
  if (ShiftOp && !ShiftOp->isShift())
 | 
						|
    ShiftOp = 0;
 | 
						|
  
 | 
						|
  if (ShiftOp && isa<ConstantInt>(ShiftOp->getOperand(1))) {
 | 
						|
    ConstantInt *ShiftAmt1C = cast<ConstantInt>(ShiftOp->getOperand(1));
 | 
						|
    unsigned ShiftAmt1 = (unsigned)ShiftAmt1C->getZExtValue();
 | 
						|
    unsigned ShiftAmt2 = (unsigned)Op1->getZExtValue();
 | 
						|
    assert(ShiftAmt2 != 0 && "Should have been simplified earlier");
 | 
						|
    if (ShiftAmt1 == 0) return 0;  // Will be simplified in the future.
 | 
						|
    Value *X = ShiftOp->getOperand(0);
 | 
						|
    
 | 
						|
    unsigned AmtSum = ShiftAmt1+ShiftAmt2;   // Fold into one big shift.
 | 
						|
    if (AmtSum > I.getType()->getPrimitiveSizeInBits())
 | 
						|
      AmtSum = I.getType()->getPrimitiveSizeInBits();
 | 
						|
    
 | 
						|
    const IntegerType *Ty = cast<IntegerType>(I.getType());
 | 
						|
    
 | 
						|
    // Check for (X << c1) << c2  and  (X >> c1) >> c2
 | 
						|
    if (I.getOpcode() == ShiftOp->getOpcode()) {
 | 
						|
      return BinaryOperator::create(I.getOpcode(), X,
 | 
						|
                                    ConstantInt::get(Ty, AmtSum));
 | 
						|
    } else if (ShiftOp->getOpcode() == Instruction::LShr &&
 | 
						|
               I.getOpcode() == Instruction::AShr) {
 | 
						|
      // ((X >>u C1) >>s C2) -> (X >>u (C1+C2))  since C1 != 0.
 | 
						|
      return BinaryOperator::createLShr(X, ConstantInt::get(Ty, AmtSum));
 | 
						|
    } else if (ShiftOp->getOpcode() == Instruction::AShr &&
 | 
						|
               I.getOpcode() == Instruction::LShr) {
 | 
						|
      // ((X >>s C1) >>u C2) -> ((X >>s (C1+C2)) & mask) since C1 != 0.
 | 
						|
      Instruction *Shift =
 | 
						|
        BinaryOperator::createAShr(X, ConstantInt::get(Ty, AmtSum));
 | 
						|
      InsertNewInstBefore(Shift, I);
 | 
						|
 | 
						|
      uint64_t Mask = Ty->getBitMask() >> ShiftAmt2;
 | 
						|
      return BinaryOperator::createAnd(Shift, ConstantInt::get(Ty, Mask));
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Okay, if we get here, one shift must be left, and the other shift must be
 | 
						|
    // right.  See if the amounts are equal.
 | 
						|
    if (ShiftAmt1 == ShiftAmt2) {
 | 
						|
      // If we have ((X >>? C) << C), turn this into X & (-1 << C).
 | 
						|
      if (I.getOpcode() == Instruction::Shl) {
 | 
						|
        uint64_t Mask = Ty->getBitMask() << ShiftAmt1;
 | 
						|
        return BinaryOperator::createAnd(X, ConstantInt::get(Ty, Mask));
 | 
						|
      }
 | 
						|
      // If we have ((X << C) >>u C), turn this into X & (-1 >>u C).
 | 
						|
      if (I.getOpcode() == Instruction::LShr) {
 | 
						|
        uint64_t Mask = Ty->getBitMask() >> ShiftAmt1;
 | 
						|
        return BinaryOperator::createAnd(X, ConstantInt::get(Ty, Mask));
 | 
						|
      }
 | 
						|
      // We can simplify ((X << C) >>s C) into a trunc + sext.
 | 
						|
      // NOTE: we could do this for any C, but that would make 'unusual' integer
 | 
						|
      // types.  For now, just stick to ones well-supported by the code
 | 
						|
      // generators.
 | 
						|
      const Type *SExtType = 0;
 | 
						|
      switch (Ty->getBitWidth() - ShiftAmt1) {
 | 
						|
      case 8 : SExtType = Type::Int8Ty; break;
 | 
						|
      case 16: SExtType = Type::Int16Ty; break;
 | 
						|
      case 32: SExtType = Type::Int32Ty; break;
 | 
						|
      default: break;
 | 
						|
      }
 | 
						|
      if (SExtType) {
 | 
						|
        Instruction *NewTrunc = new TruncInst(X, SExtType, "sext");
 | 
						|
        InsertNewInstBefore(NewTrunc, I);
 | 
						|
        return new SExtInst(NewTrunc, Ty);
 | 
						|
      }
 | 
						|
      // Otherwise, we can't handle it yet.
 | 
						|
    } else if (ShiftAmt1 < ShiftAmt2) {
 | 
						|
      unsigned ShiftDiff = ShiftAmt2-ShiftAmt1;
 | 
						|
      
 | 
						|
      // (X >>? C1) << C2 --> X << (C2-C1) & (-1 << C1)
 | 
						|
      if (I.getOpcode() == Instruction::Shl) {
 | 
						|
        assert(ShiftOp->getOpcode() == Instruction::LShr ||
 | 
						|
               ShiftOp->getOpcode() == Instruction::AShr);
 | 
						|
        Instruction *Shift =
 | 
						|
          BinaryOperator::createShl(X, ConstantInt::get(Ty, ShiftDiff));
 | 
						|
        InsertNewInstBefore(Shift, I);
 | 
						|
        
 | 
						|
        uint64_t Mask = Ty->getBitMask() << ShiftAmt1;
 | 
						|
        return BinaryOperator::createAnd(Shift, ConstantInt::get(Ty, Mask));
 | 
						|
      }
 | 
						|
      
 | 
						|
      // (X << C1) >>u C2  --> X >>u (C2-C1) & (-1 >> C1)
 | 
						|
      if (I.getOpcode() == Instruction::LShr) {
 | 
						|
        assert(ShiftOp->getOpcode() == Instruction::Shl);
 | 
						|
        Instruction *Shift =
 | 
						|
          BinaryOperator::createLShr(X, ConstantInt::get(Ty, ShiftDiff));
 | 
						|
        InsertNewInstBefore(Shift, I);
 | 
						|
        
 | 
						|
        uint64_t Mask = Ty->getBitMask() >> ShiftAmt1;
 | 
						|
        return BinaryOperator::createAnd(Shift, ConstantInt::get(Ty, Mask));
 | 
						|
      }
 | 
						|
      
 | 
						|
      // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in.
 | 
						|
    } else {
 | 
						|
      assert(ShiftAmt2 < ShiftAmt1);
 | 
						|
      unsigned ShiftDiff = ShiftAmt1-ShiftAmt2;
 | 
						|
 | 
						|
      // (X >>? C1) << C2 --> X >>? (C1-C2) & (-1 << C1)
 | 
						|
      if (I.getOpcode() == Instruction::Shl) {
 | 
						|
        assert(ShiftOp->getOpcode() == Instruction::LShr ||
 | 
						|
               ShiftOp->getOpcode() == Instruction::AShr);
 | 
						|
        Instruction *Shift =
 | 
						|
          BinaryOperator::create(ShiftOp->getOpcode(), X,
 | 
						|
                                 ConstantInt::get(Ty, ShiftDiff));
 | 
						|
        InsertNewInstBefore(Shift, I);
 | 
						|
        
 | 
						|
        uint64_t Mask = Ty->getBitMask() << ShiftAmt2;
 | 
						|
        return BinaryOperator::createAnd(Shift, ConstantInt::get(Ty, Mask));
 | 
						|
      }
 | 
						|
      
 | 
						|
      // (X << C1) >>u C2  --> X << (C1-C2) & (-1 >> C1)
 | 
						|
      if (I.getOpcode() == Instruction::LShr) {
 | 
						|
        assert(ShiftOp->getOpcode() == Instruction::Shl);
 | 
						|
        Instruction *Shift =
 | 
						|
          BinaryOperator::createShl(X, ConstantInt::get(Ty, ShiftDiff));
 | 
						|
        InsertNewInstBefore(Shift, I);
 | 
						|
        
 | 
						|
        uint64_t Mask = Ty->getBitMask() >> ShiftAmt2;
 | 
						|
        return BinaryOperator::createAnd(Shift, ConstantInt::get(Ty, Mask));
 | 
						|
      }
 | 
						|
      
 | 
						|
      // We can't handle (X << C1) >>a C2, it shifts arbitrary bits in.
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
 | 
						|
/// expression.  If so, decompose it, returning some value X, such that Val is
 | 
						|
/// X*Scale+Offset.
 | 
						|
///
 | 
						|
static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
 | 
						|
                                        unsigned &Offset) {
 | 
						|
  assert(Val->getType() == Type::Int32Ty && "Unexpected allocation size type!");
 | 
						|
  if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
 | 
						|
    Offset = CI->getZExtValue();
 | 
						|
    Scale  = 1;
 | 
						|
    return ConstantInt::get(Type::Int32Ty, 0);
 | 
						|
  } else if (Instruction *I = dyn_cast<Instruction>(Val)) {
 | 
						|
    if (I->getNumOperands() == 2) {
 | 
						|
      if (ConstantInt *CUI = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | 
						|
        if (I->getOpcode() == Instruction::Shl) {
 | 
						|
          // This is a value scaled by '1 << the shift amt'.
 | 
						|
          Scale = 1U << CUI->getZExtValue();
 | 
						|
          Offset = 0;
 | 
						|
          return I->getOperand(0);
 | 
						|
        } else if (I->getOpcode() == Instruction::Mul) {
 | 
						|
          // This value is scaled by 'CUI'.
 | 
						|
          Scale = CUI->getZExtValue();
 | 
						|
          Offset = 0;
 | 
						|
          return I->getOperand(0);
 | 
						|
        } else if (I->getOpcode() == Instruction::Add) {
 | 
						|
          // We have X+C.  Check to see if we really have (X*C2)+C1, 
 | 
						|
          // where C1 is divisible by C2.
 | 
						|
          unsigned SubScale;
 | 
						|
          Value *SubVal = 
 | 
						|
            DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
 | 
						|
          Offset += CUI->getZExtValue();
 | 
						|
          if (SubScale > 1 && (Offset % SubScale == 0)) {
 | 
						|
            Scale = SubScale;
 | 
						|
            return SubVal;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, we can't look past this.
 | 
						|
  Scale = 1;
 | 
						|
  Offset = 0;
 | 
						|
  return Val;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
 | 
						|
/// try to eliminate the cast by moving the type information into the alloc.
 | 
						|
Instruction *InstCombiner::PromoteCastOfAllocation(CastInst &CI,
 | 
						|
                                                   AllocationInst &AI) {
 | 
						|
  const PointerType *PTy = dyn_cast<PointerType>(CI.getType());
 | 
						|
  if (!PTy) return 0;   // Not casting the allocation to a pointer type.
 | 
						|
  
 | 
						|
  // Remove any uses of AI that are dead.
 | 
						|
  assert(!CI.use_empty() && "Dead instructions should be removed earlier!");
 | 
						|
  std::vector<Instruction*> DeadUsers;
 | 
						|
  for (Value::use_iterator UI = AI.use_begin(), E = AI.use_end(); UI != E; ) {
 | 
						|
    Instruction *User = cast<Instruction>(*UI++);
 | 
						|
    if (isInstructionTriviallyDead(User)) {
 | 
						|
      while (UI != E && *UI == User)
 | 
						|
        ++UI; // If this instruction uses AI more than once, don't break UI.
 | 
						|
      
 | 
						|
      // Add operands to the worklist.
 | 
						|
      AddUsesToWorkList(*User);
 | 
						|
      ++NumDeadInst;
 | 
						|
      DOUT << "IC: DCE: " << *User;
 | 
						|
      
 | 
						|
      User->eraseFromParent();
 | 
						|
      removeFromWorkList(User);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Get the type really allocated and the type casted to.
 | 
						|
  const Type *AllocElTy = AI.getAllocatedType();
 | 
						|
  const Type *CastElTy = PTy->getElementType();
 | 
						|
  if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
 | 
						|
 | 
						|
  unsigned AllocElTyAlign = TD->getTypeAlignmentABI(AllocElTy);
 | 
						|
  unsigned CastElTyAlign = TD->getTypeAlignmentABI(CastElTy);
 | 
						|
  if (CastElTyAlign < AllocElTyAlign) return 0;
 | 
						|
 | 
						|
  // If the allocation has multiple uses, only promote it if we are strictly
 | 
						|
  // increasing the alignment of the resultant allocation.  If we keep it the
 | 
						|
  // same, we open the door to infinite loops of various kinds.
 | 
						|
  if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return 0;
 | 
						|
 | 
						|
  uint64_t AllocElTySize = TD->getTypeSize(AllocElTy);
 | 
						|
  uint64_t CastElTySize = TD->getTypeSize(CastElTy);
 | 
						|
  if (CastElTySize == 0 || AllocElTySize == 0) return 0;
 | 
						|
 | 
						|
  // See if we can satisfy the modulus by pulling a scale out of the array
 | 
						|
  // size argument.
 | 
						|
  unsigned ArraySizeScale, ArrayOffset;
 | 
						|
  Value *NumElements = // See if the array size is a decomposable linear expr.
 | 
						|
    DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
 | 
						|
 
 | 
						|
  // If we can now satisfy the modulus, by using a non-1 scale, we really can
 | 
						|
  // do the xform.
 | 
						|
  if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
 | 
						|
      (AllocElTySize*ArrayOffset   ) % CastElTySize != 0) return 0;
 | 
						|
 | 
						|
  unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
 | 
						|
  Value *Amt = 0;
 | 
						|
  if (Scale == 1) {
 | 
						|
    Amt = NumElements;
 | 
						|
  } else {
 | 
						|
    // If the allocation size is constant, form a constant mul expression
 | 
						|
    Amt = ConstantInt::get(Type::Int32Ty, Scale);
 | 
						|
    if (isa<ConstantInt>(NumElements))
 | 
						|
      Amt = ConstantExpr::getMul(
 | 
						|
              cast<ConstantInt>(NumElements), cast<ConstantInt>(Amt));
 | 
						|
    // otherwise multiply the amount and the number of elements
 | 
						|
    else if (Scale != 1) {
 | 
						|
      Instruction *Tmp = BinaryOperator::createMul(Amt, NumElements, "tmp");
 | 
						|
      Amt = InsertNewInstBefore(Tmp, AI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (unsigned Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
 | 
						|
    Value *Off = ConstantInt::get(Type::Int32Ty, Offset);
 | 
						|
    Instruction *Tmp = BinaryOperator::createAdd(Amt, Off, "tmp");
 | 
						|
    Amt = InsertNewInstBefore(Tmp, AI);
 | 
						|
  }
 | 
						|
  
 | 
						|
  std::string Name = AI.getName(); AI.setName("");
 | 
						|
  AllocationInst *New;
 | 
						|
  if (isa<MallocInst>(AI))
 | 
						|
    New = new MallocInst(CastElTy, Amt, AI.getAlignment(), Name);
 | 
						|
  else
 | 
						|
    New = new AllocaInst(CastElTy, Amt, AI.getAlignment(), Name);
 | 
						|
  InsertNewInstBefore(New, AI);
 | 
						|
  
 | 
						|
  // If the allocation has multiple uses, insert a cast and change all things
 | 
						|
  // that used it to use the new cast.  This will also hack on CI, but it will
 | 
						|
  // die soon.
 | 
						|
  if (!AI.hasOneUse()) {
 | 
						|
    AddUsesToWorkList(AI);
 | 
						|
    // New is the allocation instruction, pointer typed. AI is the original
 | 
						|
    // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
 | 
						|
    CastInst *NewCast = new BitCastInst(New, AI.getType(), "tmpcast");
 | 
						|
    InsertNewInstBefore(NewCast, AI);
 | 
						|
    AI.replaceAllUsesWith(NewCast);
 | 
						|
  }
 | 
						|
  return ReplaceInstUsesWith(CI, New);
 | 
						|
}
 | 
						|
 | 
						|
/// CanEvaluateInDifferentType - Return true if we can take the specified value
 | 
						|
/// and return it without inserting any new casts.  This is used by code that
 | 
						|
/// tries to decide whether promoting or shrinking integer operations to wider
 | 
						|
/// or smaller types will allow us to eliminate a truncate or extend.
 | 
						|
static bool CanEvaluateInDifferentType(Value *V, const Type *Ty,
 | 
						|
                                       int &NumCastsRemoved) {
 | 
						|
  if (isa<Constant>(V)) return true;
 | 
						|
  
 | 
						|
  Instruction *I = dyn_cast<Instruction>(V);
 | 
						|
  if (!I || !I->hasOneUse()) return false;
 | 
						|
  
 | 
						|
  switch (I->getOpcode()) {
 | 
						|
  case Instruction::And:
 | 
						|
  case Instruction::Or:
 | 
						|
  case Instruction::Xor:
 | 
						|
    // These operators can all arbitrarily be extended or truncated.
 | 
						|
    return CanEvaluateInDifferentType(I->getOperand(0), Ty, NumCastsRemoved) &&
 | 
						|
           CanEvaluateInDifferentType(I->getOperand(1), Ty, NumCastsRemoved);
 | 
						|
  case Instruction::AShr:
 | 
						|
  case Instruction::LShr:
 | 
						|
  case Instruction::Shl:
 | 
						|
    // If this is just a bitcast changing the sign of the operation, we can
 | 
						|
    // convert if the operand can be converted.
 | 
						|
    if (V->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
 | 
						|
      return CanEvaluateInDifferentType(I->getOperand(0), Ty, NumCastsRemoved);
 | 
						|
    break;
 | 
						|
  case Instruction::Trunc:
 | 
						|
  case Instruction::ZExt:
 | 
						|
  case Instruction::SExt:
 | 
						|
  case Instruction::BitCast:
 | 
						|
    // If this is a cast from the destination type, we can trivially eliminate
 | 
						|
    // it, and this will remove a cast overall.
 | 
						|
    if (I->getOperand(0)->getType() == Ty) {
 | 
						|
      // If the first operand is itself a cast, and is eliminable, do not count
 | 
						|
      // this as an eliminable cast.  We would prefer to eliminate those two
 | 
						|
      // casts first.
 | 
						|
      if (isa<CastInst>(I->getOperand(0)))
 | 
						|
        return true;
 | 
						|
      
 | 
						|
      ++NumCastsRemoved;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    // TODO: Can handle more cases here.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// EvaluateInDifferentType - Given an expression that 
 | 
						|
/// CanEvaluateInDifferentType returns true for, actually insert the code to
 | 
						|
/// evaluate the expression.
 | 
						|
Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty, 
 | 
						|
                                             bool isSigned ) {
 | 
						|
  if (Constant *C = dyn_cast<Constant>(V))
 | 
						|
    return ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
 | 
						|
 | 
						|
  // Otherwise, it must be an instruction.
 | 
						|
  Instruction *I = cast<Instruction>(V);
 | 
						|
  Instruction *Res = 0;
 | 
						|
  switch (I->getOpcode()) {
 | 
						|
  case Instruction::And:
 | 
						|
  case Instruction::Or:
 | 
						|
  case Instruction::Xor: {
 | 
						|
    Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
 | 
						|
    Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
 | 
						|
    Res = BinaryOperator::create((Instruction::BinaryOps)I->getOpcode(),
 | 
						|
                                 LHS, RHS, I->getName());
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Instruction::AShr:
 | 
						|
  case Instruction::LShr:
 | 
						|
  case Instruction::Shl: {
 | 
						|
    Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
 | 
						|
    Res = BinaryOperator::create(Instruction::BinaryOps(I->getOpcode()), LHS, 
 | 
						|
                                 I->getOperand(1), I->getName());
 | 
						|
    break;
 | 
						|
  }    
 | 
						|
  case Instruction::Trunc:
 | 
						|
  case Instruction::ZExt:
 | 
						|
  case Instruction::SExt:
 | 
						|
  case Instruction::BitCast:
 | 
						|
    // If the source type of the cast is the type we're trying for then we can
 | 
						|
    // just return the source. There's no need to insert it because its not new.
 | 
						|
    if (I->getOperand(0)->getType() == Ty)
 | 
						|
      return I->getOperand(0);
 | 
						|
    
 | 
						|
    // Some other kind of cast, which shouldn't happen, so just ..
 | 
						|
    // FALL THROUGH
 | 
						|
  default: 
 | 
						|
    // TODO: Can handle more cases here.
 | 
						|
    assert(0 && "Unreachable!");
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  
 | 
						|
  return InsertNewInstBefore(Res, *I);
 | 
						|
}
 | 
						|
 | 
						|
/// @brief Implement the transforms common to all CastInst visitors.
 | 
						|
Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
 | 
						|
  Value *Src = CI.getOperand(0);
 | 
						|
 | 
						|
  // Casting undef to anything results in undef so might as just replace it and
 | 
						|
  // get rid of the cast.
 | 
						|
  if (isa<UndefValue>(Src))   // cast undef -> undef
 | 
						|
    return ReplaceInstUsesWith(CI, UndefValue::get(CI.getType()));
 | 
						|
 | 
						|
  // Many cases of "cast of a cast" are eliminable. If its eliminable we just
 | 
						|
  // eliminate it now.
 | 
						|
  if (CastInst *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
 | 
						|
    if (Instruction::CastOps opc = 
 | 
						|
        isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
 | 
						|
      // The first cast (CSrc) is eliminable so we need to fix up or replace
 | 
						|
      // the second cast (CI). CSrc will then have a good chance of being dead.
 | 
						|
      return CastInst::create(opc, CSrc->getOperand(0), CI.getType());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If casting the result of a getelementptr instruction with no offset, turn
 | 
						|
  // this into a cast of the original pointer!
 | 
						|
  //
 | 
						|
  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
 | 
						|
    bool AllZeroOperands = true;
 | 
						|
    for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i)
 | 
						|
      if (!isa<Constant>(GEP->getOperand(i)) ||
 | 
						|
          !cast<Constant>(GEP->getOperand(i))->isNullValue()) {
 | 
						|
        AllZeroOperands = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    if (AllZeroOperands) {
 | 
						|
      // Changing the cast operand is usually not a good idea but it is safe
 | 
						|
      // here because the pointer operand is being replaced with another 
 | 
						|
      // pointer operand so the opcode doesn't need to change.
 | 
						|
      CI.setOperand(0, GEP->getOperand(0));
 | 
						|
      return &CI;
 | 
						|
    }
 | 
						|
  }
 | 
						|
    
 | 
						|
  // If we are casting a malloc or alloca to a pointer to a type of the same
 | 
						|
  // size, rewrite the allocation instruction to allocate the "right" type.
 | 
						|
  if (AllocationInst *AI = dyn_cast<AllocationInst>(Src))
 | 
						|
    if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
 | 
						|
      return V;
 | 
						|
 | 
						|
  // If we are casting a select then fold the cast into the select
 | 
						|
  if (SelectInst *SI = dyn_cast<SelectInst>(Src))
 | 
						|
    if (Instruction *NV = FoldOpIntoSelect(CI, SI, this))
 | 
						|
      return NV;
 | 
						|
 | 
						|
  // If we are casting a PHI then fold the cast into the PHI
 | 
						|
  if (isa<PHINode>(Src))
 | 
						|
    if (Instruction *NV = FoldOpIntoPhi(CI))
 | 
						|
      return NV;
 | 
						|
  
