1851 lines
76 KiB
C++
1851 lines
76 KiB
C++
//===- LoopUtils.cpp ---- Misc utilities for loop transformation ----------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements miscellaneous loop transformation routines.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Transforms/LoopUtils.h"
|
|
|
|
#include "mlir/Analysis/AffineAnalysis.h"
|
|
#include "mlir/Analysis/LoopAnalysis.h"
|
|
#include "mlir/Analysis/SliceAnalysis.h"
|
|
#include "mlir/Analysis/Utils.h"
|
|
#include "mlir/Dialect/AffineOps/AffineOps.h"
|
|
#include "mlir/Dialect/LoopOps/LoopOps.h"
|
|
#include "mlir/IR/AffineMap.h"
|
|
#include "mlir/IR/BlockAndValueMapping.h"
|
|
#include "mlir/IR/Function.h"
|
|
#include "mlir/Transforms/RegionUtils.h"
|
|
#include "mlir/Transforms/Utils.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/MapVector.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
#define DEBUG_TYPE "LoopUtils"
|
|
|
|
using namespace mlir;
|
|
using llvm::SetVector;
|
|
using llvm::SmallMapVector;
|
|
|
|
/// Computes the cleanup loop lower bound of the loop being unrolled with
|
|
/// the specified unroll factor; this bound will also be upper bound of the main
|
|
/// part of the unrolled loop. Computes the bound as an AffineMap with its
|
|
/// operands or a null map when the trip count can't be expressed as an affine
|
|
/// expression.
|
|
void mlir::getCleanupLoopLowerBound(AffineForOp forOp, unsigned unrollFactor,
|
|
AffineMap *map,
|
|
SmallVectorImpl<Value> *operands,
|
|
OpBuilder &b) {
|
|
auto lbMap = forOp.getLowerBoundMap();
|
|
|
|
// Single result lower bound map only.
|
|
if (lbMap.getNumResults() != 1) {
|
|
*map = AffineMap();
|
|
return;
|
|
}
|
|
|
|
AffineMap tripCountMap;
|
|
SmallVector<Value, 4> tripCountOperands;
|
|
buildTripCountMapAndOperands(forOp, &tripCountMap, &tripCountOperands);
|
|
|
|
// Sometimes the trip count cannot be expressed as an affine expression.
|
|
if (!tripCountMap) {
|
|
*map = AffineMap();
|
|
return;
|
|
}
|
|
|
|
unsigned step = forOp.getStep();
|
|
auto lb = b.create<AffineApplyOp>(forOp.getLoc(), lbMap,
|
|
forOp.getLowerBoundOperands());
|
|
|
|
// For each upper bound expr, get the range.
|
|
// Eg: affine.for %i = lb to min (ub1, ub2),
|
|
// where tripCountExprs yield (tr1, tr2), we create affine.apply's:
|
|
// lb + tr1 - tr1 % ufactor, lb + tr2 - tr2 % ufactor; the results of all
|
|
// these affine.apply's make up the cleanup loop lower bound.
|
|
SmallVector<AffineExpr, 4> bumpExprs(tripCountMap.getNumResults());
|
|
SmallVector<Value, 4> bumpValues(tripCountMap.getNumResults());
|
|
for (unsigned i = 0, e = tripCountMap.getNumResults(); i < e; i++) {
|
|
auto tripCountExpr = tripCountMap.getResult(i);
|
|
bumpExprs[i] = (tripCountExpr - tripCountExpr % unrollFactor) * step;
|
|
auto bumpMap = AffineMap::get(tripCountMap.getNumDims(),
|
|
tripCountMap.getNumSymbols(), bumpExprs[i]);
|
|
bumpValues[i] =
|
|
b.create<AffineApplyOp>(forOp.getLoc(), bumpMap, tripCountOperands);
|
|
}
|
|
|
|
SmallVector<AffineExpr, 4> newUbExprs(tripCountMap.getNumResults());
|
|
for (unsigned i = 0, e = bumpExprs.size(); i < e; i++)
|
|
newUbExprs[i] = b.getAffineDimExpr(0) + b.getAffineDimExpr(i + 1);
|
|
|
|
operands->clear();
|
|
operands->push_back(lb);
|
|
operands->append(bumpValues.begin(), bumpValues.end());
|
|
*map = AffineMap::get(1 + tripCountMap.getNumResults(), 0, newUbExprs);
|
|
// Simplify the map + operands.
|
|
fullyComposeAffineMapAndOperands(map, operands);
|
|
*map = simplifyAffineMap(*map);
|
|
canonicalizeMapAndOperands(map, operands);
|
|
// Remove any affine.apply's that became dead from the simplification above.
|
|
for (auto v : bumpValues) {
|
|
if (v.use_empty())
|
|
v.getDefiningOp()->erase();
|
|
}
|
|
if (lb.use_empty())
|
|
lb.erase();
|
|
}
|
|
|
|
/// Promotes the loop body of a forOp to its containing block if the forOp
|
|
/// was known to have a single iteration.
|
|
// TODO(bondhugula): extend this for arbitrary affine bounds.
|
|
LogicalResult mlir::promoteIfSingleIteration(AffineForOp forOp) {
|
|
Optional<uint64_t> tripCount = getConstantTripCount(forOp);
|
|
if (!tripCount.hasValue() || tripCount.getValue() != 1)
|
|
return failure();
|
|
|
|
// TODO(mlir-team): there is no builder for a max.
|
|
if (forOp.getLowerBoundMap().getNumResults() != 1)
|
|
return failure();
|
|
|
|
// Replaces all IV uses to its single iteration value.
|
|
auto iv = forOp.getInductionVar();
|
|
Operation *op = forOp.getOperation();
|
|
if (!iv.use_empty()) {
|
|
if (forOp.hasConstantLowerBound()) {
|
|
OpBuilder topBuilder(op->getParentOfType<FuncOp>().getBody());
|
|
auto constOp = topBuilder.create<ConstantIndexOp>(
|
|
forOp.getLoc(), forOp.getConstantLowerBound());
|
|
iv.replaceAllUsesWith(constOp);
|
|
} else {
|
|
AffineBound lb = forOp.getLowerBound();
|
|
SmallVector<Value, 4> lbOperands(lb.operand_begin(), lb.operand_end());
|
|
OpBuilder builder(op->getBlock(), Block::iterator(op));
|
|
if (lb.getMap() == builder.getDimIdentityMap()) {
|
|
// No need of generating an affine.apply.
|
|
iv.replaceAllUsesWith(lbOperands[0]);
|
|
} else {
|
|
auto affineApplyOp = builder.create<AffineApplyOp>(
|
|
op->getLoc(), lb.getMap(), lbOperands);
|
|
iv.replaceAllUsesWith(affineApplyOp);
|
|
}
|
|
}
|
|
}
|
|
// Move the loop body operations, except for terminator, to the loop's
|
|
// containing block.
|
|
auto *block = op->getBlock();
|
|
forOp.getBody()->getOperations().back().erase();
|
|
block->getOperations().splice(Block::iterator(op),
|
|
forOp.getBody()->getOperations());
|
|
forOp.erase();
|
|
return success();
|
|
}
|
|
|
|
/// Promotes all single iteration for op's in the FuncOp, i.e., moves
|
|
/// their body into the containing Block.
|
|
void mlir::promoteSingleIterationLoops(FuncOp f) {
|
|
// Gathers all innermost loops through a post order pruned walk.
|
|
f.walk([](AffineForOp forOp) { promoteIfSingleIteration(forOp); });
|
|
}
|
|
|
|
/// Generates a 'affine.for' op with the specified lower and upper bounds
|
|
/// while generating the right IV remappings for the shifted operations. The
|
|
/// operation blocks that go into the loop are specified in instGroupQueue
|
|
/// starting from the specified offset, and in that order; the first element of
|
|
/// the pair specifies the shift applied to that group of operations; note
|
|
/// that the shift is multiplied by the loop step before being applied. Returns
|
|
/// nullptr if the generated loop simplifies to a single iteration one.
|
|
static AffineForOp
|
|
generateLoop(AffineMap lbMap, AffineMap ubMap,
|
|
const std::vector<std::pair<uint64_t, ArrayRef<Operation *>>>
|
|
&instGroupQueue,
|
|
unsigned offset, AffineForOp srcForInst, OpBuilder b) {
|
|
SmallVector<Value, 4> lbOperands(srcForInst.getLowerBoundOperands());
|
|
SmallVector<Value, 4> ubOperands(srcForInst.getUpperBoundOperands());
|
|
|
|
assert(lbMap.getNumInputs() == lbOperands.size());
|
|
assert(ubMap.getNumInputs() == ubOperands.size());
|
|
|
|
auto loopChunk =
|
|
b.create<AffineForOp>(srcForInst.getLoc(), lbOperands, lbMap, ubOperands,
|
|
ubMap, srcForInst.getStep());
|
|
auto loopChunkIV = loopChunk.getInductionVar();
|
|
auto srcIV = srcForInst.getInductionVar();
|
|
|
|
BlockAndValueMapping operandMap;
|
|
|
|
OpBuilder bodyBuilder = loopChunk.getBodyBuilder();
|
|
for (auto it = instGroupQueue.begin() + offset, e = instGroupQueue.end();
|
|
it != e; ++it) {
|
|
uint64_t shift = it->first;
|
|
auto insts = it->second;
|
|
// All 'same shift' operations get added with their operands being
|
|
// remapped to results of cloned operations, and their IV used remapped.
|
|
// Generate the remapping if the shift is not zero: remappedIV = newIV -
|
|
// shift.
|
|
if (!srcIV.use_empty() && shift != 0) {
|
|
auto ivRemap = bodyBuilder.create<AffineApplyOp>(
|
|
srcForInst.getLoc(),
|
|
bodyBuilder.getSingleDimShiftAffineMap(
|
|
-static_cast<int64_t>(srcForInst.getStep() * shift)),
|
|
loopChunkIV);
|
|
operandMap.map(srcIV, ivRemap);
|
|
} else {
|
|
operandMap.map(srcIV, loopChunkIV);
|
|
}
|
|
for (auto *op : insts) {
|
|
if (!isa<AffineTerminatorOp>(op))
|
|
bodyBuilder.clone(*op, operandMap);
|
|
}
|
|
};
|
|
if (succeeded(promoteIfSingleIteration(loopChunk)))
|
|
return AffineForOp();
|
|
return loopChunk;
|
|
}
|
|
|
|
/// Skew the operations in the body of a 'affine.for' operation with the
|
|
/// specified operation-wise shifts. The shifts are with respect to the
|
|
/// original execution order, and are multiplied by the loop 'step' before being
|
|
/// applied. A shift of zero for each operation will lead to no change.
|
|
// The skewing of operations with respect to one another can be used for
|
|
// example to allow overlap of asynchronous operations (such as DMA
|
|
// communication) with computation, or just relative shifting of operations
|
|
// for better register reuse, locality or parallelism. As such, the shifts are
|
|
// typically expected to be at most of the order of the number of operations.
|
|
// This method should not be used as a substitute for loop distribution/fission.
|
|
// This method uses an algorithm// in time linear in the number of operations
|
|
// in the body of the for loop - (using the 'sweep line' paradigm). This method
|
|
// asserts preservation of SSA dominance. A check for that as well as that for
|
|
// memory-based dependence preservation check rests with the users of this
|
|
// method.
|
|
LogicalResult mlir::instBodySkew(AffineForOp forOp, ArrayRef<uint64_t> shifts,
|
|
bool unrollPrologueEpilogue) {
|
|
if (forOp.getBody()->begin() == std::prev(forOp.getBody()->end()))
|
|
return success();
|
|
|
|
// If the trip counts aren't constant, we would need versioning and
|
|
// conditional guards (or context information to prevent such versioning). The
|
|
// better way to pipeline for such loops is to first tile them and extract
|
|
// constant trip count "full tiles" before applying this.
