3515 lines
		
	
	
		
			134 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			3515 lines
		
	
	
		
			134 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- HexagonISelLowering.cpp - Hexagon DAG Lowering Implementation -----===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the interfaces that Hexagon uses to lower LLVM code
 | 
						|
// into a selection DAG.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "HexagonISelLowering.h"
 | 
						|
#include "Hexagon.h"
 | 
						|
#include "HexagonMachineFunctionInfo.h"
 | 
						|
#include "HexagonRegisterInfo.h"
 | 
						|
#include "HexagonSubtarget.h"
 | 
						|
#include "HexagonTargetMachine.h"
 | 
						|
#include "HexagonTargetObjectFile.h"
 | 
						|
#include "llvm/ADT/APInt.h"
 | 
						|
#include "llvm/ADT/ArrayRef.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/StringSwitch.h"
 | 
						|
#include "llvm/CodeGen/CallingConvLower.h"
 | 
						|
#include "llvm/CodeGen/MachineFrameInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/MachineMemOperand.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/RuntimeLibcalls.h"
 | 
						|
#include "llvm/CodeGen/SelectionDAG.h"
 | 
						|
#include "llvm/CodeGen/TargetCallingConv.h"
 | 
						|
#include "llvm/CodeGen/ValueTypes.h"
 | 
						|
#include "llvm/IR/BasicBlock.h"
 | 
						|
#include "llvm/IR/CallingConv.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/DerivedTypes.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/GlobalValue.h"
 | 
						|
#include "llvm/IR/InlineAsm.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/Intrinsics.h"
 | 
						|
#include "llvm/IR/IntrinsicsHexagon.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/IR/Type.h"
 | 
						|
#include "llvm/IR/Value.h"
 | 
						|
#include "llvm/MC/MCRegisterInfo.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/CodeGen.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cassert>
 | 
						|
#include <cstddef>
 | 
						|
#include <cstdint>
 | 
						|
#include <limits>
 | 
						|
#include <utility>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "hexagon-lowering"
 | 
						|
 | 
						|
static cl::opt<bool> EmitJumpTables("hexagon-emit-jump-tables",
 | 
						|
  cl::init(true), cl::Hidden,
 | 
						|
  cl::desc("Control jump table emission on Hexagon target"));
 | 
						|
 | 
						|
static cl::opt<bool> EnableHexSDNodeSched("enable-hexagon-sdnode-sched",
 | 
						|
  cl::Hidden, cl::ZeroOrMore, cl::init(false),
 | 
						|
  cl::desc("Enable Hexagon SDNode scheduling"));
 | 
						|
 | 
						|
static cl::opt<bool> EnableFastMath("ffast-math",
 | 
						|
  cl::Hidden, cl::ZeroOrMore, cl::init(false),
 | 
						|
  cl::desc("Enable Fast Math processing"));
 | 
						|
 | 
						|
static cl::opt<int> MinimumJumpTables("minimum-jump-tables",
 | 
						|
  cl::Hidden, cl::ZeroOrMore, cl::init(5),
 | 
						|
  cl::desc("Set minimum jump tables"));
 | 
						|
 | 
						|
static cl::opt<int> MaxStoresPerMemcpyCL("max-store-memcpy",
 | 
						|
  cl::Hidden, cl::ZeroOrMore, cl::init(6),
 | 
						|
  cl::desc("Max #stores to inline memcpy"));
 | 
						|
 | 
						|
static cl::opt<int> MaxStoresPerMemcpyOptSizeCL("max-store-memcpy-Os",
 | 
						|
  cl::Hidden, cl::ZeroOrMore, cl::init(4),
 | 
						|
  cl::desc("Max #stores to inline memcpy"));
 | 
						|
 | 
						|
static cl::opt<int> MaxStoresPerMemmoveCL("max-store-memmove",
 | 
						|
  cl::Hidden, cl::ZeroOrMore, cl::init(6),
 | 
						|
  cl::desc("Max #stores to inline memmove"));
 | 
						|
 | 
						|
static cl::opt<int> MaxStoresPerMemmoveOptSizeCL("max-store-memmove-Os",
 | 
						|
  cl::Hidden, cl::ZeroOrMore, cl::init(4),
 | 
						|
  cl::desc("Max #stores to inline memmove"));
 | 
						|
 | 
						|
static cl::opt<int> MaxStoresPerMemsetCL("max-store-memset",
 | 
						|
  cl::Hidden, cl::ZeroOrMore, cl::init(8),
 | 
						|
  cl::desc("Max #stores to inline memset"));
 | 
						|
 | 
						|
static cl::opt<int> MaxStoresPerMemsetOptSizeCL("max-store-memset-Os",
 | 
						|
  cl::Hidden, cl::ZeroOrMore, cl::init(4),
 | 
						|
  cl::desc("Max #stores to inline memset"));
 | 
						|
 | 
						|
static cl::opt<bool> AlignLoads("hexagon-align-loads",
 | 
						|
  cl::Hidden, cl::init(false),
 | 
						|
  cl::desc("Rewrite unaligned loads as a pair of aligned loads"));
 | 
						|
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
  class HexagonCCState : public CCState {
 | 
						|
    unsigned NumNamedVarArgParams = 0;
 | 
						|
 | 
						|
  public:
 | 
						|
    HexagonCCState(CallingConv::ID CC, bool IsVarArg, MachineFunction &MF,
 | 
						|
                   SmallVectorImpl<CCValAssign> &locs, LLVMContext &C,
 | 
						|
                   unsigned NumNamedArgs)
 | 
						|
        : CCState(CC, IsVarArg, MF, locs, C),
 | 
						|
          NumNamedVarArgParams(NumNamedArgs) {}
 | 
						|
    unsigned getNumNamedVarArgParams() const { return NumNamedVarArgParams; }
 | 
						|
  };
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
 | 
						|
// Implement calling convention for Hexagon.
 | 
						|
 | 
						|
static bool CC_SkipOdd(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
 | 
						|
                       CCValAssign::LocInfo &LocInfo,
 | 
						|
                       ISD::ArgFlagsTy &ArgFlags, CCState &State) {
 | 
						|
  static const MCPhysReg ArgRegs[] = {
 | 
						|
    Hexagon::R0, Hexagon::R1, Hexagon::R2,
 | 
						|
    Hexagon::R3, Hexagon::R4, Hexagon::R5
 | 
						|
  };
 | 
						|
  const unsigned NumArgRegs = array_lengthof(ArgRegs);
 | 
						|
  unsigned RegNum = State.getFirstUnallocated(ArgRegs);
 | 
						|
 | 
						|
  // RegNum is an index into ArgRegs: skip a register if RegNum is odd.
 | 
						|
  if (RegNum != NumArgRegs && RegNum % 2 == 1)
 | 
						|
    State.AllocateReg(ArgRegs[RegNum]);
 | 
						|
 | 
						|
  // Always return false here, as this function only makes sure that the first
 | 
						|
  // unallocated register has an even register number and does not actually
 | 
						|
  // allocate a register for the current argument.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
#include "HexagonGenCallingConv.inc"
 | 
						|
 | 
						|
 | 
						|
SDValue
 | 
						|
HexagonTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG)
 | 
						|
      const {
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
 | 
						|
/// by "Src" to address "Dst" of size "Size".  Alignment information is
 | 
						|
/// specified by the specific parameter attribute. The copy will be passed as
 | 
						|
/// a byval function parameter.  Sometimes what we are copying is the end of a
 | 
						|
/// larger object, the part that does not fit in registers.
 | 
						|
static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
 | 
						|
                                         SDValue Chain, ISD::ArgFlagsTy Flags,
 | 
						|
                                         SelectionDAG &DAG, const SDLoc &dl) {
 | 
						|
  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
 | 
						|
  return DAG.getMemcpy(
 | 
						|
      Chain, dl, Dst, Src, SizeNode, Flags.getNonZeroByValAlign(),
 | 
						|
      /*isVolatile=*/false, /*AlwaysInline=*/false,
 | 
						|
      /*isTailCall=*/false, MachinePointerInfo(), MachinePointerInfo());
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
HexagonTargetLowering::CanLowerReturn(
 | 
						|
    CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
 | 
						|
    const SmallVectorImpl<ISD::OutputArg> &Outs,
 | 
						|
    LLVMContext &Context) const {
 | 
						|
  SmallVector<CCValAssign, 16> RVLocs;
 | 
						|
  CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
 | 
						|
 | 
						|
  if (MF.getSubtarget<HexagonSubtarget>().useHVXOps())
 | 
						|
    return CCInfo.CheckReturn(Outs, RetCC_Hexagon_HVX);
 | 
						|
  return CCInfo.CheckReturn(Outs, RetCC_Hexagon);
 | 
						|
}
 | 
						|
 | 
						|
// LowerReturn - Lower ISD::RET. If a struct is larger than 8 bytes and is
 | 
						|
// passed by value, the function prototype is modified to return void and
 | 
						|
// the value is stored in memory pointed by a pointer passed by caller.
 | 
						|
SDValue
 | 
						|
HexagonTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
 | 
						|
                                   bool IsVarArg,
 | 
						|
                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
 | 
						|
                                   const SmallVectorImpl<SDValue> &OutVals,
 | 
						|
                                   const SDLoc &dl, SelectionDAG &DAG) const {
 | 
						|
  // CCValAssign - represent the assignment of the return value to locations.
 | 
						|
  SmallVector<CCValAssign, 16> RVLocs;
 | 
						|
 | 
						|
  // CCState - Info about the registers and stack slot.
 | 
						|
  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
 | 
						|
                 *DAG.getContext());
 | 
						|
 | 
						|
  // Analyze return values of ISD::RET
 | 
						|
  if (Subtarget.useHVXOps())
 | 
						|
    CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon_HVX);
 | 
						|
  else
 | 
						|
    CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon);
 | 
						|
 | 
						|
  SDValue Flag;
 | 
						|
  SmallVector<SDValue, 4> RetOps(1, Chain);
 | 
						|
 | 
						|
  // Copy the result values into the output registers.
 | 
						|
  for (unsigned i = 0; i != RVLocs.size(); ++i) {
 | 
						|
    CCValAssign &VA = RVLocs[i];
 | 
						|
 | 
						|
    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
 | 
						|
 | 
						|
    // Guarantee that all emitted copies are stuck together with flags.
 | 
						|
    Flag = Chain.getValue(1);
 | 
						|
    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
 | 
						|
  }
 | 
						|
 | 
						|
  RetOps[0] = Chain;  // Update chain.
 | 
						|
 | 
						|
  // Add the flag if we have it.
 | 
						|
  if (Flag.getNode())
 | 
						|
    RetOps.push_back(Flag);
 | 
						|
 | 
						|
  return DAG.getNode(HexagonISD::RET_FLAG, dl, MVT::Other, RetOps);
 | 
						|
}
 | 
						|
 | 
						|
bool HexagonTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
 | 
						|
  // If either no tail call or told not to tail call at all, don't.
 | 
						|
  return CI->isTailCall();
 | 
						|
}
 | 
						|
 | 
						|
Register HexagonTargetLowering::getRegisterByName(
 | 
						|
      const char* RegName, LLT VT, const MachineFunction &) const {
 | 
						|
  // Just support r19, the linux kernel uses it.
 | 
						|
  Register Reg = StringSwitch<Register>(RegName)
 | 
						|
                     .Case("r0", Hexagon::R0)
 | 
						|
                     .Case("r1", Hexagon::R1)
 | 
						|
                     .Case("r2", Hexagon::R2)
 | 
						|
                     .Case("r3", Hexagon::R3)
 | 
						|
                     .Case("r4", Hexagon::R4)
 | 
						|
                     .Case("r5", Hexagon::R5)
 | 
						|
                     .Case("r6", Hexagon::R6)
 | 
						|
                     .Case("r7", Hexagon::R7)
 | 
						|
                     .Case("r8", Hexagon::R8)
 | 
						|
                     .Case("r9", Hexagon::R9)
 | 
						|
                     .Case("r10", Hexagon::R10)
 | 
						|
                     .Case("r11", Hexagon::R11)
 | 
						|
                     .Case("r12", Hexagon::R12)
 | 
						|
                     .Case("r13", Hexagon::R13)
 | 
						|
                     .Case("r14", Hexagon::R14)
 | 
						|
                     .Case("r15", Hexagon::R15)
 | 
						|
                     .Case("r16", Hexagon::R16)
 | 
						|
                     .Case("r17", Hexagon::R17)
 | 
						|
                     .Case("r18", Hexagon::R18)
 | 
						|
                     .Case("r19", Hexagon::R19)
 | 
						|
                     .Case("r20", Hexagon::R20)
 | 
						|
                     .Case("r21", Hexagon::R21)
 | 
						|
                     .Case("r22", Hexagon::R22)
 | 
						|
                     .Case("r23", Hexagon::R23)
 | 
						|
                     .Case("r24", Hexagon::R24)
 | 
						|
                     .Case("r25", Hexagon::R25)
 | 
						|
                     .Case("r26", Hexagon::R26)
 | 
						|
                     .Case("r27", Hexagon::R27)
 | 
						|
                     .Case("r28", Hexagon::R28)
 | 
						|
                     .Case("r29", Hexagon::R29)
 | 
						|
                     .Case("r30", Hexagon::R30)
 | 
						|
                     .Case("r31", Hexagon::R31)
 | 
						|
                     .Case("r1:0", Hexagon::D0)
 | 
						|
                     .Case("r3:2", Hexagon::D1)
 | 
						|
                     .Case("r5:4", Hexagon::D2)
 | 
						|
                     .Case("r7:6", Hexagon::D3)
 | 
						|
                     .Case("r9:8", Hexagon::D4)
 | 
						|
                     .Case("r11:10", Hexagon::D5)
 | 
						|
                     .Case("r13:12", Hexagon::D6)
 | 
						|
                     .Case("r15:14", Hexagon::D7)
 | 
						|
                     .Case("r17:16", Hexagon::D8)
 | 
						|
                     .Case("r19:18", Hexagon::D9)
 | 
						|
                     .Case("r21:20", Hexagon::D10)
 | 
						|
                     .Case("r23:22", Hexagon::D11)
 | 
						|
                     .Case("r25:24", Hexagon::D12)
 | 
						|
                     .Case("r27:26", Hexagon::D13)
 | 
						|
                     .Case("r29:28", Hexagon::D14)
 | 
						|
                     .Case("r31:30", Hexagon::D15)
 | 
						|
                     .Case("sp", Hexagon::R29)
 | 
						|
                     .Case("fp", Hexagon::R30)
 | 
						|
                     .Case("lr", Hexagon::R31)
 | 
						|
                     .Case("p0", Hexagon::P0)
 | 
						|
                     .Case("p1", Hexagon::P1)
 | 
						|
                     .Case("p2", Hexagon::P2)
 | 
						|
                     .Case("p3", Hexagon::P3)
 | 
						|
                     .Case("sa0", Hexagon::SA0)
 | 
						|
                     .Case("lc0", Hexagon::LC0)
 | 
						|
                     .Case("sa1", Hexagon::SA1)
 | 
						|
                     .Case("lc1", Hexagon::LC1)
 | 
						|
                     .Case("m0", Hexagon::M0)
 | 
						|
                     .Case("m1", Hexagon::M1)
 | 
						|
                     .Case("usr", Hexagon::USR)
 | 
						|
                     .Case("ugp", Hexagon::UGP)
 | 
						|
                     .Default(Register());
 | 
						|
  if (Reg)
 | 
						|
    return Reg;
 | 
						|
 | 
						|
  report_fatal_error("Invalid register name global variable");
 | 
						|
}
 | 
						|
 | 
						|
/// LowerCallResult - Lower the result values of an ISD::CALL into the
 | 
						|
/// appropriate copies out of appropriate physical registers.  This assumes that
 | 
						|
/// Chain/Glue are the input chain/glue to use, and that TheCall is the call
 | 
						|
/// being lowered. Returns a SDNode with the same number of values as the
 | 
						|
/// ISD::CALL.
 | 
						|
SDValue HexagonTargetLowering::LowerCallResult(
 | 
						|
    SDValue Chain, SDValue Glue, CallingConv::ID CallConv, bool IsVarArg,
 | 
						|
    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
 | 
						|
    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
 | 
						|
    const SmallVectorImpl<SDValue> &OutVals, SDValue Callee) const {
 | 
						|
  // Assign locations to each value returned by this call.
 | 
						|
  SmallVector<CCValAssign, 16> RVLocs;
 | 
						|
 | 
						|
  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
 | 
						|
                 *DAG.getContext());
 | 
						|
 | 
						|
  if (Subtarget.useHVXOps())
 | 
						|
    CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon_HVX);
 | 
						|
  else
 | 
						|
    CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon);
 | 
						|
 | 
						|
  // Copy all of the result registers out of their specified physreg.
 | 
						|
  for (unsigned i = 0; i != RVLocs.size(); ++i) {
 | 
						|
    SDValue RetVal;
 | 
						|
    if (RVLocs[i].getValVT() == MVT::i1) {
 | 
						|
      // Return values of type MVT::i1 require special handling. The reason
 | 
						|
      // is that MVT::i1 is associated with the PredRegs register class, but
 | 
						|
      // values of that type are still returned in R0. Generate an explicit
 | 
						|
      // copy into a predicate register from R0, and treat the value of the
 | 
						|
      // predicate register as the call result.
 | 
						|
      auto &MRI = DAG.getMachineFunction().getRegInfo();
 | 
						|
      SDValue FR0 = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
 | 
						|
                                       MVT::i32, Glue);
 | 
						|
      // FR0 = (Value, Chain, Glue)
 | 
						|
      Register PredR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
 | 
						|
      SDValue TPR = DAG.getCopyToReg(FR0.getValue(1), dl, PredR,
 | 
						|
                                     FR0.getValue(0), FR0.getValue(2));
 | 
						|
      // TPR = (Chain, Glue)
 | 
						|
      // Don't glue this CopyFromReg, because it copies from a virtual
 | 
						|
      // register. If it is glued to the call, InstrEmitter will add it
 | 
						|
      // as an implicit def to the call (EmitMachineNode).
 | 
						|
      RetVal = DAG.getCopyFromReg(TPR.getValue(0), dl, PredR, MVT::i1);
 | 
						|
      Glue = TPR.getValue(1);
 | 
						|
      Chain = TPR.getValue(0);
 | 
						|
    } else {
 | 
						|
      RetVal = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
 | 
						|
                                  RVLocs[i].getValVT(), Glue);
 | 
						|
      Glue = RetVal.getValue(2);
 | 
						|
      Chain = RetVal.getValue(1);
 | 
						|
    }
 | 
						|
    InVals.push_back(RetVal.getValue(0));
 | 
						|
  }
 | 
						|
 | 
						|
  return Chain;
 | 
						|
}
 | 
						|
 | 
						|
/// LowerCall - Functions arguments are copied from virtual regs to
 | 
						|
/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
 | 
						|
SDValue
 | 
						|
HexagonTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
 | 
						|
                                 SmallVectorImpl<SDValue> &InVals) const {
 | 
						|
  SelectionDAG &DAG                     = CLI.DAG;
 | 
						|
  SDLoc &dl                             = CLI.DL;
 | 
						|
  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
 | 
						|
  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
 | 
						|
  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
 | 
						|
  SDValue Chain                         = CLI.Chain;
 | 
						|
  SDValue Callee                        = CLI.Callee;
 | 
						|
  CallingConv::ID CallConv              = CLI.CallConv;
 | 
						|
  bool IsVarArg                         = CLI.IsVarArg;
 | 
						|
  bool DoesNotReturn                    = CLI.DoesNotReturn;
 | 
						|
 | 
						|
  bool IsStructRet    = Outs.empty() ? false : Outs[0].Flags.isSRet();
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  MachineFrameInfo &MFI = MF.getFrameInfo();
 | 
						|
  auto PtrVT = getPointerTy(MF.getDataLayout());
 | 
						|
 | 
						|
  unsigned NumParams = CLI.CS.getInstruction()
 | 
						|
                        ? CLI.CS.getFunctionType()->getNumParams()
 | 
						|
                        : 0;
 | 
						|
  if (GlobalAddressSDNode *GAN = dyn_cast<GlobalAddressSDNode>(Callee))
 | 
						|
    Callee = DAG.getTargetGlobalAddress(GAN->getGlobal(), dl, MVT::i32);
 | 
						|
 | 
						|
  // Linux ABI treats var-arg calls the same way as regular ones.
 | 
						|
  bool TreatAsVarArg = !Subtarget.isEnvironmentMusl() && IsVarArg;
 | 
						|
 | 
						|
  // Analyze operands of the call, assigning locations to each operand.
 | 
						|
  SmallVector<CCValAssign, 16> ArgLocs;
 | 
						|
  HexagonCCState CCInfo(CallConv, TreatAsVarArg, MF, ArgLocs, *DAG.getContext(),
 | 
						|
                        NumParams);
 | 
						|
 | 
						|
  if (Subtarget.useHVXOps())
 | 
						|
    CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon_HVX);
 | 
						|
  else
 | 
						|
    CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon);
 | 
						|
 | 
						|
  if (CLI.IsTailCall) {
 | 
						|
    bool StructAttrFlag = MF.getFunction().hasStructRetAttr();
 | 
						|
    CLI.IsTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
 | 
						|
                        IsVarArg, IsStructRet, StructAttrFlag, Outs,
 | 
						|
                        OutVals, Ins, DAG);
 | 
						|
    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
 | 
						|
      CCValAssign &VA = ArgLocs[i];
 | 
						|
      if (VA.isMemLoc()) {
 | 
						|
        CLI.IsTailCall = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    LLVM_DEBUG(dbgs() << (CLI.IsTailCall ? "Eligible for Tail Call\n"
 | 
						|
                                         : "Argument must be passed on stack. "
 | 
						|
                                           "Not eligible for Tail Call\n"));
 | 
						|
  }
 | 
						|
  // Get a count of how many bytes are to be pushed on the stack.
 | 
						|
  unsigned NumBytes = CCInfo.getNextStackOffset();
 | 
						|
  SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass;
 | 
						|
  SmallVector<SDValue, 8> MemOpChains;
 | 
						|
 | 
						|
  const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
 | 
						|
  SDValue StackPtr =
 | 
						|
      DAG.getCopyFromReg(Chain, dl, HRI.getStackRegister(), PtrVT);
 | 
						|
 | 
						|
  bool NeedsArgAlign = false;
 | 
						|
  Align LargestAlignSeen;
 | 
						|
  // Walk the register/memloc assignments, inserting copies/loads.
 | 
						|
  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
 | 
						|
    CCValAssign &VA = ArgLocs[i];
 | 
						|
    SDValue Arg = OutVals[i];
 | 
						|
    ISD::ArgFlagsTy Flags = Outs[i].Flags;
 | 
						|
    // Record if we need > 8 byte alignment on an argument.
 | 
						|
    bool ArgAlign = Subtarget.isHVXVectorType(VA.getValVT());
 | 
						|
    NeedsArgAlign |= ArgAlign;
 | 
						|
 | 
						|
    // Promote the value if needed.
 | 
						|
    switch (VA.getLocInfo()) {
 | 
						|
      default:
 | 
						|
        // Loc info must be one of Full, BCvt, SExt, ZExt, or AExt.
 | 
						|
        llvm_unreachable("Unknown loc info!");
 | 
						|
      case CCValAssign::Full:
 | 
						|
        break;
 | 
						|
      case CCValAssign::BCvt:
 | 
						|
        Arg = DAG.getBitcast(VA.getLocVT(), Arg);
 | 
						|
        break;
 | 
						|
      case CCValAssign::SExt:
 | 
						|
        Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
 | 
						|
        break;
 | 
						|
      case CCValAssign::ZExt:
 | 
						|
        Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
 | 
						|
        break;
 | 
						|
      case CCValAssign::AExt:
 | 
						|
        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (VA.isMemLoc()) {
 | 
						|
      unsigned LocMemOffset = VA.getLocMemOffset();
 | 
						|
      SDValue MemAddr = DAG.getConstant(LocMemOffset, dl,
 | 
						|
                                        StackPtr.getValueType());
 | 
						|
      MemAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, MemAddr);
 | 
						|
      if (ArgAlign)
 | 
						|
        LargestAlignSeen = std::max(
 | 
						|
            LargestAlignSeen, Align(VA.getLocVT().getStoreSizeInBits() / 8));
 | 
						|
      if (Flags.isByVal()) {
 | 
						|
        // The argument is a struct passed by value. According to LLVM, "Arg"
 | 
						|
        // is a pointer.
