330 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			330 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- HexagonTargetTransformInfo.cpp - Hexagon specific TTI pass ---------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
/// \file
 | 
						|
/// This file implements a TargetTransformInfo analysis pass specific to the
 | 
						|
/// Hexagon target machine. It uses the target's detailed information to provide
 | 
						|
/// more precise answers to certain TTI queries, while letting the target
 | 
						|
/// independent and default TTI implementations handle the rest.
 | 
						|
///
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "HexagonTargetTransformInfo.h"
 | 
						|
#include "HexagonSubtarget.h"
 | 
						|
#include "llvm/Analysis/TargetTransformInfo.h"
 | 
						|
#include "llvm/CodeGen/ValueTypes.h"
 | 
						|
#include "llvm/IR/InstrTypes.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/User.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Transforms/Utils/UnrollLoop.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "hexagontti"
 | 
						|
 | 
						|
static cl::opt<bool> HexagonAutoHVX("hexagon-autohvx", cl::init(false),
 | 
						|
  cl::Hidden, cl::desc("Enable loop vectorizer for HVX"));
 | 
						|
 | 
						|
static cl::opt<bool> EmitLookupTables("hexagon-emit-lookup-tables",
 | 
						|
  cl::init(true), cl::Hidden,
 | 
						|
  cl::desc("Control lookup table emission on Hexagon target"));
 | 
						|
 | 
						|
// Constant "cost factor" to make floating point operations more expensive
 | 
						|
// in terms of vectorization cost. This isn't the best way, but it should
 | 
						|
// do. Ultimately, the cost should use cycles.
 | 
						|
static const unsigned FloatFactor = 4;
 | 
						|
 | 
						|
bool HexagonTTIImpl::useHVX() const {
 | 
						|
  return ST.useHVXOps() && HexagonAutoHVX;
 | 
						|
}
 | 
						|
 | 
						|
bool HexagonTTIImpl::isTypeForHVX(Type *VecTy) const {
 | 
						|
  assert(VecTy->isVectorTy());
 | 
						|
  if (cast<VectorType>(VecTy)->isScalable())
 | 
						|
    return false;
 | 
						|
  // Avoid types like <2 x i32*>.
 | 
						|
  if (!cast<VectorType>(VecTy)->getElementType()->isIntegerTy())
 | 
						|
    return false;
 | 
						|
  EVT VecVT = EVT::getEVT(VecTy);
 | 
						|
  if (!VecVT.isSimple() || VecVT.getSizeInBits() <= 64)
 | 
						|
    return false;
 | 
						|
  if (ST.isHVXVectorType(VecVT.getSimpleVT()))
 | 
						|
    return true;
 | 
						|
  auto Action = TLI.getPreferredVectorAction(VecVT.getSimpleVT());
 | 
						|
  return Action == TargetLoweringBase::TypeWidenVector;
 | 
						|
}
 | 
						|
 | 
						|
unsigned HexagonTTIImpl::getTypeNumElements(Type *Ty) const {
 | 
						|
  if (auto *VTy = dyn_cast<VectorType>(Ty))
 | 
						|
    return VTy->getNumElements();
 | 
						|
  assert((Ty->isIntegerTy() || Ty->isFloatingPointTy()) &&
 | 
						|
         "Expecting scalar type");
 | 
						|
  return 1;
 | 
						|
}
 | 
						|
 | 
						|
TargetTransformInfo::PopcntSupportKind
 | 
						|
HexagonTTIImpl::getPopcntSupport(unsigned IntTyWidthInBit) const {
 | 
						|
  // Return fast hardware support as every input < 64 bits will be promoted
 | 
						|
  // to 64 bits.
 | 
						|
  return TargetTransformInfo::PSK_FastHardware;
 | 
						|
}
 | 
						|
 | 
						|
// The Hexagon target can unroll loops with run-time trip counts.
 | 
						|
void HexagonTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
 | 
						|
                                             TTI::UnrollingPreferences &UP) {
 | 
						|
  UP.Runtime = UP.Partial = true;
 | 
						|
  // Only try to peel innermost loops with small runtime trip counts.