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// Only the TRUNC, ZEXT, SEXT, and BITCONVERT can have both operands as
 | 
						|
/// integers. This function implements the common transforms for all those
 | 
						|
/// cases.
 | 
						|
/// @brief Implement the transforms common to CastInst with integer operands
 | 
						|
Instruction *InstCombiner::commonIntCastTransforms(CastInst &CI) {
 | 
						|
  if (Instruction *Result = commonCastTransforms(CI))
 | 
						|
    return Result;
 | 
						|
 | 
						|
  Value *Src = CI.getOperand(0);
 | 
						|
  const Type *SrcTy = Src->getType();
 | 
						|
  const Type *DestTy = CI.getType();
 | 
						|
  unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
 | 
						|
  unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
 | 
						|
 | 
						|
  // See if we can simplify any instructions used by the LHS whose sole 
 | 
						|
  // purpose is to compute bits we don't care about.
 | 
						|
  uint64_t KnownZero = 0, KnownOne = 0;
 | 
						|
  if (SimplifyDemandedBits(&CI, cast<IntegerType>(DestTy)->getBitMask(),
 | 
						|
                           KnownZero, KnownOne))
 | 
						|
    return &CI;
 | 
						|
 | 
						|
  // If the source isn't an instruction or has more than one use then we
 | 
						|
  // can't do anything more. 
 | 
						|
  Instruction *SrcI = dyn_cast<Instruction>(Src);
 | 
						|
  if (!SrcI || !Src->hasOneUse())
 | 
						|
    return 0;
 | 
						|
 | 
						|
  // Attempt to propagate the cast into the instruction.
 | 
						|
  int NumCastsRemoved = 0;
 | 
						|
  if (CanEvaluateInDifferentType(SrcI, DestTy, NumCastsRemoved)) {
 | 
						|
    // If this cast is a truncate, evaluting in a different type always
 | 
						|
    // eliminates the cast, so it is always a win.  If this is a noop-cast
 | 
						|
    // this just removes a noop cast which isn't pointful, but simplifies
 | 
						|
    // the code.  If this is a zero-extension, we need to do an AND to
 | 
						|
    // maintain the clear top-part of the computation, so we require that
 | 
						|
    // the input have eliminated at least one cast.  If this is a sign
 | 
						|
    // extension, we insert two new casts (to do the extension) so we
 | 
						|
    // require that two casts have been eliminated.
 | 
						|
    bool DoXForm = CI.isNoopCast(TD->getIntPtrType());
 | 
						|
    if (!DoXForm) {
 | 
						|
      switch (CI.getOpcode()) {
 | 
						|
        case Instruction::Trunc:
 | 
						|
          DoXForm = true;
 | 
						|
          break;
 | 
						|
        case Instruction::ZExt:
 | 
						|
          DoXForm = NumCastsRemoved >= 1;
 | 
						|
          break;
 | 
						|
        case Instruction::SExt:
 | 
						|
          DoXForm = NumCastsRemoved >= 2;
 | 
						|
          break;
 | 
						|
        case Instruction::BitCast:
 | 
						|
          DoXForm = false;
 | 
						|
          break;
 | 
						|
        default:
 | 
						|
          // All the others use floating point so we shouldn't actually 
 | 
						|
          // get here because of the check above.
 | 
						|
          assert(!"Unknown cast type .. unreachable");
 | 
						|
          break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (DoXForm) {
 | 
						|
      Value *Res = EvaluateInDifferentType(SrcI, DestTy, 
 | 
						|
                                           CI.getOpcode() == Instruction::SExt);
 | 
						|
      assert(Res->getType() == DestTy);
 | 
						|
      switch (CI.getOpcode()) {
 | 
						|
      default: assert(0 && "Unknown cast type!");
 | 
						|
      case Instruction::Trunc:
 | 
						|
      case Instruction::BitCast:
 | 
						|
        // Just replace this cast with the result.
 | 
						|
        return ReplaceInstUsesWith(CI, Res);
 | 
						|
      case Instruction::ZExt: {
 | 
						|
        // We need to emit an AND to clear the high bits.
 | 
						|
        assert(SrcBitSize < DestBitSize && "Not a zext?");
 | 
						|
        Constant *C = 
 | 
						|
          ConstantInt::get(Type::Int64Ty, (1ULL << SrcBitSize)-1);
 | 
						|
        if (DestBitSize < 64)
 | 
						|
          C = ConstantExpr::getTrunc(C, DestTy);
 | 
						|
        return BinaryOperator::createAnd(Res, C);
 | 
						|
      }
 | 
						|
      case Instruction::SExt:
 | 
						|
        // We need to emit a cast to truncate, then a cast to sext.
 | 
						|
        return CastInst::create(Instruction::SExt,
 | 
						|
            InsertCastBefore(Instruction::Trunc, Res, Src->getType(), 
 | 
						|
                             CI), DestTy);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  Value *Op0 = SrcI->getNumOperands() > 0 ? SrcI->getOperand(0) : 0;
 | 
						|
  Value *Op1 = SrcI->getNumOperands() > 1 ? SrcI->getOperand(1) : 0;
 | 
						|
 | 
						|
  switch (SrcI->getOpcode()) {
 | 
						|
  case Instruction::Add:
 | 
						|
  case Instruction::Mul:
 | 
						|
  case Instruction::And:
 | 
						|
  case Instruction::Or:
 | 
						|
  case Instruction::Xor:
 | 
						|
    // If we are discarding information, or just changing the sign, 
 | 
						|
    // rewrite.
 | 
						|
    if (DestBitSize <= SrcBitSize && DestBitSize != 1) {
 | 
						|
      // Don't insert two casts if they cannot be eliminated.  We allow 
 | 
						|
      // two casts to be inserted if the sizes are the same.  This could 
 | 
						|
      // only be converting signedness, which is a noop.
 | 
						|
      if (DestBitSize == SrcBitSize || 
 | 
						|
          !ValueRequiresCast(CI.getOpcode(), Op1, DestTy,TD) ||
 | 
						|
          !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) {
 | 
						|
        Instruction::CastOps opcode = CI.getOpcode();
 | 
						|
        Value *Op0c = InsertOperandCastBefore(opcode, Op0, DestTy, SrcI);
 | 
						|
        Value *Op1c = InsertOperandCastBefore(opcode, Op1, DestTy, SrcI);
 | 
						|
        return BinaryOperator::create(
 | 
						|
            cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // cast (xor bool X, true) to int  --> xor (cast bool X to int), 1
 | 
						|
    if (isa<ZExtInst>(CI) && SrcBitSize == 1 && 
 | 
						|
        SrcI->getOpcode() == Instruction::Xor &&
 | 
						|
        Op1 == ConstantInt::getTrue() &&
 | 
						|
        (!Op0->hasOneUse() || !isa<CmpInst>(Op0))) {
 | 
						|
      Value *New = InsertOperandCastBefore(Instruction::ZExt, Op0, DestTy, &CI);
 | 
						|
      return BinaryOperator::createXor(New, ConstantInt::get(CI.getType(), 1));
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case Instruction::SDiv:
 | 
						|
  case Instruction::UDiv:
 | 
						|
  case Instruction::SRem:
 | 
						|
  case Instruction::URem:
 | 
						|
    // If we are just changing the sign, rewrite.
 | 
						|
    if (DestBitSize == SrcBitSize) {
 | 
						|
      // Don't insert two casts if they cannot be eliminated.  We allow 
 | 
						|
      // two casts to be inserted if the sizes are the same.  This could 
 | 
						|
      // only be converting signedness, which is a noop.
 | 
						|
      if (!ValueRequiresCast(CI.getOpcode(), Op1, DestTy, TD) || 
 | 
						|
          !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) {
 | 
						|
        Value *Op0c = InsertOperandCastBefore(Instruction::BitCast, 
 | 
						|
                                              Op0, DestTy, SrcI);
 | 
						|
        Value *Op1c = InsertOperandCastBefore(Instruction::BitCast, 
 | 
						|
                                              Op1, DestTy, SrcI);
 | 
						|
        return BinaryOperator::create(
 | 
						|
          cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case Instruction::Shl:
 | 
						|
    // Allow changing the sign of the source operand.  Do not allow 
 | 
						|
    // changing the size of the shift, UNLESS the shift amount is a 
 | 
						|
    // constant.  We must not change variable sized shifts to a smaller 
 | 
						|
    // size, because it is undefined to shift more bits out than exist 
 | 
						|
    // in the value.
 | 
						|
    if (DestBitSize == SrcBitSize ||
 | 
						|
        (DestBitSize < SrcBitSize && isa<Constant>(Op1))) {
 | 
						|
      Instruction::CastOps opcode = (DestBitSize == SrcBitSize ?
 | 
						|
          Instruction::BitCast : Instruction::Trunc);
 | 
						|
      Value *Op0c = InsertOperandCastBefore(opcode, Op0, DestTy, SrcI);
 | 
						|
      Value *Op1c = InsertOperandCastBefore(opcode, Op1, DestTy, SrcI);
 | 
						|
      return BinaryOperator::createShl(Op0c, Op1c);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case Instruction::AShr:
 | 
						|
    // If this is a signed shr, and if all bits shifted in are about to be
 | 
						|
    // truncated off, turn it into an unsigned shr to allow greater
 | 
						|
    // simplifications.
 | 
						|
    if (DestBitSize < SrcBitSize &&
 | 
						|
        isa<ConstantInt>(Op1)) {
 | 
						|
      unsigned ShiftAmt = cast<ConstantInt>(Op1)->getZExtValue();
 | 
						|
      if (SrcBitSize > ShiftAmt && SrcBitSize-ShiftAmt >= DestBitSize) {
 | 
						|
        // Insert the new logical shift right.
 | 
						|
        return BinaryOperator::createLShr(Op0, Op1);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case Instruction::ICmp:
 | 
						|
    // If we are just checking for a icmp eq of a single bit and casting it
 | 
						|
    // to an integer, then shift the bit to the appropriate place and then
 | 
						|
    // cast to integer to avoid the comparison.
 | 
						|
    if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
 | 
						|
      uint64_t Op1CV = Op1C->getZExtValue();
 | 
						|
      // cast (X == 0) to int --> X^1      iff X has only the low bit set.
 | 
						|
      // cast (X == 0) to int --> (X>>1)^1 iff X has only the 2nd bit set.
 | 
						|
      // cast (X == 1) to int --> X        iff X has only the low bit set.
 | 
						|
      // cast (X == 2) to int --> X>>1     iff X has only the 2nd bit set.
 | 
						|
      // cast (X != 0) to int --> X        iff X has only the low bit set.
 | 
						|
      // cast (X != 0) to int --> X>>1     iff X has only the 2nd bit set.
 | 
						|
      // cast (X != 1) to int --> X^1      iff X has only the low bit set.
 | 
						|
      // cast (X != 2) to int --> (X>>1)^1 iff X has only the 2nd bit set.
 | 
						|
      if (Op1CV == 0 || isPowerOf2_64(Op1CV)) {
 | 
						|
        // If Op1C some other power of two, convert:
 | 
						|
        uint64_t KnownZero, KnownOne;
 | 
						|
        uint64_t TypeMask = Op1C->getType()->getBitMask();
 | 
						|
        ComputeMaskedBits(Op0, TypeMask, KnownZero, KnownOne);
 | 
						|
 | 
						|
        // This only works for EQ and NE
 | 
						|
        ICmpInst::Predicate pred = cast<ICmpInst>(SrcI)->getPredicate();
 | 
						|
        if (pred != ICmpInst::ICMP_NE && pred != ICmpInst::ICMP_EQ)
 | 
						|
          break;
 | 
						|
        
 | 
						|
        if (isPowerOf2_64(KnownZero^TypeMask)) { // Exactly 1 possible 1?
 | 
						|
          bool isNE = pred == ICmpInst::ICMP_NE;
 | 
						|
          if (Op1CV && (Op1CV != (KnownZero^TypeMask))) {
 | 
						|
            // (X&4) == 2 --> false
 | 
						|
            // (X&4) != 2 --> true
 | 
						|
            Constant *Res = ConstantInt::get(Type::Int1Ty, isNE);
 | 
						|
            Res = ConstantExpr::getZExt(Res, CI.getType());
 | 
						|
            return ReplaceInstUsesWith(CI, Res);
 | 
						|
          }
 | 
						|
          
 | 
						|
          unsigned ShiftAmt = Log2_64(KnownZero^TypeMask);
 | 
						|
          Value *In = Op0;
 | 
						|
          if (ShiftAmt) {
 | 
						|
            // Perform a logical shr by shiftamt.
 | 
						|
            // Insert the shift to put the result in the low bit.
 | 
						|
            In = InsertNewInstBefore(
 | 
						|
              BinaryOperator::createLShr(In,
 | 
						|
                                     ConstantInt::get(In->getType(), ShiftAmt),
 | 
						|
                                     In->getName()+".lobit"), CI);
 | 
						|
          }
 | 
						|
          
 | 
						|
          if ((Op1CV != 0) == isNE) { // Toggle the low bit.
 | 
						|
            Constant *One = ConstantInt::get(In->getType(), 1);
 | 
						|
            In = BinaryOperator::createXor(In, One, "tmp");
 | 
						|
            InsertNewInstBefore(cast<Instruction>(In), CI);
 | 
						|
          }
 | 
						|
          
 | 
						|
          if (CI.getType() == In->getType())
 | 
						|
            return ReplaceInstUsesWith(CI, In);
 | 
						|
          else
 | 
						|
            return CastInst::createIntegerCast(In, CI.getType(), false/*ZExt*/);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitTrunc(CastInst &CI) {
 | 
						|
  if (Instruction *Result = commonIntCastTransforms(CI))
 | 
						|
    return Result;
 | 
						|
  
 | 
						|
  Value *Src = CI.getOperand(0);
 | 
						|
  const Type *Ty = CI.getType();
 | 
						|
  unsigned DestBitWidth = Ty->getPrimitiveSizeInBits();
 | 
						|
  
 | 
						|
  if (Instruction *SrcI = dyn_cast<Instruction>(Src)) {
 | 
						|
    switch (SrcI->getOpcode()) {
 | 
						|
    default: break;
 | 
						|
    case Instruction::LShr:
 | 
						|
      // We can shrink lshr to something smaller if we know the bits shifted in
 | 
						|
      // are already zeros.
 | 
						|
      if (ConstantInt *ShAmtV = dyn_cast<ConstantInt>(SrcI->getOperand(1))) {
 | 
						|
        unsigned ShAmt = ShAmtV->getZExtValue();
 | 
						|
        
 | 
						|
        // Get a mask for the bits shifting in.
 | 
						|
        uint64_t Mask = (~0ULL >> (64-ShAmt)) << DestBitWidth;
 | 
						|
        Value* SrcIOp0 = SrcI->getOperand(0);
 | 
						|
        if (SrcI->hasOneUse() && MaskedValueIsZero(SrcIOp0, Mask)) {
 | 
						|
          if (ShAmt >= DestBitWidth)        // All zeros.
 | 
						|
            return ReplaceInstUsesWith(CI, Constant::getNullValue(Ty));
 | 
						|
 | 
						|
          // Okay, we can shrink this.  Truncate the input, then return a new
 | 
						|
          // shift.
 | 
						|
          Value *V1 = InsertCastBefore(Instruction::Trunc, SrcIOp0, Ty, CI);
 | 
						|
          Value *V2 = InsertCastBefore(Instruction::Trunc, SrcI->getOperand(1),
 | 
						|
                                       Ty, CI);
 | 
						|
          return BinaryOperator::createLShr(V1, V2);
 | 
						|
        }
 | 
						|
      } else {     // This is a variable shr.
 | 
						|
        
 | 
						|
        // Turn 'trunc (lshr X, Y) to bool' into '(X & (1 << Y)) != 0'.  This is
 | 
						|
        // more LLVM instructions, but allows '1 << Y' to be hoisted if
 | 
						|
        // loop-invariant and CSE'd.
 | 
						|
        if (CI.getType() == Type::Int1Ty && SrcI->hasOneUse()) {
 | 
						|
          Value *One = ConstantInt::get(SrcI->getType(), 1);
 | 
						|
 | 
						|
          Value *V = InsertNewInstBefore(
 | 
						|
              BinaryOperator::createShl(One, SrcI->getOperand(1),
 | 
						|
                                     "tmp"), CI);
 | 
						|
          V = InsertNewInstBefore(BinaryOperator::createAnd(V,
 | 
						|
                                                            SrcI->getOperand(0),
 | 
						|
                                                            "tmp"), CI);
 | 
						|
          Value *Zero = Constant::getNullValue(V->getType());
 | 
						|
          return new ICmpInst(ICmpInst::ICMP_NE, V, Zero);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitZExt(CastInst &CI) {
 | 
						|
  // If one of the common conversion will work ..
 | 
						|
  if (Instruction *Result = commonIntCastTransforms(CI))
 | 
						|
    return Result;
 | 
						|
 | 
						|
  Value *Src = CI.getOperand(0);
 | 
						|
 | 
						|
  // If this is a cast of a cast
 | 
						|
  if (CastInst *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
 | 
						|
    // If this is a TRUNC followed by a ZEXT then we are dealing with integral
 | 
						|
    // types and if the sizes are just right we can convert this into a logical
 | 
						|
    // 'and' which will be much cheaper than the pair of casts.
 | 
						|
    if (isa<TruncInst>(CSrc)) {
 | 
						|
      // Get the sizes of the types involved
 | 
						|
      Value *A = CSrc->getOperand(0);
 | 
						|
      unsigned SrcSize = A->getType()->getPrimitiveSizeInBits();
 | 
						|
      unsigned MidSize = CSrc->getType()->getPrimitiveSizeInBits();
 | 
						|
      unsigned DstSize = CI.getType()->getPrimitiveSizeInBits();
 | 
						|
      // If we're actually extending zero bits and the trunc is a no-op
 | 
						|
      if (MidSize < DstSize && SrcSize == DstSize) {
 | 
						|
        // Replace both of the casts with an And of the type mask.
 | 
						|
        uint64_t AndValue = cast<IntegerType>(CSrc->getType())->getBitMask();
 | 
						|
        Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
 | 
						|
        Instruction *And = 
 | 
						|
          BinaryOperator::createAnd(CSrc->getOperand(0), AndConst);
 | 
						|
        // Unfortunately, if the type changed, we need to cast it back.
 | 
						|
        if (And->getType() != CI.getType()) {
 | 
						|
          And->setName(CSrc->getName()+".mask");
 | 
						|
          InsertNewInstBefore(And, CI);
 | 
						|
          And = CastInst::createIntegerCast(And, CI.getType(), false/*ZExt*/);
 | 
						|
        }
 | 
						|
        return And;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitSExt(CastInst &CI) {
 | 
						|
  return commonIntCastTransforms(CI);
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitFPTrunc(CastInst &CI) {
 | 
						|
  return commonCastTransforms(CI);
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitFPExt(CastInst &CI) {
 | 
						|
  return commonCastTransforms(CI);
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitFPToUI(CastInst &CI) {
 | 
						|
  return commonCastTransforms(CI);
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitFPToSI(CastInst &CI) {
 | 
						|
  return commonCastTransforms(CI);
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
 | 
						|
  return commonCastTransforms(CI);
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
 | 
						|
  return commonCastTransforms(CI);
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitPtrToInt(CastInst &CI) {
 | 
						|
  return commonCastTransforms(CI);
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitIntToPtr(CastInst &CI) {
 | 
						|
  return commonCastTransforms(CI);
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitBitCast(CastInst &CI) {
 | 
						|
 | 
						|
  // If the operands are integer typed then apply the integer transforms,
 | 
						|
  // otherwise just apply the common ones.
 | 
						|
  Value *Src = CI.getOperand(0);
 | 
						|
  const Type *SrcTy = Src->getType();
 | 
						|
  const Type *DestTy = CI.getType();
 | 
						|
 | 
						|
  if (SrcTy->isInteger() && DestTy->isInteger()) {
 | 
						|
    if (Instruction *Result = commonIntCastTransforms(CI))
 | 
						|
      return Result;
 | 
						|
  } else {
 | 
						|
    if (Instruction *Result = commonCastTransforms(CI))
 | 
						|
      return Result;
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  // Get rid of casts from one type to the same type. These are useless and can
 | 
						|
  // be replaced by the operand.
 | 
						|
  if (DestTy == Src->getType())
 | 
						|
    return ReplaceInstUsesWith(CI, Src);
 | 
						|
 | 
						|
  // If the source and destination are pointers, and this cast is equivalent to
 | 
						|
  // a getelementptr X, 0, 0, 0...  turn it into the appropriate getelementptr.
 | 
						|
  // This can enhance SROA and other transforms that want type-safe pointers.
 | 
						|
  if (const PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
 | 
						|
    if (const PointerType *SrcPTy = dyn_cast<PointerType>(SrcTy)) {
 | 
						|
      const Type *DstElTy = DstPTy->getElementType();
 | 
						|
      const Type *SrcElTy = SrcPTy->getElementType();
 | 
						|
      