|
|
auto mayBeConstTripCount = getConstantTripCount(forOp);
|
|
if (!mayBeConstTripCount.hasValue()) {
|
|
LLVM_DEBUG(forOp.emitRemark("non-constant trip count loop not handled"));
|
|
return success();
|
|
}
|
|
uint64_t tripCount = mayBeConstTripCount.getValue();
|
|
|
|
assert(isInstwiseShiftValid(forOp, shifts) &&
|
|
"shifts will lead to an invalid transformation\n");
|
|
|
|
int64_t step = forOp.getStep();
|
|
|
|
unsigned numChildInsts = forOp.getBody()->getOperations().size();
|
|
|
|
// Do a linear time (counting) sort for the shifts.
|
|
uint64_t maxShift = 0;
|
|
for (unsigned i = 0; i < numChildInsts; i++) {
|
|
maxShift = std::max(maxShift, shifts[i]);
|
|
}
|
|
// Such large shifts are not the typical use case.
|
|
if (maxShift >= numChildInsts) {
|
|
forOp.emitWarning("not shifting because shifts are unrealistically large");
|
|
return success();
|
|
}
|
|
|
|
// An array of operation groups sorted by shift amount; each group has all
|
|
// operations with the same shift in the order in which they appear in the
|
|
// body of the 'affine.for' op.
|
|
std::vector<std::vector<Operation *>> sortedInstGroups(maxShift + 1);
|
|
unsigned pos = 0;
|
|
for (auto &op : *forOp.getBody()) {
|
|
auto shift = shifts[pos++];
|
|
sortedInstGroups[shift].push_back(&op);
|
|
}
|
|
|
|
// Unless the shifts have a specific pattern (which actually would be the
|
|
// common use case), prologue and epilogue are not meaningfully defined.
|
|
// Nevertheless, if 'unrollPrologueEpilogue' is set, we will treat the first
|
|
// loop generated as the prologue and the last as epilogue and unroll these
|
|
// fully.
|
|
AffineForOp prologue;
|
|
AffineForOp epilogue;
|
|
|
|
// Do a sweep over the sorted shifts while storing open groups in a
|
|
// vector, and generating loop portions as necessary during the sweep. A block
|
|
// of operations is paired with its shift.
|
|
std::vector<std::pair<uint64_t, ArrayRef<Operation *>>> instGroupQueue;
|
|
|
|
auto origLbMap = forOp.getLowerBoundMap();
|
|
uint64_t lbShift = 0;
|
|
OpBuilder b(forOp.getOperation());
|
|
for (uint64_t d = 0, e = sortedInstGroups.size(); d < e; ++d) {
|
|
// If nothing is shifted by d, continue.
|
|
if (sortedInstGroups[d].empty())
|
|
continue;
|
|
if (!instGroupQueue.empty()) {
|
|
assert(d >= 1 &&
|
|
"Queue expected to be empty when the first block is found");
|
|
// The interval for which the loop needs to be generated here is:
|
|
// [lbShift, min(lbShift + tripCount, d)) and the body of the
|
|
// loop needs to have all operations in instQueue in that order.
|
|
AffineForOp res;
|
|
if (lbShift + tripCount * step < d * step) {
|
|
res = generateLoop(
|
|
b.getShiftedAffineMap(origLbMap, lbShift),
|
|
b.getShiftedAffineMap(origLbMap, lbShift + tripCount * step),
|
|
instGroupQueue, 0, forOp, b);
|
|
// Entire loop for the queued op groups generated, empty it.
|
|
instGroupQueue.clear();
|
|
lbShift += tripCount * step;
|
|
} else {
|
|
res = generateLoop(b.getShiftedAffineMap(origLbMap, lbShift),
|
|
b.getShiftedAffineMap(origLbMap, d), instGroupQueue,
|
|
0, forOp, b);
|
|
lbShift = d * step;
|
|
}
|
|
if (!prologue && res)
|
|
prologue = res;
|
|
epilogue = res;
|
|
} else {
|
|
// Start of first interval.
|
|
lbShift = d * step;
|
|
}
|
|
// Augment the list of operations that get into the current open interval.
|
|
instGroupQueue.push_back({d, sortedInstGroups[d]});
|
|
}
|
|
|
|
// Those operations groups left in the queue now need to be processed (FIFO)
|
|
// and their loops completed.
|
|
for (unsigned i = 0, e = instGroupQueue.size(); i < e; ++i) {
|
|
uint64_t ubShift = (instGroupQueue[i].first + tripCount) * step;
|
|
epilogue = generateLoop(b.getShiftedAffineMap(origLbMap, lbShift),
|
|
b.getShiftedAffineMap(origLbMap, ubShift),
|
|
instGroupQueue, i, forOp, b);
|
|
lbShift = ubShift;
|
|
if (!prologue)
|
|
prologue = epilogue;
|
|
}
|
|
|
|
// Erase the original for op.
|
|
forOp.erase();
|
|
|
|
if (unrollPrologueEpilogue && prologue)
|
|
loopUnrollFull(prologue);
|
|
if (unrollPrologueEpilogue && !epilogue &&
|
|
epilogue.getOperation() != prologue.getOperation())
|
|
loopUnrollFull(epilogue);
|
|
|
|
return success();
|
|
}
|
|
|
|
// Collect perfectly nested loops starting from `rootForOps`. Loops are
|
|
// perfectly nested if each loop is the first and only non-terminator operation
|
|
// in the parent loop. Collect at most `maxLoops` loops and append them to
|
|
// `forOps`.
|
|
template <typename T>
|
|
static void getPerfectlyNestedLoopsImpl(
|
|
SmallVectorImpl<T> &forOps, T rootForOp,
|
|
unsigned maxLoops = std::numeric_limits<unsigned>::max()) {
|
|
for (unsigned i = 0; i < maxLoops; ++i) {
|
|
forOps.push_back(rootForOp);
|
|
Block &body = rootForOp.region().front();
|
|
if (body.begin() != std::prev(body.end(), 2))
|
|
return;
|
|
|
|
rootForOp = dyn_cast<T>(&body.front());
|
|
if (!rootForOp)
|
|
return;
|
|
}
|
|
}
|
|
|
|
/// Get perfectly nested sequence of loops starting at root of loop nest
|
|
/// (the first op being another AffineFor, and the second op - a terminator).
|
|
/// A loop is perfectly nested iff: the first op in the loop's body is another
|
|
/// AffineForOp, and the second op is a terminator).
|
|
void mlir::getPerfectlyNestedLoops(SmallVectorImpl<AffineForOp> &nestedLoops,
|
|
AffineForOp root) {
|
|
getPerfectlyNestedLoopsImpl(nestedLoops, root);
|
|
}
|
|
|
|
void mlir::getPerfectlyNestedLoops(SmallVectorImpl<loop::ForOp> &nestedLoops,
|
|
loop::ForOp root) {
|
|
getPerfectlyNestedLoopsImpl(nestedLoops, root);
|
|
}
|
|
|
|
/// Unrolls this loop completely.
|
|
LogicalResult mlir::loopUnrollFull(AffineForOp forOp) {
|
|
Optional<uint64_t> mayBeConstantTripCount = getConstantTripCount(forOp);
|
|
if (mayBeConstantTripCount.hasValue()) {
|
|
uint64_t tripCount = mayBeConstantTripCount.getValue();
|
|
if (tripCount == 1) {
|
|
return promoteIfSingleIteration(forOp);
|
|
}
|
|
return loopUnrollByFactor(forOp, tripCount);
|
|
}
|
|
return failure();
|
|
}
|
|
|
|
/// Unrolls and jams this loop by the specified factor or by the trip count (if
|
|
/// constant) whichever is lower.
|
|
LogicalResult mlir::loopUnrollUpToFactor(AffineForOp forOp,
|
|
uint64_t unrollFactor) {
|
|
Optional<uint64_t> mayBeConstantTripCount = getConstantTripCount(forOp);
|
|
|
|
if (mayBeConstantTripCount.hasValue() &&
|
|
mayBeConstantTripCount.getValue() < unrollFactor)
|
|
return loopUnrollByFactor(forOp, mayBeConstantTripCount.getValue());
|
|
return loopUnrollByFactor(forOp, unrollFactor);
|
|
}
|
|
|
|
/// Unrolls this loop by the specified factor. Returns success if the loop
|
|
/// is successfully unrolled.
|
|
LogicalResult mlir::loopUnrollByFactor(AffineForOp forOp,
|
|
uint64_t unrollFactor) {
|
|
assert(unrollFactor >= 1 && "unroll factor should be >= 1");
|
|
|
|
if (unrollFactor == 1)
|
|
return promoteIfSingleIteration(forOp);
|
|
|
|
if (forOp.getBody()->empty() ||
|
|
forOp.getBody()->begin() == std::prev(forOp.getBody()->end()))
|
|
return failure();
|
|
|
|
// Loops where the lower bound is a max expression isn't supported for
|
|
// unrolling since the trip count can be expressed as an affine function when
|
|
// both the lower bound and the upper bound are multi-result maps. However,
|
|
// one meaningful way to do such unrolling would be to specialize the loop for
|
|
// the 'hotspot' case and unroll that hotspot.
|
|
if (forOp.getLowerBoundMap().getNumResults() != 1)
|
|
return failure();
|
|
|
|
// If the trip count is lower than the unroll factor, no unrolled body.
|
|
// TODO(bondhugula): option to specify cleanup loop unrolling.
|
|
Optional<uint64_t> mayBeConstantTripCount = getConstantTripCount(forOp);
|
|
if (mayBeConstantTripCount.hasValue() &&
|
|
mayBeConstantTripCount.getValue() < unrollFactor)
|
|
return failure();
|
|
|
|
// Generate the cleanup loop if trip count isn't a multiple of unrollFactor.
|
|
Operation *op = forOp.getOperation();
|
|
if (getLargestDivisorOfTripCount(forOp) % unrollFactor != 0) {
|
|
OpBuilder builder(op->getBlock(), ++Block::iterator(op));
|
|
auto cleanupForInst = cast<AffineForOp>(builder.clone(*op));
|
|
AffineMap cleanupMap;
|
|
SmallVector<Value, 4> cleanupOperands;
|
|
getCleanupLoopLowerBound(forOp, unrollFactor, &cleanupMap, &cleanupOperands,
|
|
builder);
|
|
assert(cleanupMap &&
|
|
"cleanup loop lower bound map for single result lower bound maps "
|
|
"can always be determined");
|
|
cleanupForInst.setLowerBound(cleanupOperands, cleanupMap);
|
|
// Promote the loop body up if this has turned into a single iteration loop.
|
|
promoteIfSingleIteration(cleanupForInst);
|
|
|
|
// Adjust upper bound of the original loop; this is the same as the lower
|
|
// bound of the cleanup loop.
|
|
forOp.setUpperBound(cleanupOperands, cleanupMap);
|
|
}
|
|
|
|
// Scale the step of loop being unrolled by unroll factor.
|
|
int64_t step = forOp.getStep();
|
|
forOp.setStep(step * unrollFactor);
|
|
|
|
// Builder to insert unrolled bodies just before the terminator of the body of
|
|
// 'forOp'.
|
|
OpBuilder builder = forOp.getBodyBuilder();
|
|
|
|
// Keep a pointer to the last non-terminator operation in the original block
|
|
// so that we know what to clone (since we are doing this in-place).
|
|
Block::iterator srcBlockEnd = std::prev(forOp.getBody()->end(), 2);
|
|
|
|
// Unroll the contents of 'forOp' (append unrollFactor-1 additional copies).