 | 
						|
  if (L && L->empty() && canPeel(L) &&
 | 
						|
      SE.getSmallConstantTripCount(L) == 0 &&
 | 
						|
      SE.getSmallConstantMaxTripCount(L) > 0 &&
 | 
						|
      SE.getSmallConstantMaxTripCount(L) <= 5) {
 | 
						|
    UP.PeelCount = 2;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool HexagonTTIImpl::shouldFavorPostInc() const {
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// --- Vector TTI begin ---
 | 
						|
 | 
						|
unsigned HexagonTTIImpl::getNumberOfRegisters(bool Vector) const {
 | 
						|
  if (Vector)
 | 
						|
    return useHVX() ? 32 : 0;
 | 
						|
  return 32;
 | 
						|
}
 | 
						|
 | 
						|
unsigned HexagonTTIImpl::getMaxInterleaveFactor(unsigned VF) {
 | 
						|
  return useHVX() ? 2 : 0;
 | 
						|
}
 | 
						|
 | 
						|
unsigned HexagonTTIImpl::getRegisterBitWidth(bool Vector) const {
 | 
						|
  return Vector ? getMinVectorRegisterBitWidth() : 32;
 | 
						|
}
 | 
						|
 | 
						|
unsigned HexagonTTIImpl::getMinVectorRegisterBitWidth() const {
 | 
						|
  return useHVX() ? ST.getVectorLength()*8 : 0;
 | 
						|
}
 | 
						|
 | 
						|
unsigned HexagonTTIImpl::getMinimumVF(unsigned ElemWidth) const {
 | 
						|
  return (8 * ST.getVectorLength()) / ElemWidth;
 | 
						|
}
 | 
						|
 | 
						|
unsigned HexagonTTIImpl::getScalarizationOverhead(Type *Ty, bool Insert,
 | 
						|
      bool Extract) {
 | 
						|
  return BaseT::getScalarizationOverhead(Ty, Insert, Extract);
 | 
						|
}
 | 
						|
 | 
						|
unsigned HexagonTTIImpl::getOperandsScalarizationOverhead(
 | 
						|
      ArrayRef<const Value*> Args, unsigned VF) {
 | 
						|
  return BaseT::getOperandsScalarizationOverhead(Args, VF);
 | 
						|
}
 | 
						|
 | 
						|
unsigned HexagonTTIImpl::getCallInstrCost(Function *F, Type *RetTy,
 | 
						|
      ArrayRef<Type*> Tys) {
 | 
						|
  return BaseT::getCallInstrCost(F, RetTy, Tys);
 | 
						|
}
 | 
						|
 | 
						|
unsigned HexagonTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
 | 
						|
                                               ArrayRef<Value *> Args,
 | 
						|
                                               FastMathFlags FMF, unsigned VF,
 | 
						|
                                               const Instruction *I) {
 | 
						|
  return BaseT::getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF, I);
 | 
						|
}
 | 
						|
 | 
						|
unsigned HexagonTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
 | 
						|
                                               ArrayRef<Type *> Tys,
 | 
						|
                                               FastMathFlags FMF,
 | 
						|
                                               unsigned ScalarizationCostPassed,
 | 
						|
                                               const Instruction *I) {
 | 
						|
  if (ID == Intrinsic::bswap) {
 | 
						|
    std::pair<int, MVT> LT = TLI.getTypeLegalizationCost(DL, RetTy);
 | 
						|
    return LT.first + 2;
 | 
						|
  }
 | 
						|
  return BaseT::getIntrinsicInstrCost(ID, RetTy, Tys, FMF,
 | 
						|
                                      ScalarizationCostPassed, I);
 | 
						|
}
 | 
						|
 | 
						|
unsigned HexagonTTIImpl::getAddressComputationCost(Type *Tp,
 | 
						|
      ScalarEvolution *SE, const SCEV *S) {
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
unsigned HexagonTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
 | 
						|
                                         MaybeAlign Alignment,
 | 
						|
                                         unsigned AddressSpace,
 | 
						|
                                         const Instruction *I) {
 | 
						|
  assert(Opcode == Instruction::Load || Opcode == Instruction::Store);
 | 
						|
  if (Opcode == Instruction::Store)
 | 
						|
    return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, I);
 | 
						|
 | 
						|
  if (Src->isVectorTy()) {
 | 
						|
    VectorType *VecTy = cast<VectorType>(Src);
 | 
						|
    unsigned VecWidth = VecTy->getBitWidth();
 | 
						|
    if (useHVX() && isTypeForHVX(VecTy)) {
 | 
						|
      unsigned RegWidth = getRegisterBitWidth(true);
 | 
						|
      assert(RegWidth && "Non-zero vector register width expected");
 | 
						|
      // Cost of HVX loads.
 | 
						|
      if (VecWidth % RegWidth == 0)
 | 
						|
        return VecWidth / RegWidth;
 | 
						|
      // Cost of constructing HVX vector from scalar loads
 | 
						|
      const Align RegAlign(RegWidth / 8);
 | 
						|
      if (!Alignment || *Alignment > RegAlign)
 | 
						|
        Alignment = RegAlign;
 | 
						|
      assert(Alignment);
 | 
						|
      unsigned AlignWidth = 8 * Alignment->value();
 | 
						|
      unsigned NumLoads = alignTo(VecWidth, AlignWidth) / AlignWidth;
 | 
						|
      return 3 * NumLoads;
 | 
						|
    }
 | 
						|
 | 
						|
    // Non-HVX vectors.
 | 
						|
    // Add extra cost for floating point types.
 | 
						|
    unsigned Cost =
 | 
						|
        VecTy->getElementType()->isFloatingPointTy() ? FloatFactor : 1;
 | 
						|
 | 
						|
    // At this point unspecified alignment is considered as Align(1).