 | 
						|
        MemOpChains.push_back(CreateCopyOfByValArgument(Arg, MemAddr, Chain,
 | 
						|
                                                        Flags, DAG, dl));
 | 
						|
      } else {
 | 
						|
        MachinePointerInfo LocPI = MachinePointerInfo::getStack(
 | 
						|
            DAG.getMachineFunction(), LocMemOffset);
 | 
						|
        SDValue S = DAG.getStore(Chain, dl, Arg, MemAddr, LocPI);
 | 
						|
        MemOpChains.push_back(S);
 | 
						|
      }
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Arguments that can be passed on register must be kept at RegsToPass
 | 
						|
    // vector.
 | 
						|
    if (VA.isRegLoc())
 | 
						|
      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
 | 
						|
  }
 | 
						|
 | 
						|
  if (NeedsArgAlign && Subtarget.hasV60Ops()) {
 | 
						|
    LLVM_DEBUG(dbgs() << "Function needs byte stack align due to call args\n");
 | 
						|
    Align VecAlign(HRI.getSpillAlignment(Hexagon::HvxVRRegClass));
 | 
						|
    LargestAlignSeen = std::max(LargestAlignSeen, VecAlign);
 | 
						|
    MFI.ensureMaxAlignment(LargestAlignSeen);
 | 
						|
  }
 | 
						|
  // Transform all store nodes into one single node because all store
 | 
						|
  // nodes are independent of each other.
 | 
						|
  if (!MemOpChains.empty())
 | 
						|
    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
 | 
						|
 | 
						|
  SDValue Glue;
 | 
						|
  if (!CLI.IsTailCall) {
 | 
						|
    Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
 | 
						|
    Glue = Chain.getValue(1);
 | 
						|
  }
 | 
						|
 | 
						|
  // Build a sequence of copy-to-reg nodes chained together with token
 | 
						|
  // chain and flag operands which copy the outgoing args into registers.
 | 
						|
  // The Glue is necessary since all emitted instructions must be
 | 
						|
  // stuck together.
 | 
						|
  if (!CLI.IsTailCall) {
 | 
						|
    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
 | 
						|
      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
 | 
						|
                               RegsToPass[i].second, Glue);
 | 
						|
      Glue = Chain.getValue(1);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // For tail calls lower the arguments to the 'real' stack slot.
 | 
						|
    //
 | 
						|
    // Force all the incoming stack arguments to be loaded from the stack
 | 
						|
    // before any new outgoing arguments are stored to the stack, because the
 | 
						|
    // outgoing stack slots may alias the incoming argument stack slots, and
 | 
						|
    // the alias isn't otherwise explicit. This is slightly more conservative
 | 
						|
    // than necessary, because it means that each store effectively depends
 | 
						|
    // on every argument instead of just those arguments it would clobber.
 | 
						|
    //
 | 
						|
    // Do not flag preceding copytoreg stuff together with the following stuff.
 | 
						|
    Glue = SDValue();
 | 
						|
    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
 | 
						|
      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
 | 
						|
                               RegsToPass[i].second, Glue);
 | 
						|
      Glue = Chain.getValue(1);
 | 
						|
    }
 | 
						|
    Glue = SDValue();
 | 
						|
  }
 | 
						|
 | 
						|
  bool LongCalls = MF.getSubtarget<HexagonSubtarget>().useLongCalls();
 | 
						|
  unsigned Flags = LongCalls ? HexagonII::HMOTF_ConstExtended : 0;
 | 
						|
 | 
						|
  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
 | 
						|
  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
 | 
						|
  // node so that legalize doesn't hack it.
 | 
						|
  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
 | 
						|
    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, PtrVT, 0, Flags);
 | 
						|
  } else if (ExternalSymbolSDNode *S =
 | 
						|
             dyn_cast<ExternalSymbolSDNode>(Callee)) {
 | 
						|
    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, Flags);
 | 
						|
  }
 | 
						|
 | 
						|
  // Returns a chain & a flag for retval copy to use.
 | 
						|
  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
 | 
						|
  SmallVector<SDValue, 8> Ops;
 | 
						|
  Ops.push_back(Chain);
 | 
						|
  Ops.push_back(Callee);
 | 
						|
 | 
						|
  // Add argument registers to the end of the list so that they are
 | 
						|
  // known live into the call.
 | 
						|
  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
 | 
						|
    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
 | 
						|
                                  RegsToPass[i].second.getValueType()));
 | 
						|
  }
 | 
						|
 | 
						|
  const uint32_t *Mask = HRI.getCallPreservedMask(MF, CallConv);
 | 
						|
  assert(Mask && "Missing call preserved mask for calling convention");
 | 
						|
  Ops.push_back(DAG.getRegisterMask(Mask));
 | 
						|
 | 
						|
  if (Glue.getNode())
 | 
						|
    Ops.push_back(Glue);
 | 
						|
 | 
						|
  if (CLI.IsTailCall) {
 | 
						|
    MFI.setHasTailCall();
 | 
						|
    return DAG.getNode(HexagonISD::TC_RETURN, dl, NodeTys, Ops);
 | 
						|
  }
 | 
						|
 | 
						|
  // Set this here because we need to know this for "hasFP" in frame lowering.
 | 
						|
  // The target-independent code calls getFrameRegister before setting it, and
 | 
						|
  // getFrameRegister uses hasFP to determine whether the function has FP.
 | 
						|
  MFI.setHasCalls(true);
 | 
						|
 | 
						|
  unsigned OpCode = DoesNotReturn ? HexagonISD::CALLnr : HexagonISD::CALL;
 | 
						|
  Chain = DAG.getNode(OpCode, dl, NodeTys, Ops);
 | 
						|
  Glue = Chain.getValue(1);
 | 
						|
 | 
						|
  // Create the CALLSEQ_END node.
 | 
						|
  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
 | 
						|
                             DAG.getIntPtrConstant(0, dl, true), Glue, dl);
 | 
						|
  Glue = Chain.getValue(1);
 | 
						|
 | 
						|
  // Handle result values, copying them out of physregs into vregs that we
 | 
						|
  // return.
 | 
						|
  return LowerCallResult(Chain, Glue, CallConv, IsVarArg, Ins, dl, DAG,
 | 
						|
                         InVals, OutVals, Callee);
 | 
						|
}
 | 
						|
 | 
						|
/// Returns true by value, base pointer and offset pointer and addressing
 | 
						|
/// mode by reference if this node can be combined with a load / store to
 | 
						|
/// form a post-indexed load / store.
 | 
						|
bool HexagonTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
 | 
						|
      SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM,
 | 
						|
      SelectionDAG &DAG) const {
 | 
						|
  LSBaseSDNode *LSN = dyn_cast<LSBaseSDNode>(N);
 | 
						|
  if (!LSN)
 | 
						|
    return false;
 | 
						|
  EVT VT = LSN->getMemoryVT();
 | 
						|
  if (!VT.isSimple())
 | 
						|
    return false;
 | 
						|
  bool IsLegalType = VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32 ||
 | 
						|
                     VT == MVT::i64 || VT == MVT::f32 || VT == MVT::f64 ||
 | 
						|
                     VT == MVT::v2i16 || VT == MVT::v2i32 || VT == MVT::v4i8 ||
 | 
						|
                     VT == MVT::v4i16 || VT == MVT::v8i8 ||
 | 
						|
                     Subtarget.isHVXVectorType(VT.getSimpleVT());
 | 
						|
  if (!IsLegalType)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (Op->getOpcode() != ISD::ADD)
 | 
						|
    return false;
 | 
						|
  Base = Op->getOperand(0);
 | 
						|
  Offset = Op->getOperand(1);
 | 
						|
  if (!isa<ConstantSDNode>(Offset.getNode()))
 | 
						|
    return false;
 | 
						|
  AM = ISD::POST_INC;
 | 
						|
 | 
						|
  int32_t V = cast<ConstantSDNode>(Offset.getNode())->getSExtValue();
 | 
						|
  return Subtarget.getInstrInfo()->isValidAutoIncImm(VT, V);
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
HexagonTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
 | 
						|
  const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
 | 
						|
  unsigned LR = HRI.getRARegister();
 | 
						|
 | 
						|
  if ((Op.getOpcode() != ISD::INLINEASM &&
 | 
						|
       Op.getOpcode() != ISD::INLINEASM_BR) || HMFI.hasClobberLR())
 | 
						|
    return Op;
 | 
						|
 | 
						|
  unsigned NumOps = Op.getNumOperands();
 | 
						|
  if (Op.getOperand(NumOps-1).getValueType() == MVT::Glue)
 | 
						|
    --NumOps;  // Ignore the flag operand.
 | 
						|
 | 
						|
  for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
 | 
						|
    unsigned Flags = cast<ConstantSDNode>(Op.getOperand(i))->getZExtValue();
 | 
						|
    unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
 | 
						|
    ++i;  // Skip the ID value.
 | 
						|
 | 
						|
    switch (InlineAsm::getKind(Flags)) {
 | 
						|
      default:
 | 
						|
        llvm_unreachable("Bad flags!");
 | 
						|
      case InlineAsm::Kind_RegUse:
 | 
						|
      case InlineAsm::Kind_Imm:
 | 
						|
      case InlineAsm::Kind_Mem:
 | 
						|
        i += NumVals;
 | 
						|
        break;
 | 
						|
      case InlineAsm::Kind_Clobber:
 | 
						|
      case InlineAsm::Kind_RegDef:
 | 
						|
      case InlineAsm::Kind_RegDefEarlyClobber: {
 | 
						|
        for (; NumVals; --NumVals, ++i) {
 | 
						|
          unsigned Reg = cast<RegisterSDNode>(Op.getOperand(i))->getReg();
 | 
						|
          if (Reg != LR)
 | 
						|
            continue;
 | 
						|
          HMFI.setHasClobberLR(true);
 | 
						|
          return Op;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Op;
 | 
						|
}
 | 
						|
 | 
						|
// Need to transform ISD::PREFETCH into something that doesn't inherit
 | 
						|
// all of the properties of ISD::PREFETCH, specifically SDNPMayLoad and
 | 
						|
// SDNPMayStore.
 | 
						|
SDValue HexagonTargetLowering::LowerPREFETCH(SDValue Op,
 | 
						|
                                             SelectionDAG &DAG) const {
 | 
						|
  SDValue Chain = Op.getOperand(0);
 | 
						|
  SDValue Addr = Op.getOperand(1);
 | 
						|
  // Lower it to DCFETCH($reg, #0).  A "pat" will try to merge the offset in,
 | 
						|
  // if the "reg" is fed by an "add".
 | 
						|
  SDLoc DL(Op);
 | 
						|
  SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
 | 
						|
  return DAG.getNode(HexagonISD::DCFETCH, DL, MVT::Other, Chain, Addr, Zero);
 | 
						|
}
 | 
						|
 | 
						|
// Custom-handle ISD::READCYCLECOUNTER because the target-independent SDNode
 | 
						|
// is marked as having side-effects, while the register read on Hexagon does
 | 
						|
// not have any. TableGen refuses to accept the direct pattern from that node
 | 
						|
// to the A4_tfrcpp.
 | 
						|
SDValue HexagonTargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
 | 
						|
                                                     SelectionDAG &DAG) const {
 | 
						|
  SDValue Chain = Op.getOperand(0);
 | 
						|
  SDLoc dl(Op);
 | 
						|
  SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
 | 
						|
  return DAG.getNode(HexagonISD::READCYCLE, dl, VTs, Chain);
 | 
						|
}
 | 
						|
 | 
						|
SDValue HexagonTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
 | 
						|
      SelectionDAG &DAG) const {
 | 
						|
  SDValue Chain = Op.getOperand(0);
 | 
						|
  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
 | 
						|
  // Lower the hexagon_prefetch builtin to DCFETCH, as above.
 | 
						|
  if (IntNo == Intrinsic::hexagon_prefetch) {
 | 
						|
    SDValue Addr = Op.getOperand(2);
 | 
						|
    SDLoc DL(Op);
 | 
						|
    SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
 | 
						|
    return DAG.getNode(HexagonISD::DCFETCH, DL, MVT::Other, Chain, Addr, Zero);
 | 
						|
  }
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
HexagonTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
 | 
						|
                                               SelectionDAG &DAG) const {
 | 
						|
  SDValue Chain = Op.getOperand(0);
 | 
						|
  SDValue Size = Op.getOperand(1);
 | 
						|
  SDValue Align = Op.getOperand(2);
 | 
						|
  SDLoc dl(Op);
 | 
						|
 | 
						|
  ConstantSDNode *AlignConst = dyn_cast<ConstantSDNode>(Align);
 | 
						|
  assert(AlignConst && "Non-constant Align in LowerDYNAMIC_STACKALLOC");
 | 
						|
 | 
						|
  unsigned A = AlignConst->getSExtValue();
 | 
						|
  auto &HFI = *Subtarget.getFrameLowering();
 | 
						|
  // "Zero" means natural stack alignment.
 | 
						|
  if (A == 0)
 | 
						|
    A = HFI.getStackAlign().value();
 | 
						|
 | 
						|
  LLVM_DEBUG({
 | 
						|
    dbgs () << __func__ << " Align: " << A << " Size: ";
 | 
						|
    Size.getNode()->dump(&DAG);
 | 
						|
    dbgs() << "\n";
 | 
						|
  });
 | 
						|
 | 
						|
  SDValue AC = DAG.getConstant(A, dl, MVT::i32);
 | 
						|
  SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
 | 
						|
  SDValue AA = DAG.getNode(HexagonISD::ALLOCA, dl, VTs, Chain, Size, AC);
 | 
						|
 | 
						|
  DAG.ReplaceAllUsesOfValueWith(Op, AA);
 | 
						|
  return AA;
 | 
						|
}
 | 
						|
 | 
						|
SDValue HexagonTargetLowering::LowerFormalArguments(
 | 
						|
    SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
 | 
						|
    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
 | 
						|
    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  MachineFrameInfo &MFI = MF.getFrameInfo();
 | 
						|
  MachineRegisterInfo &MRI = MF.getRegInfo();
 | 
						|
 | 
						|
  // Linux ABI treats var-arg calls the same way as regular ones.
 | 
						|
  bool TreatAsVarArg = !Subtarget.isEnvironmentMusl() && IsVarArg;
 | 
						|
 | 
						|
  // Assign locations to all of the incoming arguments.
 | 
						|
  SmallVector<CCValAssign, 16> ArgLocs;
 | 
						|
  HexagonCCState CCInfo(CallConv, TreatAsVarArg, MF, ArgLocs,
 | 
						|
                        *DAG.getContext(),
 | 
						|
                        MF.getFunction().getFunctionType()->getNumParams());
 | 
						|
 | 
						|
  if (Subtarget.useHVXOps())
 | 
						|
    CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon_HVX);
 | 
						|
  else
 | 
						|
    CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon);
 | 
						|
 | 
						|
  // For LLVM, in the case when returning a struct by value (>8byte),
 | 
						|
  // the first argument is a pointer that points to the location on caller's
 | 
						|
  // stack where the return value will be stored. For Hexagon, the location on
 | 
						|
  // caller's stack is passed only when the struct size is smaller than (and
 | 
						|
  // equal to) 8 bytes. If not, no address will be passed into callee and
 | 
						|
  // callee return the result direclty through R0/R1.
 | 
						|
  auto NextSingleReg = [] (const TargetRegisterClass &RC, unsigned Reg) {
 | 
						|
    switch (RC.getID()) {
 | 
						|
    case Hexagon::IntRegsRegClassID:
 | 
						|
      return Reg - Hexagon::R0 + 1;
 | 
						|
    case Hexagon::DoubleRegsRegClassID:
 | 
						|
      return (Reg - Hexagon::D0 + 1) * 2;
 | 
						|
    case Hexagon::HvxVRRegClassID:
 | 
						|
      return Reg - Hexagon::V0 + 1;
 | 
						|
    case Hexagon::HvxWRRegClassID:
 | 
						|
      return (Reg - Hexagon::W0 + 1) * 2;
 | 
						|
    }
 | 
						|
    llvm_unreachable("Unexpected register class");
 | 
						|
  };
 | 
						|
 | 
						|
  auto &HFL = const_cast<HexagonFrameLowering&>(*Subtarget.getFrameLowering());
 | 
						|
  auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
 | 
						|
  HFL.FirstVarArgSavedReg = 0;
 | 
						|
  HMFI.setFirstNamedArgFrameIndex(-int(MFI.getNumFixedObjects()));
 | 
						|
 | 
						|
  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
 | 
						|
    CCValAssign &VA = ArgLocs[i];
 | 
						|
    ISD::ArgFlagsTy Flags = Ins[i].Flags;
 | 
						|
    bool ByVal = Flags.isByVal();
 | 
						|
 | 
						|
    // Arguments passed in registers:
 | 
						|
    // 1. 32- and 64-bit values and HVX vectors are passed directly,
 | 
						|
    // 2. Large structs are passed via an address, and the address is
 | 
						|
    //    passed in a register.
 | 
						|
    if (VA.isRegLoc() && ByVal && Flags.getByValSize() <= 8)
 | 
						|
      llvm_unreachable("ByValSize must be bigger than 8 bytes");
 | 
						|
 | 
						|
    bool InReg = VA.isRegLoc() &&
 | 
						|
                 (!ByVal || (ByVal && Flags.getByValSize() > 8));
 | 
						|
 | 
						|
    if (InReg) {
 | 
						|
      MVT RegVT = VA.getLocVT();
 | 
						|
      if (VA.getLocInfo() == CCValAssign::BCvt)
 | 
						|
        RegVT = VA.getValVT();
 | 
						|
 | 
						|
      const TargetRegisterClass *RC = getRegClassFor(RegVT);
 | 
						|
      Register VReg = MRI.createVirtualRegister(RC);
 | 
						|
      SDValue Copy = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);
 | 
						|
 | 
						|
      // Treat values of type MVT::i1 specially: they are passed in
 | 
						|
      // registers of type i32, but they need to remain as values of
 | 
						|
      // type i1 for consistency of the argument lowering.
 | 
						|
      if (VA.getValVT() == MVT::i1) {
 | 
						|
        assert(RegVT.getSizeInBits() <= 32);
 | 
						|
        SDValue T = DAG.getNode(ISD::AND, dl, RegVT,
 | 
						|
                                Copy, DAG.getConstant(1, dl, RegVT));
 | 
						|
        Copy = DAG.getSetCC(dl, MVT::i1, T, DAG.getConstant(0, dl, RegVT),
 | 
						|
                            ISD::SETNE);
 | 
						|
      } else {
 | 
						|
#ifndef NDEBUG
 | 
						|
        unsigned RegSize = RegVT.getSizeInBits();
 | 
						|
        assert(RegSize == 32 || RegSize == 64 ||
 | 
						|
               Subtarget.isHVXVectorType(RegVT));
 | 
						|
#endif
 | 
						|
      }
 | 
						|
      InVals.push_back(Copy);
 | 
						|
      MRI.addLiveIn(VA.getLocReg(), VReg);
 | 
						|
      HFL.FirstVarArgSavedReg = NextSingleReg(*RC, VA.getLocReg());
 | 
						|
    } else {
 | 
						|
      assert(VA.isMemLoc() && "Argument should be passed in memory");
 | 
						|
 | 
						|
      // If it's a byval parameter, then we need to compute the
 | 
						|
      // "real" size, not the size of the pointer.
 | 
						|
      unsigned ObjSize = Flags.isByVal()
 | 
						|
                            ? Flags.getByValSize()
 | 
						|
                            : VA.getLocVT().getStoreSizeInBits() / 8;
 | 
						|
 | 
						|
      // Create the frame index object for this incoming parameter.
 | 
						|
      int Offset = HEXAGON_LRFP_SIZE + VA.getLocMemOffset();
 | 
						|
      int FI = MFI.CreateFixedObject(ObjSize, Offset, true);
 | 
						|
      SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
 | 
						|
 | 
						|
      if (Flags.isByVal()) {
 | 
						|
        // If it's a pass-by-value aggregate, then do not dereference the stack
 | 
						|
        // location. Instead, we should generate a reference to the stack
 | 
						|
        // location.
 | 
						|
        InVals.push_back(FIN);
 | 
						|
      } else {
 | 
						|
        SDValue L = DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
 | 
						|
                                MachinePointerInfo::getFixedStack(MF, FI, 0));
 | 
						|
        InVals.push_back(L);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (IsVarArg && Subtarget.isEnvironmentMusl()) {
 | 
						|
    for (int i = HFL.FirstVarArgSavedReg; i < 6; i++)
 | 
						|
      MRI.addLiveIn(Hexagon::R0+i);
 | 
						|
  }
 | 
						|
 | 
						|
  if (IsVarArg && Subtarget.isEnvironmentMusl()) {
 | 
						|
    HMFI.setFirstNamedArgFrameIndex(HMFI.getFirstNamedArgFrameIndex() - 1);
 | 
						|
    HMFI.setLastNamedArgFrameIndex(-int(MFI.getNumFixedObjects()));
 | 
						|
 | 
						|
    // Create Frame index for the start of register saved area.
 | 
						|
    int NumVarArgRegs = 6 - HFL.FirstVarArgSavedReg;
 | 
						|
    bool RequiresPadding = (NumVarArgRegs & 1);
 | 
						|
    int RegSaveAreaSizePlusPadding = RequiresPadding
 | 
						|
                                        ? (NumVarArgRegs + 1) * 4
 | 
						|
                                        : NumVarArgRegs * 4;
 | 
						|
 | 
						|
    if (RegSaveAreaSizePlusPadding > 0) {
 | 
						|
      // The offset to saved register area should be 8 byte aligned.
 | 
						|
      int RegAreaStart = HEXAGON_LRFP_SIZE + CCInfo.getNextStackOffset();
 | 
						|
      if (!(RegAreaStart % 8))
 | 
						|
        RegAreaStart = (RegAreaStart + 7) & -8;
 | 
						|
 | 
						|
      int RegSaveAreaFrameIndex =
 | 
						|
        MFI.CreateFixedObject(RegSaveAreaSizePlusPadding, RegAreaStart, true);
 | 
						|
      HMFI.setRegSavedAreaStartFrameIndex(RegSaveAreaFrameIndex);
 | 
						|
 | 
						|
      // This will point to the next argument passed via stack.
 | 
						|
      int Offset = RegAreaStart + RegSaveAreaSizePlusPadding;
 | 
						|
      int FI = MFI.CreateFixedObject(Hexagon_PointerSize, Offset, true);
 | 
						|
      HMFI.setVarArgsFrameIndex(FI);
 | 
						|
    } else {
 | 
						|
      // This will point to the next argument passed via stack, when
 | 
						|
      // there is no saved register area.
 | 
						|
      int Offset = HEXAGON_LRFP_SIZE + CCInfo.getNextStackOffset();
 | 
						|
      int FI = MFI.CreateFixedObject(Hexagon_PointerSize, Offset, true);
 | 
						|
      HMFI.setRegSavedAreaStartFrameIndex(FI);
 | 
						|
      HMFI.setVarArgsFrameIndex(FI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  if (IsVarArg && !Subtarget.isEnvironmentMusl()) {
 | 
						|
    // This will point to the next argument passed via stack.
 | 
						|
    int Offset = HEXAGON_LRFP_SIZE + CCInfo.getNextStackOffset();
 | 
						|
    int FI = MFI.CreateFixedObject(Hexagon_PointerSize, Offset, true);
 | 
						|
    HMFI.setVarArgsFrameIndex(FI);
 | 
						|
  }
 | 
						|
 | 
						|
  return Chain;
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
HexagonTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  // VASTART stores the address of the VarArgsFrameIndex slot into the
 | 
						|
  // memory location argument.
