542 lines
22 KiB
C++
542 lines
22 KiB
C++
//===- Tiling.cpp - Implementation of linalg Tiling -----------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the linalg dialect Tiling pass.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/AffineOps/EDSC/Intrinsics.h"
|
|
#include "mlir/Dialect/Linalg/EDSC/Intrinsics.h"
|
|
#include "mlir/Dialect/Linalg/IR/LinalgTypes.h"
|
|
#include "mlir/Dialect/Linalg/Passes.h"
|
|
#include "mlir/Dialect/Linalg/Utils/Utils.h"
|
|
#include "mlir/Dialect/LoopOps/EDSC/Builders.h"
|
|
#include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h"
|
|
#include "mlir/IR/AffineExpr.h"
|
|
#include "mlir/IR/AffineExprVisitor.h"
|
|
#include "mlir/IR/AffineMap.h"
|
|
#include "mlir/IR/OpImplementation.h"
|
|
#include "mlir/Pass/Pass.h"
|
|
#include "mlir/Support/Functional.h"
|
|
#include "mlir/Support/LLVM.h"
|
|
#include "mlir/Support/STLExtras.h"
|
|
#include "mlir/Transforms/FoldUtils.h"
|
|
|
|
#include "llvm/Support/CommandLine.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::edsc;
|
|
using namespace mlir::edsc::intrinsics;
|
|
using namespace mlir::linalg;
|
|
using namespace mlir::loop;
|
|
|
|
using folded_affine_min = folded::ValueBuilder<AffineMinOp>;
|
|
|
|
#define DEBUG_TYPE "linalg-tiling"
|
|
|
|
static llvm::cl::OptionCategory clOptionsCategory(DEBUG_TYPE " options");
|
|
static llvm::cl::list<unsigned>
|
|
clTileSizes("linalg-tile-sizes",
|
|
llvm::cl::desc("Tile sizes by which to tile linalg operations"),
|
|
llvm::cl::ZeroOrMore, llvm::cl::MiscFlags::CommaSeparated,
|
|
llvm::cl::cat(clOptionsCategory));
|
|
|
|
static bool isZero(Value v) {
|
|
return isa_and_nonnull<ConstantIndexOp>(v.getDefiningOp()) &&
|
|
cast<ConstantIndexOp>(v.getDefiningOp()).getValue() == 0;
|
|
}
|
|
|
|
using LoopIndexToRangeIndexMap = DenseMap<int, int>;
|
|
|
|
// Creates a number of ranges equal to the number of non-zero in `tileSizes`.
|
|
// One for each loop of the LinalgOp that is tiled. The `tileSizes` argument has
|
|
// one entry per surrounding loop. It uses zero as the convention that a
|
|
// particular loop is not tiled. This convention simplifies implementations by
|
|
// avoiding affine map manipulations.
|
|
// The returned ranges correspond to the loop ranges, in the proper order, that
|
|
// are tiled and for which new loops will be created. Also the function returns
|
|
// a map from loop indices of the LinalgOp to the corresponding non-empty range
|
|
// indices of newly created loops.
|
|
static std::tuple<SmallVector<SubViewOp::Range, 4>, LoopIndexToRangeIndexMap>
|
|
makeTiledLoopRanges(OpBuilder &b, Location loc, AffineMap map,
|
|
ArrayRef<Value> allViewSizes, ArrayRef<Value> allTileSizes,
|
|
OperationFolder *folder) {
|
|
assert(allTileSizes.size() == map.getNumResults());
|
|
// Apply `map` to get view sizes in loop order.
|
|
auto viewSizes = applyMapToValues(b, loc, map, allViewSizes, folder);
|
|
SmallVector<Value, 4> tileSizes(allTileSizes.begin(), allTileSizes.end());
|
|
|
|
// Traverse the tile sizes, which are in loop order, erase zeros everywhere.