|
|
auto forOpIV = forOp.getInductionVar();
|
|
for (unsigned i = 1; i < unrollFactor; i++) {
|
|
BlockAndValueMapping operandMap;
|
|
|
|
// If the induction variable is used, create a remapping to the value for
|
|
// this unrolled instance.
|
|
if (!forOpIV.use_empty()) {
|
|
// iv' = iv + 1/2/3...unrollFactor-1;
|
|
auto d0 = builder.getAffineDimExpr(0);
|
|
auto bumpMap = AffineMap::get(1, 0, {d0 + i * step});
|
|
auto ivUnroll =
|
|
builder.create<AffineApplyOp>(forOp.getLoc(), bumpMap, forOpIV);
|
|
operandMap.map(forOpIV, ivUnroll);
|
|
}
|
|
|
|
// Clone the original body of 'forOp'.
|
|
for (auto it = forOp.getBody()->begin(); it != std::next(srcBlockEnd);
|
|
it++) {
|
|
builder.clone(*it, operandMap);
|
|
}
|
|
}
|
|
|
|
// Promote the loop body up if this has turned into a single iteration loop.
|
|
promoteIfSingleIteration(forOp);
|
|
return success();
|
|
}
|
|
|
|
/// Performs loop interchange on 'forOpA' and 'forOpB', where 'forOpB' is
|
|
/// nested within 'forOpA' as the only non-terminator operation in its block.
|
|
void mlir::interchangeLoops(AffineForOp forOpA, AffineForOp forOpB) {
|
|
auto *forOpAInst = forOpA.getOperation();
|
|
|
|
assert(&*forOpA.getBody()->begin() == forOpB.getOperation());
|
|
auto &forOpABody = forOpA.getBody()->getOperations();
|
|
auto &forOpBBody = forOpB.getBody()->getOperations();
|
|
|
|
// 1) Splice forOpA's non-terminator operations (which is just forOpB) just
|
|
// before forOpA (in ForOpA's parent's block) this should leave 'forOpA's
|
|
// body containing only the terminator.
|
|
forOpAInst->getBlock()->getOperations().splice(Block::iterator(forOpAInst),
|
|
forOpABody, forOpABody.begin(),
|
|
std::prev(forOpABody.end()));
|
|
// 2) Splice forOpB's non-terminator operations into the beginning of forOpA's
|
|
// body (this leaves forOpB's body containing only the terminator).
|
|
forOpABody.splice(forOpABody.begin(), forOpBBody, forOpBBody.begin(),
|
|
std::prev(forOpBBody.end()));
|
|
// 3) Splice forOpA into the beginning of forOpB's body.
|
|
forOpBBody.splice(forOpBBody.begin(), forOpAInst->getBlock()->getOperations(),
|
|
Block::iterator(forOpAInst));
|
|
}
|
|
|
|
// Checks each dependence component against the permutation to see if the
|
|
// desired loop interchange would violate dependences by making the
|
|
// dependence component lexicographically negative.
|
|
static bool checkLoopInterchangeDependences(
|
|
const std::vector<SmallVector<DependenceComponent, 2>> &depCompsVec,
|
|
ArrayRef<AffineForOp> loops, ArrayRef<unsigned> loopPermMap) {
|
|
// Invert permutation map.
|
|
unsigned maxLoopDepth = loops.size();
|
|
SmallVector<unsigned, 4> loopPermMapInv;
|
|
loopPermMapInv.resize(maxLoopDepth);
|
|
for (unsigned i = 0; i < maxLoopDepth; ++i)
|
|
loopPermMapInv[loopPermMap[i]] = i;
|
|
|
|
// Check each dependence component against the permutation to see if the
|
|
// desired loop interchange permutation would make the dependence vectors
|
|
// lexicographically negative.
|
|
// Example 1: [-1, 1][0, 0]
|
|
// Example 2: [0, 0][-1, 1]
|
|
for (unsigned i = 0, e = depCompsVec.size(); i < e; ++i) {
|
|
const SmallVector<DependenceComponent, 2> &depComps = depCompsVec[i];
|
|
assert(depComps.size() >= maxLoopDepth);
|
|
// Check if the first non-zero dependence component is positive.
|
|
// This iterates through loops in the desired order.
|
|
for (unsigned j = 0; j < maxLoopDepth; ++j) {
|
|
unsigned permIndex = loopPermMapInv[j];
|
|
assert(depComps[permIndex].lb.hasValue());
|
|
int64_t depCompLb = depComps[permIndex].lb.getValue();
|
|
if (depCompLb > 0)
|
|
break;
|
|
if (depCompLb < 0)
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Checks if the loop interchange permutation 'loopPermMap' of the perfectly
|
|
/// nested sequence of loops in 'loops' would violate dependences.
|
|
bool mlir::isValidLoopInterchangePermutation(ArrayRef<AffineForOp> loops,
|
|
ArrayRef<unsigned> loopPermMap) {
|
|
// Gather dependence components for dependences between all ops in loop nest
|
|
// rooted at 'loops[0]', at loop depths in range [1, maxLoopDepth].
|
|
assert(loopPermMap.size() == loops.size());
|
|
unsigned maxLoopDepth = loops.size();
|
|
std::vector<SmallVector<DependenceComponent, 2>> depCompsVec;
|
|
getDependenceComponents(loops[0], maxLoopDepth, &depCompsVec);
|
|
return checkLoopInterchangeDependences(depCompsVec, loops, loopPermMap);
|
|
}
|
|
|
|
/// Performs a sequence of loop interchanges of loops in perfectly nested
|
|
/// sequence of loops in 'loops', as specified by permutation in 'loopPermMap'.
|
|
unsigned mlir::interchangeLoops(ArrayRef<AffineForOp> loops,
|
|
ArrayRef<unsigned> loopPermMap) {
|
|
Optional<unsigned> loopNestRootIndex;
|
|
for (int i = loops.size() - 1; i >= 0; --i) {
|
|
int permIndex = static_cast<int>(loopPermMap[i]);
|
|
// Store the index of the for loop which will be the new loop nest root.
|
|
if (permIndex == 0)
|
|
loopNestRootIndex = i;
|
|
if (permIndex > i) {
|
|
// Sink loop 'i' by 'permIndex - i' levels deeper into the loop nest.
|
|
sinkLoop(loops[i], permIndex - i);
|
|
}
|
|
}
|
|
assert(loopNestRootIndex.hasValue());
|
|
return loopNestRootIndex.getValue();
|
|
}
|
|
|
|
// Sinks all sequential loops to the innermost levels (while preserving
|
|
// relative order among them) and moves all parallel loops to the
|
|
// outermost (while again preserving relative order among them).
|
|
AffineForOp mlir::sinkSequentialLoops(AffineForOp forOp) {
|
|
SmallVector<AffineForOp, 4> loops;
|
|
getPerfectlyNestedLoops(loops, forOp);
|
|
if (loops.size() < 2)
|
|
return forOp;
|
|
|
|
// Gather dependence components for dependences between all ops in loop nest
|
|
// rooted at 'loops[0]', at loop depths in range [1, maxLoopDepth].
|
|
unsigned maxLoopDepth = loops.size();
|
|
std::vector<SmallVector<DependenceComponent, 2>> depCompsVec;
|
|
getDependenceComponents(loops[0], maxLoopDepth, &depCompsVec);
|
|
|
|
// Mark loops as either parallel or sequential.
|
|
SmallVector<bool, 8> isParallelLoop(maxLoopDepth, true);
|
|
for (unsigned i = 0, e = depCompsVec.size(); i < e; ++i) {
|
|
SmallVector<DependenceComponent, 2> &depComps = depCompsVec[i];
|
|
assert(depComps.size() >= maxLoopDepth);
|
|
for (unsigned j = 0; j < maxLoopDepth; ++j) {
|
|
DependenceComponent &depComp = depComps[j];
|
|
assert(depComp.lb.hasValue() && depComp.ub.hasValue());
|
|
if (depComp.lb.getValue() != 0 || depComp.ub.getValue() != 0)
|
|
isParallelLoop[j] = false;
|
|
}
|
|
}
|
|
|
|
// Count the number of parallel loops.
|
|
unsigned numParallelLoops = 0;
|
|
for (unsigned i = 0, e = isParallelLoop.size(); i < e; ++i)
|
|
if (isParallelLoop[i])
|
|
++numParallelLoops;
|
|
|
|
// Compute permutation of loops that sinks sequential loops (and thus raises
|
|
// parallel loops) while preserving relative order.
|
|
SmallVector<unsigned, 4> loopPermMap(maxLoopDepth);
|
|
unsigned nextSequentialLoop = numParallelLoops;
|
|
unsigned nextParallelLoop = 0;
|
|
for (unsigned i = 0; i < maxLoopDepth; ++i) {
|
|
if (isParallelLoop[i]) {
|
|
loopPermMap[i] = nextParallelLoop++;
|
|
} else {
|
|
loopPermMap[i] = nextSequentialLoop++;
|
|
}
|
|
}
|
|
|
|
// Check if permutation 'loopPermMap' would violate dependences.
|
|
if (!checkLoopInterchangeDependences(depCompsVec, loops, loopPermMap))
|
|
return forOp;
|
|
// Perform loop interchange according to permutation 'loopPermMap'.
|
|
unsigned loopNestRootIndex = interchangeLoops(loops, loopPermMap);
|
|
return loops[loopNestRootIndex];
|
|
}
|
|
|
|
/// Performs a series of loop interchanges to sink 'forOp' 'loopDepth' levels
|
|
/// deeper in the loop nest.
|
|
void mlir::sinkLoop(AffineForOp forOp, unsigned loopDepth) {
|
|
for (unsigned i = 0; i < loopDepth; ++i) {
|
|
AffineForOp nextForOp = cast<AffineForOp>(forOp.getBody()->front());
|
|
interchangeLoops(forOp, nextForOp);
|
|
}
|
|
}
|
|
|
|
// Factors out common behavior to add a new `iv` (resp. `iv` + `offset`) to the
|
|
// lower (resp. upper) loop bound. When called for both the lower and upper
|
|
// bounds, the resulting IR resembles:
|
|
//
|
|
// ```mlir
|
|
// affine.for %i = max (`iv, ...) to min (`iv` + `offset`) {
|
|
// ...
|
|
// }
|
|
// ```
|
|
static void augmentMapAndBounds(OpBuilder &b, Value iv, AffineMap *map,
|
|
SmallVector<Value, 4> *operands,
|
|
int64_t offset = 0) {
|
|
auto bounds = llvm::to_vector<4>(map->getResults());
|
|
bounds.push_back(b.getAffineDimExpr(map->getNumDims()) + offset);
|
|
operands->insert(operands->begin() + map->getNumDims(), iv);
|
|
*map = AffineMap::get(map->getNumDims() + 1, map->getNumSymbols(), bounds);
|
|
canonicalizeMapAndOperands(map, operands);
|
|
}
|
|
|
|
// Stripmines `forOp` by `factor` and sinks it under each of the `targets`.
|
|
// Stripmine-sink is a primitive building block for generalized tiling of
|
|
// imperfectly nested loops.
|
|
// This transformation is purely mechanical and does not check legality,
|
|
// profitability or even structural correctness. It is the user's
|
|
// responsibility to specify `targets` that are dominated by `forOp`.
|
|
// Returns the new AffineForOps, one per `targets`, nested immediately under
|
|
// each of the `targets`.
|
|
static SmallVector<AffineForOp, 8>
|
|
stripmineSink(AffineForOp forOp, uint64_t factor,
|
|
ArrayRef<AffineForOp> targets) {
|
|
auto originalStep = forOp.getStep();
|
|
auto scaledStep = originalStep * factor;
|
|
forOp.setStep(scaledStep);
|
|
|
|
auto *op = forOp.getOperation();
|
|
OpBuilder b(op->getBlock(), ++Block::iterator(op));
|
|
|
|
// Lower-bound map creation.