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  HexagonMachineFunctionInfo *QFI = MF.getInfo<HexagonMachineFunctionInfo>();
 | 
						|
  SDValue Addr = DAG.getFrameIndex(QFI->getVarArgsFrameIndex(), MVT::i32);
 | 
						|
  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
 | 
						|
 | 
						|
  if (!Subtarget.isEnvironmentMusl()) {
 | 
						|
    return DAG.getStore(Op.getOperand(0), SDLoc(Op), Addr, Op.getOperand(1),
 | 
						|
                        MachinePointerInfo(SV));
 | 
						|
  }
 | 
						|
  auto &FuncInfo = *MF.getInfo<HexagonMachineFunctionInfo>();
 | 
						|
  auto &HFL = *Subtarget.getFrameLowering();
 | 
						|
  SDLoc DL(Op);
 | 
						|
  SmallVector<SDValue, 8> MemOps;
 | 
						|
 | 
						|
  // Get frame index of va_list.
 | 
						|
  SDValue FIN = Op.getOperand(1);
 | 
						|
 | 
						|
  // If first Vararg register is odd, add 4 bytes to start of
 | 
						|
  // saved register area to point to the first register location.
 | 
						|
  // This is because the saved register area has to be 8 byte aligned.
 | 
						|
  // Incase of an odd start register, there will be 4 bytes of padding in
 | 
						|
  // the beginning of saved register area. If all registers area used up,
 | 
						|
  // the following condition will handle it correctly.
 | 
						|
  SDValue SavedRegAreaStartFrameIndex =
 | 
						|
    DAG.getFrameIndex(FuncInfo.getRegSavedAreaStartFrameIndex(), MVT::i32);
 | 
						|
 | 
						|
  auto PtrVT = getPointerTy(DAG.getDataLayout());
 | 
						|
 | 
						|
  if (HFL.FirstVarArgSavedReg & 1)
 | 
						|
    SavedRegAreaStartFrameIndex =
 | 
						|
      DAG.getNode(ISD::ADD, DL, PtrVT,
 | 
						|
                  DAG.getFrameIndex(FuncInfo.getRegSavedAreaStartFrameIndex(),
 | 
						|
                                    MVT::i32),
 | 
						|
                  DAG.getIntPtrConstant(4, DL));
 | 
						|
 | 
						|
  // Store the saved register area start pointer.
 | 
						|
  SDValue Store =
 | 
						|
    DAG.getStore(Op.getOperand(0), DL,
 | 
						|
                 SavedRegAreaStartFrameIndex,
 | 
						|
                 FIN, MachinePointerInfo(SV));
 | 
						|
  MemOps.push_back(Store);
 | 
						|
 | 
						|
  // Store saved register area end pointer.
 | 
						|
  FIN = DAG.getNode(ISD::ADD, DL, PtrVT,
 | 
						|
                    FIN, DAG.getIntPtrConstant(4, DL));
 | 
						|
  Store = DAG.getStore(Op.getOperand(0), DL,
 | 
						|
                       DAG.getFrameIndex(FuncInfo.getVarArgsFrameIndex(),
 | 
						|
                                         PtrVT),
 | 
						|
                       FIN, MachinePointerInfo(SV, 4));
 | 
						|
  MemOps.push_back(Store);
 | 
						|
 | 
						|
  // Store overflow area pointer.
 | 
						|
  FIN = DAG.getNode(ISD::ADD, DL, PtrVT,
 | 
						|
                    FIN, DAG.getIntPtrConstant(4, DL));
 | 
						|
  Store = DAG.getStore(Op.getOperand(0), DL,
 | 
						|
                       DAG.getFrameIndex(FuncInfo.getVarArgsFrameIndex(),
 | 
						|
                                         PtrVT),
 | 
						|
                       FIN, MachinePointerInfo(SV, 8));
 | 
						|
  MemOps.push_back(Store);
 | 
						|
 | 
						|
  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
HexagonTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  // Assert that the linux ABI is enabled for the current compilation.
 | 
						|
  assert(Subtarget.isEnvironmentMusl() && "Linux ABI should be enabled");
 | 
						|
  SDValue Chain = Op.getOperand(0);
 | 
						|
  SDValue DestPtr = Op.getOperand(1);
 | 
						|
  SDValue SrcPtr = Op.getOperand(2);
 | 
						|
  const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
 | 
						|
  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
 | 
						|
  SDLoc DL(Op);
 | 
						|
  // Size of the va_list is 12 bytes as it has 3 pointers. Therefore,
 | 
						|
  // we need to memcopy 12 bytes from va_list to another similar list.
 | 
						|
  return DAG.getMemcpy(Chain, DL, DestPtr, SrcPtr,
 | 
						|
                       DAG.getIntPtrConstant(12, DL), Align(4),
 | 
						|
                       /*isVolatile*/ false, false, false,
 | 
						|
                       MachinePointerInfo(DestSV), MachinePointerInfo(SrcSV));
 | 
						|
}
 | 
						|
 | 
						|
SDValue HexagonTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  const SDLoc &dl(Op);
 | 
						|
  SDValue LHS = Op.getOperand(0);
 | 
						|
  SDValue RHS = Op.getOperand(1);
 | 
						|
  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
 | 
						|
  MVT ResTy = ty(Op);
 | 
						|
  MVT OpTy = ty(LHS);
 | 
						|
 | 
						|
  if (OpTy == MVT::v2i16 || OpTy == MVT::v4i8) {
 | 
						|
    MVT ElemTy = OpTy.getVectorElementType();
 | 
						|
    assert(ElemTy.isScalarInteger());
 | 
						|
    MVT WideTy = MVT::getVectorVT(MVT::getIntegerVT(2*ElemTy.getSizeInBits()),
 | 
						|
                                  OpTy.getVectorNumElements());
 | 
						|
    return DAG.getSetCC(dl, ResTy,
 | 
						|
                        DAG.getSExtOrTrunc(LHS, SDLoc(LHS), WideTy),
 | 
						|
                        DAG.getSExtOrTrunc(RHS, SDLoc(RHS), WideTy), CC);
 | 
						|
  }
 | 
						|
 | 
						|
  // Treat all other vector types as legal.
 | 
						|
  if (ResTy.isVector())
 | 
						|
    return Op;
 | 
						|
 | 
						|
  // Comparisons of short integers should use sign-extend, not zero-extend,
 | 
						|
  // since we can represent small negative values in the compare instructions.
 | 
						|
  // The LLVM default is to use zero-extend arbitrarily in these cases.
 | 
						|
  auto isSExtFree = [this](SDValue N) {
 | 
						|
    switch (N.getOpcode()) {
 | 
						|
      case ISD::TRUNCATE: {
 | 
						|
        // A sign-extend of a truncate of a sign-extend is free.
 | 
						|
        SDValue Op = N.getOperand(0);
 | 
						|
        if (Op.getOpcode() != ISD::AssertSext)
 | 
						|
          return false;
 | 
						|
        EVT OrigTy = cast<VTSDNode>(Op.getOperand(1))->getVT();
 | 
						|
        unsigned ThisBW = ty(N).getSizeInBits();
 | 
						|
        unsigned OrigBW = OrigTy.getSizeInBits();
 | 
						|
        // The type that was sign-extended to get the AssertSext must be
 | 
						|
        // narrower than the type of N (so that N has still the same value
 | 
						|
        // as the original).
 | 
						|
        return ThisBW >= OrigBW;
 | 
						|
      }
 | 
						|
      case ISD::LOAD:
 | 
						|
        // We have sign-extended loads.
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  };
 | 
						|
 | 
						|
  if (OpTy == MVT::i8 || OpTy == MVT::i16) {
 | 
						|
    ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS);
 | 
						|
    bool IsNegative = C && C->getAPIntValue().isNegative();
 | 
						|
    if (IsNegative || isSExtFree(LHS) || isSExtFree(RHS))
 | 
						|
      return DAG.getSetCC(dl, ResTy,
 | 
						|
                          DAG.getSExtOrTrunc(LHS, SDLoc(LHS), MVT::i32),
 | 
						|
                          DAG.getSExtOrTrunc(RHS, SDLoc(RHS), MVT::i32), CC);
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
HexagonTargetLowering::LowerVSELECT(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  SDValue PredOp = Op.getOperand(0);
 | 
						|
  SDValue Op1 = Op.getOperand(1), Op2 = Op.getOperand(2);
 | 
						|
  MVT OpTy = ty(Op1);
 | 
						|
  const SDLoc &dl(Op);
 | 
						|
 | 
						|
  if (OpTy == MVT::v2i16 || OpTy == MVT::v4i8) {
 | 
						|
    MVT ElemTy = OpTy.getVectorElementType();
 | 
						|
    assert(ElemTy.isScalarInteger());
 | 
						|
    MVT WideTy = MVT::getVectorVT(MVT::getIntegerVT(2*ElemTy.getSizeInBits()),
 | 
						|
                                  OpTy.getVectorNumElements());
 | 
						|
    // Generate (trunc (select (_, sext, sext))).
 | 
						|
    return DAG.getSExtOrTrunc(
 | 
						|
              DAG.getSelect(dl, WideTy, PredOp,
 | 
						|
                            DAG.getSExtOrTrunc(Op1, dl, WideTy),
 | 
						|
                            DAG.getSExtOrTrunc(Op2, dl, WideTy)),
 | 
						|
              dl, OpTy);
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
HexagonTargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  EVT ValTy = Op.getValueType();
 | 
						|
  ConstantPoolSDNode *CPN = cast<ConstantPoolSDNode>(Op);
 | 
						|
  Constant *CVal = nullptr;
 | 
						|
  bool isVTi1Type = false;
 | 
						|
  if (auto *CV = dyn_cast<ConstantVector>(CPN->getConstVal())) {
 | 
						|
    if (cast<VectorType>(CV->getType())->getElementType()->isIntegerTy(1)) {
 | 
						|
      IRBuilder<> IRB(CV->getContext());
 | 
						|
      SmallVector<Constant*, 128> NewConst;
 | 
						|
      unsigned VecLen = CV->getNumOperands();
 | 
						|
      assert(isPowerOf2_32(VecLen) &&
 | 
						|
             "conversion only supported for pow2 VectorSize");
 | 
						|
      for (unsigned i = 0; i < VecLen; ++i)
 | 
						|
        NewConst.push_back(IRB.getInt8(CV->getOperand(i)->isZeroValue()));
 | 
						|
 | 
						|
      CVal = ConstantVector::get(NewConst);
 | 
						|
      isVTi1Type = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  unsigned Align = CPN->getAlignment();
 | 
						|
  bool IsPositionIndependent = isPositionIndependent();
 | 
						|
  unsigned char TF = IsPositionIndependent ? HexagonII::MO_PCREL : 0;
 | 
						|
 | 
						|
  unsigned Offset = 0;
 | 
						|
  SDValue T;
 | 
						|
  if (CPN->isMachineConstantPoolEntry())
 | 
						|
    T = DAG.getTargetConstantPool(CPN->getMachineCPVal(), ValTy, Align, Offset,
 | 
						|
                                  TF);
 | 
						|
  else if (isVTi1Type)
 | 
						|
    T = DAG.getTargetConstantPool(CVal, ValTy, Align, Offset, TF);
 | 
						|
  else
 | 
						|
    T = DAG.getTargetConstantPool(CPN->getConstVal(), ValTy, Align, Offset, TF);
 | 
						|
 | 
						|
  assert(cast<ConstantPoolSDNode>(T)->getTargetFlags() == TF &&
 | 
						|
         "Inconsistent target flag encountered");
 | 
						|
 | 
						|
  if (IsPositionIndependent)
 | 
						|
    return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), ValTy, T);
 | 
						|
  return DAG.getNode(HexagonISD::CP, SDLoc(Op), ValTy, T);
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
HexagonTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  int Idx = cast<JumpTableSDNode>(Op)->getIndex();
 | 
						|
  if (isPositionIndependent()) {
 | 
						|
    SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL);
 | 
						|
    return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), VT, T);
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue T = DAG.getTargetJumpTable(Idx, VT);
 | 
						|
  return DAG.getNode(HexagonISD::JT, SDLoc(Op), VT, T);
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
HexagonTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  MachineFrameInfo &MFI = MF.getFrameInfo();
 | 
						|
  MFI.setReturnAddressIsTaken(true);
 | 
						|
 | 
						|
  if (verifyReturnAddressArgumentIsConstant(Op, DAG))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  SDLoc dl(Op);
 | 
						|
  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
 | 
						|
  if (Depth) {
 | 
						|
    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
 | 
						|
    SDValue Offset = DAG.getConstant(4, dl, MVT::i32);
 | 
						|
    return DAG.getLoad(VT, dl, DAG.getEntryNode(),
 | 
						|
                       DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
 | 
						|
                       MachinePointerInfo());
 | 
						|
  }
 | 
						|
 | 
						|
  // Return LR, which contains the return address. Mark it an implicit live-in.
 | 
						|
  unsigned Reg = MF.addLiveIn(HRI.getRARegister(), getRegClassFor(MVT::i32));
 | 
						|
  return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
HexagonTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
 | 
						|
  MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
 | 
						|
  MFI.setFrameAddressIsTaken(true);
 | 
						|
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  SDLoc dl(Op);
 | 
						|
  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
 | 
						|
  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
 | 
						|
                                         HRI.getFrameRegister(), VT);
 | 
						|
  while (Depth--)
 | 
						|
    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
 | 
						|
                            MachinePointerInfo());
 | 
						|
  return FrameAddr;
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
HexagonTargetLowering::LowerATOMIC_FENCE(SDValue Op, SelectionDAG& DAG) const {
 | 
						|
  SDLoc dl(Op);
 | 
						|
  return DAG.getNode(HexagonISD::BARRIER, dl, MVT::Other, Op.getOperand(0));
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
HexagonTargetLowering::LowerGLOBALADDRESS(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  SDLoc dl(Op);
 | 
						|
  auto *GAN = cast<GlobalAddressSDNode>(Op);
 | 
						|
  auto PtrVT = getPointerTy(DAG.getDataLayout());
 | 
						|
  auto *GV = GAN->getGlobal();
 | 
						|
  int64_t Offset = GAN->getOffset();
 | 
						|
 | 
						|
  auto &HLOF = *HTM.getObjFileLowering();
 | 
						|
  Reloc::Model RM = HTM.getRelocationModel();
 | 
						|
 | 
						|
  if (RM == Reloc::Static) {
 | 
						|
    SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset);
 | 
						|
    const GlobalObject *GO = GV->getBaseObject();
 | 
						|
    if (GO && Subtarget.useSmallData() && HLOF.isGlobalInSmallSection(GO, HTM))
 | 
						|
      return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, GA);
 | 
						|
    return DAG.getNode(HexagonISD::CONST32, dl, PtrVT, GA);
 | 
						|
  }
 | 
						|
 | 
						|
  bool UsePCRel = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
 | 
						|
  if (UsePCRel) {
 | 
						|
    SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset,
 | 
						|
                                            HexagonII::MO_PCREL);
 | 
						|
    return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, GA);
 | 
						|
  }
 | 
						|
 | 
						|
  // Use GOT index.
 | 
						|
  SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
 | 
						|
  SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, HexagonII::MO_GOT);
 | 
						|
  SDValue Off = DAG.getConstant(Offset, dl, MVT::i32);
 | 
						|
  return DAG.getNode(HexagonISD::AT_GOT, dl, PtrVT, GOT, GA, Off);
 | 
						|
}
 | 
						|
 | 
						|
// Specifies that for loads and stores VT can be promoted to PromotedLdStVT.
 | 
						|
SDValue
 | 
						|
HexagonTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
 | 
						|
  SDLoc dl(Op);
 | 
						|
  EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | 
						|
 | 
						|
  Reloc::Model RM = HTM.getRelocationModel();
 | 
						|
  if (RM == Reloc::Static) {
 | 
						|
    SDValue A = DAG.getTargetBlockAddress(BA, PtrVT);
 | 
						|
    return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, A);
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue A = DAG.getTargetBlockAddress(BA, PtrVT, 0, HexagonII::MO_PCREL);
 | 
						|
  return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, A);
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
HexagonTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op, SelectionDAG &DAG)
 | 
						|
      const {
 | 
						|
  EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | 
						|
  SDValue GOTSym = DAG.getTargetExternalSymbol(HEXAGON_GOT_SYM_NAME, PtrVT,
 | 
						|
                                               HexagonII::MO_PCREL);
 | 
						|
  return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), PtrVT, GOTSym);
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
HexagonTargetLowering::GetDynamicTLSAddr(SelectionDAG &DAG, SDValue Chain,
 | 
						|
      GlobalAddressSDNode *GA, SDValue Glue, EVT PtrVT, unsigned ReturnReg,
 | 
						|
      unsigned char OperandFlags) const {
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  MachineFrameInfo &MFI = MF.getFrameInfo();
 | 
						|
  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
 | 
						|
  SDLoc dl(GA);
 | 
						|
  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
 | 
						|
                                           GA->getValueType(0),
 | 
						|
                                           GA->getOffset(),
 | 
						|
                                           OperandFlags);
 | 
						|
  // Create Operands for the call.The Operands should have the following:
 | 
						|
  // 1. Chain SDValue
 | 
						|
  // 2. Callee which in this case is the Global address value.
 | 
						|
  // 3. Registers live into the call.In this case its R0, as we
 | 
						|
  //    have just one argument to be passed.
 | 
						|
  // 4. Glue.
 | 
						|
  // Note: The order is important.
 | 
						|
 | 
						|
  const auto &HRI = *Subtarget.getRegisterInfo();
 | 
						|
  const uint32_t *Mask = HRI.getCallPreservedMask(MF, CallingConv::C);
 | 
						|
  assert(Mask && "Missing call preserved mask for calling convention");
 | 
						|
  SDValue Ops[] = { Chain, TGA, DAG.getRegister(Hexagon::R0, PtrVT),
 | 
						|
                    DAG.getRegisterMask(Mask), Glue };
 | 
						|
  Chain = DAG.getNode(HexagonISD::CALL, dl, NodeTys, Ops);
 | 
						|
 | 
						|
  // Inform MFI that function has calls.
 | 
						|
  MFI.setAdjustsStack(true);
 | 
						|
 | 
						|
  Glue = Chain.getValue(1);
 | 
						|
  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Glue);
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Lower using the intial executable model for TLS addresses
 | 
						|
//
 | 
						|
SDValue
 | 
						|
HexagonTargetLowering::LowerToTLSInitialExecModel(GlobalAddressSDNode *GA,
 | 
						|
      SelectionDAG &DAG) const {
 | 
						|
  SDLoc dl(GA);
 | 
						|
  int64_t Offset = GA->getOffset();
 | 
						|
  auto PtrVT = getPointerTy(DAG.getDataLayout());
 | 
						|
 | 
						|
  // Get the thread pointer.
 | 
						|
  SDValue TP = DAG.getCopyFromReg(DAG.getEntryNode(), dl, Hexagon::UGP, PtrVT);
 | 
						|
 | 
						|
  bool IsPositionIndependent = isPositionIndependent();
 | 
						|
  unsigned char TF =
 | 
						|
      IsPositionIndependent ? HexagonII::MO_IEGOT : HexagonII::MO_IE;
 | 
						|
 | 
						|
  // First generate the TLS symbol address
 | 
						|
  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT,
 | 
						|
                                           Offset, TF);
 | 
						|
 | 
						|
  SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);
 | 
						|
 | 
						|
  if (IsPositionIndependent) {
 | 
						|
    // Generate the GOT pointer in case of position independent code
 | 
						|
    SDValue GOT = LowerGLOBAL_OFFSET_TABLE(Sym, DAG);
 | 
						|
 | 
						|
    // Add the TLS Symbol address to GOT pointer.This gives
 | 
						|
    // GOT relative relocation for the symbol.
 | 
						|
    Sym = DAG.getNode(ISD::ADD, dl, PtrVT, GOT, Sym);
 | 
						|
  }
 | 
						|
 | 
						|
  // Load the offset value for TLS symbol.This offset is relative to
 | 
						|
  // thread pointer.
 | 
						|
  SDValue LoadOffset =
 | 
						|
      DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Sym, MachinePointerInfo());
 | 
						|
 | 
						|
  // Address of the thread local variable is the add of thread
 | 
						|
  // pointer and the offset of the variable.
 | 
						|
  return DAG.getNode(ISD::ADD, dl, PtrVT, TP, LoadOffset);
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Lower using the local executable model for TLS addresses
 | 
						|
//
 | 
						|
SDValue
 | 
						|
HexagonTargetLowering::LowerToTLSLocalExecModel(GlobalAddressSDNode *GA,
 | 
						|
      SelectionDAG &DAG) const {
 | 
						|
  SDLoc dl(GA);
 | 
						|
  int64_t Offset = GA->getOffset();
 | 
						|
  auto PtrVT = getPointerTy(DAG.getDataLayout());
 | 
						|
 | 
						|
  // Get the thread pointer.
 | 
						|
  SDValue TP = DAG.getCopyFromReg(DAG.getEntryNode(), dl, Hexagon::UGP, PtrVT);
 | 
						|
  // Generate the TLS symbol address
 | 
						|
  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, Offset,
 | 
						|
                                           HexagonII::MO_TPREL);
 | 
						|
  SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);
 | 
						|
 | 
						|
  // Address of the thread local variable is the add of thread
 | 
						|
  // pointer and the offset of the variable.
 | 
						|
  return DAG.getNode(ISD::ADD, dl, PtrVT, TP, Sym);
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Lower using the general dynamic model for TLS addresses
 | 
						|
//
 | 
						|
SDValue
 | 
						|
HexagonTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
 | 
						|
      SelectionDAG &DAG) const {
 | 
						|
  SDLoc dl(GA);
 | 
						|
  int64_t Offset = GA->getOffset();
 | 
						|
  auto PtrVT = getPointerTy(DAG.getDataLayout());
 | 
						|
 | 
						|
  // First generate the TLS symbol address
 | 
						|
  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, Offset,
 | 
						|
                                           HexagonII::MO_GDGOT);
 | 
						|
 | 
						|
  // Then, generate the GOT pointer
 | 
						|
  SDValue GOT = LowerGLOBAL_OFFSET_TABLE(TGA, DAG);
 | 
						|
 | 
						|
  // Add the TLS symbol and the GOT pointer
 | 
						|
  SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);
 | 
						|
  SDValue Chain = DAG.getNode(ISD::ADD, dl, PtrVT, GOT, Sym);
 | 
						|
 | 
						|
  // Copy over the argument to R0
 | 
						|
  SDValue InFlag;
 | 
						|
  Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, Hexagon::R0, Chain, InFlag);
 | 
						|
  InFlag = Chain.getValue(1);
 | 
						|
 | 
						|
  unsigned Flags =
 | 
						|
      static_cast<const HexagonSubtarget &>(DAG.getSubtarget()).useLongCalls()
 | 
						|
          ? HexagonII::MO_GDPLT | HexagonII::HMOTF_ConstExtended
 | 
						|
          : HexagonII::MO_GDPLT;
 | 
						|
 | 
						|
  return GetDynamicTLSAddr(DAG, Chain, GA, InFlag, PtrVT,
 | 
						|
                           Hexagon::R0, Flags);
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Lower TLS addresses.
 | 
						|
//
 | 
						|
// For now for dynamic models, we only support the general dynamic model.
 | 
						|
//
 | 
						|
SDValue
 | 
						|
HexagonTargetLowering::LowerGlobalTLSAddress(SDValue Op,
 | 
						|
      SelectionDAG &DAG) const {
 | 
						|
  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
 | 
						|
 | 
						|
  switch (HTM.getTLSModel(GA->getGlobal())) {
 | 
						|
    case TLSModel::GeneralDynamic:
 | 
						|
    case TLSModel::LocalDynamic:
 | 
						|
      return LowerToTLSGeneralDynamicModel(GA, DAG);
 | 
						|
    case TLSModel::InitialExec:
 | 
						|
      return LowerToTLSInitialExecModel(GA, DAG);
 | 
						|
    case TLSModel::LocalExec:
 | 
						|
      return LowerToTLSLocalExecModel(GA, DAG);
 | 
						|
  }
 | 
						|
  llvm_unreachable("Bogus TLS model");
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// TargetLowering Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
HexagonTargetLowering::HexagonTargetLowering(const TargetMachine &TM,
 | 
						|
                                             const HexagonSubtarget &ST)
 | 
						|
    : TargetLowering(TM), HTM(static_cast<const HexagonTargetMachine&>(TM)),
 | 
						|
      Subtarget(ST) {
 | 
						|
  auto &HRI = *Subtarget.getRegisterInfo();
 | 
						|
 | 
						|
  setPrefLoopAlignment(Align(16));
 | 
						|
  setMinFunctionAlignment(Align(4));
 | 
						|
  setPrefFunctionAlignment(Align(16));
 | 
						|
  setStackPointerRegisterToSaveRestore(HRI.getStackRegister());
 | 
						|
  setBooleanContents(TargetLoweringBase::UndefinedBooleanContent);
 | 
						|
  setBooleanVectorContents(TargetLoweringBase::UndefinedBooleanContent);
 | 
						|
 | 
						|
  setMaxAtomicSizeInBitsSupported(64);
 | 
						|
  setMinCmpXchgSizeInBits(32);
 | 
						|
 | 
						|
  if (EnableHexSDNodeSched)
 | 
						|
    setSchedulingPreference(Sched::VLIW);
 | 
						|
  else
 | 
						|
    setSchedulingPreference(Sched::Source);
 | 
						|
 | 
						|
  // Limits for inline expansion of memcpy/memmove
 | 
						|
  MaxStoresPerMemcpy = MaxStoresPerMemcpyCL;
 | 
						|
  MaxStoresPerMemcpyOptSize = MaxStoresPerMemcpyOptSizeCL;
 | 
						|
  MaxStoresPerMemmove = MaxStoresPerMemmoveCL;
 | 
						|
  MaxStoresPerMemmoveOptSize = MaxStoresPerMemmoveOptSizeCL;
 | 
						|
  MaxStoresPerMemset = MaxStoresPerMemsetCL;
 | 
						|
  MaxStoresPerMemsetOptSize = MaxStoresPerMemsetOptSizeCL;
 | 
						|
 | 
						|
  //
 | 
						|
  // Set up register classes.