|
|
LoopIndexToRangeIndexMap loopIndexToRangeIndex;
|
|
for (int idx = 0, e = tileSizes.size(), zerosCount = 0; idx < e; ++idx) {
|
|
if (isZero(tileSizes[idx - zerosCount])) {
|
|
viewSizes.erase(viewSizes.begin() + idx - zerosCount);
|
|
tileSizes.erase(tileSizes.begin() + idx - zerosCount);
|
|
++zerosCount;
|
|
continue;
|
|
}
|
|
loopIndexToRangeIndex[idx] = idx - zerosCount;
|
|
}
|
|
|
|
// Create a new range with the applied tile sizes.
|
|
SmallVector<SubViewOp::Range, 4> res;
|
|
for (unsigned idx = 0, e = tileSizes.size(); idx < e; ++idx) {
|
|
res.push_back(SubViewOp::Range{folded_std_constant_index(folder, 0),
|
|
viewSizes[idx], tileSizes[idx]});
|
|
}
|
|
return std::make_tuple(res, loopIndexToRangeIndex);
|
|
}
|
|
|
|
namespace {
|
|
|
|
// Helper visitor to determine whether an AffineExpr is tiled.
|
|
// This is achieved by traversing every AffineDimExpr with position `pos` and
|
|
// checking whether the corresponding `tileSizes[pos]` is non-zero.
|
|
// This also enforces only positive coefficients occur in multiplications.
|
|
//
|
|
// Example:
|
|
// `d0 + 2 * d1 + d3` is tiled by [0, 0, 0, 2] but not by [0, 0, 2, 0]
|
|
//
|
|
struct TileCheck : public AffineExprVisitor<TileCheck> {
|
|
TileCheck(ArrayRef<Value> tileSizes) : isTiled(false), tileSizes(tileSizes) {}
|
|
|
|
void visitDimExpr(AffineDimExpr expr) {
|
|
isTiled |= !isZero(tileSizes[expr.getPosition()]);
|
|
}
|
|
void visitAffineBinaryOpExpr(AffineBinaryOpExpr expr) {
|
|
visit(expr.getLHS());
|
|
visit(expr.getRHS());
|
|
if (expr.getKind() == mlir::AffineExprKind::Mul)
|
|
assert(expr.getRHS().cast<AffineConstantExpr>().getValue() > 0 &&
|
|
"nonpositive multiplying coefficient");
|
|
}
|
|
bool isTiled;
|
|
ArrayRef<Value> tileSizes;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
// IndexedGenericOp explicitly uses induction variables in the loop body. The
|
|
// values of the indices that are used in the loop body for any given access of
|
|
// input/output memref before `subview` op was applied should be invariant with
|
|
// respect to tiling.
|
|
//
|
|
// Therefore, if the operation is tiled, we have to transform the indices
|
|
// accordingly, i.e. offset them by the values of the corresponding induction
|
|
// variables that are captured implicitly in the body of the op.
|
|
//
|
|
// Example. `linalg.indexed_generic` before tiling:
|
|
//
|
|
// #id_2d = (i, j) -> (i, j)
|
|
// #pointwise_2d_trait = {
|
|
// indexing_maps = [#id_2d, #id_2d],
|
|
// iterator_types = ["parallel", "parallel"],
|
|
// n_views = [1, 1]
|
|
// }
|
|
// linalg.indexed_generic #pointwise_2d_trait %operand, %result {
|
|
// ^bb0(%i: index, %j: index, %operand_in: f32, %result_in: f32):
|
|
// <some operations that use %i, %j>
|
|
// }: memref<50x100xf32>, memref<50x100xf32>
|
|
//
|
|
// After tiling pass with tiles sizes 10 and 25:
|
|
//
|
|
// #strided = (i, j)[s0, s1, s2] -> (i * s1 + s0 + j * s2)
|
|
//
|
|
// %c1 = constant 1 : index
|
|
// %c0 = constant 0 : index
|
|
// %c25 = constant 25 : index
|
|
// %c10 = constant 10 : index
|
|
// operand_dim_0 = dim %operand, 0 : memref<50x100xf32>
|
|
// operand_dim_1 = dim %operand, 1 : memref<50x100xf32>
|
|
// loop.for %k = %c0 to operand_dim_0 step %c10 {
|
|
// loop.for %l = %c0 to operand_dim_1 step %c25 {
|
|
// %4 = std.subview %operand[%k, %l][%c10, %c25][%c1, %c1]
|
|
// : memref<50x100xf32> to memref<?x?xf32, #strided>
|
|
// %5 = std.subview %result[%k, %l][%c10, %c25][%c1, %c1]
|
|
// : memref<50x100xf32> to memref<?x?xf32, #strided>
|
|
// linalg.indexed_generic pointwise_2d_trait %4, %5 {
|
|
// ^bb0(%i: index, %j: index, %operand_in: f32, %result_in: f32):
|
|
// // Indices `k` and `l` are implicitly captured in the body.