 | 
						|
      Constant *ZeroUInt = Constant::getNullValue(Type::Int32Ty);
 | 
						|
      unsigned NumZeros = 0;
 | 
						|
      while (SrcElTy != DstElTy && 
 | 
						|
             isa<CompositeType>(SrcElTy) && !isa<PointerType>(SrcElTy) &&
 | 
						|
             SrcElTy->getNumContainedTypes() /* not "{}" */) {
 | 
						|
        SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
 | 
						|
        ++NumZeros;
 | 
						|
      }
 | 
						|
 | 
						|
      // If we found a path from the src to dest, create the getelementptr now.
 | 
						|
      if (SrcElTy == DstElTy) {
 | 
						|
        SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
 | 
						|
        return new GetElementPtrInst(Src, &Idxs[0], Idxs.size());
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
 | 
						|
    if (SVI->hasOneUse()) {
 | 
						|
      // Okay, we have (bitconvert (shuffle ..)).  Check to see if this is
 | 
						|
      // a bitconvert to a vector with the same # elts.
 | 
						|
      if (isa<PackedType>(DestTy) && 
 | 
						|
          cast<PackedType>(DestTy)->getNumElements() == 
 | 
						|
                SVI->getType()->getNumElements()) {
 | 
						|
        CastInst *Tmp;
 | 
						|
        // If either of the operands is a cast from CI.getType(), then
 | 
						|
        // evaluating the shuffle in the casted destination's type will allow
 | 
						|
        // us to eliminate at least one cast.
 | 
						|
        if (((Tmp = dyn_cast<CastInst>(SVI->getOperand(0))) && 
 | 
						|
             Tmp->getOperand(0)->getType() == DestTy) ||
 | 
						|
            ((Tmp = dyn_cast<CastInst>(SVI->getOperand(1))) && 
 | 
						|
             Tmp->getOperand(0)->getType() == DestTy)) {
 | 
						|
          Value *LHS = InsertOperandCastBefore(Instruction::BitCast,
 | 
						|
                                               SVI->getOperand(0), DestTy, &CI);
 | 
						|
          Value *RHS = InsertOperandCastBefore(Instruction::BitCast,
 | 
						|
                                               SVI->getOperand(1), DestTy, &CI);
 | 
						|
          // Return a new shuffle vector.  Use the same element ID's, as we
 | 
						|
          // know the vector types match #elts.
 | 
						|
          return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// GetSelectFoldableOperands - We want to turn code that looks like this:
 | 
						|
///   %C = or %A, %B
 | 
						|
///   %D = select %cond, %C, %A
 | 
						|
/// into:
 | 
						|
///   %C = select %cond, %B, 0
 | 
						|
///   %D = or %A, %C
 | 
						|
///
 | 
						|
/// Assuming that the specified instruction is an operand to the select, return
 | 
						|
/// a bitmask indicating which operands of this instruction are foldable if they
 | 
						|
/// equal the other incoming value of the select.
 | 
						|
///
 | 
						|
static unsigned GetSelectFoldableOperands(Instruction *I) {
 | 
						|
  switch (I->getOpcode()) {
 | 
						|
  case Instruction::Add:
 | 
						|
  case Instruction::Mul:
 | 
						|
  case Instruction::And:
 | 
						|
  case Instruction::Or:
 | 
						|
  case Instruction::Xor:
 | 
						|
    return 3;              // Can fold through either operand.
 | 
						|
  case Instruction::Sub:   // Can only fold on the amount subtracted.
 | 
						|
  case Instruction::Shl:   // Can only fold on the shift amount.
 | 
						|
  case Instruction::LShr:
 | 
						|
  case Instruction::AShr:
 | 
						|
    return 1;
 | 
						|
  default:
 | 
						|
    return 0;              // Cannot fold
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// GetSelectFoldableConstant - For the same transformation as the previous
 | 
						|
/// function, return the identity constant that goes into the select.
 | 
						|
static Constant *GetSelectFoldableConstant(Instruction *I) {
 | 
						|
  switch (I->getOpcode()) {
 | 
						|
  default: assert(0 && "This cannot happen!"); abort();
 | 
						|
  case Instruction::Add:
 | 
						|
  case Instruction::Sub:
 | 
						|
  case Instruction::Or:
 | 
						|
  case Instruction::Xor:
 | 
						|
  case Instruction::Shl:
 | 
						|
  case Instruction::LShr:
 | 
						|
  case Instruction::AShr:
 | 
						|
    return Constant::getNullValue(I->getType());
 | 
						|
  case Instruction::And:
 | 
						|
    return ConstantInt::getAllOnesValue(I->getType());
 | 
						|
  case Instruction::Mul:
 | 
						|
    return ConstantInt::get(I->getType(), 1);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
 | 
						|
/// have the same opcode and only one use each.  Try to simplify this.
 | 
						|
Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
 | 
						|
                                          Instruction *FI) {
 | 
						|
  if (TI->getNumOperands() == 1) {
 | 
						|
    // If this is a non-volatile load or a cast from the same type,
 | 
						|
    // merge.
 | 
						|
    if (TI->isCast()) {
 | 
						|
      if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType())
 | 
						|
        return 0;
 | 
						|
    } else {
 | 
						|
      return 0;  // unknown unary op.
 | 
						|
    }
 | 
						|
 | 
						|
    // Fold this by inserting a select from the input values.
 | 
						|
    SelectInst *NewSI = new SelectInst(SI.getCondition(), TI->getOperand(0),
 | 
						|
                                       FI->getOperand(0), SI.getName()+".v");
 | 
						|
    InsertNewInstBefore(NewSI, SI);
 | 
						|
    return CastInst::create(Instruction::CastOps(TI->getOpcode()), NewSI, 
 | 
						|
                            TI->getType());
 | 
						|
  }
 | 
						|
 | 
						|
  // Only handle binary operators here.
 | 
						|
  if (!isa<BinaryOperator>(TI))
 | 
						|
    return 0;
 | 
						|
 | 
						|
  // Figure out if the operations have any operands in common.
 | 
						|
  Value *MatchOp, *OtherOpT, *OtherOpF;
 | 
						|
  bool MatchIsOpZero;
 | 
						|
  if (TI->getOperand(0) == FI->getOperand(0)) {
 | 
						|
    MatchOp  = TI->getOperand(0);
 | 
						|
    OtherOpT = TI->getOperand(1);
 | 
						|
    OtherOpF = FI->getOperand(1);
 | 
						|
    MatchIsOpZero = true;
 | 
						|
  } else if (TI->getOperand(1) == FI->getOperand(1)) {
 | 
						|
    MatchOp  = TI->getOperand(1);
 | 
						|
    OtherOpT = TI->getOperand(0);
 | 
						|
    OtherOpF = FI->getOperand(0);
 | 
						|
    MatchIsOpZero = false;
 | 
						|
  } else if (!TI->isCommutative()) {
 | 
						|
    return 0;
 | 
						|
  } else if (TI->getOperand(0) == FI->getOperand(1)) {
 | 
						|
    MatchOp  = TI->getOperand(0);
 | 
						|
    OtherOpT = TI->getOperand(1);
 | 
						|
    OtherOpF = FI->getOperand(0);
 | 
						|
    MatchIsOpZero = true;
 | 
						|
  } else if (TI->getOperand(1) == FI->getOperand(0)) {
 | 
						|
    MatchOp  = TI->getOperand(1);
 | 
						|
    OtherOpT = TI->getOperand(0);
 | 
						|
    OtherOpF = FI->getOperand(1);
 | 
						|
    MatchIsOpZero = true;
 | 
						|
  } else {
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we reach here, they do have operations in common.
 | 
						|
  SelectInst *NewSI = new SelectInst(SI.getCondition(), OtherOpT,
 | 
						|
                                     OtherOpF, SI.getName()+".v");
 | 
						|
  InsertNewInstBefore(NewSI, SI);
 | 
						|
 | 
						|
  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
 | 
						|
    if (MatchIsOpZero)
 | 
						|
      return BinaryOperator::create(BO->getOpcode(), MatchOp, NewSI);
 | 
						|
    else
 | 
						|
      return BinaryOperator::create(BO->getOpcode(), NewSI, MatchOp);
 | 
						|
  }
 | 
						|
  assert(0 && "Shouldn't get here");
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
 | 
						|
  Value *CondVal = SI.getCondition();
 | 
						|
  Value *TrueVal = SI.getTrueValue();
 | 
						|
  Value *FalseVal = SI.getFalseValue();
 | 
						|
 | 
						|
  // select true, X, Y  -> X
 | 
						|
  // select false, X, Y -> Y
 | 
						|
  if (ConstantInt *C = dyn_cast<ConstantInt>(CondVal))
 | 
						|
    return ReplaceInstUsesWith(SI, C->getZExtValue() ? TrueVal : FalseVal);
 | 
						|
 | 
						|
  // select C, X, X -> X
 | 
						|
  if (TrueVal == FalseVal)
 | 
						|
    return ReplaceInstUsesWith(SI, TrueVal);
 | 
						|
 | 
						|
  if (isa<UndefValue>(TrueVal))   // select C, undef, X -> X
 | 
						|
    return ReplaceInstUsesWith(SI, FalseVal);
 | 
						|
  if (isa<UndefValue>(FalseVal))   // select C, X, undef -> X
 | 
						|
    return ReplaceInstUsesWith(SI, TrueVal);
 | 
						|
  if (isa<UndefValue>(CondVal)) {  // select undef, X, Y -> X or Y
 | 
						|
    if (isa<Constant>(TrueVal))
 | 
						|
      return ReplaceInstUsesWith(SI, TrueVal);
 | 
						|
    else
 | 
						|
      return ReplaceInstUsesWith(SI, FalseVal);
 | 
						|
  }
 | 
						|
 | 
						|
  if (SI.getType() == Type::Int1Ty) {
 | 
						|
    if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) {
 | 
						|
      if (C->getZExtValue()) {
 | 
						|
        // Change: A = select B, true, C --> A = or B, C
 | 
						|
        return BinaryOperator::createOr(CondVal, FalseVal);
 | 
						|
      } else {
 | 
						|
        // Change: A = select B, false, C --> A = and !B, C
 | 
						|
        Value *NotCond =
 | 
						|
          InsertNewInstBefore(BinaryOperator::createNot(CondVal,
 | 
						|
                                             "not."+CondVal->getName()), SI);
 | 
						|
        return BinaryOperator::createAnd(NotCond, FalseVal);
 | 
						|
      }
 | 
						|
    } else if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) {
 | 
						|
      if (C->getZExtValue() == false) {
 | 
						|
        // Change: A = select B, C, false --> A = and B, C
 | 
						|
        return BinaryOperator::createAnd(CondVal, TrueVal);
 | 
						|
      } else {
 | 
						|
        // Change: A = select B, C, true --> A = or !B, C
 | 
						|
        Value *NotCond =
 | 
						|
          InsertNewInstBefore(BinaryOperator::createNot(CondVal,
 | 
						|
                                             "not."+CondVal->getName()), SI);
 | 
						|
        return BinaryOperator::createOr(NotCond, TrueVal);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Selecting between two integer constants?
 | 
						|
  if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
 | 
						|
    if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
 | 
						|
      // select C, 1, 0 -> cast C to int
 | 
						|
      if (FalseValC->isNullValue() && TrueValC->getZExtValue() == 1) {
 | 
						|
        return CastInst::create(Instruction::ZExt, CondVal, SI.getType());
 | 
						|
      } else if (TrueValC->isNullValue() && FalseValC->getZExtValue() == 1) {
 | 
						|
        // select C, 0, 1 -> cast !C to int
 | 
						|
        Value *NotCond =
 | 
						|
          InsertNewInstBefore(BinaryOperator::createNot(CondVal,
 | 
						|
                                               "not."+CondVal->getName()), SI);
 | 
						|
        return CastInst::create(Instruction::ZExt, NotCond, SI.getType());
 | 
						|
      }
 | 
						|
 | 
						|
      if (ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition())) {
 | 
						|
 | 
						|
        // (x <s 0) ? -1 : 0 -> ashr x, 31
 | 
						|
        // (x >u 2147483647) ? -1 : 0 -> ashr x, 31
 | 
						|
        if (TrueValC->isAllOnesValue() && FalseValC->isNullValue())
 | 
						|
          if (ConstantInt *CmpCst = dyn_cast<ConstantInt>(IC->getOperand(1))) {
 | 
						|
            bool CanXForm = false;
 | 
						|
            if (IC->isSignedPredicate())
 | 
						|
              CanXForm = CmpCst->isNullValue() && 
 | 
						|
                         IC->getPredicate() == ICmpInst::ICMP_SLT;
 | 
						|
            else {
 | 
						|
              unsigned Bits = CmpCst->getType()->getPrimitiveSizeInBits();
 | 
						|
              CanXForm = (CmpCst->getZExtValue() == ~0ULL >> (64-Bits+1)) &&
 | 
						|
                         IC->getPredicate() == ICmpInst::ICMP_UGT;
 | 
						|
            }
 | 
						|
            
 | 
						|
            if (CanXForm) {
 | 
						|
              // The comparison constant and the result are not neccessarily the
 | 
						|
              // same width. Make an all-ones value by inserting a AShr.
 | 
						|
              Value *X = IC->getOperand(0);
 | 
						|
              unsigned Bits = X->getType()->getPrimitiveSizeInBits();
 | 
						|
              Constant *ShAmt = ConstantInt::get(X->getType(), Bits-1);
 | 
						|
              Instruction *SRA = BinaryOperator::create(Instruction::AShr, X,
 | 
						|
                                                        ShAmt, "ones");
 | 
						|
              InsertNewInstBefore(SRA, SI);
 | 
						|
              
 | 
						|
              // Finally, convert to the type of the select RHS.  We figure out
 | 
						|
              // if this requires a SExt, Trunc or BitCast based on the sizes.
 | 
						|
              Instruction::CastOps opc = Instruction::BitCast;
 | 
						|
              unsigned SRASize = SRA->getType()->getPrimitiveSizeInBits();
 | 
						|
              unsigned SISize  = SI.getType()->getPrimitiveSizeInBits();
 | 
						|
              if (SRASize < SISize)
 | 
						|
                opc = Instruction::SExt;
 | 
						|
              else if (SRASize > SISize)
 | 
						|
                opc = Instruction::Trunc;
 | 
						|
              return CastInst::create(opc, SRA, SI.getType());
 | 
						|
            }
 | 
						|
          }
 | 
						|
 | 
						|
 | 
						|
        // If one of the constants is zero (we know they can't both be) and we
 | 
						|
        // have a fcmp instruction with zero, and we have an 'and' with the
 | 
						|
        // non-constant value, eliminate this whole mess.  This corresponds to
 | 
						|
        // cases like this: ((X & 27) ? 27 : 0)
 | 
						|
        if (TrueValC->isNullValue() || FalseValC->isNullValue())
 | 
						|
          if (IC->isEquality() && isa<ConstantInt>(IC->getOperand(1)) &&
 | 
						|
              cast<Constant>(IC->getOperand(1))->isNullValue())
 | 
						|
            if (Instruction *ICA = dyn_cast<Instruction>(IC->getOperand(0)))
 | 
						|
              if (ICA->getOpcode() == Instruction::And &&
 | 
						|
                  isa<ConstantInt>(ICA->getOperand(1)) &&
 | 
						|
                  (ICA->getOperand(1) == TrueValC ||
 | 
						|
                   ICA->getOperand(1) == FalseValC) &&
 | 
						|
                  isOneBitSet(cast<ConstantInt>(ICA->getOperand(1)))) {
 | 
						|
                // Okay, now we know that everything is set up, we just don't
 | 
						|
                // know whether we have a icmp_ne or icmp_eq and whether the 
 | 
						|
                // true or false val is the zero.
 | 
						|
                bool ShouldNotVal = !TrueValC->isNullValue();
 | 
						|
                ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
 | 
						|
                Value *V = ICA;
 | 
						|
                if (ShouldNotVal)
 | 
						|
                  V = InsertNewInstBefore(BinaryOperator::create(
 | 
						|
                                  Instruction::Xor, V, ICA->getOperand(1)), SI);
 | 
						|
                return ReplaceInstUsesWith(SI, V);
 | 
						|
              }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  // See if we are selecting two values based on a comparison of the two values.
 | 
						|
  if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
 | 
						|
    if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
 | 
						|
      // Transform (X == Y) ? X : Y  -> Y
 | 
						|
      if (FCI->getPredicate() == FCmpInst::FCMP_OEQ)
 | 
						|
        return ReplaceInstUsesWith(SI, FalseVal);
 | 
						|
      // Transform (X != Y) ? X : Y  -> X
 | 
						|
      if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
 | 
						|
        return ReplaceInstUsesWith(SI, TrueVal);
 | 
						|
      // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
 | 
						|
 | 
						|
    } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
 | 
						|
      // Transform (X == Y) ? Y : X  -> X
 | 
						|
      if (FCI->getPredicate() == FCmpInst::FCMP_OEQ)
 | 
						|
        return ReplaceInstUsesWith(SI, FalseVal);
 | 
						|
      // Transform (X != Y) ? Y : X  -> Y
 | 
						|
      if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
 | 
						|
        return ReplaceInstUsesWith(SI, TrueVal);
 | 
						|
      // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // See if we are selecting two values based on a comparison of the two values.
 | 
						|
  if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal)) {
 | 
						|
    if (ICI->getOperand(0) == TrueVal && ICI->getOperand(1) == FalseVal) {
 | 
						|
      // Transform (X == Y) ? X : Y  -> Y
 | 
						|
      if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
 | 
						|
        return ReplaceInstUsesWith(SI, FalseVal);
 | 
						|
      // Transform (X != Y) ? X : Y  -> X
 | 
						|
      if (ICI->getPredicate() == ICmpInst::ICMP_NE)
 | 
						|
        return ReplaceInstUsesWith(SI, TrueVal);
 | 
						|
      // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
 | 
						|
 | 
						|
    } else if (ICI->getOperand(0) == FalseVal && ICI->getOperand(1) == TrueVal){
 | 
						|
      // Transform (X == Y) ? Y : X  -> X
 | 
						|
      if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
 | 
						|
        return ReplaceInstUsesWith(SI, FalseVal);
 | 
						|
      // Transform (X != Y) ? Y : X  -> Y
 | 
						|
      if (ICI->getPredicate() == ICmpInst::ICMP_NE)
 | 
						|
        return ReplaceInstUsesWith(SI, TrueVal);
 | 
						|
      // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
 | 
						|
    if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
 | 
						|
      if (TI->hasOneUse() && FI->hasOneUse()) {
 | 
						|
        Instruction *AddOp = 0, *SubOp = 0;
 | 
						|
 | 
						|
        // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
 | 
						|
        if (TI->getOpcode() == FI->getOpcode())
 | 
						|
          if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
 | 
						|
            return IV;
 | 
						|
 | 
						|
        // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))).  This is
 | 
						|
        // even legal for FP.
 | 
						|
        if (TI->getOpcode() == Instruction::Sub &&
 | 
						|
            FI->getOpcode() == Instruction::Add) {
 | 
						|
          AddOp = FI; SubOp = TI;
 | 
						|
        } else if (FI->getOpcode() == Instruction::Sub &&
 | 
						|
                   TI->getOpcode() == Instruction::Add) {
 | 
						|
          AddOp = TI; SubOp = FI;
 | 
						|
        }
 | 
						|
 | 
						|
        if (AddOp) {
 | 
						|
          Value *OtherAddOp = 0;
 | 
						|
          if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
 | 
						|
            OtherAddOp = AddOp->getOperand(1);
 | 
						|
          } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
 | 
						|
            OtherAddOp = AddOp->getOperand(0);
 | 
						|
          }
 | 
						|
 | 
						|
          if (OtherAddOp) {
 | 
						|
            // So at this point we know we have (Y -> OtherAddOp):
 | 
						|
            //        select C, (add X, Y), (sub X, Z)
 | 
						|
            Value *NegVal;  // Compute -Z
 | 
						|
            if (Constant *C = dyn_cast<Constant>(SubOp->getOperand(1))) {
 | 
						|
              NegVal = ConstantExpr::getNeg(C);
 | 
						|
            } else {
 | 
						|
              NegVal = InsertNewInstBefore(
 | 
						|
                    BinaryOperator::createNeg(SubOp->getOperand(1), "tmp"), SI);
 | 
						|
            }
 | 
						|
 | 
						|
            Value *NewTrueOp = OtherAddOp;
 | 
						|
            Value *NewFalseOp = NegVal;
 | 
						|
            if (AddOp != TI)
 | 
						|
              std::swap(NewTrueOp, NewFalseOp);
 | 
						|
            Instruction *NewSel =
 | 
						|
              new SelectInst(CondVal, NewTrueOp,NewFalseOp,SI.getName()+".p");
 | 
						|
 | 
						|
            NewSel = InsertNewInstBefore(NewSel, SI);
 | 
						|
            return BinaryOperator::createAdd(SubOp->getOperand(0), NewSel);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
  // See if we can fold the select into one of our operands.
 | 
						|
  if (SI.getType()->isInteger()) {
 | 
						|
    // See the comment above GetSelectFoldableOperands for a description of the
 | 
						|
    // transformation we are doing here.
 | 
						|
    if (Instruction *TVI = dyn_cast<Instruction>(TrueVal))
 | 
						|
      if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
 | 
						|
          !isa<Constant>(FalseVal))
 | 
						|
        if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
 | 
						|
          unsigned OpToFold = 0;
 | 
						|
          if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
 | 
						|
            OpToFold = 1;
 | 
						|
          } else  if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
 | 
						|
            OpToFold = 2;
 | 
						|
          }
 | 
						|
 | 
						|
          if (OpToFold) {
 | 
						|
            Constant *C = GetSelectFoldableConstant(TVI);
 | 
						|
            std::string Name = TVI->getName(); TVI->setName("");
 | 
						|
            Instruction *NewSel =
 | 
						|
              new SelectInst(SI.getCondition(), TVI->getOperand(2-OpToFold), C,
 | 
						|
                             Name);
 | 
						|
            InsertNewInstBefore(NewSel, SI);
 | 
						|
            if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TVI))
 | 
						|
              return BinaryOperator::create(BO->getOpcode(), FalseVal, NewSel);
 | 
						|
            else {
 | 
						|
              assert(0 && "Unknown instruction!!");
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
    if (Instruction *FVI = dyn_cast<Instruction>(FalseVal))
 | 
						|
      if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
 | 
						|
          !isa<Constant>(TrueVal))
 | 
						|
        if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
 | 
						|
          unsigned OpToFold = 0;
 | 
						|
          if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
 | 
						|
            OpToFold = 1;
 | 
						|
          } else  if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
 | 
						|
            OpToFold = 2;
 | 
						|
          }
 | 
						|
 | 
						|
          if (OpToFold) {
 | 
						|
            Constant *C = GetSelectFoldableConstant(FVI);
 | 
						|
            std::string Name = FVI->getName(); 
 | 
						|
            FVI->setName("");
 | 
						|
            Instruction *NewSel =
 | 
						|
              new SelectInst(SI.getCondition(), C, FVI->getOperand(2-OpToFold),
 | 
						|
                             Name);
 | 
						|
            InsertNewInstBefore(NewSel, SI);
 | 
						|
            if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FVI))
 | 
						|
              return BinaryOperator::create(BO->getOpcode(), TrueVal, NewSel);
 | 
						|
            else
 | 
						|
              assert(0 && "Unknown instruction!!");
 | 
						|
          }
 | 
						|
        }
 | 
						|
  }
 | 
						|
 | 
						|
  if (BinaryOperator::isNot(CondVal)) {
 | 
						|
    SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
 | 
						|
    SI.setOperand(1, FalseVal);
 | 
						|
    SI.setOperand(2, TrueVal);
 | 
						|
    return &SI;
 | 
						|
  }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// GetKnownAlignment - If the specified pointer has an alignment that we can
 | 
						|
/// determine, return it, otherwise return 0.
 | 
						|
static unsigned GetKnownAlignment(Value *V, TargetData *TD) {
 | 
						|
  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
 | 
						|
    unsigned Align = GV->getAlignment();
 | 
						|
    if (Align == 0 && TD) 
 | 
						|
      Align = TD->getTypeAlignmentPref(GV->getType()->getElementType());
 | 
						|
    return Align;
 | 
						|
  } else if (AllocationInst *AI = dyn_cast<AllocationInst>(V)) {
 | 
						|
    unsigned Align = AI->getAlignment();
 | 
						|
    if (Align == 0 && TD) {
 | 
						|
      if (isa<AllocaInst>(AI))
 | 
						|
        Align = TD->getTypeAlignmentPref(AI->getType()->getElementType());
 | 
						|
      else if (isa<MallocInst>(AI)) {
 | 
						|
        // Malloc returns maximally aligned memory.
 | 
						|
        Align = TD->getTypeAlignmentABI(AI->getType()->getElementType());
 | 
						|
        Align =
 | 
						|
          std::max(Align,
 | 
						|
                   (unsigned)TD->getTypeAlignmentABI(Type::DoubleTy));
 | 
						|
        Align =
 | 
						|
          std::max(Align,
 | 
						|
                   (unsigned)TD->getTypeAlignmentABI(Type::Int64Ty));
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return Align;
 | 
						|
  } else if (isa<BitCastInst>(V) ||
 | 
						|
             (isa<ConstantExpr>(V) && 
 | 
						|
              cast<ConstantExpr>(V)->getOpcode() == Instruction::BitCast)) {
 | 
						|
    User *CI = cast<User>(V);
 | 
						|
    if (isa<PointerType>(CI->getOperand(0)->getType()))
 | 
						|
      return GetKnownAlignment(CI->getOperand(0), TD);
 | 
						|
    return 0;
 | 
						|
  } else if (isa<GetElementPtrInst>(V) ||
 | 
						|
             (isa<ConstantExpr>(V) && 
 | 
						|
              cast<ConstantExpr>(V)->getOpcode()==Instruction::GetElementPtr)) {
 | 
						|
    User *GEPI = cast<User>(V);
 | 
						|
    unsigned BaseAlignment = GetKnownAlignment(GEPI->getOperand(0), TD);
 | 
						|
    if (BaseAlignment == 0) return 0;
 | 
						|
    
 | 
						|
    // If all indexes are zero, it is just the alignment of the base pointer.
 | 
						|
    bool AllZeroOperands = true;
 | 
						|
    for (unsigned i = 1, e = GEPI->getNumOperands(); i != e; ++i)
 | 
						|
      if (!isa<Constant>(GEPI->getOperand(i)) ||
 | 
						|
          !cast<Constant>(GEPI->getOperand(i))->isNullValue()) {
 | 
						|
        AllZeroOperands = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    if (AllZeroOperands)
 | 
						|
      return BaseAlignment;
 | 
						|
    