 | 
						|
  //
 | 
						|
 | 
						|
  addRegisterClass(MVT::i1,    &Hexagon::PredRegsRegClass);
 | 
						|
  addRegisterClass(MVT::v2i1,  &Hexagon::PredRegsRegClass);  // bbbbaaaa
 | 
						|
  addRegisterClass(MVT::v4i1,  &Hexagon::PredRegsRegClass);  // ddccbbaa
 | 
						|
  addRegisterClass(MVT::v8i1,  &Hexagon::PredRegsRegClass);  // hgfedcba
 | 
						|
  addRegisterClass(MVT::i32,   &Hexagon::IntRegsRegClass);
 | 
						|
  addRegisterClass(MVT::v2i16, &Hexagon::IntRegsRegClass);
 | 
						|
  addRegisterClass(MVT::v4i8,  &Hexagon::IntRegsRegClass);
 | 
						|
  addRegisterClass(MVT::i64,   &Hexagon::DoubleRegsRegClass);
 | 
						|
  addRegisterClass(MVT::v8i8,  &Hexagon::DoubleRegsRegClass);
 | 
						|
  addRegisterClass(MVT::v4i16, &Hexagon::DoubleRegsRegClass);
 | 
						|
  addRegisterClass(MVT::v2i32, &Hexagon::DoubleRegsRegClass);
 | 
						|
 | 
						|
  addRegisterClass(MVT::f32, &Hexagon::IntRegsRegClass);
 | 
						|
  addRegisterClass(MVT::f64, &Hexagon::DoubleRegsRegClass);
 | 
						|
 | 
						|
  //
 | 
						|
  // Handling of scalar operations.
 | 
						|
  //
 | 
						|
  // All operations default to "legal", except:
 | 
						|
  // - indexed loads and stores (pre-/post-incremented),
 | 
						|
  // - ANY_EXTEND_VECTOR_INREG, ATOMIC_CMP_SWAP_WITH_SUCCESS, CONCAT_VECTORS,
 | 
						|
  //   ConstantFP, DEBUGTRAP, FCEIL, FCOPYSIGN, FEXP, FEXP2, FFLOOR, FGETSIGN,
 | 
						|
  //   FLOG, FLOG2, FLOG10, FMAXNUM, FMINNUM, FNEARBYINT, FRINT, FROUND, TRAP,
 | 
						|
  //   FTRUNC, PREFETCH, SIGN_EXTEND_VECTOR_INREG, ZERO_EXTEND_VECTOR_INREG,
 | 
						|
  // which default to "expand" for at least one type.
 | 
						|
 | 
						|
  // Misc operations.
 | 
						|
  setOperationAction(ISD::ConstantFP,           MVT::f32,   Legal);
 | 
						|
  setOperationAction(ISD::ConstantFP,           MVT::f64,   Legal);
 | 
						|
  setOperationAction(ISD::TRAP,                 MVT::Other, Legal);
 | 
						|
  setOperationAction(ISD::ConstantPool,         MVT::i32,   Custom);
 | 
						|
  setOperationAction(ISD::JumpTable,            MVT::i32,   Custom);
 | 
						|
  setOperationAction(ISD::BUILD_PAIR,           MVT::i64,   Expand);
 | 
						|
  setOperationAction(ISD::SIGN_EXTEND_INREG,    MVT::i1,    Expand);
 | 
						|
  setOperationAction(ISD::INLINEASM,            MVT::Other, Custom);
 | 
						|
  setOperationAction(ISD::INLINEASM_BR,         MVT::Other, Custom);
 | 
						|
  setOperationAction(ISD::PREFETCH,             MVT::Other, Custom);
 | 
						|
  setOperationAction(ISD::READCYCLECOUNTER,     MVT::i64,   Custom);
 | 
						|
  setOperationAction(ISD::INTRINSIC_VOID,       MVT::Other, Custom);
 | 
						|
  setOperationAction(ISD::EH_RETURN,            MVT::Other, Custom);
 | 
						|
  setOperationAction(ISD::GLOBAL_OFFSET_TABLE,  MVT::i32,   Custom);
 | 
						|
  setOperationAction(ISD::GlobalTLSAddress,     MVT::i32,   Custom);
 | 
						|
  setOperationAction(ISD::ATOMIC_FENCE,         MVT::Other, Custom);
 | 
						|
 | 
						|
  // Custom legalize GlobalAddress nodes into CONST32.
 | 
						|
  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
 | 
						|
  setOperationAction(ISD::GlobalAddress, MVT::i8,  Custom);
 | 
						|
  setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
 | 
						|
 | 
						|
  // Hexagon needs to optimize cases with negative constants.
 | 
						|
  setOperationAction(ISD::SETCC, MVT::i8,    Custom);
 | 
						|
  setOperationAction(ISD::SETCC, MVT::i16,   Custom);
 | 
						|
  setOperationAction(ISD::SETCC, MVT::v4i8,  Custom);
 | 
						|
  setOperationAction(ISD::SETCC, MVT::v2i16, Custom);
 | 
						|
 | 
						|
  // VASTART needs to be custom lowered to use the VarArgsFrameIndex.
 | 
						|
  setOperationAction(ISD::VASTART, MVT::Other, Custom);
 | 
						|
  setOperationAction(ISD::VAEND,   MVT::Other, Expand);
 | 
						|
  setOperationAction(ISD::VAARG,   MVT::Other, Expand);
 | 
						|
  if (Subtarget.isEnvironmentMusl())
 | 
						|
    setOperationAction(ISD::VACOPY, MVT::Other, Custom);
 | 
						|
  else
 | 
						|
    setOperationAction(ISD::VACOPY,  MVT::Other, Expand);
 | 
						|
 | 
						|
  setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
 | 
						|
  setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
 | 
						|
  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
 | 
						|
 | 
						|
  if (EmitJumpTables)
 | 
						|
    setMinimumJumpTableEntries(MinimumJumpTables);
 | 
						|
  else
 | 
						|
    setMinimumJumpTableEntries(std::numeric_limits<unsigned>::max());
 | 
						|
  setOperationAction(ISD::BR_JT, MVT::Other, Expand);
 | 
						|
 | 
						|
  setOperationAction(ISD::ABS, MVT::i32, Legal);
 | 
						|
  setOperationAction(ISD::ABS, MVT::i64, Legal);
 | 
						|
 | 
						|
  // Hexagon has A4_addp_c and A4_subp_c that take and generate a carry bit,
 | 
						|
  // but they only operate on i64.
 | 
						|
  for (MVT VT : MVT::integer_valuetypes()) {
 | 
						|
    setOperationAction(ISD::UADDO,    VT, Custom);
 | 
						|
    setOperationAction(ISD::USUBO,    VT, Custom);
 | 
						|
    setOperationAction(ISD::SADDO,    VT, Expand);
 | 
						|
    setOperationAction(ISD::SSUBO,    VT, Expand);
 | 
						|
    setOperationAction(ISD::ADDCARRY, VT, Expand);
 | 
						|
    setOperationAction(ISD::SUBCARRY, VT, Expand);
 | 
						|
  }
 | 
						|
  setOperationAction(ISD::ADDCARRY, MVT::i64, Custom);
 | 
						|
  setOperationAction(ISD::SUBCARRY, MVT::i64, Custom);
 | 
						|
 | 
						|
  setOperationAction(ISD::CTLZ, MVT::i8,  Promote);
 | 
						|
  setOperationAction(ISD::CTLZ, MVT::i16, Promote);
 | 
						|
  setOperationAction(ISD::CTTZ, MVT::i8,  Promote);
 | 
						|
  setOperationAction(ISD::CTTZ, MVT::i16, Promote);
 | 
						|
 | 
						|
  // Popcount can count # of 1s in i64 but returns i32.
 | 
						|
  setOperationAction(ISD::CTPOP, MVT::i8,  Promote);
 | 
						|
  setOperationAction(ISD::CTPOP, MVT::i16, Promote);
 | 
						|
  setOperationAction(ISD::CTPOP, MVT::i32, Promote);
 | 
						|
  setOperationAction(ISD::CTPOP, MVT::i64, Legal);
 | 
						|
 | 
						|
  setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
 | 
						|
  setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
 | 
						|
  setOperationAction(ISD::BSWAP, MVT::i32, Legal);
 | 
						|
  setOperationAction(ISD::BSWAP, MVT::i64, Legal);
 | 
						|
 | 
						|
  setOperationAction(ISD::FSHL, MVT::i32, Legal);
 | 
						|
  setOperationAction(ISD::FSHL, MVT::i64, Legal);
 | 
						|
  setOperationAction(ISD::FSHR, MVT::i32, Legal);
 | 
						|
  setOperationAction(ISD::FSHR, MVT::i64, Legal);
 | 
						|
 | 
						|
  for (unsigned IntExpOp :
 | 
						|
       {ISD::SDIV,      ISD::UDIV,      ISD::SREM,      ISD::UREM,
 | 
						|
        ISD::SDIVREM,   ISD::UDIVREM,   ISD::ROTL,      ISD::ROTR,
 | 
						|
        ISD::SHL_PARTS, ISD::SRA_PARTS, ISD::SRL_PARTS,
 | 
						|
        ISD::SMUL_LOHI, ISD::UMUL_LOHI}) {
 | 
						|
    for (MVT VT : MVT::integer_valuetypes())
 | 
						|
      setOperationAction(IntExpOp, VT, Expand);
 | 
						|
  }
 | 
						|
 | 
						|
  for (unsigned FPExpOp :
 | 
						|
       {ISD::FDIV, ISD::FREM, ISD::FSQRT, ISD::FSIN, ISD::FCOS, ISD::FSINCOS,
 | 
						|
        ISD::FPOW, ISD::FCOPYSIGN}) {
 | 
						|
    for (MVT VT : MVT::fp_valuetypes())
 | 
						|
      setOperationAction(FPExpOp, VT, Expand);
 | 
						|
  }
 | 
						|
 | 
						|
  // No extending loads from i32.
 | 
						|
  for (MVT VT : MVT::integer_valuetypes()) {
 | 
						|
    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
 | 
						|
    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
 | 
						|
    setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i32, Expand);
 | 
						|
  }
 | 
						|
  // Turn FP truncstore into trunc + store.
 | 
						|
  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
 | 
						|
  // Turn FP extload into load/fpextend.
 | 
						|
  for (MVT VT : MVT::fp_valuetypes())
 | 
						|
    setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
 | 
						|
 | 
						|
  // Expand BR_CC and SELECT_CC for all integer and fp types.
 | 
						|
  for (MVT VT : MVT::integer_valuetypes()) {
 | 
						|
    setOperationAction(ISD::BR_CC,     VT, Expand);
 | 
						|
    setOperationAction(ISD::SELECT_CC, VT, Expand);
 | 
						|
  }
 | 
						|
  for (MVT VT : MVT::fp_valuetypes()) {
 | 
						|
    setOperationAction(ISD::BR_CC,     VT, Expand);
 | 
						|
    setOperationAction(ISD::SELECT_CC, VT, Expand);
 | 
						|
  }
 | 
						|
  setOperationAction(ISD::BR_CC, MVT::Other, Expand);
 | 
						|
 | 
						|
  //
 | 
						|
  // Handling of vector operations.
 | 
						|
  //
 | 
						|
 | 
						|
  // Set the action for vector operations to "expand", then override it with
 | 
						|
  // either "custom" or "legal" for specific cases.
 | 
						|
  static const unsigned VectExpOps[] = {
 | 
						|
    // Integer arithmetic:
 | 
						|
    ISD::ADD,     ISD::SUB,     ISD::MUL,     ISD::SDIV,      ISD::UDIV,
 | 
						|
    ISD::SREM,    ISD::UREM,    ISD::SDIVREM, ISD::UDIVREM,   ISD::SADDO,
 | 
						|
    ISD::UADDO,   ISD::SSUBO,   ISD::USUBO,   ISD::SMUL_LOHI, ISD::UMUL_LOHI,
 | 
						|
    // Logical/bit:
 | 
						|
    ISD::AND,     ISD::OR,      ISD::XOR,     ISD::ROTL,    ISD::ROTR,
 | 
						|
    ISD::CTPOP,   ISD::CTLZ,    ISD::CTTZ,
 | 
						|
    // Floating point arithmetic/math functions:
 | 
						|
    ISD::FADD,    ISD::FSUB,    ISD::FMUL,    ISD::FMA,     ISD::FDIV,
 | 
						|
    ISD::FREM,    ISD::FNEG,    ISD::FABS,    ISD::FSQRT,   ISD::FSIN,
 | 
						|
    ISD::FCOS,    ISD::FPOW,    ISD::FLOG,    ISD::FLOG2,
 | 
						|
    ISD::FLOG10,  ISD::FEXP,    ISD::FEXP2,   ISD::FCEIL,   ISD::FTRUNC,
 | 
						|
    ISD::FRINT,   ISD::FNEARBYINT,            ISD::FROUND,  ISD::FFLOOR,
 | 
						|
    ISD::FMINNUM, ISD::FMAXNUM, ISD::FSINCOS,
 | 
						|
    // Misc:
 | 
						|
    ISD::BR_CC,   ISD::SELECT_CC,             ISD::ConstantPool,
 | 
						|
    // Vector:
 | 
						|
    ISD::BUILD_VECTOR,          ISD::SCALAR_TO_VECTOR,
 | 
						|
    ISD::EXTRACT_VECTOR_ELT,    ISD::INSERT_VECTOR_ELT,
 | 
						|
    ISD::EXTRACT_SUBVECTOR,     ISD::INSERT_SUBVECTOR,
 | 
						|
    ISD::CONCAT_VECTORS,        ISD::VECTOR_SHUFFLE
 | 
						|
  };
 | 
						|
 | 
						|
  for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
 | 
						|
    for (unsigned VectExpOp : VectExpOps)
 | 
						|
      setOperationAction(VectExpOp, VT, Expand);
 | 
						|
 | 
						|
    // Expand all extending loads and truncating stores:
 | 
						|
    for (MVT TargetVT : MVT::fixedlen_vector_valuetypes()) {
 | 
						|
      if (TargetVT == VT)
 | 
						|
        continue;
 | 
						|
      setLoadExtAction(ISD::EXTLOAD, TargetVT, VT, Expand);
 | 
						|
      setLoadExtAction(ISD::ZEXTLOAD, TargetVT, VT, Expand);
 | 
						|
      setLoadExtAction(ISD::SEXTLOAD, TargetVT, VT, Expand);
 | 
						|
      setTruncStoreAction(VT, TargetVT, Expand);
 | 
						|
    }
 | 
						|
 | 
						|
    // Normalize all inputs to SELECT to be vectors of i32.
 | 
						|
    if (VT.getVectorElementType() != MVT::i32) {
 | 
						|
      MVT VT32 = MVT::getVectorVT(MVT::i32, VT.getSizeInBits()/32);
 | 
						|
      setOperationAction(ISD::SELECT, VT, Promote);
 | 
						|
      AddPromotedToType(ISD::SELECT, VT, VT32);
 | 
						|
    }
 | 
						|
    setOperationAction(ISD::SRA, VT, Custom);
 | 
						|
    setOperationAction(ISD::SHL, VT, Custom);
 | 
						|
    setOperationAction(ISD::SRL, VT, Custom);
 | 
						|
  }
 | 
						|
 | 
						|
  // Extending loads from (native) vectors of i8 into (native) vectors of i16
 | 
						|
  // are legal.
 | 
						|
  setLoadExtAction(ISD::EXTLOAD,  MVT::v2i16, MVT::v2i8, Legal);
 | 
						|
  setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i16, MVT::v2i8, Legal);
 | 
						|
  setLoadExtAction(ISD::SEXTLOAD, MVT::v2i16, MVT::v2i8, Legal);
 | 
						|
  setLoadExtAction(ISD::EXTLOAD,  MVT::v4i16, MVT::v4i8, Legal);
 | 
						|
  setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i16, MVT::v4i8, Legal);
 | 
						|
  setLoadExtAction(ISD::SEXTLOAD, MVT::v4i16, MVT::v4i8, Legal);
 | 
						|
 | 
						|
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8,  Legal);
 | 
						|
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal);
 | 
						|
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
 | 
						|
 | 
						|
  // Types natively supported:
 | 
						|
  for (MVT NativeVT : {MVT::v8i1, MVT::v4i1, MVT::v2i1, MVT::v4i8,
 | 
						|
                       MVT::v8i8, MVT::v2i16, MVT::v4i16, MVT::v2i32}) {
 | 
						|
    setOperationAction(ISD::BUILD_VECTOR,       NativeVT, Custom);
 | 
						|
    setOperationAction(ISD::EXTRACT_VECTOR_ELT, NativeVT, Custom);
 | 
						|
    setOperationAction(ISD::INSERT_VECTOR_ELT,  NativeVT, Custom);
 | 
						|
    setOperationAction(ISD::EXTRACT_SUBVECTOR,  NativeVT, Custom);
 | 
						|
    setOperationAction(ISD::INSERT_SUBVECTOR,   NativeVT, Custom);
 | 
						|
    setOperationAction(ISD::CONCAT_VECTORS,     NativeVT, Custom);
 | 
						|
 | 
						|
    setOperationAction(ISD::ADD, NativeVT, Legal);
 | 
						|
    setOperationAction(ISD::SUB, NativeVT, Legal);
 | 
						|
    setOperationAction(ISD::MUL, NativeVT, Legal);
 | 
						|
    setOperationAction(ISD::AND, NativeVT, Legal);
 | 
						|
    setOperationAction(ISD::OR,  NativeVT, Legal);
 | 
						|
    setOperationAction(ISD::XOR, NativeVT, Legal);
 | 
						|
  }
 | 
						|
 | 
						|
  // Custom lower unaligned loads.
 | 
						|
  // Also, for both loads and stores, verify the alignment of the address
 | 
						|
  // in case it is a compile-time constant. This is a usability feature to
 | 
						|
  // provide a meaningful error message to users.
 | 
						|
  for (MVT VT : {MVT::i16, MVT::i32, MVT::v4i8, MVT::i64, MVT::v8i8,
 | 
						|
                 MVT::v2i16, MVT::v4i16, MVT::v2i32}) {
 | 
						|
    setOperationAction(ISD::LOAD,  VT, Custom);
 | 
						|
    setOperationAction(ISD::STORE, VT, Custom);
 | 
						|
  }
 | 
						|
 | 
						|
  for (MVT VT : {MVT::v2i16, MVT::v4i8, MVT::v8i8, MVT::v2i32, MVT::v4i16,
 | 
						|
                 MVT::v2i32}) {
 | 
						|
    setCondCodeAction(ISD::SETNE,  VT, Expand);
 | 
						|
    setCondCodeAction(ISD::SETLE,  VT, Expand);
 | 
						|
    setCondCodeAction(ISD::SETGE,  VT, Expand);
 | 
						|
    setCondCodeAction(ISD::SETLT,  VT, Expand);
 | 
						|
    setCondCodeAction(ISD::SETULE, VT, Expand);
 | 
						|
    setCondCodeAction(ISD::SETUGE, VT, Expand);
 | 
						|
    setCondCodeAction(ISD::SETULT, VT, Expand);
 | 
						|
  }
 | 
						|
 | 
						|
  // Custom-lower bitcasts from i8 to v8i1.
 | 
						|
  setOperationAction(ISD::BITCAST,        MVT::i8,    Custom);
 | 
						|
  setOperationAction(ISD::SETCC,          MVT::v2i16, Custom);
 | 
						|
  setOperationAction(ISD::VSELECT,        MVT::v4i8,  Custom);
 | 
						|
  setOperationAction(ISD::VSELECT,        MVT::v2i16, Custom);
 | 
						|
  setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i8,  Custom);
 | 
						|
  setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
 | 
						|
  setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8,  Custom);
 | 
						|
 | 
						|
  // V5+.
 | 
						|
  setOperationAction(ISD::FMA,  MVT::f64, Expand);
 | 
						|
  setOperationAction(ISD::FADD, MVT::f64, Expand);
 | 
						|
  setOperationAction(ISD::FSUB, MVT::f64, Expand);
 | 
						|
  setOperationAction(ISD::FMUL, MVT::f64, Expand);
 | 
						|
 | 
						|
  setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
 | 
						|
  setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
 | 
						|
 | 
						|
  setOperationAction(ISD::FP_TO_UINT, MVT::i1,  Promote);
 | 
						|
  setOperationAction(ISD::FP_TO_UINT, MVT::i8,  Promote);
 | 
						|
  setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote);
 | 
						|
  setOperationAction(ISD::FP_TO_SINT, MVT::i1,  Promote);
 | 
						|
  setOperationAction(ISD::FP_TO_SINT, MVT::i8,  Promote);
 | 
						|
  setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote);
 | 
						|
  setOperationAction(ISD::UINT_TO_FP, MVT::i1,  Promote);
 | 
						|
  setOperationAction(ISD::UINT_TO_FP, MVT::i8,  Promote);
 | 
						|
  setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote);
 | 
						|
  setOperationAction(ISD::SINT_TO_FP, MVT::i1,  Promote);
 | 
						|
  setOperationAction(ISD::SINT_TO_FP, MVT::i8,  Promote);
 | 
						|
  setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote);
 | 
						|
 | 
						|
  // Handling of indexed loads/stores: default is "expand".
 | 
						|
  //
 | 
						|
  for (MVT VT : {MVT::i8, MVT::i16, MVT::i32, MVT::i64, MVT::f32, MVT::f64,
 | 
						|
                 MVT::v2i16, MVT::v2i32, MVT::v4i8, MVT::v4i16, MVT::v8i8}) {
 | 
						|
    setIndexedLoadAction(ISD::POST_INC, VT, Legal);
 | 
						|
    setIndexedStoreAction(ISD::POST_INC, VT, Legal);
 | 
						|
  }
 | 
						|
 | 
						|
  // Subtarget-specific operation actions.
 | 
						|
  //
 | 
						|
  if (Subtarget.hasV60Ops()) {
 | 
						|
    setOperationAction(ISD::ROTL, MVT::i32, Legal);
 | 
						|
    setOperationAction(ISD::ROTL, MVT::i64, Legal);
 | 
						|
    setOperationAction(ISD::ROTR, MVT::i32, Legal);
 | 
						|
    setOperationAction(ISD::ROTR, MVT::i64, Legal);
 | 
						|
  }
 | 
						|
  if (Subtarget.hasV66Ops()) {
 | 
						|
    setOperationAction(ISD::FADD, MVT::f64, Legal);
 | 
						|
    setOperationAction(ISD::FSUB, MVT::f64, Legal);
 | 
						|
  }
 | 
						|
  if (Subtarget.hasV67Ops()) {
 | 
						|
    setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
 | 
						|
    setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
 | 
						|
    setOperationAction(ISD::FMUL,    MVT::f64, Legal);
 | 
						|
  }
 | 
						|
 | 
						|
  setTargetDAGCombine(ISD::VSELECT);
 | 
						|
 | 
						|
  if (Subtarget.useHVXOps())
 | 
						|
    initializeHVXLowering();
 | 
						|
 | 
						|
  computeRegisterProperties(&HRI);
 | 
						|
 | 
						|
  //
 | 
						|
  // Library calls for unsupported operations
 | 
						|
  //
 | 
						|
  bool FastMath  = EnableFastMath;
 | 
						|
 | 
						|
  setLibcallName(RTLIB::SDIV_I32, "__hexagon_divsi3");
 | 
						|
  setLibcallName(RTLIB::SDIV_I64, "__hexagon_divdi3");
 | 
						|
  setLibcallName(RTLIB::UDIV_I32, "__hexagon_udivsi3");
 | 
						|
  setLibcallName(RTLIB::UDIV_I64, "__hexagon_udivdi3");
 | 
						|
  setLibcallName(RTLIB::SREM_I32, "__hexagon_modsi3");
 | 
						|
  setLibcallName(RTLIB::SREM_I64, "__hexagon_moddi3");
 | 
						|
  setLibcallName(RTLIB::UREM_I32, "__hexagon_umodsi3");
 | 
						|
  setLibcallName(RTLIB::UREM_I64, "__hexagon_umoddi3");
 | 
						|
 | 
						|
  setLibcallName(RTLIB::SINTTOFP_I128_F64, "__hexagon_floattidf");
 | 
						|
  setLibcallName(RTLIB::SINTTOFP_I128_F32, "__hexagon_floattisf");
 | 
						|
  setLibcallName(RTLIB::FPTOUINT_F32_I128, "__hexagon_fixunssfti");
 | 
						|
  setLibcallName(RTLIB::FPTOUINT_F64_I128, "__hexagon_fixunsdfti");
 | 
						|
  setLibcallName(RTLIB::FPTOSINT_F32_I128, "__hexagon_fixsfti");
 | 
						|
  setLibcallName(RTLIB::FPTOSINT_F64_I128, "__hexagon_fixdfti");
 | 
						|
 | 
						|
  // This is the only fast library function for sqrtd.