|
|
// %transformed_i = addi %i, %k : index // index `i` is offset by %k
|
|
// %transformed_j = addi %j, %l : index // index `j` is offset by %l
|
|
// // Every use of %i, %j is replaced with %transformed_i, %transformed_j
|
|
// <some operations that use %transformed_i, %transformed_j>
|
|
// }: memref<?x?xf32, #strided>, memref<?x?xf32, #strided>
|
|
// }
|
|
// }
|
|
//
|
|
// TODO(pifon, ntv): Investigate whether mixing implicit and explicit indices
|
|
// does not lead to losing information.
|
|
static void transformIndexedGenericOpIndices(
|
|
OpBuilder &b, LinalgOp op, ArrayRef<ValueHandle *> pivs,
|
|
const LoopIndexToRangeIndexMap &loopIndexToRangeIndex) {
|
|
assert(op.hasBufferSemantics() && "expected linalg op with buffer semantics");
|
|
auto indexedGenericOp = dyn_cast<IndexedGenericOp>(op.getOperation());
|
|
if (!indexedGenericOp)
|
|
return;
|
|
|
|
// `linalg.indexed_generic` comes in two flavours. One has a region with a
|
|
// single block that defines the loop body. The other has a `fun` attribute
|
|
// that refers to an existing function symbol. The `fun` function call will be
|
|
// inserted in the loop body in that case.
|
|
//
|
|
// TODO(pifon): Add support for `linalg.indexed_generic` with `fun` attribute.
|
|
auto ®ion = indexedGenericOp.region();
|
|
if (region.empty()) {
|
|
indexedGenericOp.emitOpError("expected a region");
|
|
return;
|
|
}
|
|
auto &block = region.getBlocks().front();
|
|
|
|
OpBuilder::InsertionGuard g(b);
|
|
b.setInsertionPointToStart(&block);
|
|
for (unsigned i = 0; i < indexedGenericOp.getNumLoops(); ++i) {
|
|
auto rangeIndex = loopIndexToRangeIndex.find(i);
|
|
if (rangeIndex == loopIndexToRangeIndex.end())
|
|
continue;
|
|
Value oldIndex = block.getArgument(i);
|
|
// Offset the index argument `i` by the value of the corresponding induction
|
|
// variable and replace all uses of the previous value.
|
|
Value newIndex = b.create<AddIOp>(indexedGenericOp.getLoc(), oldIndex,
|
|
pivs[rangeIndex->second]->getValue());
|
|
for (auto &use : oldIndex.getUses()) {
|
|
if (use.getOwner() == newIndex.getDefiningOp())
|
|
continue;
|
|
use.set(newIndex);
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool isTiled(AffineExpr expr, ArrayRef<Value> tileSizes) {
|
|
if (!expr)
|
|
return false;
|
|
TileCheck t(tileSizes);
|
|
t.visit(expr);
|
|
return t.isTiled;
|
|
}
|
|
|
|
// Checks whether the view with index `viewIndex` within `linalgOp` varies with
|
|
// respect to a non-zero `tileSize`.