 | 
						|
    // Otherwise, if the base alignment is >= the alignment we expect for the
 | 
						|
    // base pointer type, then we know that the resultant pointer is aligned at
 | 
						|
    // least as much as its type requires.
 | 
						|
    if (!TD) return 0;
 | 
						|
 | 
						|
    const Type *BasePtrTy = GEPI->getOperand(0)->getType();
 | 
						|
    const PointerType *PtrTy = cast<PointerType>(BasePtrTy);
 | 
						|
    if (TD->getTypeAlignmentABI(PtrTy->getElementType())
 | 
						|
        <= BaseAlignment) {
 | 
						|
      const Type *GEPTy = GEPI->getType();
 | 
						|
      const PointerType *GEPPtrTy = cast<PointerType>(GEPTy);
 | 
						|
      return TD->getTypeAlignmentABI(GEPPtrTy->getElementType());
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// visitCallInst - CallInst simplification.  This mostly only handles folding 
 | 
						|
/// of intrinsic instructions.  For normal calls, it allows visitCallSite to do
 | 
						|
/// the heavy lifting.
 | 
						|
///
 | 
						|
Instruction *InstCombiner::visitCallInst(CallInst &CI) {
 | 
						|
  IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
 | 
						|
  if (!II) return visitCallSite(&CI);
 | 
						|
  
 | 
						|
  // Intrinsics cannot occur in an invoke, so handle them here instead of in
 | 
						|
  // visitCallSite.
 | 
						|
  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
 | 
						|
    bool Changed = false;
 | 
						|
 | 
						|
    // memmove/cpy/set of zero bytes is a noop.
 | 
						|
    if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
 | 
						|
      if (NumBytes->isNullValue()) return EraseInstFromFunction(CI);
 | 
						|
 | 
						|
      if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
 | 
						|
        if (CI->getZExtValue() == 1) {
 | 
						|
          // Replace the instruction with just byte operations.  We would
 | 
						|
          // transform other cases to loads/stores, but we don't know if
 | 
						|
          // alignment is sufficient.
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // If we have a memmove and the source operation is a constant global,
 | 
						|
    // then the source and dest pointers can't alias, so we can change this
 | 
						|
    // into a call to memcpy.
 | 
						|
    if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(II)) {
 | 
						|
      if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
 | 
						|
        if (GVSrc->isConstant()) {
 | 
						|
          Module *M = CI.getParent()->getParent()->getParent();
 | 
						|
          const char *Name;
 | 
						|
          if (CI.getCalledFunction()->getFunctionType()->getParamType(2) == 
 | 
						|
              Type::Int32Ty)
 | 
						|
            Name = "llvm.memcpy.i32";
 | 
						|
          else
 | 
						|
            Name = "llvm.memcpy.i64";
 | 
						|
          Constant *MemCpy = M->getOrInsertFunction(Name,
 | 
						|
                                     CI.getCalledFunction()->getFunctionType());
 | 
						|
          CI.setOperand(0, MemCpy);
 | 
						|
          Changed = true;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // If we can determine a pointer alignment that is bigger than currently
 | 
						|
    // set, update the alignment.
 | 
						|
    if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
 | 
						|
      unsigned Alignment1 = GetKnownAlignment(MI->getOperand(1), TD);
 | 
						|
      unsigned Alignment2 = GetKnownAlignment(MI->getOperand(2), TD);
 | 
						|
      unsigned Align = std::min(Alignment1, Alignment2);
 | 
						|
      if (MI->getAlignment()->getZExtValue() < Align) {
 | 
						|
        MI->setAlignment(ConstantInt::get(Type::Int32Ty, Align));
 | 
						|
        Changed = true;
 | 
						|
      }
 | 
						|
    } else if (isa<MemSetInst>(MI)) {
 | 
						|
      unsigned Alignment = GetKnownAlignment(MI->getDest(), TD);
 | 
						|
      if (MI->getAlignment()->getZExtValue() < Alignment) {
 | 
						|
        MI->setAlignment(ConstantInt::get(Type::Int32Ty, Alignment));
 | 
						|
        Changed = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
          
 | 
						|
    if (Changed) return II;
 | 
						|
  } else {
 | 
						|
    switch (II->getIntrinsicID()) {
 | 
						|
    default: break;
 | 
						|
    case Intrinsic::ppc_altivec_lvx:
 | 
						|
    case Intrinsic::ppc_altivec_lvxl:
 | 
						|
    case Intrinsic::x86_sse_loadu_ps:
 | 
						|
    case Intrinsic::x86_sse2_loadu_pd:
 | 
						|
    case Intrinsic::x86_sse2_loadu_dq:
 | 
						|
      // Turn PPC lvx     -> load if the pointer is known aligned.
 | 
						|
      // Turn X86 loadups -> load if the pointer is known aligned.
 | 
						|
      if (GetKnownAlignment(II->getOperand(1), TD) >= 16) {
 | 
						|
        Value *Ptr = InsertCastBefore(Instruction::BitCast, II->getOperand(1),
 | 
						|
                                      PointerType::get(II->getType()), CI);
 | 
						|
        return new LoadInst(Ptr);
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case Intrinsic::ppc_altivec_stvx:
 | 
						|
    case Intrinsic::ppc_altivec_stvxl:
 | 
						|
      // Turn stvx -> store if the pointer is known aligned.
 | 
						|
      if (GetKnownAlignment(II->getOperand(2), TD) >= 16) {
 | 
						|
        const Type *OpPtrTy = PointerType::get(II->getOperand(1)->getType());
 | 
						|
        Value *Ptr = InsertCastBefore(Instruction::BitCast, II->getOperand(2),
 | 
						|
                                      OpPtrTy, CI);
 | 
						|
        return new StoreInst(II->getOperand(1), Ptr);
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case Intrinsic::x86_sse_storeu_ps:
 | 
						|
    case Intrinsic::x86_sse2_storeu_pd:
 | 
						|
    case Intrinsic::x86_sse2_storeu_dq:
 | 
						|
    case Intrinsic::x86_sse2_storel_dq:
 | 
						|
      // Turn X86 storeu -> store if the pointer is known aligned.
 | 
						|
      if (GetKnownAlignment(II->getOperand(1), TD) >= 16) {
 | 
						|
        const Type *OpPtrTy = PointerType::get(II->getOperand(2)->getType());
 | 
						|
        Value *Ptr = InsertCastBefore(Instruction::BitCast, II->getOperand(1),
 | 
						|
                                      OpPtrTy, CI);
 | 
						|
        return new StoreInst(II->getOperand(2), Ptr);
 | 
						|
      }
 | 
						|
      break;
 | 
						|
      
 | 
						|
    case Intrinsic::x86_sse_cvttss2si: {
 | 
						|
      // These intrinsics only demands the 0th element of its input vector.  If
 | 
						|
      // we can simplify the input based on that, do so now.
 | 
						|
      uint64_t UndefElts;
 | 
						|
      if (Value *V = SimplifyDemandedVectorElts(II->getOperand(1), 1, 
 | 
						|
                                                UndefElts)) {
 | 
						|
        II->setOperand(1, V);
 | 
						|
        return II;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
      
 | 
						|
    case Intrinsic::ppc_altivec_vperm:
 | 
						|
      // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
 | 
						|
      if (ConstantPacked *Mask = dyn_cast<ConstantPacked>(II->getOperand(3))) {
 | 
						|
        assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!");
 | 
						|
        
 | 
						|
        // Check that all of the elements are integer constants or undefs.
 | 
						|
        bool AllEltsOk = true;
 | 
						|
        for (unsigned i = 0; i != 16; ++i) {
 | 
						|
          if (!isa<ConstantInt>(Mask->getOperand(i)) && 
 | 
						|
              !isa<UndefValue>(Mask->getOperand(i))) {
 | 
						|
            AllEltsOk = false;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        
 | 
						|
        if (AllEltsOk) {
 | 
						|
          // Cast the input vectors to byte vectors.
 | 
						|
          Value *Op0 = InsertCastBefore(Instruction::BitCast, 
 | 
						|
                                        II->getOperand(1), Mask->getType(), CI);
 | 
						|
          Value *Op1 = InsertCastBefore(Instruction::BitCast,
 | 
						|
                                        II->getOperand(2), Mask->getType(), CI);
 | 
						|
          Value *Result = UndefValue::get(Op0->getType());
 | 
						|
          
 | 
						|
          // Only extract each element once.
 | 
						|
          Value *ExtractedElts[32];
 | 
						|
          memset(ExtractedElts, 0, sizeof(ExtractedElts));
 | 
						|
          
 | 
						|
          for (unsigned i = 0; i != 16; ++i) {
 | 
						|
            if (isa<UndefValue>(Mask->getOperand(i)))
 | 
						|
              continue;
 | 
						|
            unsigned Idx =cast<ConstantInt>(Mask->getOperand(i))->getZExtValue();
 | 
						|
            Idx &= 31;  // Match the hardware behavior.
 | 
						|
            
 | 
						|
            if (ExtractedElts[Idx] == 0) {
 | 
						|
              Instruction *Elt = 
 | 
						|
                new ExtractElementInst(Idx < 16 ? Op0 : Op1, Idx&15, "tmp");
 | 
						|
              InsertNewInstBefore(Elt, CI);
 | 
						|
              ExtractedElts[Idx] = Elt;
 | 
						|
            }
 | 
						|
          
 | 
						|
            // Insert this value into the result vector.
 | 
						|
            Result = new InsertElementInst(Result, ExtractedElts[Idx], i,"tmp");
 | 
						|
            InsertNewInstBefore(cast<Instruction>(Result), CI);
 | 
						|
          }
 | 
						|
          return CastInst::create(Instruction::BitCast, Result, CI.getType());
 | 
						|
        }
 | 
						|
      }
 | 
						|
      break;
 | 
						|
 | 
						|
    case Intrinsic::stackrestore: {
 | 
						|
      // If the save is right next to the restore, remove the restore.  This can
 | 
						|
      // happen when variable allocas are DCE'd.
 | 
						|
      if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getOperand(1))) {
 | 
						|
        if (SS->getIntrinsicID() == Intrinsic::stacksave) {
 | 
						|
          BasicBlock::iterator BI = SS;
 | 
						|
          if (&*++BI == II)
 | 
						|
            return EraseInstFromFunction(CI);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      
 | 
						|
      // If the stack restore is in a return/unwind block and if there are no
 | 
						|
      // allocas or calls between the restore and the return, nuke the restore.
 | 
						|
      TerminatorInst *TI = II->getParent()->getTerminator();
 | 
						|
      if (isa<ReturnInst>(TI) || isa<UnwindInst>(TI)) {
 | 
						|
        BasicBlock::iterator BI = II;
 | 
						|
        bool CannotRemove = false;
 | 
						|
        for (++BI; &*BI != TI; ++BI) {
 | 
						|
          if (isa<AllocaInst>(BI) ||
 | 
						|
              (isa<CallInst>(BI) && !isa<IntrinsicInst>(BI))) {
 | 
						|
            CannotRemove = true;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        if (!CannotRemove)
 | 
						|
          return EraseInstFromFunction(CI);
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return visitCallSite(II);
 | 
						|
}
 | 
						|
 | 
						|
// InvokeInst simplification
 | 
						|
//
 | 
						|
Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
 | 
						|
  return visitCallSite(&II);
 | 
						|
}
 | 
						|
 | 
						|
// visitCallSite - Improvements for call and invoke instructions.
 | 
						|
//
 | 
						|
Instruction *InstCombiner::visitCallSite(CallSite CS) {
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  // If the callee is a constexpr cast of a function, attempt to move the cast
 | 
						|
  // to the arguments of the call/invoke.
 | 
						|
  if (transformConstExprCastCall(CS)) return 0;
 | 
						|
 | 
						|
  Value *Callee = CS.getCalledValue();
 | 
						|
 | 
						|
  if (Function *CalleeF = dyn_cast<Function>(Callee))
 | 
						|
    if (CalleeF->getCallingConv() != CS.getCallingConv()) {
 | 
						|
      Instruction *OldCall = CS.getInstruction();
 | 
						|
      // If the call and callee calling conventions don't match, this call must
 | 
						|
      // be unreachable, as the call is undefined.
 | 
						|
      new StoreInst(ConstantInt::getTrue(),
 | 
						|
                    UndefValue::get(PointerType::get(Type::Int1Ty)), OldCall);
 | 
						|
      if (!OldCall->use_empty())
 | 
						|
        OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType()));
 | 
						|
      if (isa<CallInst>(OldCall))   // Not worth removing an invoke here.
 | 
						|
        return EraseInstFromFunction(*OldCall);
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
 | 
						|
  if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
 | 
						|
    // This instruction is not reachable, just remove it.  We insert a store to
 | 
						|
    // undef so that we know that this code is not reachable, despite the fact
 | 
						|
    // that we can't modify the CFG here.
 | 
						|
    new StoreInst(ConstantInt::getTrue(),
 | 
						|
                  UndefValue::get(PointerType::get(Type::Int1Ty)),
 | 
						|
                  CS.getInstruction());
 | 
						|
 | 
						|
    if (!CS.getInstruction()->use_empty())
 | 
						|
      CS.getInstruction()->
 | 
						|
        replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType()));
 | 
						|
 | 
						|
    if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
 | 
						|
      // Don't break the CFG, insert a dummy cond branch.
 | 
						|
      new BranchInst(II->getNormalDest(), II->getUnwindDest(),
 | 
						|
                     ConstantInt::getTrue(), II);
 | 
						|
    }
 | 
						|
    return EraseInstFromFunction(*CS.getInstruction());
 | 
						|
  }
 | 
						|
 | 
						|
  const PointerType *PTy = cast<PointerType>(Callee->getType());
 | 
						|
  const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
 | 
						|
  if (FTy->isVarArg()) {
 | 
						|
    // See if we can optimize any arguments passed through the varargs area of
 | 
						|
    // the call.
 | 
						|
    for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
 | 
						|
           E = CS.arg_end(); I != E; ++I)
 | 
						|
      if (CastInst *CI = dyn_cast<CastInst>(*I)) {
 | 
						|
        // If this cast does not effect the value passed through the varargs
 | 
						|
        // area, we can eliminate the use of the cast.
 | 
						|
        Value *Op = CI->getOperand(0);
 | 
						|
        if (CI->isLosslessCast()) {
 | 
						|
          *I = Op;
 | 
						|
          Changed = true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed ? CS.getInstruction() : 0;
 | 
						|
}
 | 
						|
 | 
						|
// transformConstExprCastCall - If the callee is a constexpr cast of a function,
 | 
						|
// attempt to move the cast to the arguments of the call/invoke.
 | 
						|
//
 | 
						|
bool InstCombiner::transformConstExprCastCall(CallSite CS) {
 | 
						|
  if (!isa<ConstantExpr>(CS.getCalledValue())) return false;
 | 
						|
  ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue());
 | 
						|
  if (CE->getOpcode() != Instruction::BitCast || 
 | 
						|
      !isa<Function>(CE->getOperand(0)))
 | 
						|
    return false;
 | 
						|
  Function *Callee = cast<Function>(CE->getOperand(0));
 | 
						|
  Instruction *Caller = CS.getInstruction();
 | 
						|
 | 
						|
  // Okay, this is a cast from a function to a different type.  Unless doing so
 | 
						|
  // would cause a type conversion of one of our arguments, change this call to
 | 
						|
  // be a direct call with arguments casted to the appropriate types.
 | 
						|
  //
 | 
						|
  const FunctionType *FT = Callee->getFunctionType();
 | 
						|
  const Type *OldRetTy = Caller->getType();
 | 
						|
 | 
						|
  // Check to see if we are changing the return type...
 | 
						|
  if (OldRetTy != FT->getReturnType()) {
 | 
						|
    if (Callee->isDeclaration() && !Caller->use_empty() && 
 | 
						|
        OldRetTy != FT->getReturnType() &&
 | 
						|
        // Conversion is ok if changing from pointer to int of same size.
 | 
						|
        !(isa<PointerType>(FT->getReturnType()) &&
 | 
						|
          TD->getIntPtrType() == OldRetTy))
 | 
						|
      return false;   // Cannot transform this return value.
 | 
						|
 | 
						|
    // If the callsite is an invoke instruction, and the return value is used by
 | 
						|
    // a PHI node in a successor, we cannot change the return type of the call
 | 
						|
    // because there is no place to put the cast instruction (without breaking
 | 
						|
    // the critical edge).  Bail out in this case.
 | 
						|
    if (!Caller->use_empty())
 | 
						|
      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
 | 
						|
        for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
 | 
						|
             UI != E; ++UI)
 | 
						|
          if (PHINode *PN = dyn_cast<PHINode>(*UI))
 | 
						|
            if (PN->getParent() == II->getNormalDest() ||
 | 
						|
                PN->getParent() == II->getUnwindDest())
 | 
						|
              return false;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
 | 
						|
  unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
 | 
						|
 | 
						|
  CallSite::arg_iterator AI = CS.arg_begin();
 | 
						|
  for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
 | 
						|
    const Type *ParamTy = FT->getParamType(i);
 | 
						|
    const Type *ActTy = (*AI)->getType();
 | 
						|
    ConstantInt *c = dyn_cast<ConstantInt>(*AI);
 | 
						|
    //Either we can cast directly, or we can upconvert the argument
 | 
						|
    bool isConvertible = ActTy == ParamTy ||
 | 
						|
      (isa<PointerType>(ParamTy) && isa<PointerType>(ActTy)) ||
 | 
						|
      (ParamTy->isInteger() && ActTy->isInteger() &&
 | 
						|
       ParamTy->getPrimitiveSizeInBits() >= ActTy->getPrimitiveSizeInBits()) ||
 | 
						|
      (c && ParamTy->getPrimitiveSizeInBits() >= ActTy->getPrimitiveSizeInBits()
 | 
						|
       && c->getSExtValue() > 0);
 | 
						|
    if (Callee->isDeclaration() && !isConvertible) return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() &&
 | 
						|
      Callee->isDeclaration())
 | 
						|
    return false;   // Do not delete arguments unless we have a function body...
 | 
						|
 | 
						|
  // Okay, we decided that this is a safe thing to do: go ahead and start
 | 
						|
  // inserting cast instructions as necessary...
 | 
						|
  std::vector<Value*> Args;
 | 
						|
  Args.reserve(NumActualArgs);
 | 
						|
 | 
						|
  AI = CS.arg_begin();
 | 
						|
  for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
 | 
						|
    const Type *ParamTy = FT->getParamType(i);
 | 
						|
    if ((*AI)->getType() == ParamTy) {
 | 
						|
      Args.push_back(*AI);
 | 
						|
    } else {
 | 
						|
      Instruction::CastOps opcode = CastInst::getCastOpcode(*AI,
 | 
						|
          false, ParamTy, false);
 | 
						|
      CastInst *NewCast = CastInst::create(opcode, *AI, ParamTy, "tmp");
 | 
						|
      Args.push_back(InsertNewInstBefore(NewCast, *Caller));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If the function takes more arguments than the call was taking, add them
 | 
						|
  // now...
 | 
						|
  for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
 | 
						|
    Args.push_back(Constant::getNullValue(FT->getParamType(i)));
 | 
						|
 | 
						|
  // If we are removing arguments to the function, emit an obnoxious warning...
 | 
						|
  if (FT->getNumParams() < NumActualArgs)
 | 
						|
    if (!FT->isVarArg()) {
 | 
						|
      cerr << "WARNING: While resolving call to function '"
 | 
						|
           << Callee->getName() << "' arguments were dropped!\n";
 | 
						|
    } else {
 | 
						|
      // Add all of the arguments in their promoted form to the arg list...
 | 
						|
      for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
 | 
						|
        const Type *PTy = getPromotedType((*AI)->getType());
 | 
						|
        if (PTy != (*AI)->getType()) {
 | 
						|
          // Must promote to pass through va_arg area!
 | 
						|
          Instruction::CastOps opcode = CastInst::getCastOpcode(*AI, false, 
 | 
						|
                                                                PTy, false);
 | 
						|
          Instruction *Cast = CastInst::create(opcode, *AI, PTy, "tmp");
 | 
						|
          InsertNewInstBefore(Cast, *Caller);
 | 
						|
          Args.push_back(Cast);
 | 
						|
        } else {
 | 
						|
          Args.push_back(*AI);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  if (FT->getReturnType() == Type::VoidTy)
 | 
						|
    Caller->setName("");   // Void type should not have a name...
 | 
						|
 | 
						|
  Instruction *NC;
 | 
						|
  if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
 | 
						|
    NC = new InvokeInst(Callee, II->getNormalDest(), II->getUnwindDest(),
 | 
						|
                        Args, Caller->getName(), Caller);
 | 
						|
    cast<InvokeInst>(II)->setCallingConv(II->getCallingConv());
 | 
						|
  } else {
 | 
						|
    NC = new CallInst(Callee, Args, Caller->getName(), Caller);
 | 
						|
    if (cast<CallInst>(Caller)->isTailCall())
 | 
						|
      cast<CallInst>(NC)->setTailCall();
 | 
						|
   cast<CallInst>(NC)->setCallingConv(cast<CallInst>(Caller)->getCallingConv());
 | 
						|
  }
 | 
						|
 | 
						|
  // Insert a cast of the return type as necessary...
 | 
						|
  Value *NV = NC;
 | 
						|
  if (Caller->getType() != NV->getType() && !Caller->use_empty()) {
 | 
						|
    if (NV->getType() != Type::VoidTy) {
 | 
						|
      const Type *CallerTy = Caller->getType();
 | 
						|
      Instruction::CastOps opcode = CastInst::getCastOpcode(NC, false, 
 | 
						|
                                                            CallerTy, false);
 | 
						|
      NV = NC = CastInst::create(opcode, NC, CallerTy, "tmp");
 | 
						|
 | 
						|
      // If this is an invoke instruction, we should insert it after the first
 | 
						|
      // non-phi, instruction in the normal successor block.
 | 
						|
      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
 | 
						|
        BasicBlock::iterator I = II->getNormalDest()->begin();
 | 
						|
        while (isa<PHINode>(I)) ++I;
 | 
						|
        InsertNewInstBefore(NC, *I);
 | 
						|
      } else {
 | 
						|
        // Otherwise, it's a call, just insert cast right after the call instr
 | 
						|
        InsertNewInstBefore(NC, *Caller);
 | 
						|
      }
 | 
						|
      AddUsersToWorkList(*Caller);
 | 
						|
    } else {
 | 
						|
      NV = UndefValue::get(Caller->getType());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
 | 
						|
    Caller->replaceAllUsesWith(NV);
 | 
						|
  Caller->getParent()->getInstList().erase(Caller);
 | 
						|
  removeFromWorkList(Caller);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// FoldPHIArgBinOpIntoPHI - If we have something like phi [add (a,b), add(c,d)]
 | 
						|
/// and if a/b/c/d and the add's all have a single use, turn this into two phi's
 | 
						|
/// and a single binop.
 | 
						|
Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) {
 | 
						|
  Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
 | 
						|
  assert(isa<BinaryOperator>(FirstInst) || isa<GetElementPtrInst>(FirstInst) ||
 | 
						|
         isa<CmpInst>(FirstInst));
 | 
						|
  unsigned Opc = FirstInst->getOpcode();
 | 
						|
  Value *LHSVal = FirstInst->getOperand(0);
 | 
						|
  Value *RHSVal = FirstInst->getOperand(1);
 | 
						|
    
 | 
						|
  const Type *LHSType = LHSVal->getType();
 | 
						|
  const Type *RHSType = RHSVal->getType();
 | 
						|
  
 | 
						|
  // Scan to see if all operands are the same opcode, all have one use, and all
 | 
						|
  // kill their operands (i.e. the operands have one use).
 | 
						|
  for (unsigned i = 0; i != PN.getNumIncomingValues(); ++i) {
 | 
						|
    Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
 | 
						|
    if (!I || I->getOpcode() != Opc || !I->hasOneUse() ||
 | 
						|
        // Verify type of the LHS matches so we don't fold cmp's of different
 | 
						|
        // types or GEP's with different index types.
 | 
						|
        I->getOperand(0)->getType() != LHSType ||
 | 
						|
        I->getOperand(1)->getType() != RHSType)
 | 
						|
      return 0;
 | 
						|
 | 
						|
    // If they are CmpInst instructions, check their predicates
 | 
						|
    if (Opc == Instruction::ICmp || Opc == Instruction::FCmp)
 | 
						|
      if (cast<CmpInst>(I)->getPredicate() !=
 | 
						|
          cast<CmpInst>(FirstInst)->getPredicate())
 | 
						|
        return 0;
 | 
						|
    