 | 
						|
  if (FastMath)
 | 
						|
    setLibcallName(RTLIB::SQRT_F64, "__hexagon_fast2_sqrtdf2");
 | 
						|
 | 
						|
  // Prefix is: nothing  for "slow-math",
 | 
						|
  //            "fast2_" for V5+ fast-math double-precision
 | 
						|
  // (actually, keep fast-math and fast-math2 separate for now)
 | 
						|
  if (FastMath) {
 | 
						|
    setLibcallName(RTLIB::ADD_F64, "__hexagon_fast_adddf3");
 | 
						|
    setLibcallName(RTLIB::SUB_F64, "__hexagon_fast_subdf3");
 | 
						|
    setLibcallName(RTLIB::MUL_F64, "__hexagon_fast_muldf3");
 | 
						|
    setLibcallName(RTLIB::DIV_F64, "__hexagon_fast_divdf3");
 | 
						|
    setLibcallName(RTLIB::DIV_F32, "__hexagon_fast_divsf3");
 | 
						|
  } else {
 | 
						|
    setLibcallName(RTLIB::ADD_F64, "__hexagon_adddf3");
 | 
						|
    setLibcallName(RTLIB::SUB_F64, "__hexagon_subdf3");
 | 
						|
    setLibcallName(RTLIB::MUL_F64, "__hexagon_muldf3");
 | 
						|
    setLibcallName(RTLIB::DIV_F64, "__hexagon_divdf3");
 | 
						|
    setLibcallName(RTLIB::DIV_F32, "__hexagon_divsf3");
 | 
						|
  }
 | 
						|
 | 
						|
  if (FastMath)
 | 
						|
    setLibcallName(RTLIB::SQRT_F32, "__hexagon_fast2_sqrtf");
 | 
						|
  else
 | 
						|
    setLibcallName(RTLIB::SQRT_F32, "__hexagon_sqrtf");
 | 
						|
 | 
						|
  // These cause problems when the shift amount is non-constant.
 | 
						|
  setLibcallName(RTLIB::SHL_I128, nullptr);
 | 
						|
  setLibcallName(RTLIB::SRL_I128, nullptr);
 | 
						|
  setLibcallName(RTLIB::SRA_I128, nullptr);
 | 
						|
}
 | 
						|
 | 
						|
const char* HexagonTargetLowering::getTargetNodeName(unsigned Opcode) const {
 | 
						|
  switch ((HexagonISD::NodeType)Opcode) {
 | 
						|
  case HexagonISD::ADDC:          return "HexagonISD::ADDC";
 | 
						|
  case HexagonISD::SUBC:          return "HexagonISD::SUBC";
 | 
						|
  case HexagonISD::ALLOCA:        return "HexagonISD::ALLOCA";
 | 
						|
  case HexagonISD::AT_GOT:        return "HexagonISD::AT_GOT";
 | 
						|
  case HexagonISD::AT_PCREL:      return "HexagonISD::AT_PCREL";
 | 
						|
  case HexagonISD::BARRIER:       return "HexagonISD::BARRIER";
 | 
						|
  case HexagonISD::CALL:          return "HexagonISD::CALL";
 | 
						|
  case HexagonISD::CALLnr:        return "HexagonISD::CALLnr";
 | 
						|
  case HexagonISD::CALLR:         return "HexagonISD::CALLR";
 | 
						|
  case HexagonISD::COMBINE:       return "HexagonISD::COMBINE";
 | 
						|
  case HexagonISD::CONST32_GP:    return "HexagonISD::CONST32_GP";
 | 
						|
  case HexagonISD::CONST32:       return "HexagonISD::CONST32";
 | 
						|
  case HexagonISD::CP:            return "HexagonISD::CP";
 | 
						|
  case HexagonISD::DCFETCH:       return "HexagonISD::DCFETCH";
 | 
						|
  case HexagonISD::EH_RETURN:     return "HexagonISD::EH_RETURN";
 | 
						|
  case HexagonISD::TSTBIT:        return "HexagonISD::TSTBIT";
 | 
						|
  case HexagonISD::EXTRACTU:      return "HexagonISD::EXTRACTU";
 | 
						|
  case HexagonISD::INSERT:        return "HexagonISD::INSERT";
 | 
						|
  case HexagonISD::JT:            return "HexagonISD::JT";
 | 
						|
  case HexagonISD::RET_FLAG:      return "HexagonISD::RET_FLAG";
 | 
						|
  case HexagonISD::TC_RETURN:     return "HexagonISD::TC_RETURN";
 | 
						|
  case HexagonISD::VASL:          return "HexagonISD::VASL";
 | 
						|
  case HexagonISD::VASR:          return "HexagonISD::VASR";
 | 
						|
  case HexagonISD::VLSR:          return "HexagonISD::VLSR";
 | 
						|
  case HexagonISD::VSPLAT:        return "HexagonISD::VSPLAT";
 | 
						|
  case HexagonISD::VEXTRACTW:     return "HexagonISD::VEXTRACTW";
 | 
						|
  case HexagonISD::VINSERTW0:     return "HexagonISD::VINSERTW0";
 | 
						|
  case HexagonISD::VROR:          return "HexagonISD::VROR";
 | 
						|
  case HexagonISD::READCYCLE:     return "HexagonISD::READCYCLE";
 | 
						|
  case HexagonISD::PTRUE:         return "HexagonISD::PTRUE";
 | 
						|
  case HexagonISD::PFALSE:        return "HexagonISD::PFALSE";
 | 
						|
  case HexagonISD::VZERO:         return "HexagonISD::VZERO";
 | 
						|
  case HexagonISD::VSPLATW:       return "HexagonISD::VSPLATW";
 | 
						|
  case HexagonISD::D2P:           return "HexagonISD::D2P";
 | 
						|
  case HexagonISD::P2D:           return "HexagonISD::P2D";
 | 
						|
  case HexagonISD::V2Q:           return "HexagonISD::V2Q";
 | 
						|
  case HexagonISD::Q2V:           return "HexagonISD::Q2V";
 | 
						|
  case HexagonISD::QCAT:          return "HexagonISD::QCAT";
 | 
						|
  case HexagonISD::QTRUE:         return "HexagonISD::QTRUE";
 | 
						|
  case HexagonISD::QFALSE:        return "HexagonISD::QFALSE";
 | 
						|
  case HexagonISD::TYPECAST:      return "HexagonISD::TYPECAST";
 | 
						|
  case HexagonISD::VALIGN:        return "HexagonISD::VALIGN";
 | 
						|
  case HexagonISD::VALIGNADDR:    return "HexagonISD::VALIGNADDR";
 | 
						|
  case HexagonISD::OP_END:        break;
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
HexagonTargetLowering::validateConstPtrAlignment(SDValue Ptr, const SDLoc &dl,
 | 
						|
      unsigned NeedAlign) const {
 | 
						|
  auto *CA = dyn_cast<ConstantSDNode>(Ptr);
 | 
						|
  if (!CA)
 | 
						|
    return;
 | 
						|
  unsigned Addr = CA->getZExtValue();
 | 
						|
  unsigned HaveAlign = Addr != 0 ? 1u << countTrailingZeros(Addr) : NeedAlign;
 | 
						|
  if (HaveAlign < NeedAlign) {
 | 
						|
    std::string ErrMsg;
 | 
						|
    raw_string_ostream O(ErrMsg);
 | 
						|
    O << "Misaligned constant address: " << format_hex(Addr, 10)
 | 
						|
      << " has alignment " << HaveAlign
 | 
						|
      << ", but the memory access requires " << NeedAlign;
 | 
						|
    if (DebugLoc DL = dl.getDebugLoc())
 | 
						|
      DL.print(O << ", at ");
 | 
						|
    report_fatal_error(O.str());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Bit-reverse Load Intrinsic: Check if the instruction is a bit reverse load
 | 
						|
// intrinsic.
 | 
						|
static bool isBrevLdIntrinsic(const Value *Inst) {
 | 
						|
  unsigned ID = cast<IntrinsicInst>(Inst)->getIntrinsicID();
 | 
						|
  return (ID == Intrinsic::hexagon_L2_loadrd_pbr ||
 | 
						|
          ID == Intrinsic::hexagon_L2_loadri_pbr ||
 | 
						|
          ID == Intrinsic::hexagon_L2_loadrh_pbr ||
 | 
						|
          ID == Intrinsic::hexagon_L2_loadruh_pbr ||
 | 
						|
          ID == Intrinsic::hexagon_L2_loadrb_pbr ||
 | 
						|
          ID == Intrinsic::hexagon_L2_loadrub_pbr);
 | 
						|
}
 | 
						|
 | 
						|
// Bit-reverse Load Intrinsic :Crawl up and figure out the object from previous
 | 
						|
// instruction. So far we only handle bitcast, extract value and bit reverse
 | 
						|
// load intrinsic instructions. Should we handle CGEP ?
 | 
						|
static Value *getBrevLdObject(Value *V) {
 | 
						|
  if (Operator::getOpcode(V) == Instruction::ExtractValue ||
 | 
						|
      Operator::getOpcode(V) == Instruction::BitCast)
 | 
						|
    V = cast<Operator>(V)->getOperand(0);
 | 
						|
  else if (isa<IntrinsicInst>(V) && isBrevLdIntrinsic(V))
 | 
						|
    V = cast<Instruction>(V)->getOperand(0);
 | 
						|
  return V;
 | 
						|
}
 | 
						|
 | 
						|
// Bit-reverse Load Intrinsic: For a PHI Node return either an incoming edge or
 | 
						|
// a back edge. If the back edge comes from the intrinsic itself, the incoming
 | 
						|
// edge is returned.
 | 
						|
static Value *returnEdge(const PHINode *PN, Value *IntrBaseVal) {
 | 
						|
  const BasicBlock *Parent = PN->getParent();
 | 
						|
  int Idx = -1;
 | 
						|
  for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) {
 | 
						|
    BasicBlock *Blk = PN->getIncomingBlock(i);
 | 
						|
    // Determine if the back edge is originated from intrinsic.
 | 
						|
    if (Blk == Parent) {
 | 
						|
      Value *BackEdgeVal = PN->getIncomingValue(i);
 | 
						|
      Value *BaseVal;
 | 
						|
      // Loop over till we return the same Value or we hit the IntrBaseVal.
 | 
						|
      do {
 | 
						|
        BaseVal = BackEdgeVal;
 | 
						|
        BackEdgeVal = getBrevLdObject(BackEdgeVal);
 | 
						|
      } while ((BaseVal != BackEdgeVal) && (IntrBaseVal != BackEdgeVal));
 | 
						|
      // If the getBrevLdObject returns IntrBaseVal, we should return the
 | 
						|
      // incoming edge.
 | 
						|
      if (IntrBaseVal == BackEdgeVal)
 | 
						|
        continue;
 | 
						|
      Idx = i;
 | 
						|
      break;
 | 
						|
    } else // Set the node to incoming edge.
 | 
						|
      Idx = i;
 | 
						|
  }
 | 
						|
  assert(Idx >= 0 && "Unexpected index to incoming argument in PHI");
 | 
						|
  return PN->getIncomingValue(Idx);
 | 
						|
}
 | 
						|
 | 
						|
// Bit-reverse Load Intrinsic: Figure out the underlying object the base
 | 
						|
// pointer points to, for the bit-reverse load intrinsic. Setting this to
 | 
						|
// memoperand might help alias analysis to figure out the dependencies.
 | 
						|
static Value *getUnderLyingObjectForBrevLdIntr(Value *V) {
 | 
						|
  Value *IntrBaseVal = V;
 | 
						|
  Value *BaseVal;
 | 
						|
  // Loop over till we return the same Value, implies we either figure out
 | 
						|
  // the object or we hit a PHI
 | 
						|
  do {
 | 
						|
    BaseVal = V;
 | 
						|
    V = getBrevLdObject(V);
 | 
						|
  } while (BaseVal != V);
 | 
						|
 | 
						|
  // Identify the object from PHINode.
 | 
						|
  if (const PHINode *PN = dyn_cast<PHINode>(V))
 | 
						|
    return returnEdge(PN, IntrBaseVal);
 | 
						|
  // For non PHI nodes, the object is the last value returned by getBrevLdObject
 | 
						|
  else
 | 
						|
    return V;
 | 
						|
}
 | 
						|
 | 
						|
/// Given an intrinsic, checks if on the target the intrinsic will need to map
 | 
						|
/// to a MemIntrinsicNode (touches memory). If this is the case, it returns
 | 
						|
/// true and store the intrinsic information into the IntrinsicInfo that was
 | 
						|
/// passed to the function.
 | 
						|
bool HexagonTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
 | 
						|
                                               const CallInst &I,
 | 
						|
                                               MachineFunction &MF,
 | 
						|
                                               unsigned Intrinsic) const {
 | 
						|
  switch (Intrinsic) {
 | 
						|
  case Intrinsic::hexagon_L2_loadrd_pbr:
 | 
						|
  case Intrinsic::hexagon_L2_loadri_pbr:
 | 
						|
  case Intrinsic::hexagon_L2_loadrh_pbr:
 | 
						|
  case Intrinsic::hexagon_L2_loadruh_pbr:
 | 
						|
  case Intrinsic::hexagon_L2_loadrb_pbr:
 | 
						|
  case Intrinsic::hexagon_L2_loadrub_pbr: {
 | 
						|
    Info.opc = ISD::INTRINSIC_W_CHAIN;
 | 
						|
    auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
 | 
						|
    auto &Cont = I.getCalledFunction()->getParent()->getContext();
 | 
						|
    // The intrinsic function call is of the form { ElTy, i8* }
 | 
						|
    // @llvm.hexagon.L2.loadXX.pbr(i8*, i32). The pointer and memory access type
 | 
						|
    // should be derived from ElTy.
 | 
						|
    Type *ElTy = I.getCalledFunction()->getReturnType()->getStructElementType(0);
 | 
						|
    Info.memVT = MVT::getVT(ElTy);
 | 
						|
    llvm::Value *BasePtrVal = I.getOperand(0);
 | 
						|
    Info.ptrVal = getUnderLyingObjectForBrevLdIntr(BasePtrVal);
 | 
						|
    // The offset value comes through Modifier register. For now, assume the
 | 
						|
    // offset is 0.
 | 
						|
    Info.offset = 0;
 | 
						|
    Info.align =
 | 
						|
        MaybeAlign(DL.getABITypeAlignment(Info.memVT.getTypeForEVT(Cont)));
 | 
						|
    Info.flags = MachineMemOperand::MOLoad;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  case Intrinsic::hexagon_V6_vgathermw:
 | 
						|
  case Intrinsic::hexagon_V6_vgathermw_128B:
 | 
						|
  case Intrinsic::hexagon_V6_vgathermh:
 | 
						|
  case Intrinsic::hexagon_V6_vgathermh_128B:
 | 
						|
  case Intrinsic::hexagon_V6_vgathermhw:
 | 
						|
  case Intrinsic::hexagon_V6_vgathermhw_128B:
 | 
						|
  case Intrinsic::hexagon_V6_vgathermwq:
 | 
						|
  case Intrinsic::hexagon_V6_vgathermwq_128B:
 | 
						|
  case Intrinsic::hexagon_V6_vgathermhq:
 | 
						|
  case Intrinsic::hexagon_V6_vgathermhq_128B:
 | 
						|
  case Intrinsic::hexagon_V6_vgathermhwq:
 | 
						|
  case Intrinsic::hexagon_V6_vgathermhwq_128B: {
 | 
						|
    const Module &M = *I.getParent()->getParent()->getParent();
 | 
						|
    Info.opc = ISD::INTRINSIC_W_CHAIN;
 | 
						|
    Type *VecTy = I.getArgOperand(1)->getType();
 | 
						|
    Info.memVT = MVT::getVT(VecTy);
 | 
						|
    Info.ptrVal = I.getArgOperand(0);
 | 
						|
    Info.offset = 0;
 | 
						|
    Info.align =
 | 
						|
        MaybeAlign(M.getDataLayout().getTypeAllocSizeInBits(VecTy) / 8);
 | 
						|
    Info.flags = MachineMemOperand::MOLoad |
 | 
						|
                 MachineMemOperand::MOStore |
 | 
						|
                 MachineMemOperand::MOVolatile;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool HexagonTargetLowering::hasBitTest(SDValue X, SDValue Y) const {
 | 
						|
  return X.getValueType().isScalarInteger(); // 'tstbit'
 | 
						|
}
 | 
						|
 | 
						|
bool HexagonTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
 | 
						|
  return isTruncateFree(EVT::getEVT(Ty1), EVT::getEVT(Ty2));
 | 
						|
}
 | 
						|
 | 
						|
bool HexagonTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
 | 
						|
  if (!VT1.isSimple() || !VT2.isSimple())
 | 
						|
    return false;
 | 
						|
  return VT1.getSimpleVT() == MVT::i64 && VT2.getSimpleVT() == MVT::i32;
 | 
						|
}
 | 
						|
 | 
						|
bool HexagonTargetLowering::isFMAFasterThanFMulAndFAdd(
 | 
						|
    const MachineFunction &MF, EVT VT) const {
 | 
						|
  return isOperationLegalOrCustom(ISD::FMA, VT);
 | 
						|
}
 | 
						|
 | 
						|
// Should we expand the build vector with shuffles?
 | 
						|
bool HexagonTargetLowering::shouldExpandBuildVectorWithShuffles(EVT VT,
 | 
						|
      unsigned DefinedValues) const {
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool HexagonTargetLowering::isShuffleMaskLegal(ArrayRef<int> Mask,
 | 
						|
                                               EVT VT) const {
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
TargetLoweringBase::LegalizeTypeAction
 | 
						|
HexagonTargetLowering::getPreferredVectorAction(MVT VT) const {
 | 
						|
  unsigned VecLen = VT.getVectorNumElements();
 | 
						|
  MVT ElemTy = VT.getVectorElementType();
 | 
						|
 | 
						|
  if (VecLen == 1 || VT.isScalableVector())
 | 
						|
    return TargetLoweringBase::TypeScalarizeVector;
 | 
						|
 | 
						|
  if (Subtarget.useHVXOps()) {
 | 
						|
    unsigned HwLen = Subtarget.getVectorLength();
 | 
						|
    // If the size of VT is at least half of the vector length,
 | 
						|
    // widen the vector. Note: the threshold was not selected in
 | 
						|
    // any scientific way.
 | 
						|
    ArrayRef<MVT> Tys = Subtarget.getHVXElementTypes();
 | 
						|
    if (llvm::find(Tys, ElemTy) != Tys.end()) {
 | 
						|
      unsigned HwWidth = 8*HwLen;
 | 
						|
      unsigned VecWidth = VT.getSizeInBits();
 | 
						|
      if (VecWidth >= HwWidth/2 && VecWidth < HwWidth)
 | 
						|
        return TargetLoweringBase::TypeWidenVector;
 | 
						|
    }
 | 
						|
    // Split vectors of i1 that correspond to (byte) vector pairs.
 | 
						|
    if (ElemTy == MVT::i1 && VecLen == 2*HwLen)
 | 
						|
      return TargetLoweringBase::TypeSplitVector;
 | 
						|
  }
 | 
						|
 | 
						|
  // Always widen (remaining) vectors of i1.
 | 
						|
  if (ElemTy == MVT::i1)
 | 
						|
    return TargetLoweringBase::TypeWidenVector;
 | 
						|
 | 
						|
  return TargetLoweringBase::TypeSplitVector;
 | 
						|
}
 | 
						|
 | 
						|
std::pair<SDValue, int>
 | 
						|
HexagonTargetLowering::getBaseAndOffset(SDValue Addr) const {
 | 
						|
  if (Addr.getOpcode() == ISD::ADD) {
 | 
						|
    SDValue Op1 = Addr.getOperand(1);
 | 
						|
    if (auto *CN = dyn_cast<const ConstantSDNode>(Op1.getNode()))
 | 
						|
      return { Addr.getOperand(0), CN->getSExtValue() };
 | 
						|
  }
 | 
						|
  return { Addr, 0 };
 | 
						|
}
 | 
						|
 | 
						|
// Lower a vector shuffle (V1, V2, V3).  V1 and V2 are the two vectors
 | 
						|
// to select data from, V3 is the permutation.
 | 
						|
SDValue
 | 
						|
HexagonTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG)
 | 
						|
      const {
 | 
						|
  const auto *SVN = cast<ShuffleVectorSDNode>(Op);
 | 
						|
  ArrayRef<int> AM = SVN->getMask();
 | 
						|
  assert(AM.size() <= 8 && "Unexpected shuffle mask");
 | 
						|
  unsigned VecLen = AM.size();
 | 
						|
 | 
						|
  MVT VecTy = ty(Op);
 | 
						|
  assert(!Subtarget.isHVXVectorType(VecTy, true) &&
 | 
						|
         "HVX shuffles should be legal");
 | 
						|
  assert(VecTy.getSizeInBits() <= 64 && "Unexpected vector length");
 | 
						|
 | 
						|
  SDValue Op0 = Op.getOperand(0);
 | 
						|
  SDValue Op1 = Op.getOperand(1);
 | 
						|
  const SDLoc &dl(Op);
 | 
						|
 | 
						|
  // If the inputs are not the same as the output, bail. This is not an
 | 
						|
  // error situation, but complicates the handling and the default expansion
 | 
						|
  // (into BUILD_VECTOR) should be adequate.
 | 
						|
  if (ty(Op0) != VecTy || ty(Op1) != VecTy)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Normalize the mask so that the first non-negative index comes from
 | 
						|
  // the first operand.
 | 
						|
  SmallVector<int,8> Mask(AM.begin(), AM.end());
 | 
						|
  unsigned F = llvm::find_if(AM, [](int M) { return M >= 0; }) - AM.data();
 | 
						|
  if (F == AM.size())
 | 
						|
    return DAG.getUNDEF(VecTy);
 | 
						|
  if (AM[F] >= int(VecLen)) {
 | 
						|
    ShuffleVectorSDNode::commuteMask(Mask);
 | 
						|
    std::swap(Op0, Op1);
 | 
						|
  }
 | 
						|
 | 
						|
  // Express the shuffle mask in terms of bytes.
 | 
						|
  SmallVector<int,8> ByteMask;
 | 
						|
  unsigned ElemBytes = VecTy.getVectorElementType().getSizeInBits() / 8;
 | 
						|
  for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
 | 
						|
    int M = Mask[i];
 | 
						|
    if (M < 0) {
 | 
						|
      for (unsigned j = 0; j != ElemBytes; ++j)
 | 
						|
        ByteMask.push_back(-1);
 | 
						|
    } else {
 | 
						|
      for (unsigned j = 0; j != ElemBytes; ++j)
 | 
						|
        ByteMask.push_back(M*ElemBytes + j);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  assert(ByteMask.size() <= 8);
 | 
						|
 | 
						|
  // All non-undef (non-negative) indexes are well within [0..127], so they
 | 
						|
  // fit in a single byte. Build two 64-bit words:
 | 
						|
  // - MaskIdx where each byte is the corresponding index (for non-negative
 | 
						|
  //   indexes), and 0xFF for negative indexes, and
 | 
						|
  // - MaskUnd that has 0xFF for each negative index.
 | 
						|
  uint64_t MaskIdx = 0;
 | 
						|
  uint64_t MaskUnd = 0;
 | 
						|
  for (unsigned i = 0, e = ByteMask.size(); i != e; ++i) {
 | 
						|
    unsigned S = 8*i;
 | 
						|
    uint64_t M = ByteMask[i] & 0xFF;
 | 
						|
    if (M == 0xFF)
 | 
						|
      MaskUnd |= M << S;
 | 
						|
    MaskIdx |= M << S;
 | 
						|
  }
 | 
						|
 | 
						|
  if (ByteMask.size() == 4) {
 | 
						|
    // Identity.
 | 
						|
    if (MaskIdx == (0x03020100 | MaskUnd))
 | 
						|
      return Op0;
 | 
						|
    // Byte swap.
 | 
						|
    if (MaskIdx == (0x00010203 | MaskUnd)) {
 | 
						|
      SDValue T0 = DAG.getBitcast(MVT::i32, Op0);
 | 
						|
      SDValue T1 = DAG.getNode(ISD::BSWAP, dl, MVT::i32, T0);
 | 
						|
      return DAG.getBitcast(VecTy, T1);
 | 
						|
    }
 | 
						|
 | 
						|
    // Byte packs.