|
|
static bool isTiled(AffineMap map, ArrayRef<Value> tileSizes) {
|
|
if (!map)
|
|
return false;
|
|
for (unsigned r = 0; r < map.getNumResults(); ++r)
|
|
if (isTiled(map.getResult(r), tileSizes))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static SmallVector<Value, 4>
|
|
makeTiledViews(OpBuilder &b, Location loc, LinalgOp linalgOp,
|
|
ArrayRef<Value> ivs, ArrayRef<Value> tileSizes,
|
|
ArrayRef<Value> viewSizes, OperationFolder *folder) {
|
|
assert(linalgOp.hasBufferSemantics() &&
|
|
"expected linalg op with buffer semantics");
|
|
assert(ivs.size() == static_cast<size_t>(llvm::count_if(
|
|
llvm::make_range(tileSizes.begin(), tileSizes.end()),
|
|
[](Value v) { return !isZero(v); })) &&
|
|
"expected as many ivs as non-zero sizes");
|
|
|
|
using namespace edsc::op;
|
|
|
|
// Construct (potentially temporary) mins and maxes on which to apply maps
|
|
// that define tile subviews.
|
|
SmallVector<Value, 8> lbs, subViewSizes;
|
|
for (unsigned idx = 0, idxIvs = 0, e = tileSizes.size(); idx < e; ++idx) {
|
|
bool isTiled = !isZero(tileSizes[idx]);
|
|
lbs.push_back(isTiled ? ivs[idxIvs++]
|
|
: (Value)folded_std_constant_index(folder, 0));
|
|
subViewSizes.push_back(isTiled ? tileSizes[idx] : viewSizes[idx]);
|
|
}
|
|
|
|
auto *op = linalgOp.getOperation();
|
|
|
|
SmallVector<Value, 4> res;
|
|
res.reserve(op->getNumOperands());
|
|
auto viewIteratorBegin = linalgOp.getInputsAndOutputBuffers().begin();
|
|
for (unsigned viewIndex = 0; viewIndex < linalgOp.getNumInputsAndOutputs();
|
|
++viewIndex) {
|
|
Value view = *(viewIteratorBegin + viewIndex);
|
|
auto viewType = view.getType().cast<MemRefType>();
|
|
unsigned rank = viewType.getRank();
|
|
auto mapAttr = linalgOp.indexing_maps()[viewIndex];
|
|
auto map = mapAttr.cast<AffineMapAttr>().getValue();
|
|
// If the view is not tiled, we can use it as is.
|
|
if (!isTiled(map, tileSizes)) {
|
|
res.push_back(view);
|
|
continue;
|
|
}
|
|
|
|
// Construct a new subview for the tile.
|
|
SmallVector<Value, 4> offsets, sizes, strides;
|
|
offsets.reserve(rank);
|
|
sizes.reserve(rank);
|
|
strides.reserve(rank);
|
|
for (unsigned r = 0; r < rank; ++r) {
|
|
if (!isTiled(map.getSubMap({r}), tileSizes)) {
|
|
offsets.push_back(folded_std_constant_index(folder, 0));
|
|
sizes.push_back(std_dim(view, r));
|
|
strides.push_back(folded_std_constant_index(folder, 1));
|
|
continue;
|
|
}
|
|
|
|
// Tiling creates a new slice at the proper index, the slice step is 1
|
|
// (i.e. the slice view does not subsample, stepping occurs in the loop).
|
|
auto m = map.getSubMap({r});
|
|
auto offset = applyMapToValues(b, loc, m, lbs, folder).front();
|
|
offsets.push_back(offset);
|
|
auto size = applyMapToValues(b, loc, m, subViewSizes, folder).front();
|
|
|
|
// The size of the subview should be trimmed to avoid out-of-bounds
|
|
// accesses, unless we statically know the subview size divides the view
|
|
// size evenly.
|
|
int64_t viewSize = viewType.getDimSize(r);
|
|
auto sizeCst = dyn_cast_or_null<ConstantIndexOp>(size.getDefiningOp());
|
|
if (ShapedType::isDynamic(viewSize) || !sizeCst ||
|
|
(viewSize % sizeCst.getValue()) != 0) {
|
|
// Compute min(size, dim - offset) to avoid out-of-bounds accesses.