|
|
auto lbMap = forOp.getLowerBoundMap();
|
|
SmallVector<Value, 4> lbOperands(forOp.getLowerBoundOperands());
|
|
augmentMapAndBounds(b, forOp.getInductionVar(), &lbMap, &lbOperands);
|
|
|
|
// Upper-bound map creation.
|
|
auto ubMap = forOp.getUpperBoundMap();
|
|
SmallVector<Value, 4> ubOperands(forOp.getUpperBoundOperands());
|
|
augmentMapAndBounds(b, forOp.getInductionVar(), &ubMap, &ubOperands,
|
|
/*offset=*/scaledStep);
|
|
|
|
auto iv = forOp.getInductionVar();
|
|
SmallVector<AffineForOp, 8> innerLoops;
|
|
for (auto t : targets) {
|
|
// Insert newForOp before the terminator of `t`.
|
|
OpBuilder b = t.getBodyBuilder();
|
|
auto newForOp = b.create<AffineForOp>(t.getLoc(), lbOperands, lbMap,
|
|
ubOperands, ubMap, originalStep);
|
|
auto begin = t.getBody()->begin();
|
|
// Skip terminator and `newForOp` which is just before the terminator.
|
|
auto nOps = t.getBody()->getOperations().size() - 2;
|
|
newForOp.getBody()->getOperations().splice(
|
|
newForOp.getBody()->getOperations().begin(),
|
|
t.getBody()->getOperations(), begin, std::next(begin, nOps));
|
|
replaceAllUsesInRegionWith(iv, newForOp.getInductionVar(),
|
|
newForOp.region());
|
|
innerLoops.push_back(newForOp);
|
|
}
|
|
|
|
return innerLoops;
|
|
}
|
|
|
|
static Loops stripmineSink(loop::ForOp forOp, Value factor,
|
|
ArrayRef<loop::ForOp> targets) {
|
|
auto originalStep = forOp.step();
|
|
auto iv = forOp.getInductionVar();
|
|
|
|
OpBuilder b(forOp);
|
|
forOp.setStep(b.create<MulIOp>(forOp.getLoc(), originalStep, factor));
|
|
|
|
Loops innerLoops;
|
|
for (auto t : targets) {
|
|
// Save information for splicing ops out of t when done
|
|
auto begin = t.getBody()->begin();
|
|
auto nOps = t.getBody()->getOperations().size();
|
|
|
|
// Insert newForOp before the terminator of `t`.
|
|
OpBuilder b(t.getBodyBuilder());
|
|
Value stepped = b.create<AddIOp>(t.getLoc(), iv, forOp.step());
|
|
Value less = b.create<CmpIOp>(t.getLoc(), CmpIPredicate::slt,
|
|
forOp.upperBound(), stepped);
|
|
Value ub =
|
|
b.create<SelectOp>(t.getLoc(), less, forOp.upperBound(), stepped);
|
|
|
|
// Splice [begin, begin + nOps - 1) into `newForOp` and replace uses.
|
|
auto newForOp = b.create<loop::ForOp>(t.getLoc(), iv, ub, originalStep);
|
|
newForOp.getBody()->getOperations().splice(
|
|
newForOp.getBody()->getOperations().begin(),
|
|
t.getBody()->getOperations(), begin, std::next(begin, nOps - 1));
|
|
replaceAllUsesInRegionWith(iv, newForOp.getInductionVar(),
|
|
newForOp.region());
|
|
|
|
innerLoops.push_back(newForOp);
|
|
}
|
|
|
|
return innerLoops;
|
|
}
|
|
|
|
// Stripmines a `forOp` by `factor` and sinks it under a single `target`.
|
|
// Returns the new AffineForOps, nested immediately under `target`.
|
|
template <typename ForType, typename SizeType>
|
|
static ForType stripmineSink(ForType forOp, SizeType factor, ForType target) {
|
|
// TODO(ntv): Use cheap structural assertions that targets are nested under
|
|
// forOp and that targets are not nested under each other when DominanceInfo
|
|
// exposes the capability. It seems overkill to construct a whole function
|
|
// dominance tree at this point.
|
|
auto res = stripmineSink(forOp, factor, ArrayRef<ForType>{target});
|
|
assert(res.size() == 1 && "Expected 1 inner forOp");
|
|
return res[0];
|
|
}
|
|
|
|
template <typename ForType, typename SizeType>
|
|
static SmallVector<SmallVector<ForType, 8>, 8>
|
|
tileImpl(ArrayRef<ForType> forOps, ArrayRef<SizeType> sizes,
|
|
ArrayRef<ForType> targets) {
|
|
SmallVector<SmallVector<ForType, 8>, 8> res;
|
|
SmallVector<ForType, 8> currentTargets(targets.begin(), targets.end());
|
|
for (auto it : llvm::zip(forOps, sizes)) {
|
|
auto step = stripmineSink(std::get<0>(it), std::get<1>(it), currentTargets);
|
|
res.push_back(step);
|
|
currentTargets = step;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
SmallVector<SmallVector<AffineForOp, 8>, 8>
|
|
mlir::tile(ArrayRef<AffineForOp> forOps, ArrayRef<uint64_t> sizes,
|
|
ArrayRef<AffineForOp> targets) {
|
|
return tileImpl(forOps, sizes, targets);
|
|
}
|
|
|
|
SmallVector<Loops, 8> mlir::tile(ArrayRef<loop::ForOp> forOps,
|
|
ArrayRef<Value> sizes,
|
|
ArrayRef<loop::ForOp> targets) {
|
|
return tileImpl(forOps, sizes, targets);
|
|
}
|
|
|
|
template <typename ForType, typename SizeType>
|
|
static SmallVector<ForType, 8>
|
|
tileImpl(ArrayRef<ForType> forOps, ArrayRef<SizeType> sizes, ForType target) {
|
|
SmallVector<ForType, 8> res;
|
|
for (auto loops : tile(forOps, sizes, ArrayRef<ForType>{target})) {
|
|
assert(loops.size() == 1);
|
|
res.push_back(loops[0]);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
SmallVector<AffineForOp, 8> mlir::tile(ArrayRef<AffineForOp> forOps,
|
|
ArrayRef<uint64_t> sizes,
|
|
AffineForOp target) {
|
|
return tileImpl(forOps, sizes, target);
|
|
}
|
|
|
|
Loops mlir::tile(ArrayRef<loop::ForOp> forOps, ArrayRef<Value> sizes,
|
|
loop::ForOp target) {
|
|
return tileImpl(forOps, sizes, target);
|
|
}
|
|
|
|
Loops mlir::tilePerfectlyNested(loop::ForOp rootForOp, ArrayRef<Value> sizes) {
|
|
// Collect perfectly nested loops. If more size values provided than nested
|
|
// loops available, truncate `sizes`.
|
|
SmallVector<loop::ForOp, 4> forOps;
|
|
forOps.reserve(sizes.size());
|
|
getPerfectlyNestedLoopsImpl(forOps, rootForOp, sizes.size());
|
|
if (forOps.size() < sizes.size())
|
|
sizes = sizes.take_front(forOps.size());
|
|
|
|
return ::tile(forOps, sizes, forOps.back());
|
|
}
|
|
|
|
// Build the IR that performs ceil division of a positive value by a constant:
|
|
// ceildiv(a, B) = divis(a + (B-1), B)
|
|
// where divis is rounding-to-zero division.
|
|
static Value ceilDivPositive(OpBuilder &builder, Location loc, Value dividend,
|
|
int64_t divisor) {
|
|
assert(divisor > 0 && "expected positive divisor");
|
|
assert(dividend.getType().isIndex() && "expected index-typed value");
|
|
|
|
Value divisorMinusOneCst = builder.create<ConstantIndexOp>(loc, divisor - 1);
|
|
Value divisorCst = builder.create<ConstantIndexOp>(loc, divisor);
|
|
Value sum = builder.create<AddIOp>(loc, dividend, divisorMinusOneCst);
|
|
return builder.create<SignedDivIOp>(loc, sum, divisorCst);
|
|
}
|
|
|
|
// Build the IR that performs ceil division of a positive value by another
|
|
// positive value:
|
|
// ceildiv(a, b) = divis(a + (b - 1), b)
|
|
// where divis is rounding-to-zero division.
|
|
static Value ceilDivPositive(OpBuilder &builder, Location loc, Value dividend,
|
|
Value divisor) {
|
|
assert(dividend.getType().isIndex() && "expected index-typed value");
|
|
|
|
Value cstOne = builder.create<ConstantIndexOp>(loc, 1);
|
|
Value divisorMinusOne = builder.create<SubIOp>(loc, divisor, cstOne);
|
|
Value sum = builder.create<AddIOp>(loc, dividend, divisorMinusOne);
|
|
return builder.create<SignedDivIOp>(loc, sum, divisor);
|
|
}
|
|
|
|
// Hoist the ops within `outer` that appear before `inner`.
|
|
// Such ops include the ops that have been introduced by parametric tiling.
|
|
// Ops that come from triangular loops (i.e. that belong to the program slice
|
|
// rooted at `outer`) and ops that have side effects cannot be hoisted.
|
|
// Return failure when any op fails to hoist.
|
|
static LogicalResult hoistOpsBetween(loop::ForOp outer, loop::ForOp inner) {
|
|
SetVector<Operation *> forwardSlice;
|
|
getForwardSlice(outer.getOperation(), &forwardSlice, [&inner](Operation *op) {
|
|
return op != inner.getOperation();
|
|
});
|
|
LogicalResult status = success();
|
|
SmallVector<Operation *, 8> toHoist;
|
|
for (auto &op : outer.getBody()->without_terminator()) {
|
|
// Stop when encountering the inner loop.
|
|
if (&op == inner.getOperation())
|
|
break;
|
|
// Skip over non-hoistable ops.
|
|
if (forwardSlice.count(&op) > 0) {
|
|
status = failure();
|
|
continue;
|
|
}
|
|
// Skip loop::ForOp, these are not considered a failure.
|
|
if (op.getNumRegions() > 0)
|
|
continue;
|
|
// Skip other ops with regions.
|
|
if (op.getNumRegions() > 0) {
|
|
status = failure();
|
|
continue;
|
|
}
|
|
// Skip if op has side effects.
|
|
// TODO(ntv): loads to immutable memory regions are ok.
|
|
if (!MemoryEffectOpInterface::hasNoEffect(&op)) {
|
|
status = failure();
|
|
continue;
|
|
}
|
|
toHoist.push_back(&op);
|
|
}
|
|
auto *outerForOp = outer.getOperation();
|
|
for (auto *op : toHoist)
|
|
op->moveBefore(outerForOp);
|
|
return status;
|
|
}
|
|
|
|
// Traverse the interTile and intraTile loops and try to hoist ops such that
|
|
// bands of perfectly nested loops are isolated.
|
|
// Return failure if either perfect interTile or perfect intraTile bands cannot
|
|
// be formed.
|
|
static LogicalResult tryIsolateBands(const TileLoops &tileLoops) {
|
|
LogicalResult status = success();
|
|
auto &interTile = tileLoops.first;
|
|
auto &intraTile = tileLoops.second;
|
|
auto size = interTile.size();
|
|
assert(size == intraTile.size());
|
|
if (size <= 1)
|
|
return success();
|
|
for (unsigned s = 1; s < size; ++s)
|
|
status = succeeded(status) ? hoistOpsBetween(intraTile[0], intraTile[s])
|
|
: failure();
|
|
for (unsigned s = 1; s < size; ++s)
|
|
status = succeeded(status) ? hoistOpsBetween(interTile[0], interTile[s])
|
|
: failure();
|
|
return status;
|
|
}
|
|
|
|
TileLoops mlir::extractFixedOuterLoops(loop::ForOp rootForOp,
|
|
ArrayRef<int64_t> sizes) {
|
|
// Collect perfectly nested loops. If more size values provided than nested
|
|
// loops available, truncate `sizes`.