 | 
						|
    SDValue Concat10 = DAG.getNode(HexagonISD::COMBINE, dl,
 | 
						|
                                   typeJoin({ty(Op1), ty(Op0)}), {Op1, Op0});
 | 
						|
    if (MaskIdx == (0x06040200 | MaskUnd))
 | 
						|
      return getInstr(Hexagon::S2_vtrunehb, dl, VecTy, {Concat10}, DAG);
 | 
						|
    if (MaskIdx == (0x07050301 | MaskUnd))
 | 
						|
      return getInstr(Hexagon::S2_vtrunohb, dl, VecTy, {Concat10}, DAG);
 | 
						|
 | 
						|
    SDValue Concat01 = DAG.getNode(HexagonISD::COMBINE, dl,
 | 
						|
                                   typeJoin({ty(Op0), ty(Op1)}), {Op0, Op1});
 | 
						|
    if (MaskIdx == (0x02000604 | MaskUnd))
 | 
						|
      return getInstr(Hexagon::S2_vtrunehb, dl, VecTy, {Concat01}, DAG);
 | 
						|
    if (MaskIdx == (0x03010705 | MaskUnd))
 | 
						|
      return getInstr(Hexagon::S2_vtrunohb, dl, VecTy, {Concat01}, DAG);
 | 
						|
  }
 | 
						|
 | 
						|
  if (ByteMask.size() == 8) {
 | 
						|
    // Identity.
 | 
						|
    if (MaskIdx == (0x0706050403020100ull | MaskUnd))
 | 
						|
      return Op0;
 | 
						|
    // Byte swap.
 | 
						|
    if (MaskIdx == (0x0001020304050607ull | MaskUnd)) {
 | 
						|
      SDValue T0 = DAG.getBitcast(MVT::i64, Op0);
 | 
						|
      SDValue T1 = DAG.getNode(ISD::BSWAP, dl, MVT::i64, T0);
 | 
						|
      return DAG.getBitcast(VecTy, T1);
 | 
						|
    }
 | 
						|
 | 
						|
    // Halfword picks.
 | 
						|
    if (MaskIdx == (0x0d0c050409080100ull | MaskUnd))
 | 
						|
      return getInstr(Hexagon::S2_shuffeh, dl, VecTy, {Op1, Op0}, DAG);
 | 
						|
    if (MaskIdx == (0x0f0e07060b0a0302ull | MaskUnd))
 | 
						|
      return getInstr(Hexagon::S2_shuffoh, dl, VecTy, {Op1, Op0}, DAG);
 | 
						|
    if (MaskIdx == (0x0d0c090805040100ull | MaskUnd))
 | 
						|
      return getInstr(Hexagon::S2_vtrunewh, dl, VecTy, {Op1, Op0}, DAG);
 | 
						|
    if (MaskIdx == (0x0f0e0b0a07060302ull | MaskUnd))
 | 
						|
      return getInstr(Hexagon::S2_vtrunowh, dl, VecTy, {Op1, Op0}, DAG);
 | 
						|
    if (MaskIdx == (0x0706030205040100ull | MaskUnd)) {
 | 
						|
      VectorPair P = opSplit(Op0, dl, DAG);
 | 
						|
      return getInstr(Hexagon::S2_packhl, dl, VecTy, {P.second, P.first}, DAG);
 | 
						|
    }
 | 
						|
 | 
						|
    // Byte packs.
 | 
						|
    if (MaskIdx == (0x0e060c040a020800ull | MaskUnd))
 | 
						|
      return getInstr(Hexagon::S2_shuffeb, dl, VecTy, {Op1, Op0}, DAG);
 | 
						|
    if (MaskIdx == (0x0f070d050b030901ull | MaskUnd))
 | 
						|
      return getInstr(Hexagon::S2_shuffob, dl, VecTy, {Op1, Op0}, DAG);
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
// Create a Hexagon-specific node for shifting a vector by an integer.
 | 
						|
SDValue
 | 
						|
HexagonTargetLowering::getVectorShiftByInt(SDValue Op, SelectionDAG &DAG)
 | 
						|
      const {
 | 
						|
  if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode())) {
 | 
						|
    if (SDValue S = BVN->getSplatValue()) {
 | 
						|
      unsigned NewOpc;
 | 
						|
      switch (Op.getOpcode()) {
 | 
						|
        case ISD::SHL:
 | 
						|
          NewOpc = HexagonISD::VASL;
 | 
						|
          break;
 | 
						|
        case ISD::SRA:
 | 
						|
          NewOpc = HexagonISD::VASR;
 | 
						|
          break;
 | 
						|
        case ISD::SRL:
 | 
						|
          NewOpc = HexagonISD::VLSR;
 | 
						|
          break;
 | 
						|
        default:
 | 
						|
          llvm_unreachable("Unexpected shift opcode");
 | 
						|
      }
 | 
						|
      return DAG.getNode(NewOpc, SDLoc(Op), ty(Op), Op.getOperand(0), S);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
HexagonTargetLowering::LowerVECTOR_SHIFT(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  return getVectorShiftByInt(Op, DAG);
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
HexagonTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  if (isa<ConstantSDNode>(Op.getOperand(1).getNode()))
 | 
						|
    return Op;
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
HexagonTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  MVT ResTy = ty(Op);
 | 
						|
  SDValue InpV = Op.getOperand(0);
 | 
						|
  MVT InpTy = ty(InpV);
 | 
						|
  assert(ResTy.getSizeInBits() == InpTy.getSizeInBits());
 | 
						|
  const SDLoc &dl(Op);
 | 
						|
 | 
						|
  // Handle conversion from i8 to v8i1.
 | 
						|
  if (InpTy == MVT::i8) {
 | 
						|
    if (ResTy == MVT::v8i1) {
 | 
						|
      SDValue Sc = DAG.getBitcast(tyScalar(InpTy), InpV);
 | 
						|
      SDValue Ext = DAG.getZExtOrTrunc(Sc, dl, MVT::i32);
 | 
						|
      return getInstr(Hexagon::C2_tfrrp, dl, ResTy, Ext, DAG);
 | 
						|
    }
 | 
						|
    return SDValue();
 | 
						|
  }
 | 
						|
 | 
						|
  return Op;
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
HexagonTargetLowering::getBuildVectorConstInts(ArrayRef<SDValue> Values,
 | 
						|
      MVT VecTy, SelectionDAG &DAG,
 | 
						|
      MutableArrayRef<ConstantInt*> Consts) const {
 | 
						|
  MVT ElemTy = VecTy.getVectorElementType();
 | 
						|
  unsigned ElemWidth = ElemTy.getSizeInBits();
 | 
						|
  IntegerType *IntTy = IntegerType::get(*DAG.getContext(), ElemWidth);
 | 
						|
  bool AllConst = true;
 | 
						|
 | 
						|
  for (unsigned i = 0, e = Values.size(); i != e; ++i) {
 | 
						|
    SDValue V = Values[i];
 | 
						|
    if (V.isUndef()) {
 | 
						|
      Consts[i] = ConstantInt::get(IntTy, 0);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    // Make sure to always cast to IntTy.
 | 
						|
    if (auto *CN = dyn_cast<ConstantSDNode>(V.getNode())) {
 | 
						|
      const ConstantInt *CI = CN->getConstantIntValue();
 | 
						|
      Consts[i] = ConstantInt::get(IntTy, CI->getValue().getSExtValue());
 | 
						|
    } else if (auto *CN = dyn_cast<ConstantFPSDNode>(V.getNode())) {
 | 
						|
      const ConstantFP *CF = CN->getConstantFPValue();
 | 
						|
      APInt A = CF->getValueAPF().bitcastToAPInt();
 | 
						|
      Consts[i] = ConstantInt::get(IntTy, A.getZExtValue());
 | 
						|
    } else {
 | 
						|
      AllConst = false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return AllConst;
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
HexagonTargetLowering::buildVector32(ArrayRef<SDValue> Elem, const SDLoc &dl,
 | 
						|
                                     MVT VecTy, SelectionDAG &DAG) const {
 | 
						|
  MVT ElemTy = VecTy.getVectorElementType();
 | 
						|
  assert(VecTy.getVectorNumElements() == Elem.size());
 | 
						|
 | 
						|
  SmallVector<ConstantInt*,4> Consts(Elem.size());
 | 
						|
  bool AllConst = getBuildVectorConstInts(Elem, VecTy, DAG, Consts);
 | 
						|
 | 
						|
  unsigned First, Num = Elem.size();
 | 
						|
  for (First = 0; First != Num; ++First)
 | 
						|
    if (!isUndef(Elem[First]))
 | 
						|
      break;
 | 
						|
  if (First == Num)
 | 
						|
    return DAG.getUNDEF(VecTy);
 | 
						|
 | 
						|
  if (AllConst &&
 | 
						|
      llvm::all_of(Consts, [](ConstantInt *CI) { return CI->isZero(); }))
 | 
						|
    return getZero(dl, VecTy, DAG);
 | 
						|
 | 
						|
  if (ElemTy == MVT::i16) {
 | 
						|
    assert(Elem.size() == 2);
 | 
						|
    if (AllConst) {
 | 
						|
      uint32_t V = (Consts[0]->getZExtValue() & 0xFFFF) |
 | 
						|
                   Consts[1]->getZExtValue() << 16;
 | 
						|
      return DAG.getBitcast(MVT::v2i16, DAG.getConstant(V, dl, MVT::i32));
 | 
						|
    }
 | 
						|
    SDValue N = getInstr(Hexagon::A2_combine_ll, dl, MVT::i32,
 | 
						|
                         {Elem[1], Elem[0]}, DAG);
 | 
						|
    return DAG.getBitcast(MVT::v2i16, N);
 | 
						|
  }
 | 
						|
 | 
						|
  if (ElemTy == MVT::i8) {
 | 
						|
    // First try generating a constant.
 | 
						|
    if (AllConst) {
 | 
						|
      int32_t V = (Consts[0]->getZExtValue() & 0xFF) |
 | 
						|
                  (Consts[1]->getZExtValue() & 0xFF) << 8 |
 | 
						|
                  (Consts[1]->getZExtValue() & 0xFF) << 16 |
 | 
						|
                  Consts[2]->getZExtValue() << 24;
 | 
						|
      return DAG.getBitcast(MVT::v4i8, DAG.getConstant(V, dl, MVT::i32));
 | 
						|
    }
 | 
						|
 | 
						|
    // Then try splat.
 | 
						|
    bool IsSplat = true;
 | 
						|
    for (unsigned i = 0; i != Num; ++i) {
 | 
						|
      if (i == First)
 | 
						|
        continue;
 | 
						|
      if (Elem[i] == Elem[First] || isUndef(Elem[i]))
 | 
						|
        continue;
 | 
						|
      IsSplat = false;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    if (IsSplat) {
 | 
						|
      // Legalize the operand to VSPLAT.
 | 
						|
      SDValue Ext = DAG.getZExtOrTrunc(Elem[First], dl, MVT::i32);
 | 
						|
      return DAG.getNode(HexagonISD::VSPLAT, dl, VecTy, Ext);
 | 
						|
    }
 | 
						|
 | 
						|
    // Generate
 | 
						|
    //   (zxtb(Elem[0]) | (zxtb(Elem[1]) << 8)) |
 | 
						|
    //   (zxtb(Elem[2]) | (zxtb(Elem[3]) << 8)) << 16
 | 
						|
    assert(Elem.size() == 4);
 | 
						|
    SDValue Vs[4];
 | 
						|
    for (unsigned i = 0; i != 4; ++i) {
 | 
						|
      Vs[i] = DAG.getZExtOrTrunc(Elem[i], dl, MVT::i32);
 | 
						|
      Vs[i] = DAG.getZeroExtendInReg(Vs[i], dl, MVT::i8);
 | 
						|
    }
 | 
						|
    SDValue S8 = DAG.getConstant(8, dl, MVT::i32);
 | 
						|
    SDValue T0 = DAG.getNode(ISD::SHL, dl, MVT::i32, {Vs[1], S8});
 | 
						|
    SDValue T1 = DAG.getNode(ISD::SHL, dl, MVT::i32, {Vs[3], S8});
 | 
						|
    SDValue B0 = DAG.getNode(ISD::OR, dl, MVT::i32, {Vs[0], T0});
 | 
						|
    SDValue B1 = DAG.getNode(ISD::OR, dl, MVT::i32, {Vs[2], T1});
 | 
						|
 | 
						|
    SDValue R = getInstr(Hexagon::A2_combine_ll, dl, MVT::i32, {B1, B0}, DAG);
 | 
						|
    return DAG.getBitcast(MVT::v4i8, R);
 | 
						|
  }
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  dbgs() << "VecTy: " << EVT(VecTy).getEVTString() << '\n';
 | 
						|
#endif
 | 
						|
  llvm_unreachable("Unexpected vector element type");
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
HexagonTargetLowering::buildVector64(ArrayRef<SDValue> Elem, const SDLoc &dl,
 | 
						|
                                     MVT VecTy, SelectionDAG &DAG) const {
 | 
						|
  MVT ElemTy = VecTy.getVectorElementType();
 | 
						|
  assert(VecTy.getVectorNumElements() == Elem.size());
 | 
						|
 | 
						|
  SmallVector<ConstantInt*,8> Consts(Elem.size());
 | 
						|
  bool AllConst = getBuildVectorConstInts(Elem, VecTy, DAG, Consts);
 | 
						|
 | 
						|
  unsigned First, Num = Elem.size();
 | 
						|
  for (First = 0; First != Num; ++First)
 | 
						|
    if (!isUndef(Elem[First]))
 | 
						|
      break;
 | 
						|
  if (First == Num)
 | 
						|
    return DAG.getUNDEF(VecTy);
 | 
						|
 | 
						|
  if (AllConst &&
 | 
						|
      llvm::all_of(Consts, [](ConstantInt *CI) { return CI->isZero(); }))
 | 
						|
    return getZero(dl, VecTy, DAG);
 | 
						|
 | 
						|
  // First try splat if possible.
 | 
						|
  if (ElemTy == MVT::i16) {
 | 
						|
    bool IsSplat = true;
 | 
						|
    for (unsigned i = 0; i != Num; ++i) {
 | 
						|
      if (i == First)
 | 
						|
        continue;
 | 
						|
      if (Elem[i] == Elem[First] || isUndef(Elem[i]))
 | 
						|
        continue;
 | 
						|
      IsSplat = false;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    if (IsSplat) {
 | 
						|
      // Legalize the operand to VSPLAT.
 | 
						|
      SDValue Ext = DAG.getZExtOrTrunc(Elem[First], dl, MVT::i32);
 | 
						|
      return DAG.getNode(HexagonISD::VSPLAT, dl, VecTy, Ext);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Then try constant.
 | 
						|
  if (AllConst) {
 | 
						|
    uint64_t Val = 0;
 | 
						|
    unsigned W = ElemTy.getSizeInBits();
 | 
						|
    uint64_t Mask = (ElemTy == MVT::i8)  ? 0xFFull
 | 
						|
                  : (ElemTy == MVT::i16) ? 0xFFFFull : 0xFFFFFFFFull;
 | 
						|
    for (unsigned i = 0; i != Num; ++i)
 | 
						|
      Val = (Val << W) | (Consts[Num-1-i]->getZExtValue() & Mask);
 | 
						|
    SDValue V0 = DAG.getConstant(Val, dl, MVT::i64);
 | 
						|
    return DAG.getBitcast(VecTy, V0);
 | 
						|
  }
 | 
						|
 | 
						|
  // Build two 32-bit vectors and concatenate.
 | 
						|
  MVT HalfTy = MVT::getVectorVT(ElemTy, Num/2);
 | 
						|
  SDValue L = (ElemTy == MVT::i32)
 | 
						|
                ? Elem[0]
 | 
						|
                : buildVector32(Elem.take_front(Num/2), dl, HalfTy, DAG);
 | 
						|
  SDValue H = (ElemTy == MVT::i32)
 | 
						|
                ? Elem[1]
 | 
						|
                : buildVector32(Elem.drop_front(Num/2), dl, HalfTy, DAG);
 | 
						|
  return DAG.getNode(HexagonISD::COMBINE, dl, VecTy, {H, L});
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
HexagonTargetLowering::extractVector(SDValue VecV, SDValue IdxV,
 | 
						|
                                     const SDLoc &dl, MVT ValTy, MVT ResTy,
 | 
						|
                                     SelectionDAG &DAG) const {
 | 
						|
  MVT VecTy = ty(VecV);
 | 
						|
  assert(!ValTy.isVector() ||
 | 
						|
         VecTy.getVectorElementType() == ValTy.getVectorElementType());
 | 
						|
  unsigned VecWidth = VecTy.getSizeInBits();
 | 
						|
  unsigned ValWidth = ValTy.getSizeInBits();
 | 
						|
  unsigned ElemWidth = VecTy.getVectorElementType().getSizeInBits();
 | 
						|
  assert((VecWidth % ElemWidth) == 0);
 | 
						|
  auto *IdxN = dyn_cast<ConstantSDNode>(IdxV);
 | 
						|
 | 
						|
  // Special case for v{8,4,2}i1 (the only boolean vectors legal in Hexagon
 | 
						|
  // without any coprocessors).
 | 
						|
  if (ElemWidth == 1) {
 | 
						|
    assert(VecWidth == VecTy.getVectorNumElements() && "Sanity failure");
 | 
						|
    assert(VecWidth == 8 || VecWidth == 4 || VecWidth == 2);
 | 
						|
    // Check if this is an extract of the lowest bit.
 | 
						|
    if (IdxN) {
 | 
						|
      // Extracting the lowest bit is a no-op, but it changes the type,
 | 
						|
      // so it must be kept as an operation to avoid errors related to
 | 
						|
      // type mismatches.
 | 
						|
      if (IdxN->isNullValue() && ValTy.getSizeInBits() == 1)
 | 
						|
        return DAG.getNode(HexagonISD::TYPECAST, dl, MVT::i1, VecV);
 | 
						|
    }
 | 
						|
 | 
						|
    // If the value extracted is a single bit, use tstbit.
 | 
						|
    if (ValWidth == 1) {
 | 
						|
      SDValue A0 = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32, {VecV}, DAG);
 | 
						|
      SDValue M0 = DAG.getConstant(8 / VecWidth, dl, MVT::i32);
 | 
						|
      SDValue I0 = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, M0);
 | 
						|
      return DAG.getNode(HexagonISD::TSTBIT, dl, MVT::i1, A0, I0);
 | 
						|
    }
 | 
						|
 | 
						|
    // Each bool vector (v2i1, v4i1, v8i1) always occupies 8 bits in
 | 
						|
    // a predicate register. The elements of the vector are repeated
 | 
						|
    // in the register (if necessary) so that the total number is 8.
 | 
						|
    // The extracted subvector will need to be expanded in such a way.
 | 
						|
    unsigned Scale = VecWidth / ValWidth;
 | 
						|
 | 
						|
    // Generate (p2d VecV) >> 8*Idx to move the interesting bytes to
 | 
						|
    // position 0.
 | 
						|
    assert(ty(IdxV) == MVT::i32);
 | 
						|
    unsigned VecRep = 8 / VecWidth;
 | 
						|
    SDValue S0 = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
 | 
						|
                             DAG.getConstant(8*VecRep, dl, MVT::i32));
 | 
						|
    SDValue T0 = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, VecV);
 | 
						|
    SDValue T1 = DAG.getNode(ISD::SRL, dl, MVT::i64, T0, S0);
 | 
						|
    while (Scale > 1) {
 | 
						|
      // The longest possible subvector is at most 32 bits, so it is always
 | 
						|
      // contained in the low subregister.
 | 
						|
      T1 = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, T1);
 | 
						|
      T1 = expandPredicate(T1, dl, DAG);
 | 
						|
      Scale /= 2;
 | 
						|
    }
 | 
						|
 | 
						|
    return DAG.getNode(HexagonISD::D2P, dl, ResTy, T1);
 | 
						|
  }
 | 
						|
 | 
						|
  assert(VecWidth == 32 || VecWidth == 64);
 | 
						|
 | 
						|
  // Cast everything to scalar integer types.
 | 
						|
  MVT ScalarTy = tyScalar(VecTy);
 | 
						|
  VecV = DAG.getBitcast(ScalarTy, VecV);
 | 
						|
 | 
						|
  SDValue WidthV = DAG.getConstant(ValWidth, dl, MVT::i32);
 | 
						|
  SDValue ExtV;
 | 
						|
 | 
						|
  if (IdxN) {
 | 
						|
    unsigned Off = IdxN->getZExtValue() * ElemWidth;
 | 
						|
    if (VecWidth == 64 && ValWidth == 32) {
 | 
						|
      assert(Off == 0 || Off == 32);
 | 
						|
      unsigned SubIdx = Off == 0 ? Hexagon::isub_lo : Hexagon::isub_hi;
 | 
						|
      ExtV = DAG.getTargetExtractSubreg(SubIdx, dl, MVT::i32, VecV);
 | 
						|
    } else if (Off == 0 && (ValWidth % 8) == 0) {
 | 
						|
      ExtV = DAG.getZeroExtendInReg(VecV, dl, tyScalar(ValTy));
 | 
						|
    } else {
 | 
						|
      SDValue OffV = DAG.getConstant(Off, dl, MVT::i32);
 | 
						|
      // The return type of EXTRACTU must be the same as the type of the
 | 
						|
      // input vector.
 | 
						|
      ExtV = DAG.getNode(HexagonISD::EXTRACTU, dl, ScalarTy,
 | 
						|
                         {VecV, WidthV, OffV});
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    if (ty(IdxV) != MVT::i32)
 | 
						|
      IdxV = DAG.getZExtOrTrunc(IdxV, dl, MVT::i32);
 | 
						|
    SDValue OffV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
 | 
						|
                               DAG.getConstant(ElemWidth, dl, MVT::i32));
 | 
						|
    ExtV = DAG.getNode(HexagonISD::EXTRACTU, dl, ScalarTy,
 | 
						|
                       {VecV, WidthV, OffV});
 | 
						|
  }
 | 
						|
 | 
						|
  // Cast ExtV to the requested result type.
 | 
						|
  ExtV = DAG.getZExtOrTrunc(ExtV, dl, tyScalar(ResTy));
 | 
						|
  ExtV = DAG.getBitcast(ResTy, ExtV);
 | 
						|
  return ExtV;
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
HexagonTargetLowering::insertVector(SDValue VecV, SDValue ValV, SDValue IdxV,
 | 
						|
                                    const SDLoc &dl, MVT ValTy,
 | 
						|
                                    SelectionDAG &DAG) const {
 | 
						|
  MVT VecTy = ty(VecV);
 | 
						|
  if (VecTy.getVectorElementType() == MVT::i1) {
 | 
						|
    MVT ValTy = ty(ValV);
 | 
						|
    assert(ValTy.getVectorElementType() == MVT::i1);
 | 
						|
    SDValue ValR = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, ValV);
 | 
						|
    unsigned VecLen = VecTy.getVectorNumElements();
 | 
						|
    unsigned Scale = VecLen / ValTy.getVectorNumElements();
 | 
						|
    assert(Scale > 1);
 | 
						|
 | 
						|
    for (unsigned R = Scale; R > 1; R /= 2) {
 | 
						|
      ValR = contractPredicate(ValR, dl, DAG);
 | 
						|
      ValR = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64,
 | 
						|
                         DAG.getUNDEF(MVT::i32), ValR);
 | 
						|
    }
 | 
						|
    // The longest possible subvector is at most 32 bits, so it is always
 | 
						|
    // contained in the low subregister.
 | 
						|
    ValR = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, ValR);
 | 
						|
 | 
						|
    unsigned ValBytes = 64 / Scale;
 | 
						|
    SDValue Width = DAG.getConstant(ValBytes*8, dl, MVT::i32);
 | 
						|
    SDValue Idx = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
 | 
						|
                              DAG.getConstant(8, dl, MVT::i32));
 | 
						|
    SDValue VecR = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, VecV);
 | 
						|
    SDValue Ins = DAG.getNode(HexagonISD::INSERT, dl, MVT::i32,
 | 
						|
                              {VecR, ValR, Width, Idx});
 | 
						|
    return DAG.getNode(HexagonISD::D2P, dl, VecTy, Ins);
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned VecWidth = VecTy.getSizeInBits();
 | 
						|
  unsigned ValWidth = ValTy.getSizeInBits();
 | 
						|
  assert(VecWidth == 32 || VecWidth == 64);
 | 
						|
  assert((VecWidth % ValWidth) == 0);
 | 
						|
 | 
						|
  // Cast everything to scalar integer types.