 | 
						|
    // Keep track of which operand needs a phi node.
 | 
						|
    if (I->getOperand(0) != LHSVal) LHSVal = 0;
 | 
						|
    if (I->getOperand(1) != RHSVal) RHSVal = 0;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Otherwise, this is safe to transform, determine if it is profitable.
 | 
						|
 | 
						|
  // If this is a GEP, and if the index (not the pointer) needs a PHI, bail out.
 | 
						|
  // Indexes are often folded into load/store instructions, so we don't want to
 | 
						|
  // hide them behind a phi.
 | 
						|
  if (isa<GetElementPtrInst>(FirstInst) && RHSVal == 0)
 | 
						|
    return 0;
 | 
						|
  
 | 
						|
  Value *InLHS = FirstInst->getOperand(0);
 | 
						|
  Value *InRHS = FirstInst->getOperand(1);
 | 
						|
  PHINode *NewLHS = 0, *NewRHS = 0;
 | 
						|
  if (LHSVal == 0) {
 | 
						|
    NewLHS = new PHINode(LHSType, FirstInst->getOperand(0)->getName()+".pn");
 | 
						|
    NewLHS->reserveOperandSpace(PN.getNumOperands()/2);
 | 
						|
    NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0));
 | 
						|
    InsertNewInstBefore(NewLHS, PN);
 | 
						|
    LHSVal = NewLHS;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (RHSVal == 0) {
 | 
						|
    NewRHS = new PHINode(RHSType, FirstInst->getOperand(1)->getName()+".pn");
 | 
						|
    NewRHS->reserveOperandSpace(PN.getNumOperands()/2);
 | 
						|
    NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0));
 | 
						|
    InsertNewInstBefore(NewRHS, PN);
 | 
						|
    RHSVal = NewRHS;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Add all operands to the new PHIs.
 | 
						|
  for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
 | 
						|
    if (NewLHS) {
 | 
						|
      Value *NewInLHS =cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
 | 
						|
      NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i));
 | 
						|
    }
 | 
						|
    if (NewRHS) {
 | 
						|
      Value *NewInRHS =cast<Instruction>(PN.getIncomingValue(i))->getOperand(1);
 | 
						|
      NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i));
 | 
						|
    }
 | 
						|
  }
 | 
						|
    
 | 
						|
  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
 | 
						|
    return BinaryOperator::create(BinOp->getOpcode(), LHSVal, RHSVal);
 | 
						|
  else if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst))
 | 
						|
    return CmpInst::create(CIOp->getOpcode(), CIOp->getPredicate(), LHSVal, 
 | 
						|
                           RHSVal);
 | 
						|
  else {
 | 
						|
    assert(isa<GetElementPtrInst>(FirstInst));
 | 
						|
    return new GetElementPtrInst(LHSVal, RHSVal);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// isSafeToSinkLoad - Return true if we know that it is safe sink the load out
 | 
						|
/// of the block that defines it.  This means that it must be obvious the value
 | 
						|
/// of the load is not changed from the point of the load to the end of the
 | 
						|
/// block it is in.
 | 
						|
///
 | 
						|
/// Finally, it is safe, but not profitable, to sink a load targetting a
 | 
						|
/// non-address-taken alloca.  Doing so will cause us to not promote the alloca
 | 
						|
/// to a register.
 | 
						|
static bool isSafeToSinkLoad(LoadInst *L) {
 | 
						|
  BasicBlock::iterator BBI = L, E = L->getParent()->end();
 | 
						|
  
 | 
						|
  for (++BBI; BBI != E; ++BBI)
 | 
						|
    if (BBI->mayWriteToMemory())
 | 
						|
      return false;
 | 
						|
  
 | 
						|
  // Check for non-address taken alloca.  If not address-taken already, it isn't
 | 
						|
  // profitable to do this xform.
 | 
						|
  if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) {
 | 
						|
    bool isAddressTaken = false;
 | 
						|
    for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
 | 
						|
         UI != E; ++UI) {
 | 
						|
      if (isa<LoadInst>(UI)) continue;
 | 
						|
      if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
 | 
						|
        // If storing TO the alloca, then the address isn't taken.
 | 
						|
        if (SI->getOperand(1) == AI) continue;
 | 
						|
      }
 | 
						|
      isAddressTaken = true;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (!isAddressTaken)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
 | 
						|
// operator and they all are only used by the PHI, PHI together their
 | 
						|
// inputs, and do the operation once, to the result of the PHI.
 | 
						|
Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
 | 
						|
  Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
 | 
						|
 | 
						|
  // Scan the instruction, looking for input operations that can be folded away.
 | 
						|
  // If all input operands to the phi are the same instruction (e.g. a cast from
 | 
						|
  // the same type or "+42") we can pull the operation through the PHI, reducing
 | 
						|
  // code size and simplifying code.
 | 
						|
  Constant *ConstantOp = 0;
 | 
						|
  const Type *CastSrcTy = 0;
 | 
						|
  bool isVolatile = false;
 | 
						|
  if (isa<CastInst>(FirstInst)) {
 | 
						|
    CastSrcTy = FirstInst->getOperand(0)->getType();
 | 
						|
  } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) {
 | 
						|
    // Can fold binop, compare or shift here if the RHS is a constant, 
 | 
						|
    // otherwise call FoldPHIArgBinOpIntoPHI.
 | 
						|
    ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
 | 
						|
    if (ConstantOp == 0)
 | 
						|
      return FoldPHIArgBinOpIntoPHI(PN);
 | 
						|
  } else if (LoadInst *LI = dyn_cast<LoadInst>(FirstInst)) {
 | 
						|
    isVolatile = LI->isVolatile();
 | 
						|
    // We can't sink the load if the loaded value could be modified between the
 | 
						|
    // load and the PHI.
 | 
						|
    if (LI->getParent() != PN.getIncomingBlock(0) ||
 | 
						|
        !isSafeToSinkLoad(LI))
 | 
						|
      return 0;
 | 
						|
  } else if (isa<GetElementPtrInst>(FirstInst)) {
 | 
						|
    if (FirstInst->getNumOperands() == 2)
 | 
						|
      return FoldPHIArgBinOpIntoPHI(PN);
 | 
						|
    // Can't handle general GEPs yet.
 | 
						|
    return 0;
 | 
						|
  } else {
 | 
						|
    return 0;  // Cannot fold this operation.
 | 
						|
  }
 | 
						|
 | 
						|
  // Check to see if all arguments are the same operation.
 | 
						|
  for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
 | 
						|
    if (!isa<Instruction>(PN.getIncomingValue(i))) return 0;
 | 
						|
    Instruction *I = cast<Instruction>(PN.getIncomingValue(i));
 | 
						|
    if (!I->hasOneUse() || !I->isSameOperationAs(FirstInst))
 | 
						|
      return 0;
 | 
						|
    if (CastSrcTy) {
 | 
						|
      if (I->getOperand(0)->getType() != CastSrcTy)
 | 
						|
        return 0;  // Cast operation must match.
 | 
						|
    } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
 | 
						|
      // We can't sink the load if the loaded value could be modified between 
 | 
						|
      // the load and the PHI.
 | 
						|
      if (LI->isVolatile() != isVolatile ||
 | 
						|
          LI->getParent() != PN.getIncomingBlock(i) ||
 | 
						|
          !isSafeToSinkLoad(LI))
 | 
						|
        return 0;
 | 
						|
    } else if (I->getOperand(1) != ConstantOp) {
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, they are all the same operation.  Create a new PHI node of the
 | 
						|
  // correct type, and PHI together all of the LHS's of the instructions.
 | 
						|
  PHINode *NewPN = new PHINode(FirstInst->getOperand(0)->getType(),
 | 
						|
                               PN.getName()+".in");
 | 
						|
  NewPN->reserveOperandSpace(PN.getNumOperands()/2);
 | 
						|
 | 
						|
  Value *InVal = FirstInst->getOperand(0);
 | 
						|
  NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
 | 
						|
 | 
						|
  // Add all operands to the new PHI.
 | 
						|
  for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
 | 
						|
    Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
 | 
						|
    if (NewInVal != InVal)
 | 
						|
      InVal = 0;
 | 
						|
    NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
 | 
						|
  }
 | 
						|
 | 
						|
  Value *PhiVal;
 | 
						|
  if (InVal) {
 | 
						|
    // The new PHI unions all of the same values together.  This is really
 | 
						|
    // common, so we handle it intelligently here for compile-time speed.
 | 
						|
    PhiVal = InVal;
 | 
						|
    delete NewPN;
 | 
						|
  } else {
 | 
						|
    InsertNewInstBefore(NewPN, PN);
 | 
						|
    PhiVal = NewPN;
 | 
						|
  }
 | 
						|
 | 
						|
  // Insert and return the new operation.
 | 
						|
  if (CastInst* FirstCI = dyn_cast<CastInst>(FirstInst))
 | 
						|
    return CastInst::create(FirstCI->getOpcode(), PhiVal, PN.getType());
 | 
						|
  else if (isa<LoadInst>(FirstInst))
 | 
						|
    return new LoadInst(PhiVal, "", isVolatile);
 | 
						|
  else if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
 | 
						|
    return BinaryOperator::create(BinOp->getOpcode(), PhiVal, ConstantOp);
 | 
						|
  else if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst))
 | 
						|
    return CmpInst::create(CIOp->getOpcode(), CIOp->getPredicate(), 
 | 
						|
                           PhiVal, ConstantOp);
 | 
						|
  else
 | 
						|
    assert(0 && "Unknown operation");
 | 
						|
}
 | 
						|
 | 
						|
/// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle
 | 
						|
/// that is dead.
 | 
						|
static bool DeadPHICycle(PHINode *PN, std::set<PHINode*> &PotentiallyDeadPHIs) {
 | 
						|
  if (PN->use_empty()) return true;
 | 
						|
  if (!PN->hasOneUse()) return false;
 | 
						|
 | 
						|
  // Remember this node, and if we find the cycle, return.
 | 
						|
  if (!PotentiallyDeadPHIs.insert(PN).second)
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (PHINode *PU = dyn_cast<PHINode>(PN->use_back()))
 | 
						|
    return DeadPHICycle(PU, PotentiallyDeadPHIs);
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// PHINode simplification
 | 
						|
//
 | 
						|
Instruction *InstCombiner::visitPHINode(PHINode &PN) {
 | 
						|
  // If LCSSA is around, don't mess with Phi nodes
 | 
						|
  if (mustPreserveAnalysisID(LCSSAID)) return 0;
 | 
						|
  
 | 
						|
  if (Value *V = PN.hasConstantValue())
 | 
						|
    return ReplaceInstUsesWith(PN, V);
 | 
						|
 | 
						|
  // If all PHI operands are the same operation, pull them through the PHI,
 | 
						|
  // reducing code size.
 | 
						|
  if (isa<Instruction>(PN.getIncomingValue(0)) &&
 | 
						|
      PN.getIncomingValue(0)->hasOneUse())
 | 
						|
    if (Instruction *Result = FoldPHIArgOpIntoPHI(PN))
 | 
						|
      return Result;
 | 
						|
 | 
						|
  // If this is a trivial cycle in the PHI node graph, remove it.  Basically, if
 | 
						|
  // this PHI only has a single use (a PHI), and if that PHI only has one use (a
 | 
						|
  // PHI)... break the cycle.
 | 
						|
  if (PN.hasOneUse()) {
 | 
						|
    Instruction *PHIUser = cast<Instruction>(PN.use_back());
 | 
						|
    if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) {
 | 
						|
      std::set<PHINode*> PotentiallyDeadPHIs;
 | 
						|
      PotentiallyDeadPHIs.insert(&PN);
 | 
						|
      if (DeadPHICycle(PU, PotentiallyDeadPHIs))
 | 
						|
        return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
 | 
						|
    }
 | 
						|
   
 | 
						|
    // If this phi has a single use, and if that use just computes a value for
 | 
						|
    // the next iteration of a loop, delete the phi.  This occurs with unused
 | 
						|
    // induction variables, e.g. "for (int j = 0; ; ++j);".  Detecting this
 | 
						|
    // common case here is good because the only other things that catch this
 | 
						|
    // are induction variable analysis (sometimes) and ADCE, which is only run
 | 
						|
    // late.
 | 
						|
    if (PHIUser->hasOneUse() &&
 | 
						|
        (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) &&
 | 
						|
        PHIUser->use_back() == &PN) {
 | 
						|
      return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
static Value *InsertCastToIntPtrTy(Value *V, const Type *DTy,
 | 
						|
                                   Instruction *InsertPoint,
 | 
						|
                                   InstCombiner *IC) {
 | 
						|
  unsigned PtrSize = DTy->getPrimitiveSizeInBits();
 | 
						|
  unsigned VTySize = V->getType()->getPrimitiveSizeInBits();
 | 
						|
  // We must cast correctly to the pointer type. Ensure that we
 | 
						|
  // sign extend the integer value if it is smaller as this is
 | 
						|
  // used for address computation.
 | 
						|
  Instruction::CastOps opcode = 
 | 
						|
     (VTySize < PtrSize ? Instruction::SExt :
 | 
						|
      (VTySize == PtrSize ? Instruction::BitCast : Instruction::Trunc));
 | 
						|
  return IC->InsertCastBefore(opcode, V, DTy, *InsertPoint);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
 | 
						|
  Value *PtrOp = GEP.getOperand(0);
 | 
						|
  // Is it 'getelementptr %P, long 0'  or 'getelementptr %P'
 | 
						|
  // If so, eliminate the noop.
 | 
						|
  if (GEP.getNumOperands() == 1)
 | 
						|
    return ReplaceInstUsesWith(GEP, PtrOp);
 | 
						|
 | 
						|
  if (isa<UndefValue>(GEP.getOperand(0)))
 | 
						|
    return ReplaceInstUsesWith(GEP, UndefValue::get(GEP.getType()));
 | 
						|
 | 
						|
  bool HasZeroPointerIndex = false;
 | 
						|
  if (Constant *C = dyn_cast<Constant>(GEP.getOperand(1)))
 | 
						|
    HasZeroPointerIndex = C->isNullValue();
 | 
						|
 | 
						|
  if (GEP.getNumOperands() == 2 && HasZeroPointerIndex)
 | 
						|
    return ReplaceInstUsesWith(GEP, PtrOp);
 | 
						|
 | 
						|
  // Eliminate unneeded casts for indices.
 | 
						|
  bool MadeChange = false;
 | 
						|
  gep_type_iterator GTI = gep_type_begin(GEP);
 | 
						|
  for (unsigned i = 1, e = GEP.getNumOperands(); i != e; ++i, ++GTI)
 | 
						|
    if (isa<SequentialType>(*GTI)) {
 | 
						|
      if (CastInst *CI = dyn_cast<CastInst>(GEP.getOperand(i))) {
 | 
						|
        if (CI->getOpcode() == Instruction::ZExt ||
 | 
						|
            CI->getOpcode() == Instruction::SExt) {
 | 
						|
          const Type *SrcTy = CI->getOperand(0)->getType();
 | 
						|
          // We can eliminate a cast from i32 to i64 iff the target 
 | 
						|
          // is a 32-bit pointer target.
 | 
						|
          if (SrcTy->getPrimitiveSizeInBits() >= TD->getPointerSizeInBits()) {
 | 
						|
            MadeChange = true;
 | 
						|
            GEP.setOperand(i, CI->getOperand(0));
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      // If we are using a wider index than needed for this platform, shrink it
 | 
						|
      // to what we need.  If the incoming value needs a cast instruction,
 | 
						|
      // insert it.  This explicit cast can make subsequent optimizations more
 | 
						|
      // obvious.
 | 
						|
      Value *Op = GEP.getOperand(i);
 | 
						|
      if (TD->getTypeSize(Op->getType()) > TD->getPointerSize())
 | 
						|
        if (Constant *C = dyn_cast<Constant>(Op)) {
 | 
						|
          GEP.setOperand(i, ConstantExpr::getTrunc(C, TD->getIntPtrType()));
 | 
						|
          MadeChange = true;
 | 
						|
        } else {
 | 
						|
          Op = InsertCastBefore(Instruction::Trunc, Op, TD->getIntPtrType(),
 | 
						|
                                GEP);
 | 
						|
          GEP.setOperand(i, Op);
 | 
						|
          MadeChange = true;
 | 
						|
        }
 | 
						|
    }
 | 
						|
  if (MadeChange) return &GEP;
 | 
						|
 | 
						|
  // Combine Indices - If the source pointer to this getelementptr instruction
 | 
						|
  // is a getelementptr instruction, combine the indices of the two
 | 
						|
  // getelementptr instructions into a single instruction.
 | 
						|
  //
 | 
						|
  std::vector<Value*> SrcGEPOperands;
 | 
						|
  if (User *Src = dyn_castGetElementPtr(PtrOp))
 | 
						|
    SrcGEPOperands.assign(Src->op_begin(), Src->op_end());
 | 
						|
 | 
						|
  if (!SrcGEPOperands.empty()) {
 | 
						|
    // Note that if our source is a gep chain itself that we wait for that
 | 
						|
    // chain to be resolved before we perform this transformation.  This
 | 
						|
    // avoids us creating a TON of code in some cases.
 | 
						|
    //
 | 
						|
    if (isa<GetElementPtrInst>(SrcGEPOperands[0]) &&
 | 
						|
        cast<Instruction>(SrcGEPOperands[0])->getNumOperands() == 2)
 | 
						|
      return 0;   // Wait until our source is folded to completion.
 | 
						|
 | 
						|
    std::vector<Value *> Indices;
 | 
						|
 | 
						|
    // Find out whether the last index in the source GEP is a sequential idx.
 | 
						|
    bool EndsWithSequential = false;
 | 
						|
    for (gep_type_iterator I = gep_type_begin(*cast<User>(PtrOp)),
 | 
						|
           E = gep_type_end(*cast<User>(PtrOp)); I != E; ++I)
 | 
						|
      EndsWithSequential = !isa<StructType>(*I);
 | 
						|
 | 
						|
    // Can we combine the two pointer arithmetics offsets?
 | 
						|
    if (EndsWithSequential) {
 | 
						|
      // Replace: gep (gep %P, long B), long A, ...
 | 
						|
      // With:    T = long A+B; gep %P, T, ...
 | 
						|
      //
 | 
						|
      Value *Sum, *SO1 = SrcGEPOperands.back(), *GO1 = GEP.getOperand(1);
 | 
						|
      if (SO1 == Constant::getNullValue(SO1->getType())) {
 | 
						|
        Sum = GO1;
 | 
						|
      } else if (GO1 == Constant::getNullValue(GO1->getType())) {
 | 
						|
        Sum = SO1;
 | 
						|
      } else {
 | 
						|
        // If they aren't the same type, convert both to an integer of the
 | 
						|
        // target's pointer size.
 | 
						|
        if (SO1->getType() != GO1->getType()) {
 | 
						|
          if (Constant *SO1C = dyn_cast<Constant>(SO1)) {
 | 
						|
            SO1 = ConstantExpr::getIntegerCast(SO1C, GO1->getType(), true);
 | 
						|
          } else if (Constant *GO1C = dyn_cast<Constant>(GO1)) {
 | 
						|
            GO1 = ConstantExpr::getIntegerCast(GO1C, SO1->getType(), true);
 | 
						|
          } else {
 | 
						|
            unsigned PS = TD->getPointerSize();
 | 
						|
            if (TD->getTypeSize(SO1->getType()) == PS) {
 | 
						|
              // Convert GO1 to SO1's type.
 | 
						|
              GO1 = InsertCastToIntPtrTy(GO1, SO1->getType(), &GEP, this);
 | 
						|
 | 
						|
            } else if (TD->getTypeSize(GO1->getType()) == PS) {
 | 
						|
              // Convert SO1 to GO1's type.
 | 
						|
              SO1 = InsertCastToIntPtrTy(SO1, GO1->getType(), &GEP, this);
 | 
						|
            } else {
 | 
						|
              const Type *PT = TD->getIntPtrType();
 | 
						|
              SO1 = InsertCastToIntPtrTy(SO1, PT, &GEP, this);
 | 
						|
              GO1 = InsertCastToIntPtrTy(GO1, PT, &GEP, this);
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
        if (isa<Constant>(SO1) && isa<Constant>(GO1))
 | 
						|
          Sum = ConstantExpr::getAdd(cast<Constant>(SO1), cast<Constant>(GO1));
 | 
						|
        else {
 | 
						|
          Sum = BinaryOperator::createAdd(SO1, GO1, PtrOp->getName()+".sum");
 | 
						|
          InsertNewInstBefore(cast<Instruction>(Sum), GEP);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Recycle the GEP we already have if possible.
 | 
						|
      if (SrcGEPOperands.size() == 2) {
 | 
						|
        GEP.setOperand(0, SrcGEPOperands[0]);
 | 
						|
        GEP.setOperand(1, Sum);
 | 
						|
        return &GEP;
 | 
						|
      } else {
 | 
						|
        Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
 | 
						|
                       SrcGEPOperands.end()-1);
 | 
						|
        Indices.push_back(Sum);
 | 
						|
        Indices.insert(Indices.end(), GEP.op_begin()+2, GEP.op_end());
 | 
						|
      }
 | 
						|
    } else if (isa<Constant>(*GEP.idx_begin()) &&
 | 
						|
               cast<Constant>(*GEP.idx_begin())->isNullValue() &&
 | 
						|
               SrcGEPOperands.size() != 1) {
 | 
						|
      // Otherwise we can do the fold if the first index of the GEP is a zero
 | 
						|
      Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
 | 
						|
                     SrcGEPOperands.end());
 | 
						|
      Indices.insert(Indices.end(), GEP.idx_begin()+1, GEP.idx_end());
 | 
						|
    }
 | 
						|
 | 
						|
    if (!Indices.empty())
 | 
						|
      return new GetElementPtrInst(SrcGEPOperands[0], Indices, GEP.getName());
 | 
						|
 | 
						|
  } else if (GlobalValue *GV = dyn_cast<GlobalValue>(PtrOp)) {
 | 
						|
    // GEP of global variable.  If all of the indices for this GEP are
 | 
						|
    // constants, we can promote this to a constexpr instead of an instruction.
 | 
						|
 | 
						|
    // Scan for nonconstants...
 | 
						|
    SmallVector<Constant*, 8> Indices;
 | 
						|
    User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end();
 | 
						|
    for (; I != E && isa<Constant>(*I); ++I)
 | 
						|
      Indices.push_back(cast<Constant>(*I));
 | 
						|
 | 
						|
    if (I == E) {  // If they are all constants...
 | 
						|
      Constant *CE = ConstantExpr::getGetElementPtr(GV,
 | 
						|
                                                    &Indices[0],Indices.size());
 | 
						|
 | 
						|
      // Replace all uses of the GEP with the new constexpr...
 | 
						|
      return ReplaceInstUsesWith(GEP, CE);
 | 
						|
    }
 | 
						|
  } else if (Value *X = getBitCastOperand(PtrOp)) {  // Is the operand a cast?
 | 
						|
    if (!isa<PointerType>(X->getType())) {
 | 
						|
      // Not interesting.  Source pointer must be a cast from pointer.
 | 
						|
    } else if (HasZeroPointerIndex) {
 | 
						|
      // transform: GEP (cast [10 x ubyte]* X to [0 x ubyte]*), long 0, ...
 | 
						|
      // into     : GEP [10 x ubyte]* X, long 0, ...
 | 
						|
      //
 | 
						|
      // This occurs when the program declares an array extern like "int X[];"
 | 
						|
      //
 | 
						|
      const PointerType *CPTy = cast<PointerType>(PtrOp->getType());
 | 
						|
      const PointerType *XTy = cast<PointerType>(X->getType());
 | 
						|
      if (const ArrayType *XATy =
 | 
						|
          dyn_cast<ArrayType>(XTy->getElementType()))
 | 
						|
        if (const ArrayType *CATy =
 | 
						|
            dyn_cast<ArrayType>(CPTy->getElementType()))
 | 
						|
          if (CATy->getElementType() == XATy->getElementType()) {
 | 
						|
            // At this point, we know that the cast source type is a pointer
 | 
						|
            // to an array of the same type as the destination pointer
 | 
						|
            // array.  Because the array type is never stepped over (there
 | 
						|
            // is a leading zero) we can fold the cast into this GEP.
 | 
						|
            GEP.setOperand(0, X);
 | 
						|
            return &GEP;
 | 
						|
          }
 | 
						|
    } else if (GEP.getNumOperands() == 2) {
 | 
						|
      // Transform things like:
 | 
						|
      // %t = getelementptr ubyte* cast ([2 x int]* %str to uint*), uint %V
 | 
						|
      // into:  %t1 = getelementptr [2 x int*]* %str, int 0, uint %V; cast
 | 
						|
      const Type *SrcElTy = cast<PointerType>(X->getType())->getElementType();
 | 
						|
      const Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
 | 
						|
      if (isa<ArrayType>(SrcElTy) &&
 | 
						|
          TD->getTypeSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
 | 
						|
          TD->getTypeSize(ResElTy)) {
 | 
						|
        Value *V = InsertNewInstBefore(
 | 
						|
               new GetElementPtrInst(X, Constant::getNullValue(Type::Int32Ty),
 | 
						|
                                     GEP.getOperand(1), GEP.getName()), GEP);
 | 
						|
        // V and GEP are both pointer types --> BitCast
 | 
						|
        return new BitCastInst(V, GEP.getType());
 | 
						|
      }
 | 
						|
      