|
|
SmallVector<loop::ForOp, 4> forOps;
|
|
forOps.reserve(sizes.size());
|
|
getPerfectlyNestedLoopsImpl(forOps, rootForOp, sizes.size());
|
|
if (forOps.size() < sizes.size())
|
|
sizes = sizes.take_front(forOps.size());
|
|
|
|
// Compute the tile sizes such that i-th outer loop executes size[i]
|
|
// iterations. Given that the loop current executes
|
|
// numIterations = ceildiv((upperBound - lowerBound), step)
|
|
// iterations, we need to tile with size ceildiv(numIterations, size[i]).
|
|
SmallVector<Value, 4> tileSizes;
|
|
tileSizes.reserve(sizes.size());
|
|
for (unsigned i = 0, e = sizes.size(); i < e; ++i) {
|
|
assert(sizes[i] > 0 && "expected strictly positive size for strip-mining");
|
|
|
|
auto forOp = forOps[i];
|
|
OpBuilder builder(forOp);
|
|
auto loc = forOp.getLoc();
|
|
Value diff =
|
|
builder.create<SubIOp>(loc, forOp.upperBound(), forOp.lowerBound());
|
|
Value numIterations = ceilDivPositive(builder, loc, diff, forOp.step());
|
|
Value iterationsPerBlock =
|
|
ceilDivPositive(builder, loc, numIterations, sizes[i]);
|
|
tileSizes.push_back(iterationsPerBlock);
|
|
}
|
|
|
|
// Call parametric tiling with the given sizes.
|
|
auto intraTile = tile(forOps, tileSizes, forOps.back());
|
|
TileLoops tileLoops = std::make_pair(forOps, intraTile);
|
|
|
|
// TODO(ntv, zinenko) for now we just ignore the result of band isolation.
|
|
// In the future, mapping decisions may be impacted by the ability to
|
|
// isolate perfectly nested bands.
|
|
tryIsolateBands(tileLoops);
|
|
|
|
return tileLoops;
|
|
}
|
|
|
|
// Replaces all uses of `orig` with `replacement` except if the user is listed
|
|
// in `exceptions`.
|
|
static void
|
|
replaceAllUsesExcept(Value orig, Value replacement,
|
|
const SmallPtrSetImpl<Operation *> &exceptions) {
|
|
for (auto &use : llvm::make_early_inc_range(orig.getUses())) {
|
|
if (exceptions.count(use.getOwner()) == 0)
|
|
use.set(replacement);
|
|
}
|
|
}
|
|
|
|
// Transform a loop with a strictly positive step
|
|
// for %i = %lb to %ub step %s
|
|
// into a 0-based loop with step 1
|
|
// for %ii = 0 to ceildiv(%ub - %lb, %s) step 1 {
|
|
// %i = %ii * %s + %lb
|
|
// Insert the induction variable remapping in the body of `inner`, which is
|
|
// expected to be either `loop` or another loop perfectly nested under `loop`.
|
|
// Insert the definition of new bounds immediate before `outer`, which is
|
|
// expected to be either `loop` or its parent in the loop nest.
|
|
static void normalizeLoop(loop::ForOp loop, loop::ForOp outer,
|
|
loop::ForOp inner) {
|
|
OpBuilder builder(outer);
|
|
Location loc = loop.getLoc();
|
|
|
|
// Check if the loop is already known to have a constant zero lower bound or
|
|
// a constant one step.
|
|
bool isZeroBased = false;
|
|
if (auto ubCst =
|
|
dyn_cast_or_null<ConstantIndexOp>(loop.lowerBound().getDefiningOp()))
|
|
isZeroBased = ubCst.getValue() == 0;
|
|
|
|
bool isStepOne = false;
|
|
if (auto stepCst =
|
|
dyn_cast_or_null<ConstantIndexOp>(loop.step().getDefiningOp()))
|
|
isStepOne = stepCst.getValue() == 1;
|
|
|
|
if (isZeroBased && isStepOne)
|
|
return;
|
|
|
|
// Compute the number of iterations the loop executes: ceildiv(ub - lb, step)
|
|
// assuming the step is strictly positive. Update the bounds and the step
|
|
// of the loop to go from 0 to the number of iterations, if necessary.
|
|
// TODO(zinenko): introduce support for negative steps or emit dynamic asserts
|
|
// on step positivity, whatever gets implemented first.
|
|
Value diff =
|
|
builder.create<SubIOp>(loc, loop.upperBound(), loop.lowerBound());
|
|
Value numIterations = ceilDivPositive(builder, loc, diff, loop.step());
|
|
loop.setUpperBound(numIterations);
|
|
|
|
Value lb = loop.lowerBound();
|
|
if (!isZeroBased) {
|
|
Value cst0 = builder.create<ConstantIndexOp>(loc, 0);
|
|
loop.setLowerBound(cst0);
|
|
}
|
|
|
|
Value step = loop.step();
|
|
if (!isStepOne) {
|
|
Value cst1 = builder.create<ConstantIndexOp>(loc, 1);
|
|
loop.setStep(cst1);
|
|
}
|
|
|
|
// Insert code computing the value of the original loop induction variable
|
|
// from the "normalized" one.
|
|
builder.setInsertionPointToStart(inner.getBody());
|
|
Value scaled =
|
|
isStepOne ? loop.getInductionVar()
|
|
: builder.create<MulIOp>(loc, loop.getInductionVar(), step);
|
|
Value shifted =
|
|
isZeroBased ? scaled : builder.create<AddIOp>(loc, scaled, lb);
|
|
|
|
SmallPtrSet<Operation *, 2> preserve{scaled.getDefiningOp(),
|
|
shifted.getDefiningOp()};
|
|
replaceAllUsesExcept(loop.getInductionVar(), shifted, preserve);
|
|
}
|
|
|
|
void mlir::coalesceLoops(MutableArrayRef<loop::ForOp> loops) {
|
|
if (loops.size() < 2)
|
|
return;
|
|
|
|
loop::ForOp innermost = loops.back();
|
|
loop::ForOp outermost = loops.front();
|
|
|
|
// 1. Make sure all loops iterate from 0 to upperBound with step 1. This
|
|
// allows the following code to assume upperBound is the number of iterations.
|
|
for (auto loop : loops)
|
|
normalizeLoop(loop, outermost, innermost);
|
|
|
|
// 2. Emit code computing the upper bound of the coalesced loop as product
|
|
// of the number of iterations of all loops.
|
|
OpBuilder builder(outermost);
|
|
Location loc = outermost.getLoc();
|
|
Value upperBound = outermost.upperBound();
|
|
for (auto loop : loops.drop_front())
|
|
upperBound = builder.create<MulIOp>(loc, upperBound, loop.upperBound());
|
|
outermost.setUpperBound(upperBound);
|
|
|
|
builder.setInsertionPointToStart(outermost.getBody());
|
|
|
|
// 3. Remap induction variables. For each original loop, the value of the
|
|
// induction variable can be obtained by dividing the induction variable of
|
|
// the linearized loop by the total number of iterations of the loops nested
|
|
// in it modulo the number of iterations in this loop (remove the values
|
|
// related to the outer loops):
|
|
// iv_i = floordiv(iv_linear, product-of-loop-ranges-until-i) mod range_i.
|
|
// Compute these iteratively from the innermost loop by creating a "running
|
|
// quotient" of division by the range.
|
|
Value previous = outermost.getInductionVar();
|
|
for (unsigned i = 0, e = loops.size(); i < e; ++i) {
|
|
unsigned idx = loops.size() - i - 1;
|
|
if (i != 0)
|
|
previous = builder.create<SignedDivIOp>(loc, previous,
|
|
loops[idx + 1].upperBound());
|
|
|
|
Value iv = (i == e - 1) ? previous
|
|
: builder.create<SignedRemIOp>(
|
|
loc, previous, loops[idx].upperBound());
|
|
replaceAllUsesInRegionWith(loops[idx].getInductionVar(), iv,
|
|
loops.back().region());
|
|
}
|
|
|
|
// 4. Move the operations from the innermost just above the second-outermost
|
|
// loop, delete the extra terminator and the second-outermost loop.
|
|
loop::ForOp second = loops[1];
|
|
innermost.getBody()->back().erase();
|
|
outermost.getBody()->getOperations().splice(
|
|
Block::iterator(second.getOperation()),
|
|
innermost.getBody()->getOperations());
|
|
second.erase();
|
|
}
|
|
|
|
void mlir::mapLoopToProcessorIds(loop::ForOp forOp, ArrayRef<Value> processorId,
|
|
ArrayRef<Value> numProcessors) {
|
|
assert(processorId.size() == numProcessors.size());
|
|
if (processorId.empty())
|
|
return;
|
|
|
|
OpBuilder b(forOp);
|
|
Location loc(forOp.getLoc());
|
|
Value mul = processorId.front();
|
|
for (unsigned i = 1, e = processorId.size(); i < e; ++i)
|
|
mul = b.create<AddIOp>(loc, b.create<MulIOp>(loc, mul, numProcessors[i]),
|
|
processorId[i]);
|
|
Value lb = b.create<AddIOp>(loc, forOp.lowerBound(),
|
|
b.create<MulIOp>(loc, forOp.step(), mul));
|
|
forOp.setLowerBound(lb);
|
|
|
|
Value step = forOp.step();
|
|
for (auto numProcs : numProcessors)
|
|
step = b.create<MulIOp>(loc, step, numProcs);
|
|
forOp.setStep(step);
|
|
}
|
|
|
|
/// Given a memref region, determine the lowest depth at which transfers can be
|
|
/// placed for it, and return the corresponding block, start and end positions
|
|
/// in the block for placing incoming (read) and outgoing (write) copies
|
|
/// respectively. The lowest depth depends on whether the region being accessed
|
|
/// is hoistable with respect to one or more immediately surrounding loops.
|
|
static void
|
|
findHighestBlockForPlacement(const MemRefRegion ®ion, Block &block,
|
|
Block::iterator &begin, Block::iterator &end,
|
|
Block **copyPlacementBlock,
|
|
Block::iterator *copyInPlacementStart,
|
|
Block::iterator *copyOutPlacementStart) {
|
|
const auto *cst = region.getConstraints();
|
|
SmallVector<Value, 4> symbols;
|
|
cst->getIdValues(cst->getNumDimIds(), cst->getNumDimAndSymbolIds(), &symbols);
|
|
|
|
SmallVector<AffineForOp, 4> enclosingFors;
|
|
getLoopIVs(*block.begin(), &enclosingFors);
|
|
// Walk up loop parents till we find an IV on which this region is
|
|
// symbolic/variant.
|
|
auto it = enclosingFors.rbegin();
|
|
for (auto e = enclosingFors.rend(); it != e; ++it) {
|
|
// TODO(bondhugula): also need to be checking this for regions symbols that
|
|
// aren't loop IVs, whether we are within their resp. defs' dominance scope.
|
|
if (llvm::is_contained(symbols, it->getInductionVar()))
|
|
break;
|
|
}
|
|
|
|
if (it != enclosingFors.rbegin()) {
|
|
auto lastInvariantIV = *std::prev(it);
|
|
*copyInPlacementStart = Block::iterator(lastInvariantIV.getOperation());
|
|
*copyOutPlacementStart = std::next(*copyInPlacementStart);
|
|
*copyPlacementBlock = lastInvariantIV.getOperation()->getBlock();
|
|
} else {
|
|
*copyInPlacementStart = begin;
|
|
*copyOutPlacementStart = end;
|
|
*copyPlacementBlock = █
|
|
}
|
|
}
|
|
|
|
// Info comprising stride and number of elements transferred every stride.