|
|
auto minMap = AffineMap::get(
|
|
/*dimCount=*/3, /*symbolCount=*/0,
|
|
{getAffineDimExpr(/*position=*/0, b.getContext()),
|
|
getAffineDimExpr(/*position=*/1, b.getContext()) -
|
|
getAffineDimExpr(/*position=*/2, b.getContext())});
|
|
auto d = folded_std_dim(folder, view, r);
|
|
size = folded_affine_min(folder, b.getIndexType(), minMap,
|
|
ValueRange{size, d, offset});
|
|
}
|
|
|
|
sizes.push_back(size);
|
|
strides.push_back(folded_std_constant_index(folder, 1));
|
|
}
|
|
|
|
res.push_back(b.create<SubViewOp>(loc, view, offsets, sizes, strides));
|
|
}
|
|
|
|
// Traverse the mins/maxes and erase those that don't have uses left.
|
|
// This is a special type of folding that we only apply when `folder` is
|
|
// defined.
|
|
if (folder)
|
|
for (auto v : llvm::concat<Value>(lbs, subViewSizes))
|
|
if (v.use_empty())
|
|
v.getDefiningOp()->erase();
|
|
|
|
return res;
|
|
}
|
|
|
|
template <typename LoopTy>
|
|
Optional<TiledLinalgOp> static tileLinalgOpImpl(OpBuilder &b, LinalgOp op,
|
|
ArrayRef<Value> tileSizes,
|
|
ArrayRef<unsigned> permutation,
|
|
OperationFolder *folder) {
|
|
assert(op.hasBufferSemantics() && "expected linalg op with buffer semantics");
|
|
// 1. Enforce the convention that "tiling by zero" skips tiling a particular
|
|
// dimension. This convention is significantly simpler to handle instead of
|
|
// adjusting affine maps to account for missing dimensions.
|
|
assert(op.getNumParallelLoops() + op.getNumReductionLoops() +
|
|
op.getNumWindowLoops() ==
|
|
tileSizes.size() &&
|
|
"expected matching number of tile sizes and loops");
|
|
|
|
// If permutation is empty, use the identity. Build the permutation map
|
|
// otherwise.
|
|
auto invPermutationMap = AffineMap::getMultiDimIdentityMap(
|
|
tileSizes.size(), ScopedContext::getContext());
|
|
if (!permutation.empty())
|
|
invPermutationMap = inversePermutation(
|
|
AffineMap::getPermutationMap(permutation, ScopedContext::getContext()));
|
|
|
|
OpBuilder::InsertionGuard g(b);
|
|
b.setInsertionPoint(op);
|
|
ScopedContext scope(b, op.getLoc());
|
|
// 2. Build the tiled loop ranges.
|
|
auto viewSizes = getViewSizes(b, op);
|
|
// The flattened loopToOperandRangesMaps is expected to be an invertible
|
|
// permutation map (asserted in the inverse calculation).
|
|
auto mapsRange = op.indexing_maps().getAsRange<AffineMapAttr>();
|
|
auto maps =
|
|
functional::map([](AffineMapAttr a) { return a.getValue(); }, mapsRange);
|
|
auto viewSizesToLoopsMap = inversePermutation(concatAffineMaps(maps));
|
|
assert(viewSizesToLoopsMap && "expected invertible map");
|
|
|
|
SmallVector<SubViewOp::Range, 4> loopRanges;
|
|
LoopIndexToRangeIndexMap loopIndexToRangeIndex;
|
|
std::tie(loopRanges, loopIndexToRangeIndex) =
|
|
makeTiledLoopRanges(b, scope.getLocation(), viewSizesToLoopsMap,
|
|
viewSizes, tileSizes, folder);
|
|
if (!permutation.empty())
|
|
applyPermutationToVector(loopRanges, permutation);
|
|
|
|
// 3. Create the tiled loops.
|
|
LinalgOp res = op;
|
|
auto ivs = ValueHandle::makeIndexHandles(loopRanges.size());
|
|
auto pivs = makeHandlePointers(MutableArrayRef<ValueHandle>(ivs));
|
|
// Convert SubViewOp::Range to linalg_range.