 | 
						|
      // Transform things like:
 | 
						|
      // getelementptr sbyte* cast ([100 x double]* X to sbyte*), int %tmp
 | 
						|
      //   (where tmp = 8*tmp2) into:
 | 
						|
      // getelementptr [100 x double]* %arr, int 0, int %tmp.2
 | 
						|
      
 | 
						|
      if (isa<ArrayType>(SrcElTy) &&
 | 
						|
          (ResElTy == Type::Int8Ty || ResElTy == Type::Int8Ty)) {
 | 
						|
        uint64_t ArrayEltSize =
 | 
						|
            TD->getTypeSize(cast<ArrayType>(SrcElTy)->getElementType());
 | 
						|
        
 | 
						|
        // Check to see if "tmp" is a scale by a multiple of ArrayEltSize.  We
 | 
						|
        // allow either a mul, shift, or constant here.
 | 
						|
        Value *NewIdx = 0;
 | 
						|
        ConstantInt *Scale = 0;
 | 
						|
        if (ArrayEltSize == 1) {
 | 
						|
          NewIdx = GEP.getOperand(1);
 | 
						|
          Scale = ConstantInt::get(NewIdx->getType(), 1);
 | 
						|
        } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) {
 | 
						|
          NewIdx = ConstantInt::get(CI->getType(), 1);
 | 
						|
          Scale = CI;
 | 
						|
        } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){
 | 
						|
          if (Inst->getOpcode() == Instruction::Shl &&
 | 
						|
              isa<ConstantInt>(Inst->getOperand(1))) {
 | 
						|
            unsigned ShAmt =
 | 
						|
              cast<ConstantInt>(Inst->getOperand(1))->getZExtValue();
 | 
						|
            Scale = ConstantInt::get(Inst->getType(), 1ULL << ShAmt);
 | 
						|
            NewIdx = Inst->getOperand(0);
 | 
						|
          } else if (Inst->getOpcode() == Instruction::Mul &&
 | 
						|
                     isa<ConstantInt>(Inst->getOperand(1))) {
 | 
						|
            Scale = cast<ConstantInt>(Inst->getOperand(1));
 | 
						|
            NewIdx = Inst->getOperand(0);
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        // If the index will be to exactly the right offset with the scale taken
 | 
						|
        // out, perform the transformation.
 | 
						|
        if (Scale && Scale->getZExtValue() % ArrayEltSize == 0) {
 | 
						|
          if (isa<ConstantInt>(Scale))
 | 
						|
            Scale = ConstantInt::get(Scale->getType(),
 | 
						|
                                      Scale->getZExtValue() / ArrayEltSize);
 | 
						|
          if (Scale->getZExtValue() != 1) {
 | 
						|
            Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(),
 | 
						|
                                                       true /*SExt*/);
 | 
						|
            Instruction *Sc = BinaryOperator::createMul(NewIdx, C, "idxscale");
 | 
						|
            NewIdx = InsertNewInstBefore(Sc, GEP);
 | 
						|
          }
 | 
						|
 | 
						|
          // Insert the new GEP instruction.
 | 
						|
          Instruction *NewGEP =
 | 
						|
            new GetElementPtrInst(X, Constant::getNullValue(Type::Int32Ty),
 | 
						|
                                  NewIdx, GEP.getName());
 | 
						|
          NewGEP = InsertNewInstBefore(NewGEP, GEP);
 | 
						|
          // The NewGEP must be pointer typed, so must the old one -> BitCast
 | 
						|
          return new BitCastInst(NewGEP, GEP.getType());
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitAllocationInst(AllocationInst &AI) {
 | 
						|
  // Convert: malloc Ty, C - where C is a constant != 1 into: malloc [C x Ty], 1
 | 
						|
  if (AI.isArrayAllocation())    // Check C != 1
 | 
						|
    if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
 | 
						|
      const Type *NewTy = 
 | 
						|
        ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
 | 
						|
      AllocationInst *New = 0;
 | 
						|
 | 
						|
      // Create and insert the replacement instruction...
 | 
						|
      if (isa<MallocInst>(AI))
 | 
						|
        New = new MallocInst(NewTy, 0, AI.getAlignment(), AI.getName());
 | 
						|
      else {
 | 
						|
        assert(isa<AllocaInst>(AI) && "Unknown type of allocation inst!");
 | 
						|
        New = new AllocaInst(NewTy, 0, AI.getAlignment(), AI.getName());
 | 
						|
      }
 | 
						|
 | 
						|
      InsertNewInstBefore(New, AI);
 | 
						|
 | 
						|
      // Scan to the end of the allocation instructions, to skip over a block of
 | 
						|
      // allocas if possible...
 | 
						|
      //
 | 
						|
      BasicBlock::iterator It = New;
 | 
						|
      while (isa<AllocationInst>(*It)) ++It;
 | 
						|
 | 
						|
      // Now that I is pointing to the first non-allocation-inst in the block,
 | 
						|
      // insert our getelementptr instruction...
 | 
						|
      //
 | 
						|
      Value *NullIdx = Constant::getNullValue(Type::Int32Ty);
 | 
						|
      Value *V = new GetElementPtrInst(New, NullIdx, NullIdx,
 | 
						|
                                       New->getName()+".sub", It);
 | 
						|
 | 
						|
      // Now make everything use the getelementptr instead of the original
 | 
						|
      // allocation.
 | 
						|
      return ReplaceInstUsesWith(AI, V);
 | 
						|
    } else if (isa<UndefValue>(AI.getArraySize())) {
 | 
						|
      return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
 | 
						|
    }
 | 
						|
 | 
						|
  // If alloca'ing a zero byte object, replace the alloca with a null pointer.
 | 
						|
  // Note that we only do this for alloca's, because malloc should allocate and
 | 
						|
  // return a unique pointer, even for a zero byte allocation.
 | 
						|
  if (isa<AllocaInst>(AI) && AI.getAllocatedType()->isSized() &&
 | 
						|
      TD->getTypeSize(AI.getAllocatedType()) == 0)
 | 
						|
    return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitFreeInst(FreeInst &FI) {
 | 
						|
  Value *Op = FI.getOperand(0);
 | 
						|
 | 
						|
  // Change free <ty>* (cast <ty2>* X to <ty>*) into free <ty2>* X
 | 
						|
  if (CastInst *CI = dyn_cast<CastInst>(Op))
 | 
						|
    if (isa<PointerType>(CI->getOperand(0)->getType())) {
 | 
						|
      FI.setOperand(0, CI->getOperand(0));
 | 
						|
      return &FI;
 | 
						|
    }
 | 
						|
 | 
						|
  // free undef -> unreachable.
 | 
						|
  if (isa<UndefValue>(Op)) {
 | 
						|
    // Insert a new store to null because we cannot modify the CFG here.
 | 
						|
    new StoreInst(ConstantInt::getTrue(),
 | 
						|
                  UndefValue::get(PointerType::get(Type::Int1Ty)), &FI);
 | 
						|
    return EraseInstFromFunction(FI);
 | 
						|
  }
 | 
						|
 | 
						|
  // If we have 'free null' delete the instruction.  This can happen in stl code
 | 
						|
  // when lots of inlining happens.
 | 
						|
  if (isa<ConstantPointerNull>(Op))
 | 
						|
    return EraseInstFromFunction(FI);
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible.
 | 
						|
static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI) {
 | 
						|
  User *CI = cast<User>(LI.getOperand(0));
 | 
						|
  Value *CastOp = CI->getOperand(0);
 | 
						|
 | 
						|
  const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
 | 
						|
  if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
 | 
						|
    const Type *SrcPTy = SrcTy->getElementType();
 | 
						|
 | 
						|
    if (DestPTy->isInteger() || isa<PointerType>(DestPTy) || 
 | 
						|
         isa<PackedType>(DestPTy)) {
 | 
						|
      // If the source is an array, the code below will not succeed.  Check to
 | 
						|
      // see if a trivial 'gep P, 0, 0' will help matters.  Only do this for
 | 
						|
      // constants.
 | 
						|
      if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
 | 
						|
        if (Constant *CSrc = dyn_cast<Constant>(CastOp))
 | 
						|
          if (ASrcTy->getNumElements() != 0) {
 | 
						|
            Value *Idxs[2];
 | 
						|
            Idxs[0] = Idxs[1] = Constant::getNullValue(Type::Int32Ty);
 | 
						|
            CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
 | 
						|
            SrcTy = cast<PointerType>(CastOp->getType());
 | 
						|
            SrcPTy = SrcTy->getElementType();
 | 
						|
          }
 | 
						|
 | 
						|
      if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy) || 
 | 
						|
            isa<PackedType>(SrcPTy)) &&
 | 
						|
          // Do not allow turning this into a load of an integer, which is then
 | 
						|
          // casted to a pointer, this pessimizes pointer analysis a lot.
 | 
						|
          (isa<PointerType>(SrcPTy) == isa<PointerType>(LI.getType())) &&
 | 
						|
          IC.getTargetData().getTypeSizeInBits(SrcPTy) ==
 | 
						|
               IC.getTargetData().getTypeSizeInBits(DestPTy)) {
 | 
						|
 | 
						|
        // Okay, we are casting from one integer or pointer type to another of
 | 
						|
        // the same size.  Instead of casting the pointer before the load, cast
 | 
						|
        // the result of the loaded value.
 | 
						|
        Value *NewLoad = IC.InsertNewInstBefore(new LoadInst(CastOp,
 | 
						|
                                                             CI->getName(),
 | 
						|
                                                         LI.isVolatile()),LI);
 | 
						|
        // Now cast the result of the load.
 | 
						|
        return new BitCastInst(NewLoad, LI.getType());
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// isSafeToLoadUnconditionally - Return true if we know that executing a load
 | 
						|
/// from this value cannot trap.  If it is not obviously safe to load from the
 | 
						|
/// specified pointer, we do a quick local scan of the basic block containing
 | 
						|
/// ScanFrom, to determine if the address is already accessed.
 | 
						|
static bool isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom) {
 | 
						|
  // If it is an alloca or global variable, it is always safe to load from.
 | 
						|
  if (isa<AllocaInst>(V) || isa<GlobalVariable>(V)) return true;
 | 
						|
 | 
						|
  // Otherwise, be a little bit agressive by scanning the local block where we
 | 
						|
  // want to check to see if the pointer is already being loaded or stored
 | 
						|
  // from/to.  If so, the previous load or store would have already trapped,
 | 
						|
  // so there is no harm doing an extra load (also, CSE will later eliminate
 | 
						|
  // the load entirely).
 | 
						|
  BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin();
 | 
						|
 | 
						|
  while (BBI != E) {
 | 
						|
    --BBI;
 | 
						|
 | 
						|
    if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
 | 
						|
      if (LI->getOperand(0) == V) return true;
 | 
						|
    } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
 | 
						|
      if (SI->getOperand(1) == V) return true;
 | 
						|
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
 | 
						|
  Value *Op = LI.getOperand(0);
 | 
						|
 | 
						|
  // load (cast X) --> cast (load X) iff safe
 | 
						|
  if (isa<CastInst>(Op))
 | 
						|
    if (Instruction *Res = InstCombineLoadCast(*this, LI))
 | 
						|
      return Res;
 | 
						|
 | 
						|
  // None of the following transforms are legal for volatile loads.
 | 
						|
  if (LI.isVolatile()) return 0;
 | 
						|
  
 | 
						|
  if (&LI.getParent()->front() != &LI) {
 | 
						|
    BasicBlock::iterator BBI = &LI; --BBI;
 | 
						|
    // If the instruction immediately before this is a store to the same
 | 
						|
    // address, do a simple form of store->load forwarding.
 | 
						|
    if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
 | 
						|
      if (SI->getOperand(1) == LI.getOperand(0))
 | 
						|
        return ReplaceInstUsesWith(LI, SI->getOperand(0));
 | 
						|
    if (LoadInst *LIB = dyn_cast<LoadInst>(BBI))
 | 
						|
      if (LIB->getOperand(0) == LI.getOperand(0))
 | 
						|
        return ReplaceInstUsesWith(LI, LIB);
 | 
						|
  }
 | 
						|
 | 
						|
  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op))
 | 
						|
    if (isa<ConstantPointerNull>(GEPI->getOperand(0)) ||
 | 
						|
        isa<UndefValue>(GEPI->getOperand(0))) {
 | 
						|
      // Insert a new store to null instruction before the load to indicate
 | 
						|
      // that this code is not reachable.  We do this instead of inserting
 | 
						|
      // an unreachable instruction directly because we cannot modify the
 | 
						|
      // CFG.
 | 
						|
      new StoreInst(UndefValue::get(LI.getType()),
 | 
						|
                    Constant::getNullValue(Op->getType()), &LI);
 | 
						|
      return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
 | 
						|
    }
 | 
						|
 | 
						|
  if (Constant *C = dyn_cast<Constant>(Op)) {
 | 
						|
    // load null/undef -> undef
 | 
						|
    if ((C->isNullValue() || isa<UndefValue>(C))) {
 | 
						|
      // Insert a new store to null instruction before the load to indicate that
 | 
						|
      // this code is not reachable.  We do this instead of inserting an
 | 
						|
      // unreachable instruction directly because we cannot modify the CFG.
 | 
						|
      new StoreInst(UndefValue::get(LI.getType()),
 | 
						|
                    Constant::getNullValue(Op->getType()), &LI);
 | 
						|
      return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
 | 
						|
    }
 | 
						|
 | 
						|
    // Instcombine load (constant global) into the value loaded.
 | 
						|
    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op))
 | 
						|
      if (GV->isConstant() && !GV->isDeclaration())
 | 
						|
        return ReplaceInstUsesWith(LI, GV->getInitializer());
 | 
						|
 | 
						|
    // Instcombine load (constantexpr_GEP global, 0, ...) into the value loaded.
 | 
						|
    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op))
 | 
						|
      if (CE->getOpcode() == Instruction::GetElementPtr) {
 | 
						|
        if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
 | 
						|
          if (GV->isConstant() && !GV->isDeclaration())
 | 
						|
            if (Constant *V = 
 | 
						|
               ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
 | 
						|
              return ReplaceInstUsesWith(LI, V);
 | 
						|
        if (CE->getOperand(0)->isNullValue()) {
 | 
						|
          // Insert a new store to null instruction before the load to indicate
 | 
						|
          // that this code is not reachable.  We do this instead of inserting
 | 
						|
          // an unreachable instruction directly because we cannot modify the
 | 
						|
          // CFG.
 | 
						|
          new StoreInst(UndefValue::get(LI.getType()),
 | 
						|
                        Constant::getNullValue(Op->getType()), &LI);
 | 
						|
          return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
 | 
						|
        }
 | 
						|
 | 
						|
      } else if (CE->isCast()) {
 | 
						|
        if (Instruction *Res = InstCombineLoadCast(*this, LI))
 | 
						|
          return Res;
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Op->hasOneUse()) {
 | 
						|
    // Change select and PHI nodes to select values instead of addresses: this
 | 
						|
    // helps alias analysis out a lot, allows many others simplifications, and
 | 
						|
    // exposes redundancy in the code.
 | 
						|
    //
 | 
						|
    // Note that we cannot do the transformation unless we know that the
 | 
						|
    // introduced loads cannot trap!  Something like this is valid as long as
 | 
						|
    // the condition is always false: load (select bool %C, int* null, int* %G),
 | 
						|
    // but it would not be valid if we transformed it to load from null
 | 
						|
    // unconditionally.
 | 
						|
    //
 | 
						|
    if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
 | 
						|
      // load (select (Cond, &V1, &V2))  --> select(Cond, load &V1, load &V2).
 | 
						|
      if (isSafeToLoadUnconditionally(SI->getOperand(1), SI) &&
 | 
						|
          isSafeToLoadUnconditionally(SI->getOperand(2), SI)) {
 | 
						|
        Value *V1 = InsertNewInstBefore(new LoadInst(SI->getOperand(1),
 | 
						|
                                     SI->getOperand(1)->getName()+".val"), LI);
 | 
						|
        Value *V2 = InsertNewInstBefore(new LoadInst(SI->getOperand(2),
 | 
						|
                                     SI->getOperand(2)->getName()+".val"), LI);
 | 
						|
        return new SelectInst(SI->getCondition(), V1, V2);
 | 
						|
      }
 | 
						|
 | 
						|
      // load (select (cond, null, P)) -> load P
 | 
						|
      if (Constant *C = dyn_cast<Constant>(SI->getOperand(1)))
 | 
						|
        if (C->isNullValue()) {
 | 
						|
          LI.setOperand(0, SI->getOperand(2));
 | 
						|
          return &LI;
 | 
						|
        }
 | 
						|
 | 
						|
      // load (select (cond, P, null)) -> load P
 | 
						|
      if (Constant *C = dyn_cast<Constant>(SI->getOperand(2)))
 | 
						|
        if (C->isNullValue()) {
 | 
						|
          LI.setOperand(0, SI->getOperand(1));
 | 
						|
          return &LI;
 | 
						|
        }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// InstCombineStoreToCast - Fold store V, (cast P) -> store (cast V), P
 | 
						|
/// when possible.
 | 
						|
static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
 | 
						|
  User *CI = cast<User>(SI.getOperand(1));
 | 
						|
  Value *CastOp = CI->getOperand(0);
 | 
						|
 | 
						|
  const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
 | 
						|
  if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
 | 
						|
    const Type *SrcPTy = SrcTy->getElementType();
 | 
						|
 | 
						|
    if (DestPTy->isInteger() || isa<PointerType>(DestPTy)) {
 | 
						|
      // If the source is an array, the code below will not succeed.  Check to
 | 
						|
      // see if a trivial 'gep P, 0, 0' will help matters.  Only do this for
 | 
						|
      // constants.
 | 
						|
      if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
 | 
						|
        if (Constant *CSrc = dyn_cast<Constant>(CastOp))
 | 
						|
          if (ASrcTy->getNumElements() != 0) {
 | 
						|
            Value* Idxs[2];
 | 
						|
            Idxs[0] = Idxs[1] = Constant::getNullValue(Type::Int32Ty);
 | 
						|
            CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
 | 
						|
            SrcTy = cast<PointerType>(CastOp->getType());
 | 
						|
            SrcPTy = SrcTy->getElementType();
 | 
						|
          }
 | 
						|
 | 
						|
      if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy)) &&
 | 
						|
          IC.getTargetData().getTypeSizeInBits(SrcPTy) ==
 | 
						|
               IC.getTargetData().getTypeSizeInBits(DestPTy)) {
 | 
						|
 | 
						|
        // Okay, we are casting from one integer or pointer type to another of
 | 
						|
        // the same size.  Instead of casting the pointer before 
 | 
						|
        // the store, cast the value to be stored.
 | 
						|
        Value *NewCast;
 | 
						|
        Value *SIOp0 = SI.getOperand(0);
 | 
						|
        Instruction::CastOps opcode = Instruction::BitCast;
 | 
						|
        const Type* CastSrcTy = SIOp0->getType();
 | 
						|
        const Type* CastDstTy = SrcPTy;
 | 
						|
        if (isa<PointerType>(CastDstTy)) {
 | 
						|
          if (CastSrcTy->isInteger())
 | 
						|
            opcode = Instruction::IntToPtr;
 | 
						|
        } else if (isa<IntegerType>(CastDstTy)) {
 | 
						|
          if (isa<PointerType>(SIOp0->getType()))
 | 
						|
            opcode = Instruction::PtrToInt;
 | 
						|
        }
 | 
						|
        if (Constant *C = dyn_cast<Constant>(SIOp0))
 | 
						|
          NewCast = ConstantExpr::getCast(opcode, C, CastDstTy);
 | 
						|
        else
 | 
						|
          NewCast = IC.InsertNewInstBefore(
 | 
						|
            CastInst::create(opcode, SIOp0, CastDstTy, SIOp0->getName()+".c"), 
 | 
						|
            SI);
 | 
						|
        return new StoreInst(NewCast, CastOp);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
 | 
						|
  Value *Val = SI.getOperand(0);
 | 
						|
  Value *Ptr = SI.getOperand(1);
 | 
						|
 | 
						|
  if (isa<UndefValue>(Ptr)) {     // store X, undef -> noop (even if volatile)
 | 
						|
    EraseInstFromFunction(SI);
 | 
						|
    ++NumCombined;
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If the RHS is an alloca with a single use, zapify the store, making the
 | 
						|
  // alloca dead.
 | 
						|
  if (Ptr->hasOneUse()) {
 | 
						|
    if (isa<AllocaInst>(Ptr)) {
 | 
						|
      EraseInstFromFunction(SI);
 | 
						|
      ++NumCombined;
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
 | 
						|
      if (isa<AllocaInst>(GEP->getOperand(0)) &&
 | 
						|
          GEP->getOperand(0)->hasOneUse()) {
 | 
						|
        EraseInstFromFunction(SI);
 | 
						|
        ++NumCombined;
 | 
						|
        return 0;
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  // Do really simple DSE, to catch cases where there are several consequtive
 | 
						|
  // stores to the same location, separated by a few arithmetic operations. This
 | 
						|
  // situation often occurs with bitfield accesses.
 | 
						|
  BasicBlock::iterator BBI = &SI;
 | 
						|
  for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
 | 
						|
       --ScanInsts) {
 | 
						|
    --BBI;
 | 
						|
    
 | 
						|
    if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
 | 
						|
      // Prev store isn't volatile, and stores to the same location?
 | 
						|
      if (!PrevSI->isVolatile() && PrevSI->getOperand(1) == SI.getOperand(1)) {
 | 
						|
        ++NumDeadStore;
 | 
						|
        ++BBI;
 | 
						|
        EraseInstFromFunction(*PrevSI);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // If this is a load, we have to stop.  However, if the loaded value is from
 | 
						|
    // the pointer we're loading and is producing the pointer we're storing,
 | 
						|
    // then *this* store is dead (X = load P; store X -> P).
 | 
						|
    if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
 | 
						|
      if (LI == Val && LI->getOperand(0) == Ptr) {
 | 
						|
        EraseInstFromFunction(SI);
 | 
						|
        ++NumCombined;
 | 
						|
        return 0;
 | 
						|
      }
 | 
						|
      // Otherwise, this is a load from some other location.  Stores before it
 | 
						|
      // may not be dead.
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Don't skip over loads or things that can modify memory.
 | 
						|
    if (BBI->mayWriteToMemory())
 | 
						|
      break;
 | 
						|
  }
 | 
						|
  