 | 
						|
  MVT ScalarTy = MVT::getIntegerVT(VecWidth);
 | 
						|
  // The actual type of ValV may be different than ValTy (which is related
 | 
						|
  // to the vector type).
 | 
						|
  unsigned VW = ty(ValV).getSizeInBits();
 | 
						|
  ValV = DAG.getBitcast(MVT::getIntegerVT(VW), ValV);
 | 
						|
  VecV = DAG.getBitcast(ScalarTy, VecV);
 | 
						|
  if (VW != VecWidth)
 | 
						|
    ValV = DAG.getAnyExtOrTrunc(ValV, dl, ScalarTy);
 | 
						|
 | 
						|
  SDValue WidthV = DAG.getConstant(ValWidth, dl, MVT::i32);
 | 
						|
  SDValue InsV;
 | 
						|
 | 
						|
  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(IdxV)) {
 | 
						|
    unsigned W = C->getZExtValue() * ValWidth;
 | 
						|
    SDValue OffV = DAG.getConstant(W, dl, MVT::i32);
 | 
						|
    InsV = DAG.getNode(HexagonISD::INSERT, dl, ScalarTy,
 | 
						|
                       {VecV, ValV, WidthV, OffV});
 | 
						|
  } else {
 | 
						|
    if (ty(IdxV) != MVT::i32)
 | 
						|
      IdxV = DAG.getZExtOrTrunc(IdxV, dl, MVT::i32);
 | 
						|
    SDValue OffV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, WidthV);
 | 
						|
    InsV = DAG.getNode(HexagonISD::INSERT, dl, ScalarTy,
 | 
						|
                       {VecV, ValV, WidthV, OffV});
 | 
						|
  }
 | 
						|
 | 
						|
  return DAG.getNode(ISD::BITCAST, dl, VecTy, InsV);
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
HexagonTargetLowering::expandPredicate(SDValue Vec32, const SDLoc &dl,
 | 
						|
                                       SelectionDAG &DAG) const {
 | 
						|
  assert(ty(Vec32).getSizeInBits() == 32);
 | 
						|
  if (isUndef(Vec32))
 | 
						|
    return DAG.getUNDEF(MVT::i64);
 | 
						|
  return getInstr(Hexagon::S2_vsxtbh, dl, MVT::i64, {Vec32}, DAG);
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
HexagonTargetLowering::contractPredicate(SDValue Vec64, const SDLoc &dl,
 | 
						|
                                         SelectionDAG &DAG) const {
 | 
						|
  assert(ty(Vec64).getSizeInBits() == 64);
 | 
						|
  if (isUndef(Vec64))
 | 
						|
    return DAG.getUNDEF(MVT::i32);
 | 
						|
  return getInstr(Hexagon::S2_vtrunehb, dl, MVT::i32, {Vec64}, DAG);
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
HexagonTargetLowering::getZero(const SDLoc &dl, MVT Ty, SelectionDAG &DAG)
 | 
						|
      const {
 | 
						|
  if (Ty.isVector()) {
 | 
						|
    assert(Ty.isInteger() && "Only integer vectors are supported here");
 | 
						|
    unsigned W = Ty.getSizeInBits();
 | 
						|
    if (W <= 64)
 | 
						|
      return DAG.getBitcast(Ty, DAG.getConstant(0, dl, MVT::getIntegerVT(W)));
 | 
						|
    return DAG.getNode(HexagonISD::VZERO, dl, Ty);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Ty.isInteger())
 | 
						|
    return DAG.getConstant(0, dl, Ty);
 | 
						|
  if (Ty.isFloatingPoint())
 | 
						|
    return DAG.getConstantFP(0.0, dl, Ty);
 | 
						|
  llvm_unreachable("Invalid type for zero");
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
HexagonTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  MVT VecTy = ty(Op);
 | 
						|
  unsigned BW = VecTy.getSizeInBits();
 | 
						|
  const SDLoc &dl(Op);
 | 
						|
  SmallVector<SDValue,8> Ops;
 | 
						|
  for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i)
 | 
						|
    Ops.push_back(Op.getOperand(i));
 | 
						|
 | 
						|
  if (BW == 32)
 | 
						|
    return buildVector32(Ops, dl, VecTy, DAG);
 | 
						|
  if (BW == 64)
 | 
						|
    return buildVector64(Ops, dl, VecTy, DAG);
 | 
						|
 | 
						|
  if (VecTy == MVT::v8i1 || VecTy == MVT::v4i1 || VecTy == MVT::v2i1) {
 | 
						|
    // Check if this is a special case or all-0 or all-1.
 | 
						|
    bool All0 = true, All1 = true;
 | 
						|
    for (SDValue P : Ops) {
 | 
						|
      auto *CN = dyn_cast<ConstantSDNode>(P.getNode());
 | 
						|
      if (CN == nullptr) {
 | 
						|
        All0 = All1 = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      uint32_t C = CN->getZExtValue();
 | 
						|
      All0 &= (C == 0);
 | 
						|
      All1 &= (C == 1);
 | 
						|
    }
 | 
						|
    if (All0)
 | 
						|
      return DAG.getNode(HexagonISD::PFALSE, dl, VecTy);
 | 
						|
    if (All1)
 | 
						|
      return DAG.getNode(HexagonISD::PTRUE, dl, VecTy);
 | 
						|
 | 
						|
    // For each i1 element in the resulting predicate register, put 1
 | 
						|
    // shifted by the index of the element into a general-purpose register,
 | 
						|
    // then or them together and transfer it back into a predicate register.
 | 
						|
    SDValue Rs[8];
 | 
						|
    SDValue Z = getZero(dl, MVT::i32, DAG);
 | 
						|
    // Always produce 8 bits, repeat inputs if necessary.
 | 
						|
    unsigned Rep = 8 / VecTy.getVectorNumElements();
 | 
						|
    for (unsigned i = 0; i != 8; ++i) {
 | 
						|
      SDValue S = DAG.getConstant(1ull << i, dl, MVT::i32);
 | 
						|
      Rs[i] = DAG.getSelect(dl, MVT::i32, Ops[i/Rep], S, Z);
 | 
						|
    }
 | 
						|
    for (ArrayRef<SDValue> A(Rs); A.size() != 1; A = A.drop_back(A.size()/2)) {
 | 
						|
      for (unsigned i = 0, e = A.size()/2; i != e; ++i)
 | 
						|
        Rs[i] = DAG.getNode(ISD::OR, dl, MVT::i32, Rs[2*i], Rs[2*i+1]);
 | 
						|
    }
 | 
						|
    // Move the value directly to a predicate register.
 | 
						|
    return getInstr(Hexagon::C2_tfrrp, dl, VecTy, {Rs[0]}, DAG);
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
HexagonTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
 | 
						|
                                           SelectionDAG &DAG) const {
 | 
						|
  MVT VecTy = ty(Op);
 | 
						|
  const SDLoc &dl(Op);
 | 
						|
  if (VecTy.getSizeInBits() == 64) {
 | 
						|
    assert(Op.getNumOperands() == 2);
 | 
						|
    return DAG.getNode(HexagonISD::COMBINE, dl, VecTy, Op.getOperand(1),
 | 
						|
                       Op.getOperand(0));
 | 
						|
  }
 | 
						|
 | 
						|
  MVT ElemTy = VecTy.getVectorElementType();
 | 
						|
  if (ElemTy == MVT::i1) {
 | 
						|
    assert(VecTy == MVT::v2i1 || VecTy == MVT::v4i1 || VecTy == MVT::v8i1);
 | 
						|
    MVT OpTy = ty(Op.getOperand(0));
 | 
						|
    // Scale is how many times the operands need to be contracted to match
 | 
						|
    // the representation in the target register.
 | 
						|
    unsigned Scale = VecTy.getVectorNumElements() / OpTy.getVectorNumElements();
 | 
						|
    assert(Scale == Op.getNumOperands() && Scale > 1);
 | 
						|
 | 
						|
    // First, convert all bool vectors to integers, then generate pairwise
 | 
						|
    // inserts to form values of doubled length. Up until there are only
 | 
						|
    // two values left to concatenate, all of these values will fit in a
 | 
						|
    // 32-bit integer, so keep them as i32 to use 32-bit inserts.
 | 
						|
    SmallVector<SDValue,4> Words[2];
 | 
						|
    unsigned IdxW = 0;
 | 
						|
 | 
						|
    for (SDValue P : Op.getNode()->op_values()) {
 | 
						|
      SDValue W = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, P);
 | 
						|
      for (unsigned R = Scale; R > 1; R /= 2) {
 | 
						|
        W = contractPredicate(W, dl, DAG);
 | 
						|
        W = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64,
 | 
						|
                        DAG.getUNDEF(MVT::i32), W);
 | 
						|
      }
 | 
						|
      W = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, W);
 | 
						|
      Words[IdxW].push_back(W);
 | 
						|
    }
 | 
						|
 | 
						|
    while (Scale > 2) {
 | 
						|
      SDValue WidthV = DAG.getConstant(64 / Scale, dl, MVT::i32);
 | 
						|
      Words[IdxW ^ 1].clear();
 | 
						|
 | 
						|
      for (unsigned i = 0, e = Words[IdxW].size(); i != e; i += 2) {
 | 
						|
        SDValue W0 = Words[IdxW][i], W1 = Words[IdxW][i+1];
 | 
						|
        // Insert W1 into W0 right next to the significant bits of W0.
 | 
						|
        SDValue T = DAG.getNode(HexagonISD::INSERT, dl, MVT::i32,
 | 
						|
                                {W0, W1, WidthV, WidthV});
 | 
						|
        Words[IdxW ^ 1].push_back(T);
 | 
						|
      }
 | 
						|
      IdxW ^= 1;
 | 
						|
      Scale /= 2;
 | 
						|
    }
 | 
						|
 | 
						|
    // Another sanity check. At this point there should only be two words
 | 
						|
    // left, and Scale should be 2.
 | 
						|
    assert(Scale == 2 && Words[IdxW].size() == 2);
 | 
						|
 | 
						|
    SDValue WW = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64,
 | 
						|
                             Words[IdxW][1], Words[IdxW][0]);
 | 
						|
    return DAG.getNode(HexagonISD::D2P, dl, VecTy, WW);
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
HexagonTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
 | 
						|
                                               SelectionDAG &DAG) const {
 | 
						|
  SDValue Vec = Op.getOperand(0);
 | 
						|
  MVT ElemTy = ty(Vec).getVectorElementType();
 | 
						|
  return extractVector(Vec, Op.getOperand(1), SDLoc(Op), ElemTy, ty(Op), DAG);
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
HexagonTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
 | 
						|
                                              SelectionDAG &DAG) const {
 | 
						|
  return extractVector(Op.getOperand(0), Op.getOperand(1), SDLoc(Op),
 | 
						|
                       ty(Op), ty(Op), DAG);
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
HexagonTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
 | 
						|
                                              SelectionDAG &DAG) const {
 | 
						|
  return insertVector(Op.getOperand(0), Op.getOperand(1), Op.getOperand(2),
 | 
						|
                      SDLoc(Op), ty(Op).getVectorElementType(), DAG);
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
HexagonTargetLowering::LowerINSERT_SUBVECTOR(SDValue Op,
 | 
						|
                                             SelectionDAG &DAG) const {
 | 
						|
  SDValue ValV = Op.getOperand(1);
 | 
						|
  return insertVector(Op.getOperand(0), ValV, Op.getOperand(2),
 | 
						|
                      SDLoc(Op), ty(ValV), DAG);
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
HexagonTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
 | 
						|
  // Assuming the caller does not have either a signext or zeroext modifier, and
 | 
						|
  // only one value is accepted, any reasonable truncation is allowed.
 | 
						|
  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // FIXME: in principle up to 64-bit could be made safe, but it would be very
 | 
						|
  // fragile at the moment: any support for multiple value returns would be
 | 
						|
  // liable to disallow tail calls involving i64 -> iN truncation in many cases.
 | 
						|
  return Ty1->getPrimitiveSizeInBits() <= 32;
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
HexagonTargetLowering::LowerLoad(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
 | 
						|
  unsigned ClaimAlign = LN->getAlignment();
 | 
						|
  validateConstPtrAlignment(LN->getBasePtr(), SDLoc(Op), ClaimAlign);
 | 
						|
  // Call LowerUnalignedLoad for all loads, it recognizes loads that
 | 
						|
  // don't need extra aligning.
 | 
						|
  return LowerUnalignedLoad(Op, DAG);
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
HexagonTargetLowering::LowerStore(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
 | 
						|
  unsigned ClaimAlign = SN->getAlignment();
 | 
						|
  SDValue Ptr = SN->getBasePtr();
 | 
						|
  const SDLoc &dl(Op);
 | 
						|
  validateConstPtrAlignment(Ptr, dl, ClaimAlign);
 | 
						|
 | 
						|
  MVT StoreTy = SN->getMemoryVT().getSimpleVT();
 | 
						|
  unsigned NeedAlign = Subtarget.getTypeAlignment(StoreTy);
 | 
						|
  if (ClaimAlign < NeedAlign)
 | 
						|
    return expandUnalignedStore(SN, DAG);
 | 
						|
  return Op;
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
HexagonTargetLowering::LowerUnalignedLoad(SDValue Op, SelectionDAG &DAG)
 | 
						|
      const {
 | 
						|
  LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
 | 
						|
  MVT LoadTy = ty(Op);
 | 
						|
  unsigned NeedAlign = Subtarget.getTypeAlignment(LoadTy);
 | 
						|
  unsigned HaveAlign = LN->getAlignment();
 | 
						|
  if (HaveAlign >= NeedAlign)
 | 
						|
    return Op;
 | 
						|
 | 
						|
  const SDLoc &dl(Op);
 | 
						|
  const DataLayout &DL = DAG.getDataLayout();
 | 
						|
  LLVMContext &Ctx = *DAG.getContext();
 | 
						|
 | 
						|
  // If the load aligning is disabled or the load can be broken up into two
 | 
						|
  // smaller legal loads, do the default (target-independent) expansion.
 | 
						|
  bool DoDefault = false;
 | 
						|
  // Handle it in the default way if this is an indexed load.
 | 
						|
  if (!LN->isUnindexed())
 | 
						|
    DoDefault = true;
 | 
						|
 | 
						|
  if (!AlignLoads) {
 | 
						|
    if (allowsMemoryAccessForAlignment(Ctx, DL, LN->getMemoryVT(),
 | 
						|
                                       *LN->getMemOperand()))
 | 
						|
      return Op;
 | 
						|
    DoDefault = true;
 | 
						|
  }
 | 
						|
  if (!DoDefault && (2 * HaveAlign) == NeedAlign) {
 | 
						|
    // The PartTy is the equivalent of "getLoadableTypeOfSize(HaveAlign)".
 | 
						|
    MVT PartTy = HaveAlign <= 8 ? MVT::getIntegerVT(8 * HaveAlign)
 | 
						|
                                : MVT::getVectorVT(MVT::i8, HaveAlign);
 | 
						|
    DoDefault =
 | 
						|
        allowsMemoryAccessForAlignment(Ctx, DL, PartTy, *LN->getMemOperand());
 | 
						|
  }
 | 
						|
  if (DoDefault) {
 | 
						|
    std::pair<SDValue, SDValue> P = expandUnalignedLoad(LN, DAG);
 | 
						|
    return DAG.getMergeValues({P.first, P.second}, dl);
 | 
						|
  }
 | 
						|
 | 
						|
  // The code below generates two loads, both aligned as NeedAlign, and
 | 
						|
  // with the distance of NeedAlign between them. For that to cover the
 | 
						|
  // bits that need to be loaded (and without overlapping), the size of
 | 
						|
  // the loads should be equal to NeedAlign. This is true for all loadable
 | 
						|
  // types, but add an assertion in case something changes in the future.
 | 
						|
  assert(LoadTy.getSizeInBits() == 8*NeedAlign);
 | 
						|
 | 
						|
  unsigned LoadLen = NeedAlign;
 | 
						|
  SDValue Base = LN->getBasePtr();
 | 
						|
  SDValue Chain = LN->getChain();
 | 
						|
  auto BO = getBaseAndOffset(Base);
 | 
						|
  unsigned BaseOpc = BO.first.getOpcode();
 | 
						|
  if (BaseOpc == HexagonISD::VALIGNADDR && BO.second % LoadLen == 0)
 | 
						|
    return Op;
 | 
						|
 | 
						|
  if (BO.second % LoadLen != 0) {
 | 
						|
    BO.first = DAG.getNode(ISD::ADD, dl, MVT::i32, BO.first,
 | 
						|
                           DAG.getConstant(BO.second % LoadLen, dl, MVT::i32));
 | 
						|
    BO.second -= BO.second % LoadLen;
 | 
						|
  }
 | 
						|
  SDValue BaseNoOff = (BaseOpc != HexagonISD::VALIGNADDR)
 | 
						|
      ? DAG.getNode(HexagonISD::VALIGNADDR, dl, MVT::i32, BO.first,
 | 
						|
                    DAG.getConstant(NeedAlign, dl, MVT::i32))
 | 
						|
      : BO.first;
 | 
						|
  SDValue Base0 = DAG.getMemBasePlusOffset(BaseNoOff, BO.second, dl);
 | 
						|
  SDValue Base1 = DAG.getMemBasePlusOffset(BaseNoOff, BO.second+LoadLen, dl);
 | 
						|
 | 
						|
  MachineMemOperand *WideMMO = nullptr;
 | 
						|
  if (MachineMemOperand *MMO = LN->getMemOperand()) {
 | 
						|
    MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
    WideMMO = MF.getMachineMemOperand(
 | 
						|
        MMO->getPointerInfo(), MMO->getFlags(), 2 * LoadLen, Align(LoadLen),
 | 
						|
        MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(),
 | 
						|
        MMO->getOrdering(), MMO->getFailureOrdering());
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue Load0 = DAG.getLoad(LoadTy, dl, Chain, Base0, WideMMO);
 | 
						|
  SDValue Load1 = DAG.getLoad(LoadTy, dl, Chain, Base1, WideMMO);
 | 
						|
 | 
						|
  SDValue Aligned = DAG.getNode(HexagonISD::VALIGN, dl, LoadTy,
 | 
						|
                                {Load1, Load0, BaseNoOff.getOperand(0)});
 | 
						|
  SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
 | 
						|
                                 Load0.getValue(1), Load1.getValue(1));
 | 
						|
  SDValue M = DAG.getMergeValues({Aligned, NewChain}, dl);
 | 
						|
  return M;
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
HexagonTargetLowering::LowerUAddSubO(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
 | 
						|
  auto *CY = dyn_cast<ConstantSDNode>(Y);
 | 
						|
  if (!CY)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  const SDLoc &dl(Op);
 | 
						|
  SDVTList VTs = Op.getNode()->getVTList();
 | 
						|
  assert(VTs.NumVTs == 2);
 | 
						|
  assert(VTs.VTs[1] == MVT::i1);
 | 
						|
  unsigned Opc = Op.getOpcode();
 | 
						|
 | 
						|
  if (CY) {
 | 
						|
    uint32_t VY = CY->getZExtValue();
 | 
						|
    assert(VY != 0 && "This should have been folded");
 | 
						|
    // X +/- 1
 | 
						|
    if (VY != 1)
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    if (Opc == ISD::UADDO) {
 | 
						|
      SDValue Op = DAG.getNode(ISD::ADD, dl, VTs.VTs[0], {X, Y});
 | 
						|
      SDValue Ov = DAG.getSetCC(dl, MVT::i1, Op, getZero(dl, ty(Op), DAG),
 | 
						|
                                ISD::SETEQ);
 | 
						|
      return DAG.getMergeValues({Op, Ov}, dl);
 | 
						|
    }
 | 
						|
    if (Opc == ISD::USUBO) {
 | 
						|
      SDValue Op = DAG.getNode(ISD::SUB, dl, VTs.VTs[0], {X, Y});
 | 
						|
      SDValue Ov = DAG.getSetCC(dl, MVT::i1, Op,
 | 
						|
                                DAG.getConstant(-1, dl, ty(Op)), ISD::SETEQ);
 | 
						|
      return DAG.getMergeValues({Op, Ov}, dl);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
HexagonTargetLowering::LowerAddSubCarry(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  const SDLoc &dl(Op);
 | 
						|
  unsigned Opc = Op.getOpcode();
 | 
						|
  SDValue X = Op.getOperand(0), Y = Op.getOperand(1), C = Op.getOperand(2);
 | 
						|
 | 
						|
  if (Opc == ISD::ADDCARRY)
 | 
						|
    return DAG.getNode(HexagonISD::ADDC, dl, Op.getNode()->getVTList(),
 | 
						|
                       { X, Y, C });
 | 
						|
 | 
						|
  EVT CarryTy = C.getValueType();
 | 
						|
  SDValue SubC = DAG.getNode(HexagonISD::SUBC, dl, Op.getNode()->getVTList(),
 | 
						|
                             { X, Y, DAG.getLogicalNOT(dl, C, CarryTy) });
 | 
						|
  SDValue Out[] = { SubC.getValue(0),
 | 
						|
                    DAG.getLogicalNOT(dl, SubC.getValue(1), CarryTy) };
 | 
						|
  return DAG.getMergeValues(Out, dl);
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
HexagonTargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  SDValue Chain     = Op.getOperand(0);
 | 
						|
  SDValue Offset    = Op.getOperand(1);
 | 
						|
  SDValue Handler   = Op.getOperand(2);
 | 
						|
  SDLoc dl(Op);
 | 
						|
  auto PtrVT = getPointerTy(DAG.getDataLayout());
 | 
						|
 | 
						|
  // Mark function as containing a call to EH_RETURN.
 | 
						|
  HexagonMachineFunctionInfo *FuncInfo =
 | 
						|
    DAG.getMachineFunction().getInfo<HexagonMachineFunctionInfo>();
 | 
						|
  FuncInfo->setHasEHReturn();
 | 
						|
 | 
						|
  unsigned OffsetReg = Hexagon::R28;
 | 
						|
 | 
						|
  SDValue StoreAddr =
 | 
						|
      DAG.getNode(ISD::ADD, dl, PtrVT, DAG.getRegister(Hexagon::R30, PtrVT),
 | 
						|
                  DAG.getIntPtrConstant(4, dl));
 | 
						|
  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo());
 | 
						|
  Chain = DAG.getCopyToReg(Chain, dl, OffsetReg, Offset);
 | 
						|
 | 
						|
  // Not needed we already use it as explict input to EH_RETURN.
 | 
						|
  // MF.getRegInfo().addLiveOut(OffsetReg);
 | 
						|
 | 
						|
  return DAG.getNode(HexagonISD::EH_RETURN, dl, MVT::Other, Chain);
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
HexagonTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  unsigned Opc = Op.getOpcode();
 | 
						|
 | 
						|
  // Handle INLINEASM first.
 | 
						|
  if (Opc == ISD::INLINEASM || Opc == ISD::INLINEASM_BR)
 | 
						|
    return LowerINLINEASM(Op, DAG);
 | 
						|
 | 
						|
  if (isHvxOperation(Op)) {
 | 
						|
    // If HVX lowering returns nothing, try the default lowering.