|
|
SmallVector<Value, 4> linalgRanges;
|
|
for (auto &range : loopRanges) {
|
|
linalgRanges.push_back(
|
|
linalg_range(range.offset, range.size, range.stride));
|
|
}
|
|
GenericLoopNestRangeBuilder<LoopTy>(pivs, linalgRanges)([&] {
|
|
auto b = ScopedContext::getBuilder();
|
|
auto loc = ScopedContext::getLocation();
|
|
SmallVector<Value, 4> ivValues(ivs.begin(), ivs.end());
|
|
|
|
// If we have to apply a permutation to the tiled loop nest, we have to
|
|
// reorder the induction variables This permutation is the right one
|
|
// assuming that loopRanges have previously been permuted by
|
|
// (i,j,k)->(k,i,j) So this permutation should be the inversePermutation of
|
|
// that one: (d0,d1,d2)->(d2,d0,d1)
|
|
if (!permutation.empty())
|
|
ivValues = applyMapToValues(b, loc, invPermutationMap, ivValues, folder);
|
|
|
|
auto views =
|
|
makeTiledViews(b, loc, op, ivValues, tileSizes, viewSizes, folder);
|
|
auto operands = getAssumedNonViewOperands(op);
|
|
views.append(operands.begin(), operands.end());
|
|
res = op.clone(b, loc, views);
|
|
});
|
|
|
|
// 4. Transforms index arguments of `linalg.generic` w.r.t. to the tiling.
|
|
transformIndexedGenericOpIndices(b, res, pivs, loopIndexToRangeIndex);
|
|
|
|
// 5. Gather the newly created loops and return them with the new op.
|
|
SmallVector<Operation *, 8> loops;
|
|
loops.reserve(ivs.size());
|
|
for (auto iv : ivs)
|
|
loops.push_back(loop::getForInductionVarOwner(iv));
|
|
|
|
return TiledLinalgOp{res, loops};
|
|
}
|
|
|
|
template <typename LoopTy>
|
|
static Optional<TiledLinalgOp>
|
|
tileLinalgOpImpl(OpBuilder &b, LinalgOp op, ArrayRef<int64_t> tileSizes,
|
|
ArrayRef<unsigned> permutation, OperationFolder *folder) {
|
|
assert(op.hasBufferSemantics() && "expected linalg op with buffer semantics");
|
|
if (tileSizes.empty())
|
|
return llvm::None;
|
|
|
|
// The following uses the convention that "tiling by zero" skips tiling a
|
|
// particular dimension. This convention is significantly simpler to handle
|
|
// instead of adjusting affine maps to account for missing dimensions.
|
|
auto nLoops = op.getNumParallelLoops() + op.getNumReductionLoops() +
|
|
op.getNumWindowLoops();
|
|
tileSizes = tileSizes.take_front(nLoops);
|
|
// If only 0 tilings are left, then return.
|
|
if (llvm::all_of(tileSizes, [](int64_t v) { return v == 0; }))
|
|
return llvm::None;
|
|
|
|
// Create a builder for tile size constants.
|
|
OpBuilder::InsertionGuard g(b);
|
|
b.setInsertionPoint(op);
|
|
ScopedContext scope(b, op.getLoc());
|
|
|
|
// Materialize concrete tile size values to pass the generic tiling function.
|
|
SmallVector<Value, 8> tileSizeValues;
|
|
tileSizeValues.reserve(tileSizes.size());
|
|
for (auto ts : tileSizes)
|
|
tileSizeValues.push_back(folded_std_constant_index(folder, ts));
|
|
// Pad tile sizes with zero values to enforce our convention.