|
|
struct StrideInfo {
|
|
int64_t stride;
|
|
int64_t numEltPerStride;
|
|
};
|
|
|
|
/// Returns striding information for a copy/transfer of this region with
|
|
/// potentially multiple striding levels from outermost to innermost. For an
|
|
/// n-dimensional region, there can be at most n-1 levels of striding
|
|
/// successively nested.
|
|
// TODO(bondhugula): make this work with non-identity layout maps.
|
|
static void getMultiLevelStrides(const MemRefRegion ®ion,
|
|
ArrayRef<int64_t> bufferShape,
|
|
SmallVectorImpl<StrideInfo> *strideInfos) {
|
|
if (bufferShape.size() <= 1)
|
|
return;
|
|
|
|
int64_t numEltPerStride = 1;
|
|
int64_t stride = 1;
|
|
for (int d = bufferShape.size() - 1; d >= 1; d--) {
|
|
int64_t dimSize = region.memref.getType().cast<MemRefType>().getDimSize(d);
|
|
stride *= dimSize;
|
|
numEltPerStride *= bufferShape[d];
|
|
// A stride is needed only if the region has a shorter extent than the
|
|
// memref along the dimension *and* has an extent greater than one along the
|
|
// next major dimension.
|
|
if (bufferShape[d] < dimSize && bufferShape[d - 1] > 1) {
|
|
strideInfos->push_back({stride, numEltPerStride});
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Generates a point-wise copy from/to `memref' to/from `fastMemRef' and
|
|
/// returns the outermost AffineForOp of the copy loop nest. `memIndicesStart'
|
|
/// holds the lower coordinates of the region in the original memref to copy
|
|
/// in/out. If `copyOut' is true, generates a copy-out; otherwise a copy-in.
|
|
static AffineForOp generatePointWiseCopy(Location loc, Value memref,
|
|
Value fastMemRef,
|
|
AffineMap memAffineMap,
|
|
ArrayRef<Value> memIndicesStart,
|
|
ArrayRef<int64_t> fastBufferShape,
|
|
bool isCopyOut, OpBuilder b) {
|
|
assert(!memIndicesStart.empty() && "only 1-d or more memrefs");
|
|
|
|
// The copy-in nest is generated as follows as an example for a 2-d region:
|
|
// for x = ...
|
|
// for y = ...
|
|
// fast_buf[x][y] = buf[mem_x + x][mem_y + y]
|
|
|
|
SmallVector<Value, 4> fastBufIndices, memIndices;
|
|
AffineForOp copyNestRoot;
|
|
for (unsigned d = 0, e = fastBufferShape.size(); d < e; ++d) {
|
|
auto forOp = b.create<AffineForOp>(loc, 0, fastBufferShape[d]);
|
|
if (d == 0)
|
|
copyNestRoot = forOp;
|
|
b = forOp.getBodyBuilder();
|
|
fastBufIndices.push_back(forOp.getInductionVar());
|
|
|
|
Value memBase =
|
|
(memAffineMap == b.getMultiDimIdentityMap(memAffineMap.getNumDims()))
|
|
? memIndicesStart[d]
|
|
: b.create<AffineApplyOp>(
|
|
loc,
|
|
AffineMap::get(memAffineMap.getNumDims(),
|
|
memAffineMap.getNumSymbols(),
|
|
memAffineMap.getResult(d)),
|
|
memIndicesStart);
|
|
|
|
// Construct the subscript for the slow memref being copied.
|
|
auto memIndex = b.create<AffineApplyOp>(
|
|
loc,
|
|
AffineMap::get(2, 0, b.getAffineDimExpr(0) + b.getAffineDimExpr(1)),
|
|
ValueRange({memBase, forOp.getInductionVar()}));
|
|
memIndices.push_back(memIndex);
|
|
}
|
|
|
|
if (!isCopyOut) {
|
|
// Copy in.
|
|
auto load = b.create<AffineLoadOp>(loc, memref, memIndices);
|
|
b.create<AffineStoreOp>(loc, load, fastMemRef, fastBufIndices);
|
|
return copyNestRoot;
|
|
}
|
|
|
|
// Copy out.
|
|
auto load = b.create<AffineLoadOp>(loc, fastMemRef, fastBufIndices);
|
|
b.create<AffineStoreOp>(loc, load, memref, memIndices);
|
|
return copyNestRoot;
|
|
}
|
|
|
|
static InFlightDiagnostic LLVM_ATTRIBUTE_UNUSED
|
|
emitRemarkForBlock(Block &block) {
|
|
return block.getParentOp()->emitRemark();
|
|
}
|
|
|
|
/// Creates a buffer in the faster memory space for the specified memref region;
|
|
/// generates a copy from the lower memory space to this one, and replaces all
|
|
/// loads/stores in the block range [`begin', `end') of `block' to load/store
|
|
/// from that buffer. Returns failure if copies could not be generated due to
|
|
/// yet unimplemented cases. `copyInPlacementStart` and `copyOutPlacementStart`
|
|
/// in copyPlacementBlock specify the insertion points where the incoming copies
|
|
/// and outgoing copies, respectively, should be inserted (the insertion happens
|
|
/// right before the insertion point). Since `begin` can itself be invalidated
|
|
/// due to the memref rewriting done from this method, the output argument
|
|
/// `nBegin` is set to its replacement (set to `begin` if no invalidation
|
|
/// happens). Since outgoing copies could have been inserted at `end`, the
|
|
/// output argument `nEnd` is set to the new end. `sizeInBytes` is set to the
|
|
/// size of the fast buffer allocated.
|
|
static LogicalResult generateCopy(
|
|
const MemRefRegion ®ion, Block *block, Block::iterator begin,
|
|
Block::iterator end, Block *copyPlacementBlock,
|
|
Block::iterator copyInPlacementStart, Block::iterator copyOutPlacementStart,
|
|
AffineCopyOptions copyOptions, DenseMap<Value, Value> &fastBufferMap,
|
|
DenseSet<Operation *> ©Nests, uint64_t *sizeInBytes,
|
|
Block::iterator *nBegin, Block::iterator *nEnd) {
|
|
*nBegin = begin;
|
|
*nEnd = end;
|
|
|
|
FuncOp f = begin->getParentOfType<FuncOp>();
|
|
OpBuilder topBuilder(f.getBody());
|
|
Value zeroIndex = topBuilder.create<ConstantIndexOp>(f.getLoc(), 0);
|
|
|
|
if (begin == end)
|
|
return success();
|
|
|
|
// Is the copy out point at the end of the block where we are doing
|
|
// explicit copying.
|
|
bool isCopyOutAtEndOfBlock = (end == copyOutPlacementStart);
|
|
|
|
// Copies for read regions are going to be inserted at 'begin'.
|
|
OpBuilder prologue(copyPlacementBlock, copyInPlacementStart);
|
|
// Copies for write regions are going to be inserted at 'end'.
|
|
OpBuilder epilogue(copyPlacementBlock, copyOutPlacementStart);
|
|
OpBuilder &b = region.isWrite() ? epilogue : prologue;
|
|
|
|
// Builder to create constants at the top level.
|
|
auto func = copyPlacementBlock->getParent()->getParentOfType<FuncOp>();
|
|
OpBuilder top(func.getBody());
|
|
|
|
auto loc = region.loc;
|
|
auto memref = region.memref;
|
|
auto memRefType = memref.getType().cast<MemRefType>();
|
|
|
|
auto layoutMaps = memRefType.getAffineMaps();
|
|
if (layoutMaps.size() > 1 ||
|
|
(layoutMaps.size() == 1 && !layoutMaps[0].isIdentity())) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Non-identity layout map not yet supported\n");
|
|
return failure();
|
|
}
|
|
|
|
// Indices to use for the copying.
|
|
// Indices for the original memref being copied from/to.
|
|
SmallVector<Value, 4> memIndices;
|
|
// Indices for the faster buffer being copied into/from.
|
|
SmallVector<Value, 4> bufIndices;
|
|
|
|
unsigned rank = memRefType.getRank();
|
|
SmallVector<int64_t, 4> fastBufferShape;
|
|
|
|
// Compute the extents of the buffer.
|
|
std::vector<SmallVector<int64_t, 4>> lbs;
|
|
SmallVector<int64_t, 8> lbDivisors;
|
|
lbs.reserve(rank);
|
|
Optional<int64_t> numElements = region.getConstantBoundingSizeAndShape(
|
|
&fastBufferShape, &lbs, &lbDivisors);
|
|
if (!numElements.hasValue()) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Non-constant region size not supported\n");
|
|
return failure();
|
|
}
|
|
|
|
if (numElements.getValue() == 0) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Nothing to copy\n");
|
|
*sizeInBytes = 0;
|
|
return success();
|
|
}
|
|
|
|
const FlatAffineConstraints *cst = region.getConstraints();
|
|
// 'regionSymbols' hold values that this memory region is symbolic/parametric
|
|
// on; these typically include loop IVs surrounding the level at which the
|
|
// copy generation is being done or other valid symbols in MLIR.
|
|
SmallVector<Value, 8> regionSymbols;
|
|
cst->getIdValues(rank, cst->getNumIds(), ®ionSymbols);
|
|
|
|
// Construct the index expressions for the fast memory buffer. The index
|
|
// expression for a particular dimension of the fast buffer is obtained by
|
|
// subtracting out the lower bound on the original memref's data region
|
|
// along the corresponding dimension.
|
|
|
|
// Index start offsets for faster memory buffer relative to the original.
|
|
SmallVector<AffineExpr, 4> offsets;
|
|
offsets.reserve(rank);
|
|
for (unsigned d = 0; d < rank; d++) {
|
|
assert(lbs[d].size() == cst->getNumCols() - rank && "incorrect bound size");
|
|
|
|
AffineExpr offset = top.getAffineConstantExpr(0);
|
|
for (unsigned j = 0, e = cst->getNumCols() - rank - 1; j < e; j++) {
|
|
offset = offset + lbs[d][j] * top.getAffineDimExpr(j);
|
|
}
|
|
assert(lbDivisors[d] > 0);
|
|
offset =
|
|
(offset + lbs[d][cst->getNumCols() - 1 - rank]).floorDiv(lbDivisors[d]);
|
|
|
|
// Set copy start location for this dimension in the lower memory space
|
|
// memref.
|
|
if (auto caf = offset.dyn_cast<AffineConstantExpr>()) {
|
|
auto indexVal = caf.getValue();
|
|
if (indexVal == 0) {
|
|
memIndices.push_back(zeroIndex);
|
|
} else {
|
|
memIndices.push_back(
|
|
top.create<ConstantIndexOp>(loc, indexVal).getResult());
|
|
}
|
|
} else {
|
|
// The coordinate for the start location is just the lower bound along the
|
|
// corresponding dimension on the memory region (stored in 'offset').
|
|
auto map = AffineMap::get(
|
|
cst->getNumDimIds() + cst->getNumSymbolIds() - rank, 0, offset);
|
|
memIndices.push_back(b.create<AffineApplyOp>(loc, map, regionSymbols));
|
|
}
|
|
// The fast buffer is copied into at location zero; addressing is relative.
|
|
bufIndices.push_back(zeroIndex);
|
|
|
|
// Record the offsets since they are needed to remap the memory accesses of
|
|
// the original memref further below.
|
|
offsets.push_back(offset);
|
|
}
|
|
|
|
// The faster memory space buffer.