 | 
						|
    if (SDValue V = LowerHvxOperation(Op, DAG))
 | 
						|
      return V;
 | 
						|
  }
 | 
						|
 | 
						|
  switch (Opc) {
 | 
						|
    default:
 | 
						|
#ifndef NDEBUG
 | 
						|
      Op.getNode()->dumpr(&DAG);
 | 
						|
      if (Opc > HexagonISD::OP_BEGIN && Opc < HexagonISD::OP_END)
 | 
						|
        errs() << "Error: check for a non-legal type in this operation\n";
 | 
						|
#endif
 | 
						|
      llvm_unreachable("Should not custom lower this!");
 | 
						|
    case ISD::CONCAT_VECTORS:       return LowerCONCAT_VECTORS(Op, DAG);
 | 
						|
    case ISD::INSERT_SUBVECTOR:     return LowerINSERT_SUBVECTOR(Op, DAG);
 | 
						|
    case ISD::INSERT_VECTOR_ELT:    return LowerINSERT_VECTOR_ELT(Op, DAG);
 | 
						|
    case ISD::EXTRACT_SUBVECTOR:    return LowerEXTRACT_SUBVECTOR(Op, DAG);
 | 
						|
    case ISD::EXTRACT_VECTOR_ELT:   return LowerEXTRACT_VECTOR_ELT(Op, DAG);
 | 
						|
    case ISD::BUILD_VECTOR:         return LowerBUILD_VECTOR(Op, DAG);
 | 
						|
    case ISD::VECTOR_SHUFFLE:       return LowerVECTOR_SHUFFLE(Op, DAG);
 | 
						|
    case ISD::BITCAST:              return LowerBITCAST(Op, DAG);
 | 
						|
    case ISD::LOAD:                 return LowerLoad(Op, DAG);
 | 
						|
    case ISD::STORE:                return LowerStore(Op, DAG);
 | 
						|
    case ISD::UADDO:
 | 
						|
    case ISD::USUBO:                return LowerUAddSubO(Op, DAG);
 | 
						|
    case ISD::ADDCARRY:
 | 
						|
    case ISD::SUBCARRY:             return LowerAddSubCarry(Op, DAG);
 | 
						|
    case ISD::SRA:
 | 
						|
    case ISD::SHL:
 | 
						|
    case ISD::SRL:                  return LowerVECTOR_SHIFT(Op, DAG);
 | 
						|
    case ISD::ROTL:                 return LowerROTL(Op, DAG);
 | 
						|
    case ISD::ConstantPool:         return LowerConstantPool(Op, DAG);
 | 
						|
    case ISD::JumpTable:            return LowerJumpTable(Op, DAG);
 | 
						|
    case ISD::EH_RETURN:            return LowerEH_RETURN(Op, DAG);
 | 
						|
    case ISD::RETURNADDR:           return LowerRETURNADDR(Op, DAG);
 | 
						|
    case ISD::FRAMEADDR:            return LowerFRAMEADDR(Op, DAG);
 | 
						|
    case ISD::GlobalTLSAddress:     return LowerGlobalTLSAddress(Op, DAG);
 | 
						|
    case ISD::ATOMIC_FENCE:         return LowerATOMIC_FENCE(Op, DAG);
 | 
						|
    case ISD::GlobalAddress:        return LowerGLOBALADDRESS(Op, DAG);
 | 
						|
    case ISD::BlockAddress:         return LowerBlockAddress(Op, DAG);
 | 
						|
    case ISD::GLOBAL_OFFSET_TABLE:  return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
 | 
						|
    case ISD::VACOPY:               return LowerVACOPY(Op, DAG);
 | 
						|
    case ISD::VASTART:              return LowerVASTART(Op, DAG);
 | 
						|
    case ISD::DYNAMIC_STACKALLOC:   return LowerDYNAMIC_STACKALLOC(Op, DAG);
 | 
						|
    case ISD::SETCC:                return LowerSETCC(Op, DAG);
 | 
						|
    case ISD::VSELECT:              return LowerVSELECT(Op, DAG);
 | 
						|
    case ISD::INTRINSIC_WO_CHAIN:   return LowerINTRINSIC_WO_CHAIN(Op, DAG);
 | 
						|
    case ISD::INTRINSIC_VOID:       return LowerINTRINSIC_VOID(Op, DAG);
 | 
						|
    case ISD::PREFETCH:             return LowerPREFETCH(Op, DAG);
 | 
						|
    case ISD::READCYCLECOUNTER:     return LowerREADCYCLECOUNTER(Op, DAG);
 | 
						|
      break;
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
HexagonTargetLowering::LowerOperationWrapper(SDNode *N,
 | 
						|
                                             SmallVectorImpl<SDValue> &Results,
 | 
						|
                                             SelectionDAG &DAG) const {
 | 
						|
  if (isHvxOperation(N)) {
 | 
						|
    LowerHvxOperationWrapper(N, Results, DAG);
 | 
						|
    if (!Results.empty())
 | 
						|
      return;
 | 
						|
  }
 | 
						|
 | 
						|
  // We are only custom-lowering stores to verify the alignment of the
 | 
						|
  // address if it is a compile-time constant. Since a store can be modified
 | 
						|
  // during type-legalization (the value being stored may need legalization),
 | 
						|
  // return empty Results here to indicate that we don't really make any
 | 
						|
  // changes in the custom lowering.
 | 
						|
  if (N->getOpcode() != ISD::STORE)
 | 
						|
    return TargetLowering::LowerOperationWrapper(N, Results, DAG);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
HexagonTargetLowering::ReplaceNodeResults(SDNode *N,
 | 
						|
                                          SmallVectorImpl<SDValue> &Results,
 | 
						|
                                          SelectionDAG &DAG) const {
 | 
						|
  if (isHvxOperation(N)) {
 | 
						|
    ReplaceHvxNodeResults(N, Results, DAG);
 | 
						|
    if (!Results.empty())
 | 
						|
      return;
 | 
						|
  }
 | 
						|
 | 
						|
  const SDLoc &dl(N);
 | 
						|
  switch (N->getOpcode()) {
 | 
						|
    case ISD::SRL:
 | 
						|
    case ISD::SRA:
 | 
						|
    case ISD::SHL:
 | 
						|
      return;
 | 
						|
    case ISD::BITCAST:
 | 
						|
      // Handle a bitcast from v8i1 to i8.
 | 
						|
      if (N->getValueType(0) == MVT::i8) {
 | 
						|
        SDValue P = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32,
 | 
						|
                             N->getOperand(0), DAG);
 | 
						|
        SDValue T = DAG.getAnyExtOrTrunc(P, dl, MVT::i8);
 | 
						|
        Results.push_back(T);
 | 
						|
      }
 | 
						|
      break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
HexagonTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
 | 
						|
      const {
 | 
						|
  SDValue Op(N, 0);
 | 
						|
  if (isHvxOperation(Op)) {
 | 
						|
    if (SDValue V = PerformHvxDAGCombine(N, DCI))
 | 
						|
      return V;
 | 
						|
    return SDValue();
 | 
						|
  }
 | 
						|
 | 
						|
  const SDLoc &dl(Op);
 | 
						|
  unsigned Opc = Op.getOpcode();
 | 
						|
 | 
						|
  if (Opc == HexagonISD::P2D) {
 | 
						|
    SDValue P = Op.getOperand(0);
 | 
						|
    switch (P.getOpcode()) {
 | 
						|
      case HexagonISD::PTRUE:
 | 
						|
        return DCI.DAG.getConstant(-1, dl, ty(Op));
 | 
						|
      case HexagonISD::PFALSE:
 | 
						|
        return getZero(dl, ty(Op), DCI.DAG);
 | 
						|
      default:
 | 
						|
        break;
 | 
						|
    }
 | 
						|
  } else if (Opc == ISD::VSELECT) {
 | 
						|
    // This is pretty much duplicated in HexagonISelLoweringHVX...
 | 
						|
    //
 | 
						|
    // (vselect (xor x, ptrue), v0, v1) -> (vselect x, v1, v0)
 | 
						|
    SDValue Cond = Op.getOperand(0);
 | 
						|
    if (Cond->getOpcode() == ISD::XOR) {
 | 
						|
      SDValue C0 = Cond.getOperand(0), C1 = Cond.getOperand(1);
 | 
						|
      if (C1->getOpcode() == HexagonISD::PTRUE) {
 | 
						|
        SDValue VSel = DCI.DAG.getNode(ISD::VSELECT, dl, ty(Op), C0,
 | 
						|
                                       Op.getOperand(2), Op.getOperand(1));
 | 
						|
        return VSel;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// Returns relocation base for the given PIC jumptable.
 | 
						|
SDValue
 | 
						|
HexagonTargetLowering::getPICJumpTableRelocBase(SDValue Table,
 | 
						|
                                                SelectionDAG &DAG) const {
 | 
						|
  int Idx = cast<JumpTableSDNode>(Table)->getIndex();
 | 
						|
  EVT VT = Table.getValueType();
 | 
						|
  SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL);
 | 
						|
  return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Table), VT, T);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Inline Assembly Support
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
TargetLowering::ConstraintType
 | 
						|
HexagonTargetLowering::getConstraintType(StringRef Constraint) const {
 | 
						|
  if (Constraint.size() == 1) {
 | 
						|
    switch (Constraint[0]) {
 | 
						|
      case 'q':
 | 
						|
      case 'v':
 | 
						|
        if (Subtarget.useHVXOps())
 | 
						|
          return C_RegisterClass;
 | 
						|
        break;
 | 
						|
      case 'a':
 | 
						|
        return C_RegisterClass;
 | 
						|
      default:
 | 
						|
        break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return TargetLowering::getConstraintType(Constraint);
 | 
						|
}
 | 
						|
 | 
						|
std::pair<unsigned, const TargetRegisterClass*>
 | 
						|
HexagonTargetLowering::getRegForInlineAsmConstraint(
 | 
						|
    const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
 | 
						|
 | 
						|
  if (Constraint.size() == 1) {
 | 
						|
    switch (Constraint[0]) {
 | 
						|
    case 'r':   // R0-R31
 | 
						|
      switch (VT.SimpleTy) {
 | 
						|
      default:
 | 
						|
        return {0u, nullptr};
 | 
						|
      case MVT::i1:
 | 
						|
      case MVT::i8:
 | 
						|
      case MVT::i16:
 | 
						|
      case MVT::i32:
 | 
						|
      case MVT::f32:
 | 
						|
        return {0u, &Hexagon::IntRegsRegClass};
 | 
						|
      case MVT::i64:
 | 
						|
      case MVT::f64:
 | 
						|
        return {0u, &Hexagon::DoubleRegsRegClass};
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case 'a': // M0-M1
 | 
						|
      if (VT != MVT::i32)
 | 
						|
        return {0u, nullptr};
 | 
						|
      return {0u, &Hexagon::ModRegsRegClass};
 | 
						|
    case 'q': // q0-q3
 | 
						|
      switch (VT.getSizeInBits()) {
 | 
						|
      default:
 | 
						|
        return {0u, nullptr};
 | 
						|
      case 64:
 | 
						|
      case 128:
 | 
						|
        return {0u, &Hexagon::HvxQRRegClass};
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case 'v': // V0-V31
 | 
						|
      switch (VT.getSizeInBits()) {
 | 
						|
      default:
 | 
						|
        return {0u, nullptr};
 | 
						|
      case 512:
 | 
						|
        return {0u, &Hexagon::HvxVRRegClass};
 | 
						|
      case 1024:
 | 
						|
        if (Subtarget.hasV60Ops() && Subtarget.useHVX128BOps())
 | 
						|
          return {0u, &Hexagon::HvxVRRegClass};
 | 
						|
        return {0u, &Hexagon::HvxWRRegClass};
 | 
						|
      case 2048:
 | 
						|
        return {0u, &Hexagon::HvxWRRegClass};
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      return {0u, nullptr};
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
 | 
						|
}
 | 
						|
 | 
						|
/// isFPImmLegal - Returns true if the target can instruction select the
 | 
						|
/// specified FP immediate natively. If false, the legalizer will
 | 
						|
/// materialize the FP immediate as a load from a constant pool.
 | 
						|
bool HexagonTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
 | 
						|
                                         bool ForCodeSize) const {
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// isLegalAddressingMode - Return true if the addressing mode represented by
 | 
						|
/// AM is legal for this target, for a load/store of the specified type.
 | 
						|
bool HexagonTargetLowering::isLegalAddressingMode(const DataLayout &DL,
 | 
						|
                                                  const AddrMode &AM, Type *Ty,
 | 
						|
                                                  unsigned AS, Instruction *I) const {
 | 
						|
  if (Ty->isSized()) {
 | 
						|
    // When LSR detects uses of the same base address to access different
 | 
						|
    // types (e.g. unions), it will assume a conservative type for these
 | 
						|
    // uses:
 | 
						|
    //   LSR Use: Kind=Address of void in addrspace(4294967295), ...
 | 
						|
    // The type Ty passed here would then be "void". Skip the alignment
 | 
						|
    // checks, but do not return false right away, since that confuses
 | 
						|
    // LSR into crashing.
 | 
						|
    unsigned A = DL.getABITypeAlignment(Ty);
 | 
						|
    // The base offset must be a multiple of the alignment.
 | 
						|
    if ((AM.BaseOffs % A) != 0)
 | 
						|
      return false;
 | 
						|
    // The shifted offset must fit in 11 bits.
 | 
						|
    if (!isInt<11>(AM.BaseOffs >> Log2_32(A)))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // No global is ever allowed as a base.
 | 
						|
  if (AM.BaseGV)
 | 
						|
    return false;
 | 
						|
 | 
						|
  int Scale = AM.Scale;
 | 
						|
  if (Scale < 0)
 | 
						|
    Scale = -Scale;
 | 
						|
  switch (Scale) {
 | 
						|
  case 0:  // No scale reg, "r+i", "r", or just "i".
 | 
						|
    break;
 | 
						|
  default: // No scaled addressing mode.
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if folding a constant offset with the given GlobalAddress is
 | 
						|
/// legal.  It is frequently not legal in PIC relocation models.
 | 
						|
bool HexagonTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA)
 | 
						|
      const {
 | 
						|
  return HTM.getRelocationModel() == Reloc::Static;
 | 
						|
}
 | 
						|
 | 
						|
/// isLegalICmpImmediate - Return true if the specified immediate is legal
 | 
						|
/// icmp immediate, that is the target has icmp instructions which can compare
 | 
						|
/// a register against the immediate without having to materialize the
 | 
						|
/// immediate into a register.
 | 
						|
bool HexagonTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
 | 
						|
  return Imm >= -512 && Imm <= 511;
 | 
						|
}
 | 
						|
 | 
						|
/// IsEligibleForTailCallOptimization - Check whether the call is eligible
 | 
						|
/// for tail call optimization. Targets which want to do tail call
 | 
						|
/// optimization should implement this function.
 | 
						|
bool HexagonTargetLowering::IsEligibleForTailCallOptimization(
 | 
						|
                                 SDValue Callee,
 | 
						|
                                 CallingConv::ID CalleeCC,
 | 
						|
                                 bool IsVarArg,
 | 
						|
                                 bool IsCalleeStructRet,
 | 
						|
                                 bool IsCallerStructRet,
 | 
						|
                                 const SmallVectorImpl<ISD::OutputArg> &Outs,
 | 
						|
                                 const SmallVectorImpl<SDValue> &OutVals,
 | 
						|
                                 const SmallVectorImpl<ISD::InputArg> &Ins,
 | 
						|
                                 SelectionDAG& DAG) const {
 | 
						|
  const Function &CallerF = DAG.getMachineFunction().getFunction();
 | 
						|
  CallingConv::ID CallerCC = CallerF.getCallingConv();
 | 
						|
  bool CCMatch = CallerCC == CalleeCC;
 | 
						|
 | 
						|
  // ***************************************************************************
 | 
						|
  //  Look for obvious safe cases to perform tail call optimization that do not
 | 
						|
  //  require ABI changes.
 | 
						|
  // ***************************************************************************
 | 
						|
 | 
						|
  // If this is a tail call via a function pointer, then don't do it!
 | 
						|
  if (!isa<GlobalAddressSDNode>(Callee) &&
 | 
						|
      !isa<ExternalSymbolSDNode>(Callee)) {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Do not optimize if the calling conventions do not match and the conventions
 | 
						|
  // used are not C or Fast.
 | 
						|
  if (!CCMatch) {
 | 
						|
    bool R = (CallerCC == CallingConv::C || CallerCC == CallingConv::Fast);
 | 
						|
    bool E = (CalleeCC == CallingConv::C || CalleeCC == CallingConv::Fast);
 | 
						|
    // If R & E, then ok.
 | 
						|
    if (!R || !E)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Do not tail call optimize vararg calls.
 | 
						|
  if (IsVarArg)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Also avoid tail call optimization if either caller or callee uses struct
 | 
						|
  // return semantics.
 | 
						|
  if (IsCalleeStructRet || IsCallerStructRet)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // In addition to the cases above, we also disable Tail Call Optimization if
 | 
						|
  // the calling convention code that at least one outgoing argument needs to
 | 
						|
  // go on the stack. We cannot check that here because at this point that
 | 
						|
  // information is not available.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Returns the target specific optimal type for load and store operations as
 | 
						|
/// a result of memset, memcpy, and memmove lowering.
 | 
						|
///
 | 
						|
/// If DstAlign is zero that means it's safe to destination alignment can
 | 
						|
/// satisfy any constraint. Similarly if SrcAlign is zero it means there isn't
 | 
						|
/// a need to check it against alignment requirement, probably because the
 | 
						|
/// source does not need to be loaded. If 'IsMemset' is true, that means it's
 | 
						|
/// expanding a memset. If 'ZeroMemset' is true, that means it's a memset of
 | 
						|
/// zero. 'MemcpyStrSrc' indicates whether the memcpy source is constant so it
 | 
						|
/// does not need to be loaded.  It returns EVT::Other if the type should be
 | 
						|
/// determined using generic target-independent logic.
 | 
						|
EVT HexagonTargetLowering::getOptimalMemOpType(
 | 
						|
    const MemOp &Op, const AttributeList &FuncAttributes) const {
 | 
						|
  if (Op.size() >= 8 && Op.isAligned(Align(8)))
 | 
						|
    return MVT::i64;
 | 
						|
  if (Op.size() >= 4 && Op.isAligned(Align(4)))
 | 
						|
    return MVT::i32;
 | 
						|
  if (Op.size() >= 2 && Op.isAligned(Align(2)))
 | 
						|
    return MVT::i16;
 | 
						|
  return MVT::Other;
 | 
						|
}
 | 
						|
 | 
						|
bool HexagonTargetLowering::allowsMemoryAccess(LLVMContext &Context,
 | 
						|
      const DataLayout &DL, EVT VT, unsigned AddrSpace, unsigned Alignment,
 | 
						|
      MachineMemOperand::Flags Flags, bool *Fast) const {
 | 
						|
  MVT SVT = VT.getSimpleVT();
 | 
						|
  if (Subtarget.isHVXVectorType(SVT, true))
 | 
						|
    return allowsHvxMemoryAccess(SVT, Alignment, Flags, Fast);
 | 
						|
  return TargetLoweringBase::allowsMemoryAccess(
 | 
						|
              Context, DL, VT, AddrSpace, Alignment, Flags, Fast);
 | 
						|
}
 | 
						|
 | 
						|
bool HexagonTargetLowering::allowsMisalignedMemoryAccesses(
 | 
						|
      EVT VT, unsigned AddrSpace, unsigned Alignment,
 | 
						|
      MachineMemOperand::Flags Flags, bool *Fast) const {
 | 
						|
  MVT SVT = VT.getSimpleVT();
 | 
						|
  if (Subtarget.isHVXVectorType(SVT, true))
 | 
						|
    return allowsHvxMisalignedMemoryAccesses(SVT, Alignment, Flags, Fast);
 | 
						|
  if (Fast)
 | 
						|
    *Fast = false;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
std::pair<const TargetRegisterClass*, uint8_t>
 | 
						|
HexagonTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
 | 
						|
      MVT VT) const {
 | 
						|
  if (Subtarget.isHVXVectorType(VT, true)) {
 | 
						|
    unsigned BitWidth = VT.getSizeInBits();
 | 
						|
    unsigned VecWidth = Subtarget.getVectorLength() * 8;
 | 
						|
 | 
						|
    if (VT.getVectorElementType() == MVT::i1)
 | 
						|
      return std::make_pair(&Hexagon::HvxQRRegClass, 1);
 | 
						|
    if (BitWidth == VecWidth)
 | 
						|
      return std::make_pair(&Hexagon::HvxVRRegClass, 1);
 | 
						|
    assert(BitWidth == 2 * VecWidth);
 | 
						|
    return std::make_pair(&Hexagon::HvxWRRegClass, 1);
 | 
						|
  }
 | 
						|
 | 
						|
  return TargetLowering::findRepresentativeClass(TRI, VT);
 | 
						|
}
 | 
						|
 | 
						|
bool HexagonTargetLowering::shouldReduceLoadWidth(SDNode *Load,
 | 
						|
      ISD::LoadExtType ExtTy, EVT NewVT) const {
 | 
						|
  // TODO: This may be worth removing. Check regression tests for diffs.
 | 
						|
  if (!TargetLoweringBase::shouldReduceLoadWidth(Load, ExtTy, NewVT))
 | 
						|
    return false;
 | 
						|
 | 
						|
  auto *L = cast<LoadSDNode>(Load);
 | 
						|
  std::pair<SDValue,int> BO = getBaseAndOffset(L->getBasePtr());
 | 
						|
  // Small-data object, do not shrink.
 | 
						|
  if (BO.first.getOpcode() == HexagonISD::CONST32_GP)
 | 
						|
    return false;
 | 
						|
  if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(BO.first)) {
 | 
						|
    auto &HTM = static_cast<const HexagonTargetMachine&>(getTargetMachine());
 | 
						|
    const auto *GO = dyn_cast_or_null<const GlobalObject>(GA->getGlobal());
 | 
						|
    return !GO || !HTM.getObjFileLowering()->isGlobalInSmallSection(GO, HTM);
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
Value *HexagonTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
 | 
						|
      AtomicOrdering Ord) const {
 | 
						|
  BasicBlock *BB = Builder.GetInsertBlock();
 | 
						|
  Module *M = BB->getParent()->getParent();
 | 
						|
  auto PT = cast<PointerType>(Addr->getType());
 | 
						|
  Type *Ty = PT->getElementType();
 | 
						|
  unsigned SZ = Ty->getPrimitiveSizeInBits();
 | 
						|
  assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic loads supported");
 | 
						|
  Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_L2_loadw_locked
 | 
						|
                                   : Intrinsic::hexagon_L4_loadd_locked;
 | 
						|
  Function *Fn = Intrinsic::getDeclaration(M, IntID);
 | 
						|
 | 
						|
  PointerType *NewPtrTy
 | 
						|
    = Builder.getIntNTy(SZ)->getPointerTo(PT->getAddressSpace());
 | 
						|
  Addr = Builder.CreateBitCast(Addr, NewPtrTy);
 | 
						|
 | 
						|
  Value *Call = Builder.CreateCall(Fn, Addr, "larx");
 | 
						|
 | 
						|
  return Builder.CreateBitCast(Call, Ty);
 | 
						|
}
 | 
						|
 | 
						|
/// Perform a store-conditional operation to Addr. Return the status of the
 | 
						|
/// store. This should be 0 if the store succeeded, non-zero otherwise.
 | 
						|
Value *HexagonTargetLowering::emitStoreConditional(IRBuilder<> &Builder,
 | 
						|
      Value *Val, Value *Addr, AtomicOrdering Ord) const {
 | 
						|
  BasicBlock *BB = Builder.GetInsertBlock();
 | 
						|
  Module *M = BB->getParent()->getParent();
 | 
						|
  Type *Ty = Val->getType();
 | 
						|
  unsigned SZ = Ty->getPrimitiveSizeInBits();
 | 
						|
 | 
						|
  Type *CastTy = Builder.getIntNTy(SZ);
 | 
						|
  assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic stores supported");
 | 
						|
  Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_S2_storew_locked
 | 
						|
                                   : Intrinsic::hexagon_S4_stored_locked;
 | 
						|
  Function *Fn = Intrinsic::getDeclaration(M, IntID);
 | 
						|
 | 
						|
  unsigned AS = Addr->getType()->getPointerAddressSpace();
 | 
						|
  Addr = Builder.CreateBitCast(Addr, CastTy->getPointerTo(AS));
 | 
						|
  Val = Builder.CreateBitCast(Val, CastTy);
 | 
						|
 | 
						|
  Value *Call = Builder.CreateCall(Fn, {Addr, Val}, "stcx");
 | 
						|
  Value *Cmp = Builder.CreateICmpEQ(Call, Builder.getInt32(0), "");
 | 
						|
  Value *Ext = Builder.CreateZExt(Cmp, Type::getInt32Ty(M->getContext()));
 | 
						|
  return Ext;
 | 
						|
}
 | 
						|
 | 
						|
TargetLowering::AtomicExpansionKind
 | 
						|
HexagonTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
 | 
						|
  // Do not expand loads and stores that don't exceed 64 bits.
 | 
						|
  return LI->getType()->getPrimitiveSizeInBits() > 64
 | 
						|
             ? AtomicExpansionKind::LLOnly
 | 
						|
             : AtomicExpansionKind::None;
 | 
						|
}
 | 
						|
 | 
						|
bool HexagonTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
 | 
						|
  // Do not expand loads and stores that don't exceed 64 bits.
 | 
						|
  return SI->getValueOperand()->getType()->getPrimitiveSizeInBits() > 64;
 | 
						|
}
 | 
						|
 | 
						|
TargetLowering::AtomicExpansionKind
 | 
						|
HexagonTargetLowering::shouldExpandAtomicCmpXchgInIR(
 | 
						|
    AtomicCmpXchgInst *AI) const {
 | 
						|
  const DataLayout &DL = AI->getModule()->getDataLayout();
 | 
						|
  unsigned Size = DL.getTypeStoreSize(AI->getCompareOperand()->getType());
 | 
						|
  if (Size >= 4 && Size <= 8)
 | 
						|
    return AtomicExpansionKind::LLSC;
 | 
						|
  return AtomicExpansionKind::None;
 | 
						|
}
 |