|
|
if (tileSizeValues.size() < nLoops) {
|
|
for (unsigned i = tileSizeValues.size(); i < nLoops; ++i)
|
|
tileSizeValues.push_back(folded_std_constant_index(folder, 0));
|
|
}
|
|
|
|
return tileLinalgOpImpl<LoopTy>(b, op, tileSizeValues, permutation, folder);
|
|
}
|
|
|
|
Optional<TiledLinalgOp>
|
|
mlir::linalg::tileLinalgOp(OpBuilder &b, LinalgOp op, ArrayRef<Value> tileSizes,
|
|
ArrayRef<unsigned> permutation,
|
|
OperationFolder *folder) {
|
|
return tileLinalgOpImpl<loop::ForOp>(b, op, tileSizes, permutation, folder);
|
|
}
|
|
|
|
Optional<TiledLinalgOp> mlir::linalg::tileLinalgOpToParallelLoops(
|
|
OpBuilder &b, LinalgOp op, ArrayRef<Value> tileSizes,
|
|
ArrayRef<unsigned> permutation, OperationFolder *folder) {
|
|
return tileLinalgOpImpl<loop::ParallelOp>(b, op, tileSizes, permutation,
|
|
folder);
|
|
}
|
|
|
|
Optional<TiledLinalgOp> mlir::linalg::tileLinalgOp(
|
|
OpBuilder &b, LinalgOp op, ArrayRef<int64_t> tileSizes,
|
|
ArrayRef<unsigned> permutation, OperationFolder *folder) {
|
|
return tileLinalgOpImpl<loop::ForOp>(b, op, tileSizes, permutation, folder);
|
|
}
|
|
|
|
Optional<TiledLinalgOp> mlir::linalg::tileLinalgOpToParallelLoops(
|
|
OpBuilder &b, LinalgOp op, ArrayRef<int64_t> tileSizes,
|
|
ArrayRef<unsigned> permutation, OperationFolder *folder) {
|
|
return tileLinalgOpImpl<loop::ParallelOp>(b, op, tileSizes, permutation,
|
|
folder);
|
|
}
|
|
|
|
template <typename LoopTy>
|
|
static void tileLinalgOps(FuncOp f, ArrayRef<int64_t> tileSizes) {
|
|
OpBuilder b(f);
|
|
OperationFolder folder(f.getContext());
|
|
f.walk([tileSizes, &b, &folder](LinalgOp op) {
|
|
if (!op.hasBufferSemantics())
|
|
return;
|
|
auto opLoopsPair =
|
|
tileLinalgOpImpl<LoopTy>(b, op, tileSizes, /*permutation=*/{}, &folder);
|
|
// If tiling occurred successfully, erase old op.
|
|
if (opLoopsPair)
|
|
op.erase();
|
|
});
|
|
f.walk([](LinalgOp op) {
|
|
if (isOpTriviallyDead(op))
|
|
op.erase();
|
|
});
|
|
}
|
|
|
|
namespace {
|
|
|
|
template <typename LoopTy>
|
|
struct LinalgTilingPass : public FunctionPass<LinalgTilingPass<LoopTy>> {
|
|
LinalgTilingPass() = default;
|
|
LinalgTilingPass(ArrayRef<int64_t> sizes) {
|
|
this->tileSizes.assign(sizes.begin(), sizes.end());
|
|
}
|
|
|
|
void runOnFunction() override {
|
|
tileLinalgOps<LoopTy>(this->getFunction(), tileSizes);
|
|
}
|
|
|
|
SmallVector<int64_t, 8> tileSizes;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
std::unique_ptr<OpPassBase<FuncOp>>
|
|
mlir::createLinalgTilingPass(ArrayRef<int64_t> tileSizes) {
|
|
return std::make_unique<LinalgTilingPass<loop::ForOp>>(tileSizes);
|
|
}
|
|
|
|
std::unique_ptr<OpPassBase<FuncOp>>
|
|
mlir::createLinalgTilingToParallelLoopsPass(ArrayRef<int64_t> tileSizes) {
|
|
return std::make_unique<LinalgTilingPass<loop::ParallelOp>>(tileSizes);
|
|
}
|
|
|
|
static PassRegistration<LinalgTilingPass<loop::ForOp>>
|
|
tiling_pass("linalg-tile", "Tile operations in the linalg dialect", [] {
|
|
auto pass = std::make_unique<LinalgTilingPass<loop::ForOp>>();
|
|
pass->tileSizes.assign(clTileSizes.begin(), clTileSizes.end());
|
|
return pass;
|
|
});
|
|
|
|
static PassRegistration<LinalgTilingPass<loop::ParallelOp>>
|
|
tiling_to_parallel_loops(
|
|
"linalg-tile-to-parallel-loops",
|
|
"Tile operations in the linalg dialect to parallel loops", [] {
|
|
auto pass = std::make_unique<LinalgTilingPass<loop::ParallelOp>>();
|
|
pass->tileSizes.assign(clTileSizes.begin(), clTileSizes.end());
|
|
return pass;
|
|
});
|