|
|
Value fastMemRef;
|
|
|
|
// Check if a buffer was already created.
|
|
bool existingBuf = fastBufferMap.count(memref) > 0;
|
|
if (!existingBuf) {
|
|
AffineMap fastBufferLayout = b.getMultiDimIdentityMap(rank);
|
|
auto fastMemRefType =
|
|
MemRefType::get(fastBufferShape, memRefType.getElementType(),
|
|
fastBufferLayout, copyOptions.fastMemorySpace);
|
|
|
|
// Create the fast memory space buffer just before the 'affine.for'
|
|
// operation.
|
|
fastMemRef = prologue.create<AllocOp>(loc, fastMemRefType).getResult();
|
|
// Record it.
|
|
fastBufferMap[memref] = fastMemRef;
|
|
// fastMemRefType is a constant shaped memref.
|
|
*sizeInBytes = getMemRefSizeInBytes(fastMemRefType).getValue();
|
|
LLVM_DEBUG(emitRemarkForBlock(*block)
|
|
<< "Creating fast buffer of type " << fastMemRefType
|
|
<< " and size " << llvm::divideCeil(*sizeInBytes, 1024)
|
|
<< " KiB\n");
|
|
} else {
|
|
// Reuse the one already created.
|
|
fastMemRef = fastBufferMap[memref];
|
|
*sizeInBytes = 0;
|
|
}
|
|
|
|
auto numElementsSSA =
|
|
top.create<ConstantIndexOp>(loc, numElements.getValue());
|
|
|
|
Value dmaStride = nullptr;
|
|
Value numEltPerDmaStride = nullptr;
|
|
if (copyOptions.generateDma) {
|
|
SmallVector<StrideInfo, 4> dmaStrideInfos;
|
|
getMultiLevelStrides(region, fastBufferShape, &dmaStrideInfos);
|
|
|
|
// TODO(bondhugula): use all stride levels once DmaStartOp is extended for
|
|
// multi-level strides.
|
|
if (dmaStrideInfos.size() > 1) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Only up to one level of stride supported\n");
|
|
return failure();
|
|
}
|
|
|
|
if (!dmaStrideInfos.empty()) {
|
|
dmaStride = top.create<ConstantIndexOp>(loc, dmaStrideInfos[0].stride);
|
|
numEltPerDmaStride =
|
|
top.create<ConstantIndexOp>(loc, dmaStrideInfos[0].numEltPerStride);
|
|
}
|
|
}
|
|
|
|
// Record the last operation where we want the memref replacement to end. We
|
|
// later do the memref replacement only in [begin, postDomFilter] so
|
|
// that the original memref's used in the data movement code themselves don't
|
|
// get replaced.
|
|
auto postDomFilter = std::prev(end);
|
|
|
|
// Create fully composed affine maps for each memref.
|
|
auto memAffineMap = b.getMultiDimIdentityMap(memIndices.size());
|
|
fullyComposeAffineMapAndOperands(&memAffineMap, &memIndices);
|
|
auto bufAffineMap = b.getMultiDimIdentityMap(bufIndices.size());
|
|
fullyComposeAffineMapAndOperands(&bufAffineMap, &bufIndices);
|
|
|
|
if (!copyOptions.generateDma) {
|
|
// Point-wise copy generation.
|
|
auto copyNest = generatePointWiseCopy(loc, memref, fastMemRef, memAffineMap,
|
|
memIndices, fastBufferShape,
|
|
/*isCopyOut=*/region.isWrite(), b);
|
|
|
|
// Record this so that we can skip it from yet another copy.
|
|
copyNests.insert(copyNest);
|
|
|
|
// Since new ops are being appended (for copy out's), adjust the end to
|
|
// mark end of block range being processed if necessary.
|
|
if (region.isWrite() && isCopyOutAtEndOfBlock)
|
|
*nEnd = Block::iterator(copyNest.getOperation());
|
|
} else {
|
|
// DMA generation.
|
|
// Create a tag (single element 1-d memref) for the DMA.
|
|
auto tagMemRefType = MemRefType::get({1}, top.getIntegerType(32), {},
|
|
copyOptions.tagMemorySpace);
|
|
auto tagMemRef = prologue.create<AllocOp>(loc, tagMemRefType);
|
|
|
|
SmallVector<Value, 4> tagIndices({zeroIndex});
|
|
auto tagAffineMap = b.getMultiDimIdentityMap(tagIndices.size());
|
|
fullyComposeAffineMapAndOperands(&tagAffineMap, &tagIndices);
|
|
if (!region.isWrite()) {
|
|
// DMA non-blocking read from original buffer to fast buffer.
|
|
b.create<AffineDmaStartOp>(loc, memref, memAffineMap, memIndices,
|
|
fastMemRef, bufAffineMap, bufIndices,
|
|
tagMemRef, tagAffineMap, tagIndices,
|
|
numElementsSSA, dmaStride, numEltPerDmaStride);
|
|
} else {
|
|
// DMA non-blocking write from fast buffer to the original memref.
|
|
auto op = b.create<AffineDmaStartOp>(
|
|
loc, fastMemRef, bufAffineMap, bufIndices, memref, memAffineMap,
|
|
memIndices, tagMemRef, tagAffineMap, tagIndices, numElementsSSA,
|
|
dmaStride, numEltPerDmaStride);
|
|
// Since new ops may be appended at 'end' (for outgoing DMAs), adjust the
|
|
// end to mark end of block range being processed.
|
|
if (isCopyOutAtEndOfBlock)
|
|
*nEnd = Block::iterator(op.getOperation());
|
|
}
|
|
|
|
// Matching DMA wait to block on completion; tag always has a 0 index.
|
|
b.create<AffineDmaWaitOp>(loc, tagMemRef, tagAffineMap, zeroIndex,
|
|
numElementsSSA);
|
|
|
|
// Generate dealloc for the tag.
|
|
auto tagDeallocOp = epilogue.create<DeallocOp>(loc, tagMemRef);
|
|
if (*nEnd == end && isCopyOutAtEndOfBlock)
|
|
// Since new ops are being appended (for outgoing DMAs), adjust the end to
|
|
// mark end of range of the original.
|
|
*nEnd = Block::iterator(tagDeallocOp.getOperation());
|
|
}
|
|
|
|
// Generate dealloc for the buffer.
|
|
if (!existingBuf) {
|
|
auto bufDeallocOp = epilogue.create<DeallocOp>(loc, fastMemRef);
|
|
// When generating pointwise copies, `nEnd' has to be set to deallocOp on
|
|
// the fast buffer (since it marks the new end insertion point).
|
|
if (!copyOptions.generateDma && *nEnd == end && isCopyOutAtEndOfBlock)
|
|
*nEnd = Block::iterator(bufDeallocOp.getOperation());
|
|
}
|
|
|
|
// Replace all uses of the old memref with the faster one while remapping
|
|
// access indices (subtracting out lower bound offsets for each dimension).
|
|
// Ex: to replace load %A[%i, %j] with load %Abuf[%i - %iT, %j - %jT],
|
|
// index remap will be (%i, %j) -> (%i - %iT, %j - %jT),
|
|
// i.e., affine.apply (d0, d1, d2, d3) -> (d2-d0, d3-d1) (%iT, %jT, %i, %j),
|
|
// and (%iT, %jT) will be the 'extraOperands' for 'rep all memref uses with'.
|
|
// d2, d3 correspond to the original indices (%i, %j).
|
|
SmallVector<AffineExpr, 4> remapExprs;
|
|
remapExprs.reserve(rank);
|
|
for (unsigned i = 0; i < rank; i++) {
|
|
// The starting operands of indexRemap will be regionSymbols (the symbols on
|
|
// which the memref region is parametric); then those corresponding to
|
|
// the memref's original indices follow.
|
|
auto dimExpr = b.getAffineDimExpr(regionSymbols.size() + i);
|
|
remapExprs.push_back(dimExpr - offsets[i]);
|
|
}
|
|
auto indexRemap = AffineMap::get(regionSymbols.size() + rank, 0, remapExprs);
|
|
|
|
// Record the begin since it may be invalidated by memref replacement.
|
|
Block::iterator prevOfBegin;
|
|
bool isBeginAtStartOfBlock = (begin == block->begin());
|
|
if (!isBeginAtStartOfBlock)
|
|
prevOfBegin = std::prev(begin);
|
|
|
|
// *Only* those uses within the range [begin, end) of 'block' are replaced.
|
|
replaceAllMemRefUsesWith(memref, fastMemRef,
|
|
/*extraIndices=*/{}, indexRemap,
|
|
/*extraOperands=*/regionSymbols,
|
|
/*symbolOperands=*/{},
|
|
/*domInstFilter=*/&*begin,
|
|
/*postDomInstFilter=*/&*postDomFilter);
|
|
|
|
*nBegin = isBeginAtStartOfBlock ? block->begin() : std::next(prevOfBegin);
|
|
|
|
return success();
|
|
}
|
|
|
|
/// Construct the memref region to just include the entire memref. Returns false
|
|
/// dynamic shaped memref's for now. `numParamLoopIVs` is the number of
|
|
/// enclosing loop IVs of opInst (starting from the outermost) that the region
|
|
/// is parametric on.
|
|
static bool getFullMemRefAsRegion(Operation *opInst, unsigned numParamLoopIVs,
|
|
MemRefRegion *region) {
|
|
unsigned rank;
|
|
if (auto loadOp = dyn_cast<AffineLoadOp>(opInst)) {
|
|
rank = loadOp.getMemRefType().getRank();
|
|
region->memref = loadOp.getMemRef();
|
|
region->setWrite(false);
|
|
} else if (auto storeOp = dyn_cast<AffineStoreOp>(opInst)) {
|
|
rank = storeOp.getMemRefType().getRank();
|
|
region->memref = storeOp.getMemRef();
|
|
region->setWrite(true);
|
|
} else {
|
|
assert(false && "expected load or store op");
|
|
return false;
|
|
}
|
|
auto memRefType = region->memref.getType().cast<MemRefType>();
|
|
if (!memRefType.hasStaticShape())
|
|
return false;
|
|
|
|
auto *regionCst = region->getConstraints();
|
|
|
|
// Just get the first numSymbols IVs, which the memref region is parametric
|
|
// on.
|
|
SmallVector<AffineForOp, 4> ivs;
|
|
getLoopIVs(*opInst, &ivs);
|
|
ivs.resize(numParamLoopIVs);
|
|
SmallVector<Value, 4> symbols;
|
|
extractForInductionVars(ivs, &symbols);
|
|
regionCst->reset(rank, numParamLoopIVs, 0);
|
|
regionCst->setIdValues(rank, rank + numParamLoopIVs, symbols);
|
|
|
|
// Memref dim sizes provide the bounds.
|
|
for (unsigned d = 0; d < rank; d++) {
|
|
auto dimSize = memRefType.getDimSize(d);
|
|
assert(dimSize > 0 && "filtered dynamic shapes above");
|
|
regionCst->addConstantLowerBound(d, 0);
|
|
regionCst->addConstantUpperBound(d, dimSize - 1);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Performs explicit copying for the contiguous sequence of operations in the
|
|
/// block iterator range [`begin', `end'), where `end' can't be past the
|
|
/// terminator of the block (since additional operations are potentially
|
|
/// inserted right before `end`. Returns the total size of fast memory space
|
|
/// buffers used. `copyOptions` provides various parameters, and the output
|
|
/// argument `copyNests` is the set of all copy nests inserted, each represented
|
|
/// by its root affine.for. Since we generate alloc's and dealloc's for all fast
|
|
/// buffers (before and after the range of operations resp. or at a hoisted
|
|
/// position), all of the fast memory capacity is assumed to be available for
|
|
/// processing this block range. When 'filterMemRef' is specified, copies are
|
|
/// only generated for the provided MemRef.