 | 
						|
  
 | 
						|
  if (SI.isVolatile()) return 0;  // Don't hack volatile stores.
 | 
						|
 | 
						|
  // store X, null    -> turns into 'unreachable' in SimplifyCFG
 | 
						|
  if (isa<ConstantPointerNull>(Ptr)) {
 | 
						|
    if (!isa<UndefValue>(Val)) {
 | 
						|
      SI.setOperand(0, UndefValue::get(Val->getType()));
 | 
						|
      if (Instruction *U = dyn_cast<Instruction>(Val))
 | 
						|
        WorkList.push_back(U);  // Dropped a use.
 | 
						|
      ++NumCombined;
 | 
						|
    }
 | 
						|
    return 0;  // Do not modify these!
 | 
						|
  }
 | 
						|
 | 
						|
  // store undef, Ptr -> noop
 | 
						|
  if (isa<UndefValue>(Val)) {
 | 
						|
    EraseInstFromFunction(SI);
 | 
						|
    ++NumCombined;
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the pointer destination is a cast, see if we can fold the cast into the
 | 
						|
  // source instead.
 | 
						|
  if (isa<CastInst>(Ptr))
 | 
						|
    if (Instruction *Res = InstCombineStoreToCast(*this, SI))
 | 
						|
      return Res;
 | 
						|
  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
 | 
						|
    if (CE->isCast())
 | 
						|
      if (Instruction *Res = InstCombineStoreToCast(*this, SI))
 | 
						|
        return Res;
 | 
						|
 | 
						|
  
 | 
						|
  // If this store is the last instruction in the basic block, and if the block
 | 
						|
  // ends with an unconditional branch, try to move it to the successor block.
 | 
						|
  BBI = &SI; ++BBI;
 | 
						|
  if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
 | 
						|
    if (BI->isUnconditional()) {
 | 
						|
      // Check to see if the successor block has exactly two incoming edges.  If
 | 
						|
      // so, see if the other predecessor contains a store to the same location.
 | 
						|
      // if so, insert a PHI node (if needed) and move the stores down.
 | 
						|
      BasicBlock *Dest = BI->getSuccessor(0);
 | 
						|
 | 
						|
      pred_iterator PI = pred_begin(Dest);
 | 
						|
      BasicBlock *Other = 0;
 | 
						|
      if (*PI != BI->getParent())
 | 
						|
        Other = *PI;
 | 
						|
      ++PI;
 | 
						|
      if (PI != pred_end(Dest)) {
 | 
						|
        if (*PI != BI->getParent())
 | 
						|
          if (Other)
 | 
						|
            Other = 0;
 | 
						|
          else
 | 
						|
            Other = *PI;
 | 
						|
        if (++PI != pred_end(Dest))
 | 
						|
          Other = 0;
 | 
						|
      }
 | 
						|
      if (Other) {  // If only one other pred...
 | 
						|
        BBI = Other->getTerminator();
 | 
						|
        // Make sure this other block ends in an unconditional branch and that
 | 
						|
        // there is an instruction before the branch.
 | 
						|
        if (isa<BranchInst>(BBI) && cast<BranchInst>(BBI)->isUnconditional() &&
 | 
						|
            BBI != Other->begin()) {
 | 
						|
          --BBI;
 | 
						|
          StoreInst *OtherStore = dyn_cast<StoreInst>(BBI);
 | 
						|
          
 | 
						|
          // If this instruction is a store to the same location.
 | 
						|
          if (OtherStore && OtherStore->getOperand(1) == SI.getOperand(1)) {
 | 
						|
            // Okay, we know we can perform this transformation.  Insert a PHI
 | 
						|
            // node now if we need it.
 | 
						|
            Value *MergedVal = OtherStore->getOperand(0);
 | 
						|
            if (MergedVal != SI.getOperand(0)) {
 | 
						|
              PHINode *PN = new PHINode(MergedVal->getType(), "storemerge");
 | 
						|
              PN->reserveOperandSpace(2);
 | 
						|
              PN->addIncoming(SI.getOperand(0), SI.getParent());
 | 
						|
              PN->addIncoming(OtherStore->getOperand(0), Other);
 | 
						|
              MergedVal = InsertNewInstBefore(PN, Dest->front());
 | 
						|
            }
 | 
						|
            
 | 
						|
            // Advance to a place where it is safe to insert the new store and
 | 
						|
            // insert it.
 | 
						|
            BBI = Dest->begin();
 | 
						|
            while (isa<PHINode>(BBI)) ++BBI;
 | 
						|
            InsertNewInstBefore(new StoreInst(MergedVal, SI.getOperand(1),
 | 
						|
                                              OtherStore->isVolatile()), *BBI);
 | 
						|
 | 
						|
            // Nuke the old stores.
 | 
						|
            EraseInstFromFunction(SI);
 | 
						|
            EraseInstFromFunction(*OtherStore);
 | 
						|
            ++NumCombined;
 | 
						|
            return 0;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
 | 
						|
  // Change br (not X), label True, label False to: br X, label False, True
 | 
						|
  Value *X = 0;
 | 
						|
  BasicBlock *TrueDest;
 | 
						|
  BasicBlock *FalseDest;
 | 
						|
  if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
 | 
						|
      !isa<Constant>(X)) {
 | 
						|
    // Swap Destinations and condition...
 | 
						|
    BI.setCondition(X);
 | 
						|
    BI.setSuccessor(0, FalseDest);
 | 
						|
    BI.setSuccessor(1, TrueDest);
 | 
						|
    return &BI;
 | 
						|
  }
 | 
						|
 | 
						|
  // Cannonicalize fcmp_one -> fcmp_oeq
 | 
						|
  FCmpInst::Predicate FPred; Value *Y;
 | 
						|
  if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)), 
 | 
						|
                             TrueDest, FalseDest)))
 | 
						|
    if ((FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
 | 
						|
         FPred == FCmpInst::FCMP_OGE) && BI.getCondition()->hasOneUse()) {
 | 
						|
      FCmpInst *I = cast<FCmpInst>(BI.getCondition());
 | 
						|
      std::string Name = I->getName(); I->setName("");
 | 
						|
      FCmpInst::Predicate NewPred = FCmpInst::getInversePredicate(FPred);
 | 
						|
      Value *NewSCC =  new FCmpInst(NewPred, X, Y, Name, I);
 | 
						|
      // Swap Destinations and condition...
 | 
						|
      BI.setCondition(NewSCC);
 | 
						|
      BI.setSuccessor(0, FalseDest);
 | 
						|
      BI.setSuccessor(1, TrueDest);
 | 
						|
      removeFromWorkList(I);
 | 
						|
      I->getParent()->getInstList().erase(I);
 | 
						|
      WorkList.push_back(cast<Instruction>(NewSCC));
 | 
						|
      return &BI;
 | 
						|
    }
 | 
						|
 | 
						|
  // Cannonicalize icmp_ne -> icmp_eq
 | 
						|
  ICmpInst::Predicate IPred;
 | 
						|
  if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
 | 
						|
                      TrueDest, FalseDest)))
 | 
						|
    if ((IPred == ICmpInst::ICMP_NE  || IPred == ICmpInst::ICMP_ULE ||
 | 
						|
         IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
 | 
						|
         IPred == ICmpInst::ICMP_SGE) && BI.getCondition()->hasOneUse()) {
 | 
						|
      ICmpInst *I = cast<ICmpInst>(BI.getCondition());
 | 
						|
      std::string Name = I->getName(); I->setName("");
 | 
						|
      ICmpInst::Predicate NewPred = ICmpInst::getInversePredicate(IPred);
 | 
						|
      Value *NewSCC = new ICmpInst(NewPred, X, Y, Name, I);
 | 
						|
      // Swap Destinations and condition...
 | 
						|
      BI.setCondition(NewSCC);
 | 
						|
      BI.setSuccessor(0, FalseDest);
 | 
						|
      BI.setSuccessor(1, TrueDest);
 | 
						|
      removeFromWorkList(I);
 | 
						|
      I->getParent()->getInstList().erase(I);
 | 
						|
      WorkList.push_back(cast<Instruction>(NewSCC));
 | 
						|
      return &BI;
 | 
						|
    }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
 | 
						|
  Value *Cond = SI.getCondition();
 | 
						|
  if (Instruction *I = dyn_cast<Instruction>(Cond)) {
 | 
						|
    if (I->getOpcode() == Instruction::Add)
 | 
						|
      if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | 
						|
        // change 'switch (X+4) case 1:' into 'switch (X) case -3'
 | 
						|
        for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2)
 | 
						|
          SI.setOperand(i,ConstantExpr::getSub(cast<Constant>(SI.getOperand(i)),
 | 
						|
                                                AddRHS));
 | 
						|
        SI.setOperand(0, I->getOperand(0));
 | 
						|
        WorkList.push_back(I);
 | 
						|
        return &SI;
 | 
						|
      }
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// CheapToScalarize - Return true if the value is cheaper to scalarize than it
 | 
						|
/// is to leave as a vector operation.
 | 
						|
static bool CheapToScalarize(Value *V, bool isConstant) {
 | 
						|
  if (isa<ConstantAggregateZero>(V)) 
 | 
						|
    return true;
 | 
						|
  if (ConstantPacked *C = dyn_cast<ConstantPacked>(V)) {
 | 
						|
    if (isConstant) return true;
 | 
						|
    // If all elts are the same, we can extract.
 | 
						|
    Constant *Op0 = C->getOperand(0);
 | 
						|
    for (unsigned i = 1; i < C->getNumOperands(); ++i)
 | 
						|
      if (C->getOperand(i) != Op0)
 | 
						|
        return false;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  Instruction *I = dyn_cast<Instruction>(V);
 | 
						|
  if (!I) return false;
 | 
						|
  
 | 
						|
  // Insert element gets simplified to the inserted element or is deleted if
 | 
						|
  // this is constant idx extract element and its a constant idx insertelt.
 | 
						|
  if (I->getOpcode() == Instruction::InsertElement && isConstant &&
 | 
						|
      isa<ConstantInt>(I->getOperand(2)))
 | 
						|
    return true;
 | 
						|
  if (I->getOpcode() == Instruction::Load && I->hasOneUse())
 | 
						|
    return true;
 | 
						|
  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I))
 | 
						|
    if (BO->hasOneUse() &&
 | 
						|
        (CheapToScalarize(BO->getOperand(0), isConstant) ||
 | 
						|
         CheapToScalarize(BO->getOperand(1), isConstant)))
 | 
						|
      return true;
 | 
						|
  if (CmpInst *CI = dyn_cast<CmpInst>(I))
 | 
						|
    if (CI->hasOneUse() &&
 | 
						|
        (CheapToScalarize(CI->getOperand(0), isConstant) ||
 | 
						|
         CheapToScalarize(CI->getOperand(1), isConstant)))
 | 
						|
      return true;
 | 
						|
  
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// getShuffleMask - Read and decode a shufflevector mask.  It turns undef
 | 
						|
/// elements into values that are larger than the #elts in the input.
 | 
						|
static std::vector<unsigned> getShuffleMask(const ShuffleVectorInst *SVI) {
 | 
						|
  unsigned NElts = SVI->getType()->getNumElements();
 | 
						|
  if (isa<ConstantAggregateZero>(SVI->getOperand(2)))
 | 
						|
    return std::vector<unsigned>(NElts, 0);
 | 
						|
  if (isa<UndefValue>(SVI->getOperand(2)))
 | 
						|
    return std::vector<unsigned>(NElts, 2*NElts);
 | 
						|
 | 
						|
  std::vector<unsigned> Result;
 | 
						|
  const ConstantPacked *CP = cast<ConstantPacked>(SVI->getOperand(2));
 | 
						|
  for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
 | 
						|
    if (isa<UndefValue>(CP->getOperand(i)))
 | 
						|
      Result.push_back(NElts*2);  // undef -> 8
 | 
						|
    else
 | 
						|
      Result.push_back(cast<ConstantInt>(CP->getOperand(i))->getZExtValue());
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
/// FindScalarElement - Given a vector and an element number, see if the scalar
 | 
						|
/// value is already around as a register, for example if it were inserted then
 | 
						|
/// extracted from the vector.
 | 
						|
static Value *FindScalarElement(Value *V, unsigned EltNo) {
 | 
						|
  assert(isa<PackedType>(V->getType()) && "Not looking at a vector?");
 | 
						|
  const PackedType *PTy = cast<PackedType>(V->getType());
 | 
						|
  unsigned Width = PTy->getNumElements();
 | 
						|
  if (EltNo >= Width)  // Out of range access.
 | 
						|
    return UndefValue::get(PTy->getElementType());
 | 
						|
  
 | 
						|
  if (isa<UndefValue>(V))
 | 
						|
    return UndefValue::get(PTy->getElementType());
 | 
						|
  else if (isa<ConstantAggregateZero>(V))
 | 
						|
    return Constant::getNullValue(PTy->getElementType());
 | 
						|
  else if (ConstantPacked *CP = dyn_cast<ConstantPacked>(V))
 | 
						|
    return CP->getOperand(EltNo);
 | 
						|
  else if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
 | 
						|
    // If this is an insert to a variable element, we don't know what it is.
 | 
						|
    if (!isa<ConstantInt>(III->getOperand(2))) 
 | 
						|
      return 0;
 | 
						|
    unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
 | 
						|
    
 | 
						|
    // If this is an insert to the element we are looking for, return the
 | 
						|
    // inserted value.
 | 
						|
    if (EltNo == IIElt) 
 | 
						|
      return III->getOperand(1);
 | 
						|
    
 | 
						|
    // Otherwise, the insertelement doesn't modify the value, recurse on its
 | 
						|
    // vector input.
 | 
						|
    return FindScalarElement(III->getOperand(0), EltNo);
 | 
						|
  } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
 | 
						|
    unsigned InEl = getShuffleMask(SVI)[EltNo];
 | 
						|
    if (InEl < Width)
 | 
						|
      return FindScalarElement(SVI->getOperand(0), InEl);
 | 
						|
    else if (InEl < Width*2)
 | 
						|
      return FindScalarElement(SVI->getOperand(1), InEl - Width);
 | 
						|
    else
 | 
						|
      return UndefValue::get(PTy->getElementType());
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Otherwise, we don't know.
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
 | 
						|
 | 
						|
  // If packed val is undef, replace extract with scalar undef.
 | 
						|
  if (isa<UndefValue>(EI.getOperand(0)))
 | 
						|
    return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
 | 
						|
 | 
						|
  // If packed val is constant 0, replace extract with scalar 0.
 | 
						|
  if (isa<ConstantAggregateZero>(EI.getOperand(0)))
 | 
						|
    return ReplaceInstUsesWith(EI, Constant::getNullValue(EI.getType()));
 | 
						|
  
 | 
						|
  if (ConstantPacked *C = dyn_cast<ConstantPacked>(EI.getOperand(0))) {
 | 
						|
    // If packed val is constant with uniform operands, replace EI
 | 
						|
    // with that operand
 | 
						|
    Constant *op0 = C->getOperand(0);
 | 
						|
    for (unsigned i = 1; i < C->getNumOperands(); ++i)
 | 
						|
      if (C->getOperand(i) != op0) {
 | 
						|
        op0 = 0; 
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    if (op0)
 | 
						|
      return ReplaceInstUsesWith(EI, op0);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If extracting a specified index from the vector, see if we can recursively
 | 
						|
  // find a previously computed scalar that was inserted into the vector.
 | 
						|
  if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) {
 | 
						|
    // This instruction only demands the single element from the input vector.
 | 
						|
    // If the input vector has a single use, simplify it based on this use
 | 
						|
    // property.
 | 
						|
    uint64_t IndexVal = IdxC->getZExtValue();
 | 
						|
    if (EI.getOperand(0)->hasOneUse()) {
 | 
						|
      uint64_t UndefElts;
 | 
						|
      if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0),
 | 
						|
                                                1 << IndexVal,
 | 
						|
                                                UndefElts)) {
 | 
						|
        EI.setOperand(0, V);
 | 
						|
        return &EI;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (Value *Elt = FindScalarElement(EI.getOperand(0), IndexVal))
 | 
						|
      return ReplaceInstUsesWith(EI, Elt);
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) {
 | 
						|
    if (I->hasOneUse()) {
 | 
						|
      // Push extractelement into predecessor operation if legal and
 | 
						|
      // profitable to do so
 | 
						|
      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
 | 
						|
        bool isConstantElt = isa<ConstantInt>(EI.getOperand(1));
 | 
						|
        if (CheapToScalarize(BO, isConstantElt)) {
 | 
						|
          ExtractElementInst *newEI0 = 
 | 
						|
            new ExtractElementInst(BO->getOperand(0), EI.getOperand(1),
 | 
						|
                                   EI.getName()+".lhs");
 | 
						|
          ExtractElementInst *newEI1 =
 | 
						|
            new ExtractElementInst(BO->getOperand(1), EI.getOperand(1),
 | 
						|
                                   EI.getName()+".rhs");
 | 
						|
          InsertNewInstBefore(newEI0, EI);
 | 
						|
          InsertNewInstBefore(newEI1, EI);
 | 
						|
          return BinaryOperator::create(BO->getOpcode(), newEI0, newEI1);
 | 
						|
        }
 | 
						|
      } else if (isa<LoadInst>(I)) {
 | 
						|
        Value *Ptr = InsertCastBefore(Instruction::BitCast, I->getOperand(0),
 | 
						|
                                      PointerType::get(EI.getType()), EI);
 | 
						|
        GetElementPtrInst *GEP = 
 | 
						|
          new GetElementPtrInst(Ptr, EI.getOperand(1), I->getName() + ".gep");
 | 
						|
        InsertNewInstBefore(GEP, EI);
 | 
						|
        return new LoadInst(GEP);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) {
 | 
						|
      // Extracting the inserted element?
 | 
						|
      if (IE->getOperand(2) == EI.getOperand(1))
 | 
						|
        return ReplaceInstUsesWith(EI, IE->getOperand(1));
 | 
						|
      // If the inserted and extracted elements are constants, they must not
 | 
						|
      // be the same value, extract from the pre-inserted value instead.
 | 
						|
      if (isa<Constant>(IE->getOperand(2)) &&
 | 
						|
          isa<Constant>(EI.getOperand(1))) {
 | 
						|
        AddUsesToWorkList(EI);
 | 
						|
        EI.setOperand(0, IE->getOperand(0));
 | 
						|
        return &EI;
 | 
						|
      }
 | 
						|
    } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) {
 | 
						|
      // If this is extracting an element from a shufflevector, figure out where
 | 
						|
      // it came from and extract from the appropriate input element instead.
 | 
						|
      if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) {
 | 
						|
        unsigned SrcIdx = getShuffleMask(SVI)[Elt->getZExtValue()];
 | 
						|
        Value *Src;
 | 
						|
        if (SrcIdx < SVI->getType()->getNumElements())
 | 
						|
          Src = SVI->getOperand(0);
 | 
						|
        else if (SrcIdx < SVI->getType()->getNumElements()*2) {
 | 
						|
          SrcIdx -= SVI->getType()->getNumElements();
 | 
						|
          Src = SVI->getOperand(1);
 | 
						|
        } else {
 | 
						|
          return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
 | 
						|
        }
 | 
						|
        return new ExtractElementInst(Src, SrcIdx);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// CollectSingleShuffleElements - If V is a shuffle of values that ONLY returns
 | 
						|
/// elements from either LHS or RHS, return the shuffle mask and true. 
 | 
						|
/// Otherwise, return false.
 | 
						|
static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
 | 
						|
                                         std::vector<Constant*> &Mask) {
 | 
						|
  assert(V->getType() == LHS->getType() && V->getType() == RHS->getType() &&
 | 
						|
         "Invalid CollectSingleShuffleElements");
 | 
						|
  unsigned NumElts = cast<PackedType>(V->getType())->getNumElements();
 | 
						|
 | 
						|
  if (isa<UndefValue>(V)) {
 | 
						|
    Mask.assign(NumElts, UndefValue::get(Type::Int32Ty));
 | 
						|
    return true;
 | 
						|
  } else if (V == LHS) {
 | 
						|
    for (unsigned i = 0; i != NumElts; ++i)
 | 
						|
      Mask.push_back(ConstantInt::get(Type::Int32Ty, i));
 | 
						|
    return true;
 | 
						|
  } else if (V == RHS) {
 | 
						|
    for (unsigned i = 0; i != NumElts; ++i)
 | 
						|
      Mask.push_back(ConstantInt::get(Type::Int32Ty, i+NumElts));
 | 
						|
    return true;
 | 
						|
  } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
 | 
						|
    // If this is an insert of an extract from some other vector, include it.
 | 
						|
    Value *VecOp    = IEI->getOperand(0);
 | 
						|
    Value *ScalarOp = IEI->getOperand(1);
 | 
						|
    Value *IdxOp    = IEI->getOperand(2);
 | 
						|
    
 | 
						|
    if (!isa<ConstantInt>(IdxOp))
 | 
						|
      return false;
 | 
						|
    unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
 | 
						|
    
 | 
						|
    if (isa<UndefValue>(ScalarOp)) {  // inserting undef into vector.
 | 
						|
      // Okay, we can handle this if the vector we are insertinting into is
 | 
						|
      // transitively ok.
 | 
						|
      if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
 | 
						|
        // If so, update the mask to reflect the inserted undef.
 | 
						|
        Mask[InsertedIdx] = UndefValue::get(Type::Int32Ty);
 | 
						|
        return true;
 | 
						|
      }      
 | 
						|
    } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
 | 
						|
      if (isa<ConstantInt>(EI->getOperand(1)) &&
 | 
						|
          EI->getOperand(0)->getType() == V->getType()) {
 | 
						|
        unsigned ExtractedIdx =
 | 
						|
          cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
 | 
						|
        
 | 
						|
        // This must be extracting from either LHS or RHS.
 | 
						|
        if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
 | 
						|
          // Okay, we can handle this if the vector we are insertinting into is
 | 
						|
          // transitively ok.
 | 
						|
          if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
 | 
						|
            // If so, update the mask to reflect the inserted value.
 | 
						|
            if (EI->getOperand(0) == LHS) {
 | 
						|
              Mask[InsertedIdx & (NumElts-1)] = 
 | 
						|
                 ConstantInt::get(Type::Int32Ty, ExtractedIdx);
 | 
						|
            } else {
 | 
						|
              assert(EI->getOperand(0) == RHS);
 | 
						|
              Mask[InsertedIdx & (NumElts-1)] = 
 | 
						|
                ConstantInt::get(Type::Int32Ty, ExtractedIdx+NumElts);
 | 
						|
              
 | 
						|
            }
 | 
						|
            return true;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // TODO: Handle shufflevector here!
 | 
						|
  