|
|
uint64_t mlir::affineDataCopyGenerate(Block::iterator begin,
|
|
Block::iterator end,
|
|
const AffineCopyOptions ©Options,
|
|
Optional<Value> filterMemRef,
|
|
DenseSet<Operation *> ©Nests) {
|
|
if (begin == end)
|
|
return 0;
|
|
|
|
assert(begin->getBlock() == std::prev(end)->getBlock() &&
|
|
"Inconsistent block begin/end args");
|
|
assert(end != end->getBlock()->end() && "end can't be the block terminator");
|
|
|
|
Block *block = begin->getBlock();
|
|
|
|
// Copies will be generated for this depth, i.e., symbolic in all loops
|
|
// surrounding the this block range.
|
|
unsigned copyDepth = getNestingDepth(*begin);
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "Generating copies at depth " << copyDepth
|
|
<< "\n");
|
|
LLVM_DEBUG(llvm::dbgs() << "from begin: " << *begin << "\n");
|
|
LLVM_DEBUG(llvm::dbgs() << "to inclusive end: " << *std::prev(end) << "\n");
|
|
|
|
// List of memory regions to copy for. We need a map vector to have a
|
|
// guaranteed iteration order to write test cases. CHECK-DAG doesn't help here
|
|
// since the alloc's for example are identical except for the SSA id.
|
|
SmallMapVector<Value, std::unique_ptr<MemRefRegion>, 4> readRegions;
|
|
SmallMapVector<Value, std::unique_ptr<MemRefRegion>, 4> writeRegions;
|
|
|
|
// Map from original memref's to the fast buffers that their accesses are
|
|
// replaced with.
|
|
DenseMap<Value, Value> fastBufferMap;
|
|
|
|
// To check for errors when walking the block.
|
|
bool error = false;
|
|
|
|
// Walk this range of operations to gather all memory regions.
|
|
block->walk(begin, end, [&](Operation *opInst) {
|
|
// Gather regions to allocate to buffers in faster memory space.
|
|
if (auto loadOp = dyn_cast<AffineLoadOp>(opInst)) {
|
|
if ((filterMemRef.hasValue() && filterMemRef != loadOp.getMemRef()) ||
|
|
(loadOp.getMemRefType().getMemorySpace() !=
|
|
copyOptions.slowMemorySpace))
|
|
return;
|
|
} else if (auto storeOp = dyn_cast<AffineStoreOp>(opInst)) {
|
|
if ((filterMemRef.hasValue() && filterMemRef != storeOp.getMemRef()) ||
|
|
storeOp.getMemRefType().getMemorySpace() !=
|
|
copyOptions.slowMemorySpace)
|
|
return;
|
|
} else {
|
|
// Neither load nor a store op.
|
|
return;
|
|
}
|
|
|
|
// Compute the MemRefRegion accessed.
|
|
auto region = std::make_unique<MemRefRegion>(opInst->getLoc());
|
|
if (failed(region->compute(opInst, copyDepth))) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "Error obtaining memory region: semi-affine maps?\n");
|
|
LLVM_DEBUG(llvm::dbgs() << "over-approximating to the entire memref\n");
|
|
if (!getFullMemRefAsRegion(opInst, copyDepth, region.get())) {
|
|
LLVM_DEBUG(
|
|
opInst->emitError("non-constant memref sizes not yet supported"));
|
|
error = true;
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Each memref has a single buffer associated with it irrespective of how
|
|
// many load's and store's happen on it.
|
|
// TODO(bondhugula): in the future, when regions don't intersect and satisfy
|
|
// other properties (based on load/store regions), we could consider
|
|
// multiple buffers per memref.
|
|
|
|
// Add to the appropriate region if it's not already in it, or take a
|
|
// bounding box union with the existing one if it's already in there.
|
|
// Note that a memref may have both read and write regions - so update the
|
|
// region in the other list if one exists (write in case of read and vice
|
|
// versa) since there is a single bounding box for a memref across all reads
|
|
// and writes that happen on it.
|
|
|
|
// Attempts to update; returns true if 'region' exists in targetRegions.
|
|
auto updateRegion =
|
|
[&](const SmallMapVector<Value, std::unique_ptr<MemRefRegion>, 4>
|
|
&targetRegions) {
|
|
auto it = targetRegions.find(region->memref);
|
|
if (it == targetRegions.end())
|
|
return false;
|
|
|
|
// Perform a union with the existing region.
|
|
if (failed(it->second->unionBoundingBox(*region))) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "Memory region bounding box failed; "
|
|
"over-approximating to the entire memref\n");
|
|
// If the union fails, we will overapproximate.
|
|
if (!getFullMemRefAsRegion(opInst, copyDepth, region.get())) {
|
|
LLVM_DEBUG(opInst->emitError(
|
|
"non-constant memref sizes not yet supported"));
|
|
error = true;
|
|
return true;
|
|
}
|
|
it->second->getConstraints()->clearAndCopyFrom(
|
|
*region->getConstraints());
|
|
} else {
|
|
// Union was computed and stored in 'it->second': copy to 'region'.
|
|
region->getConstraints()->clearAndCopyFrom(
|
|
*it->second->getConstraints());
|
|
}
|
|
return true;
|
|
};
|
|
|
|
bool existsInRead = updateRegion(readRegions);
|
|
if (error)
|
|
return;
|
|
bool existsInWrite = updateRegion(writeRegions);
|
|
if (error)
|
|
return;
|
|
|
|
// Finally add it to the region list.
|
|
if (region->isWrite() && !existsInWrite) {
|
|
writeRegions[region->memref] = std::move(region);
|
|
} else if (!region->isWrite() && !existsInRead) {
|
|
readRegions[region->memref] = std::move(region);
|
|
}
|
|
});
|
|
|
|
if (error) {
|
|
begin->emitError(
|
|
"copy generation failed for one or more memref's in this block\n");
|
|
return 0;
|
|
}
|
|
|
|
uint64_t totalCopyBuffersSizeInBytes = 0;
|
|
bool ret = true;
|
|
auto processRegions =
|
|
[&](const SmallMapVector<Value, std::unique_ptr<MemRefRegion>, 4>
|
|
®ions) {
|
|
for (const auto ®ionEntry : regions) {
|
|
// For each region, hoist copy in/out past all hoistable
|
|
// 'affine.for's.
|
|
Block::iterator copyInPlacementStart, copyOutPlacementStart;
|
|
Block *copyPlacementBlock;
|
|
findHighestBlockForPlacement(
|
|
*regionEntry.second, *block, begin, end, ©PlacementBlock,
|
|
©InPlacementStart, ©OutPlacementStart);
|
|
|
|
uint64_t sizeInBytes;
|
|
Block::iterator nBegin, nEnd;
|
|
LogicalResult iRet = generateCopy(
|
|
*regionEntry.second, block, begin, end, copyPlacementBlock,
|
|
copyInPlacementStart, copyOutPlacementStart, copyOptions,
|
|
fastBufferMap, copyNests, &sizeInBytes, &nBegin, &nEnd);
|
|
if (succeeded(iRet)) {
|
|
// begin/end could have been invalidated, and need update.
|
|
begin = nBegin;
|
|
end = nEnd;
|
|
totalCopyBuffersSizeInBytes += sizeInBytes;
|
|
}
|
|
ret = ret & succeeded(iRet);
|
|
}
|
|
};
|
|
processRegions(readRegions);
|
|
processRegions(writeRegions);
|
|
|
|
if (!ret) {
|
|
begin->emitError(
|
|
"copy generation failed for one or more memref's in this block\n");
|
|
return totalCopyBuffersSizeInBytes;
|
|
}
|
|
|
|
// For a range of operations, a note will be emitted at the caller.
|
|
AffineForOp forOp;
|
|
uint64_t sizeInKib = llvm::divideCeil(totalCopyBuffersSizeInBytes, 1024);
|
|
if (llvm::DebugFlag && (forOp = dyn_cast<AffineForOp>(&*begin))) {
|
|
forOp.emitRemark()
|
|
<< sizeInKib
|
|
<< " KiB of copy buffers in fast memory space for this block\n";
|
|
}
|
|
|
|
if (totalCopyBuffersSizeInBytes > copyOptions.fastMemCapacityBytes) {
|
|
StringRef str = "Total size of all copy buffers' for this block "
|
|
"exceeds fast memory capacity\n";
|
|
block->getParentOp()->emitError(str);
|
|
}
|
|
|
|
return totalCopyBuffersSizeInBytes;
|
|
}
|
|
|
|
// A convenience version of affineDataCopyGenerate for all ops in the body of
|
|
// an AffineForOp.
|
|
uint64_t mlir::affineDataCopyGenerate(AffineForOp forOp,
|
|
const AffineCopyOptions ©Options,
|
|
Optional<Value> filterMemRef,
|
|
DenseSet<Operation *> ©Nests) {
|
|
return affineDataCopyGenerate(forOp.getBody()->begin(),
|
|
std::prev(forOp.getBody()->end()), copyOptions,
|
|
filterMemRef, copyNests);
|
|
}
|
|
|
|
LogicalResult mlir::generateCopyForMemRegion(
|
|
const MemRefRegion &memrefRegion, Operation *analyzedOp,
|
|
const AffineCopyOptions ©Options, CopyGenerateResult &result) {
|
|
Block *block = analyzedOp->getBlock();
|
|
auto begin = analyzedOp->getIterator();
|
|
auto end = std::next(begin);
|
|
DenseMap<Value, Value> fastBufferMap;
|
|
DenseSet<Operation *> copyNests;
|
|
|
|
auto err = generateCopy(memrefRegion, block, begin, end, block, begin, end,
|
|
copyOptions, fastBufferMap, copyNests,
|
|
&result.sizeInBytes, &begin, &end);
|
|
if (failed(err))
|
|
return err;
|
|
|
|
result.alloc =
|
|
fastBufferMap.find(memrefRegion.memref)->second.getDefiningOp();
|
|
assert(copyNests.size() <= 1 && "At most one copy nest is expected.");
|
|
result.copyNest = copyNests.empty() ? nullptr : *copyNests.begin();
|
|
return success();
|
|
}
|
|
|
|
/// Gathers all AffineForOps in 'block' at 'currLoopDepth' in 'depthToLoops'.
|
|
static void
|
|
gatherLoopsInBlock(Block *block, unsigned currLoopDepth,
|
|
std::vector<SmallVector<AffineForOp, 2>> &depthToLoops) {
|
|
// Add a new empty level to output if it doesn't exist level already.
|
|
assert(currLoopDepth <= depthToLoops.size() && "Unexpected currLoopDepth");
|
|
if (currLoopDepth == depthToLoops.size())
|
|
depthToLoops.push_back(SmallVector<AffineForOp, 2>());
|
|
|
|
for (auto &op : *block) {
|
|
if (auto forOp = dyn_cast<AffineForOp>(op)) {
|
|
depthToLoops[currLoopDepth].push_back(forOp);
|
|
gatherLoopsInBlock(forOp.getBody(), currLoopDepth + 1, depthToLoops);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Gathers all AffineForOps in 'func' grouped by loop depth.
|
|
void mlir::gatherLoops(FuncOp func,
|
|
std::vector<SmallVector<AffineForOp, 2>> &depthToLoops) {
|
|
for (auto &block : func)
|
|
gatherLoopsInBlock(&block, /*currLoopDepth=*/0, depthToLoops);
|
|
|
|
// Remove last loop level from output since it's empty.
|
|
if (!depthToLoops.empty()) {
|
|
assert(depthToLoops.back().empty() && "Last loop level is not empty?");
|
|
depthToLoops.pop_back();
|
|
}
|
|
}
|