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// CollectShuffleElements - We are building a shuffle of V, using RHS as the
 | 
						|
/// RHS of the shuffle instruction, if it is not null.  Return a shuffle mask
 | 
						|
/// that computes V and the LHS value of the shuffle.
 | 
						|
static Value *CollectShuffleElements(Value *V, std::vector<Constant*> &Mask,
 | 
						|
                                     Value *&RHS) {
 | 
						|
  assert(isa<PackedType>(V->getType()) && 
 | 
						|
         (RHS == 0 || V->getType() == RHS->getType()) &&
 | 
						|
         "Invalid shuffle!");
 | 
						|
  unsigned NumElts = cast<PackedType>(V->getType())->getNumElements();
 | 
						|
 | 
						|
  if (isa<UndefValue>(V)) {
 | 
						|
    Mask.assign(NumElts, UndefValue::get(Type::Int32Ty));
 | 
						|
    return V;
 | 
						|
  } else if (isa<ConstantAggregateZero>(V)) {
 | 
						|
    Mask.assign(NumElts, ConstantInt::get(Type::Int32Ty, 0));
 | 
						|
    return V;
 | 
						|
  } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
 | 
						|
    // If this is an insert of an extract from some other vector, include it.
 | 
						|
    Value *VecOp    = IEI->getOperand(0);
 | 
						|
    Value *ScalarOp = IEI->getOperand(1);
 | 
						|
    Value *IdxOp    = IEI->getOperand(2);
 | 
						|
    
 | 
						|
    if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
 | 
						|
      if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
 | 
						|
          EI->getOperand(0)->getType() == V->getType()) {
 | 
						|
        unsigned ExtractedIdx =
 | 
						|
          cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
 | 
						|
        unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
 | 
						|
        
 | 
						|
        // Either the extracted from or inserted into vector must be RHSVec,
 | 
						|
        // otherwise we'd end up with a shuffle of three inputs.
 | 
						|
        if (EI->getOperand(0) == RHS || RHS == 0) {
 | 
						|
          RHS = EI->getOperand(0);
 | 
						|
          Value *V = CollectShuffleElements(VecOp, Mask, RHS);
 | 
						|
          Mask[InsertedIdx & (NumElts-1)] = 
 | 
						|
            ConstantInt::get(Type::Int32Ty, NumElts+ExtractedIdx);
 | 
						|
          return V;
 | 
						|
        }
 | 
						|
        
 | 
						|
        if (VecOp == RHS) {
 | 
						|
          Value *V = CollectShuffleElements(EI->getOperand(0), Mask, RHS);
 | 
						|
          // Everything but the extracted element is replaced with the RHS.
 | 
						|
          for (unsigned i = 0; i != NumElts; ++i) {
 | 
						|
            if (i != InsertedIdx)
 | 
						|
              Mask[i] = ConstantInt::get(Type::Int32Ty, NumElts+i);
 | 
						|
          }
 | 
						|
          return V;
 | 
						|
        }
 | 
						|
        
 | 
						|
        // If this insertelement is a chain that comes from exactly these two
 | 
						|
        // vectors, return the vector and the effective shuffle.
 | 
						|
        if (CollectSingleShuffleElements(IEI, EI->getOperand(0), RHS, Mask))
 | 
						|
          return EI->getOperand(0);
 | 
						|
        
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // TODO: Handle shufflevector here!
 | 
						|
  
 | 
						|
  // Otherwise, can't do anything fancy.  Return an identity vector.
 | 
						|
  for (unsigned i = 0; i != NumElts; ++i)
 | 
						|
    Mask.push_back(ConstantInt::get(Type::Int32Ty, i));
 | 
						|
  return V;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
 | 
						|
  Value *VecOp    = IE.getOperand(0);
 | 
						|
  Value *ScalarOp = IE.getOperand(1);
 | 
						|
  Value *IdxOp    = IE.getOperand(2);
 | 
						|
  
 | 
						|
  // If the inserted element was extracted from some other vector, and if the 
 | 
						|
  // indexes are constant, try to turn this into a shufflevector operation.
 | 
						|
  if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
 | 
						|
    if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
 | 
						|
        EI->getOperand(0)->getType() == IE.getType()) {
 | 
						|
      unsigned NumVectorElts = IE.getType()->getNumElements();
 | 
						|
      unsigned ExtractedIdx=cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
 | 
						|
      unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
 | 
						|
      
 | 
						|
      if (ExtractedIdx >= NumVectorElts) // Out of range extract.
 | 
						|
        return ReplaceInstUsesWith(IE, VecOp);
 | 
						|
      
 | 
						|
      if (InsertedIdx >= NumVectorElts)  // Out of range insert.
 | 
						|
        return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType()));
 | 
						|
      
 | 
						|
      // If we are extracting a value from a vector, then inserting it right
 | 
						|
      // back into the same place, just use the input vector.
 | 
						|
      if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx)
 | 
						|
        return ReplaceInstUsesWith(IE, VecOp);      
 | 
						|
      
 | 
						|
      // We could theoretically do this for ANY input.  However, doing so could
 | 
						|
      // turn chains of insertelement instructions into a chain of shufflevector
 | 
						|
      // instructions, and right now we do not merge shufflevectors.  As such,
 | 
						|
      // only do this in a situation where it is clear that there is benefit.
 | 
						|
      if (isa<UndefValue>(VecOp) || isa<ConstantAggregateZero>(VecOp)) {
 | 
						|
        // Turn this into shuffle(EIOp0, VecOp, Mask).  The result has all of
 | 
						|
        // the values of VecOp, except then one read from EIOp0.
 | 
						|
        // Build a new shuffle mask.
 | 
						|
        std::vector<Constant*> Mask;
 | 
						|
        if (isa<UndefValue>(VecOp))
 | 
						|
          Mask.assign(NumVectorElts, UndefValue::get(Type::Int32Ty));
 | 
						|
        else {
 | 
						|
          assert(isa<ConstantAggregateZero>(VecOp) && "Unknown thing");
 | 
						|
          Mask.assign(NumVectorElts, ConstantInt::get(Type::Int32Ty,
 | 
						|
                                                       NumVectorElts));
 | 
						|
        } 
 | 
						|
        Mask[InsertedIdx] = ConstantInt::get(Type::Int32Ty, ExtractedIdx);
 | 
						|
        return new ShuffleVectorInst(EI->getOperand(0), VecOp,
 | 
						|
                                     ConstantPacked::get(Mask));
 | 
						|
      }
 | 
						|
      
 | 
						|
      // If this insertelement isn't used by some other insertelement, turn it
 | 
						|
      // (and any insertelements it points to), into one big shuffle.
 | 
						|
      if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.use_back())) {
 | 
						|
        std::vector<Constant*> Mask;
 | 
						|
        Value *RHS = 0;
 | 
						|
        Value *LHS = CollectShuffleElements(&IE, Mask, RHS);
 | 
						|
        if (RHS == 0) RHS = UndefValue::get(LHS->getType());
 | 
						|
        // We now have a shuffle of LHS, RHS, Mask.
 | 
						|
        return new ShuffleVectorInst(LHS, RHS, ConstantPacked::get(Mask));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
 | 
						|
  Value *LHS = SVI.getOperand(0);
 | 
						|
  Value *RHS = SVI.getOperand(1);
 | 
						|
  std::vector<unsigned> Mask = getShuffleMask(&SVI);
 | 
						|
 | 
						|
  bool MadeChange = false;
 | 
						|
  
 | 
						|
  // Undefined shuffle mask -> undefined value.
 | 
						|
  if (isa<UndefValue>(SVI.getOperand(2)))
 | 
						|
    return ReplaceInstUsesWith(SVI, UndefValue::get(SVI.getType()));
 | 
						|
  
 | 
						|
  // If we have shuffle(x, undef, mask) and any elements of mask refer to
 | 
						|
  // the undef, change them to undefs.
 | 
						|
  if (isa<UndefValue>(SVI.getOperand(1))) {
 | 
						|
    // Scan to see if there are any references to the RHS.  If so, replace them
 | 
						|
    // with undef element refs and set MadeChange to true.
 | 
						|
    for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
 | 
						|
      if (Mask[i] >= e && Mask[i] != 2*e) {
 | 
						|
        Mask[i] = 2*e;
 | 
						|
        MadeChange = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (MadeChange) {
 | 
						|
      // Remap any references to RHS to use LHS.
 | 
						|
      std::vector<Constant*> Elts;
 | 
						|
      for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
 | 
						|
        if (Mask[i] == 2*e)
 | 
						|
          Elts.push_back(UndefValue::get(Type::Int32Ty));
 | 
						|
        else
 | 
						|
          Elts.push_back(ConstantInt::get(Type::Int32Ty, Mask[i]));
 | 
						|
      }
 | 
						|
      SVI.setOperand(2, ConstantPacked::get(Elts));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Canonicalize shuffle(x    ,x,mask) -> shuffle(x, undef,mask')
 | 
						|
  // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
 | 
						|
  if (LHS == RHS || isa<UndefValue>(LHS)) {
 | 
						|
    if (isa<UndefValue>(LHS) && LHS == RHS) {
 | 
						|
      // shuffle(undef,undef,mask) -> undef.
 | 
						|
      return ReplaceInstUsesWith(SVI, LHS);
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Remap any references to RHS to use LHS.
 | 
						|
    std::vector<Constant*> Elts;
 | 
						|
    for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
 | 
						|
      if (Mask[i] >= 2*e)
 | 
						|
        Elts.push_back(UndefValue::get(Type::Int32Ty));
 | 
						|
      else {
 | 
						|
        if ((Mask[i] >= e && isa<UndefValue>(RHS)) ||
 | 
						|
            (Mask[i] <  e && isa<UndefValue>(LHS)))
 | 
						|
          Mask[i] = 2*e;     // Turn into undef.
 | 
						|
        else
 | 
						|
          Mask[i] &= (e-1);  // Force to LHS.
 | 
						|
        Elts.push_back(ConstantInt::get(Type::Int32Ty, Mask[i]));
 | 
						|
      }
 | 
						|
    }
 | 
						|
    SVI.setOperand(0, SVI.getOperand(1));
 | 
						|
    SVI.setOperand(1, UndefValue::get(RHS->getType()));
 | 
						|
    SVI.setOperand(2, ConstantPacked::get(Elts));
 | 
						|
    LHS = SVI.getOperand(0);
 | 
						|
    RHS = SVI.getOperand(1);
 | 
						|
    MadeChange = true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Analyze the shuffle, are the LHS or RHS and identity shuffles?
 | 
						|
  bool isLHSID = true, isRHSID = true;
 | 
						|
    
 | 
						|
  for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
 | 
						|
    if (Mask[i] >= e*2) continue;  // Ignore undef values.
 | 
						|
    // Is this an identity shuffle of the LHS value?
 | 
						|
    isLHSID &= (Mask[i] == i);
 | 
						|
      
 | 
						|
    // Is this an identity shuffle of the RHS value?
 | 
						|
    isRHSID &= (Mask[i]-e == i);
 | 
						|
  }
 | 
						|
 | 
						|
  // Eliminate identity shuffles.
 | 
						|
  if (isLHSID) return ReplaceInstUsesWith(SVI, LHS);
 | 
						|
  if (isRHSID) return ReplaceInstUsesWith(SVI, RHS);
 | 
						|
  
 | 
						|
  // If the LHS is a shufflevector itself, see if we can combine it with this
 | 
						|
  // one without producing an unusual shuffle.  Here we are really conservative:
 | 
						|
  // we are absolutely afraid of producing a shuffle mask not in the input
 | 
						|
  // program, because the code gen may not be smart enough to turn a merged
 | 
						|
  // shuffle into two specific shuffles: it may produce worse code.  As such,
 | 
						|
  // we only merge two shuffles if the result is one of the two input shuffle
 | 
						|
  // masks.  In this case, merging the shuffles just removes one instruction,
 | 
						|
  // which we know is safe.  This is good for things like turning:
 | 
						|
  // (splat(splat)) -> splat.
 | 
						|
  if (ShuffleVectorInst *LHSSVI = dyn_cast<ShuffleVectorInst>(LHS)) {
 | 
						|
    if (isa<UndefValue>(RHS)) {
 | 
						|
      std::vector<unsigned> LHSMask = getShuffleMask(LHSSVI);
 | 
						|
 | 
						|
      std::vector<unsigned> NewMask;
 | 
						|
      for (unsigned i = 0, e = Mask.size(); i != e; ++i)
 | 
						|
        if (Mask[i] >= 2*e)
 | 
						|
          NewMask.push_back(2*e);
 | 
						|
        else
 | 
						|
          NewMask.push_back(LHSMask[Mask[i]]);
 | 
						|
      
 | 
						|
      // If the result mask is equal to the src shuffle or this shuffle mask, do
 | 
						|
      // the replacement.
 | 
						|
      if (NewMask == LHSMask || NewMask == Mask) {
 | 
						|
        std::vector<Constant*> Elts;
 | 
						|
        for (unsigned i = 0, e = NewMask.size(); i != e; ++i) {
 | 
						|
          if (NewMask[i] >= e*2) {
 | 
						|
            Elts.push_back(UndefValue::get(Type::Int32Ty));
 | 
						|
          } else {
 | 
						|
            Elts.push_back(ConstantInt::get(Type::Int32Ty, NewMask[i]));
 | 
						|
          }
 | 
						|
        }
 | 
						|
        return new ShuffleVectorInst(LHSSVI->getOperand(0),
 | 
						|
                                     LHSSVI->getOperand(1),
 | 
						|
                                     ConstantPacked::get(Elts));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return MadeChange ? &SVI : 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
void InstCombiner::removeFromWorkList(Instruction *I) {
 | 
						|
  WorkList.erase(std::remove(WorkList.begin(), WorkList.end(), I),
 | 
						|
                 WorkList.end());
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// TryToSinkInstruction - Try to move the specified instruction from its
 | 
						|
/// current block into the beginning of DestBlock, which can only happen if it's
 | 
						|
/// safe to move the instruction past all of the instructions between it and the
 | 
						|
/// end of its block.
 | 
						|
static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
 | 
						|
  assert(I->hasOneUse() && "Invariants didn't hold!");
 | 
						|
 | 
						|
  // Cannot move control-flow-involving, volatile loads, vaarg, etc.
 | 
						|
  if (isa<PHINode>(I) || I->mayWriteToMemory()) return false;
 | 
						|
 | 
						|
  // Do not sink alloca instructions out of the entry block.
 | 
						|
  if (isa<AllocaInst>(I) && I->getParent() == &DestBlock->getParent()->front())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // We can only sink load instructions if there is nothing between the load and
 | 
						|
  // the end of block that could change the value.
 | 
						|
  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
 | 
						|
    for (BasicBlock::iterator Scan = LI, E = LI->getParent()->end();
 | 
						|
         Scan != E; ++Scan)
 | 
						|
      if (Scan->mayWriteToMemory())
 | 
						|
        return false;
 | 
						|
  }
 | 
						|
 | 
						|
  BasicBlock::iterator InsertPos = DestBlock->begin();
 | 
						|
  while (isa<PHINode>(InsertPos)) ++InsertPos;
 | 
						|
 | 
						|
  I->moveBefore(InsertPos);
 | 
						|
  ++NumSunkInst;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
 | 
						|
/// all reachable code to the worklist.
 | 
						|
///
 | 
						|
/// This has a couple of tricks to make the code faster and more powerful.  In
 | 
						|
/// particular, we constant fold and DCE instructions as we go, to avoid adding
 | 
						|
/// them to the worklist (this significantly speeds up instcombine on code where
 | 
						|
/// many instructions are dead or constant).  Additionally, if we find a branch
 | 
						|
/// whose condition is a known constant, we only visit the reachable successors.
 | 
						|
///
 | 
						|
static void AddReachableCodeToWorklist(BasicBlock *BB, 
 | 
						|
                                       std::set<BasicBlock*> &Visited,
 | 
						|
                                       std::vector<Instruction*> &WorkList,
 | 
						|
                                       const TargetData *TD) {
 | 
						|
  // We have now visited this block!  If we've already been here, bail out.
 | 
						|
  if (!Visited.insert(BB).second) return;
 | 
						|
    
 | 
						|
  for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
 | 
						|
    Instruction *Inst = BBI++;
 | 
						|
    
 | 
						|
    // DCE instruction if trivially dead.
 | 
						|
    if (isInstructionTriviallyDead(Inst)) {
 | 
						|
      ++NumDeadInst;
 | 
						|
      DOUT << "IC: DCE: " << *Inst;
 | 
						|
      Inst->eraseFromParent();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // ConstantProp instruction if trivially constant.
 | 
						|
    if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
 | 
						|
      DOUT << "IC: ConstFold to: " << *C << " from: " << *Inst;
 | 
						|
      Inst->replaceAllUsesWith(C);
 | 
						|
      ++NumConstProp;
 | 
						|
      Inst->eraseFromParent();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    WorkList.push_back(Inst);
 | 
						|
  }
 | 
						|
 | 
						|
  // Recursively visit successors.  If this is a branch or switch on a constant,
 | 
						|
  // only visit the reachable successor.
 | 
						|
  TerminatorInst *TI = BB->getTerminator();
 | 
						|
  if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
 | 
						|
    if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
 | 
						|
      bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
 | 
						|
      AddReachableCodeToWorklist(BI->getSuccessor(!CondVal), Visited, WorkList,
 | 
						|
                                 TD);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
 | 
						|
    if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
 | 
						|
      // See if this is an explicit destination.
 | 
						|
      for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
 | 
						|
        if (SI->getCaseValue(i) == Cond) {
 | 
						|
          AddReachableCodeToWorklist(SI->getSuccessor(i), Visited, WorkList,TD);
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      
 | 
						|
      // Otherwise it is the default destination.
 | 
						|
      AddReachableCodeToWorklist(SI->getSuccessor(0), Visited, WorkList, TD);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
 | 
						|
    AddReachableCodeToWorklist(TI->getSuccessor(i), Visited, WorkList, TD);
 | 
						|
}
 | 
						|
 | 
						|
bool InstCombiner::runOnFunction(Function &F) {
 | 
						|
  bool Changed = false;
 | 
						|
  TD = &getAnalysis<TargetData>();
 | 
						|
 | 
						|
  {
 | 
						|
    // Do a depth-first traversal of the function, populate the worklist with
 | 
						|
    // the reachable instructions.  Ignore blocks that are not reachable.  Keep
 | 
						|
    // track of which blocks we visit.
 | 
						|
    std::set<BasicBlock*> Visited;
 | 
						|
    AddReachableCodeToWorklist(F.begin(), Visited, WorkList, TD);
 | 
						|
 | 
						|
    // Do a quick scan over the function.  If we find any blocks that are
 | 
						|
    // unreachable, remove any instructions inside of them.  This prevents
 | 
						|
    // the instcombine code from having to deal with some bad special cases.
 | 
						|
    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
 | 
						|
      if (!Visited.count(BB)) {
 | 
						|
        Instruction *Term = BB->getTerminator();
 | 
						|
        while (Term != BB->begin()) {   // Remove instrs bottom-up
 | 
						|
          BasicBlock::iterator I = Term; --I;
 | 
						|
 | 
						|
          DOUT << "IC: DCE: " << *I;
 | 
						|
          ++NumDeadInst;
 | 
						|
 | 
						|
          if (!I->use_empty())
 | 
						|
            I->replaceAllUsesWith(UndefValue::get(I->getType()));
 | 
						|
          I->eraseFromParent();
 | 
						|
        }
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  while (!WorkList.empty()) {
 | 
						|
    Instruction *I = WorkList.back();  // Get an instruction from the worklist
 | 
						|
    WorkList.pop_back();
 | 
						|
 | 
						|
    // Check to see if we can DCE the instruction.
 | 
						|
    if (isInstructionTriviallyDead(I)) {
 | 
						|
      // Add operands to the worklist.
 | 
						|
      if (I->getNumOperands() < 4)
 | 
						|
        AddUsesToWorkList(*I);
 | 
						|
      ++NumDeadInst;
 | 
						|
 | 
						|
      DOUT << "IC: DCE: " << *I;
 | 
						|
 | 
						|
      I->eraseFromParent();
 | 
						|
      removeFromWorkList(I);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Instruction isn't dead, see if we can constant propagate it.
 | 
						|
    if (Constant *C = ConstantFoldInstruction(I, TD)) {
 | 
						|
      DOUT << "IC: ConstFold to: " << *C << " from: " << *I;
 | 
						|
 | 
						|
      // Add operands to the worklist.
 | 
						|
      AddUsesToWorkList(*I);
 | 
						|
      ReplaceInstUsesWith(*I, C);
 | 
						|
 | 
						|
      ++NumConstProp;
 | 
						|
      I->eraseFromParent();
 | 
						|
      removeFromWorkList(I);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // See if we can trivially sink this instruction to a successor basic block.
 | 
						|
    if (I->hasOneUse()) {
 | 
						|
      BasicBlock *BB = I->getParent();
 | 
						|
      BasicBlock *UserParent = cast<Instruction>(I->use_back())->getParent();
 | 
						|
      if (UserParent != BB) {
 | 
						|
        bool UserIsSuccessor = false;
 | 
						|
        // See if the user is one of our successors.
 | 
						|
        for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
 | 
						|
          if (*SI == UserParent) {
 | 
						|
            UserIsSuccessor = true;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
 | 
						|
        // If the user is one of our immediate successors, and if that successor
 | 
						|
        // only has us as a predecessors (we'd have to split the critical edge
 | 
						|
        // otherwise), we can keep going.
 | 
						|
        if (UserIsSuccessor && !isa<PHINode>(I->use_back()) &&
 | 
						|
            next(pred_begin(UserParent)) == pred_end(UserParent))
 | 
						|
          // Okay, the CFG is simple enough, try to sink this instruction.
 | 
						|
          Changed |= TryToSinkInstruction(I, UserParent);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Now that we have an instruction, try combining it to simplify it...
 | 
						|
    if (Instruction *Result = visit(*I)) {
 | 
						|
      ++NumCombined;
 | 
						|
      // Should we replace the old instruction with a new one?
 | 
						|
      if (Result != I) {
 | 
						|
        DOUT << "IC: Old = " << *I
 | 
						|
             << "    New = " << *Result;
 | 
						|
 | 
						|
        // Everything uses the new instruction now.
 | 
						|
        I->replaceAllUsesWith(Result);
 | 
						|
 | 
						|
        // Push the new instruction and any users onto the worklist.
 | 
						|
        WorkList.push_back(Result);
 | 
						|
        AddUsersToWorkList(*Result);
 | 
						|
 | 
						|
        // Move the name to the new instruction first...
 | 
						|
        std::string OldName = I->getName(); I->setName("");
 | 
						|
        Result->setName(OldName);
 | 
						|
 | 
						|
        // Insert the new instruction into the basic block...
 | 
						|
        BasicBlock *InstParent = I->getParent();
 | 
						|
        BasicBlock::iterator InsertPos = I;
 | 
						|
 | 
						|
        if (!isa<PHINode>(Result))        // If combining a PHI, don't insert
 | 
						|
          while (isa<PHINode>(InsertPos)) // middle of a block of PHIs.
 | 
						|
            ++InsertPos;
 | 
						|
 | 
						|
        InstParent->getInstList().insert(InsertPos, Result);
 | 
						|
 | 
						|
        // Make sure that we reprocess all operands now that we reduced their
 | 
						|
        // use counts.
 | 
						|
        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
 | 
						|
          if (Instruction *OpI = dyn_cast<Instruction>(I->getOperand(i)))
 | 
						|
            WorkList.push_back(OpI);
 | 
						|
 | 
						|
        // Instructions can end up on the worklist more than once.  Make sure
 | 
						|
        // we do not process an instruction that has been deleted.
 | 
						|
        removeFromWorkList(I);
 | 
						|
 | 
						|
        // Erase the old instruction.
 | 
						|
        InstParent->getInstList().erase(I);
 | 
						|
      } else {
 | 
						|
        DOUT << "IC: MOD = " << *I;
 | 
						|
 | 
						|
        // If the instruction was modified, it's possible that it is now dead.
 | 
						|
        // if so, remove it.
 | 
						|
        if (isInstructionTriviallyDead(I)) {
 | 
						|
          // Make sure we process all operands now that we are reducing their
 | 
						|
          // use counts.
 | 
						|
          for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
 | 
						|
            if (Instruction *OpI = dyn_cast<Instruction>(I->getOperand(i)))
 | 
						|
              WorkList.push_back(OpI);
 | 
						|
 | 
						|
          // Instructions may end up in the worklist more than once.  Erase all
 | 
						|
          // occurrences of this instruction.
 | 
						|
          removeFromWorkList(I);
 | 
						|
          I->eraseFromParent();
 | 
						|
        } else {
 | 
						|
          WorkList.push_back(Result);
 | 
						|
          AddUsersToWorkList(*Result);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      Changed = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
FunctionPass *llvm::createInstructionCombiningPass() {
 | 
						|
  return new InstCombiner();
 | 
						|
}
 | 
						|
 |