 | 
						|
    const Align BoundAlignment = std::min(Alignment.valueOrOne(), Align(8));
 | 
						|
    unsigned AlignWidth = 8 * BoundAlignment.value();
 | 
						|
    unsigned NumLoads = alignTo(VecWidth, AlignWidth) / AlignWidth;
 | 
						|
    if (Alignment == Align(4) || Alignment == Align(8))
 | 
						|
      return Cost * NumLoads;
 | 
						|
    // Loads of less than 32 bits will need extra inserts to compose a vector.
 | 
						|
    assert(BoundAlignment <= Align(8));
 | 
						|
    unsigned LogA = Log2(BoundAlignment);
 | 
						|
    return (3 - LogA) * Cost * NumLoads;
 | 
						|
  }
 | 
						|
 | 
						|
  return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, I);
 | 
						|
}
 | 
						|
 | 
						|
unsigned HexagonTTIImpl::getMaskedMemoryOpCost(unsigned Opcode,
 | 
						|
      Type *Src, unsigned Alignment, unsigned AddressSpace) {
 | 
						|
  return BaseT::getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
 | 
						|
}
 | 
						|
 | 
						|
unsigned HexagonTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp,
 | 
						|
      int Index, Type *SubTp) {
 | 
						|
  return 1;
 | 
						|
}
 | 
						|
 | 
						|
unsigned HexagonTTIImpl::getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
 | 
						|
                                                Value *Ptr, bool VariableMask,
 | 
						|
                                                unsigned Alignment,
 | 
						|
                                                const Instruction *I) {
 | 
						|
  return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
 | 
						|
                                       Alignment, I);
 | 
						|
}
 | 
						|
 | 
						|
unsigned HexagonTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode,
 | 
						|
      Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
 | 
						|
      unsigned Alignment, unsigned AddressSpace, bool UseMaskForCond,
 | 
						|
      bool UseMaskForGaps) {
 | 
						|
  if (Indices.size() != Factor || UseMaskForCond || UseMaskForGaps)
 | 
						|
    return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
 | 
						|
                                             Alignment, AddressSpace,
 | 
						|
                                             UseMaskForCond, UseMaskForGaps);
 | 
						|
  return getMemoryOpCost(Opcode, VecTy, MaybeAlign(Alignment), AddressSpace,
 | 
						|
                         nullptr);
 | 
						|
}
 | 
						|
 | 
						|
unsigned HexagonTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
 | 
						|
      Type *CondTy, const Instruction *I) {
 | 
						|
  if (ValTy->isVectorTy()) {
 | 
						|
    std::pair<int, MVT> LT = TLI.getTypeLegalizationCost(DL, ValTy);
 | 
						|
    if (Opcode == Instruction::FCmp)
 | 
						|
      return LT.first + FloatFactor * getTypeNumElements(ValTy);
 | 
						|
  }
 | 
						|
  return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
 | 
						|
}
 | 
						|
 | 
						|
unsigned HexagonTTIImpl::getArithmeticInstrCost(
 | 
						|
    unsigned Opcode, Type *Ty, TTI::OperandValueKind Opd1Info,
 | 
						|
    TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo,
 | 
						|
    TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
 | 
						|
    const Instruction *CxtI) {
 | 
						|
  if (Ty->isVectorTy()) {
 | 
						|
    std::pair<int, MVT> LT = TLI.getTypeLegalizationCost(DL, Ty);
 | 
						|
    if (LT.second.isFloatingPoint())
 | 
						|
      return LT.first + FloatFactor * getTypeNumElements(Ty);
 | 
						|
  }
 | 
						|
  return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
 | 
						|
                                       Opd1PropInfo, Opd2PropInfo, Args, CxtI);
 | 
						|
}
 | 
						|
 | 
						|
unsigned HexagonTTIImpl::getCastInstrCost(unsigned Opcode, Type *DstTy,
 | 
						|
      Type *SrcTy, const Instruction *I) {
 | 
						|
  if (SrcTy->isFPOrFPVectorTy() || DstTy->isFPOrFPVectorTy()) {
 | 
						|
    unsigned SrcN = SrcTy->isFPOrFPVectorTy() ? getTypeNumElements(SrcTy) : 0;
 | 
						|
    unsigned DstN = DstTy->isFPOrFPVectorTy() ? getTypeNumElements(DstTy) : 0;
 | 
						|
 | 
						|
    std::pair<int, MVT> SrcLT = TLI.getTypeLegalizationCost(DL, SrcTy);
 | 
						|
    std::pair<int, MVT> DstLT = TLI.getTypeLegalizationCost(DL, DstTy);
 | 
						|
    return std::max(SrcLT.first, DstLT.first) + FloatFactor * (SrcN + DstN);
 | 
						|
  }
 | 
						|
  return 1;
 | 
						|
}
 | 
						|
 | 
						|
unsigned HexagonTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
 | 
						|
      unsigned Index) {
 | 
						|
  Type *ElemTy = Val->isVectorTy() ? cast<VectorType>(Val)->getElementType()
 | 
						|
                                   : Val;
 | 
						|
  if (Opcode == Instruction::InsertElement) {
 | 
						|
    // Need two rotations for non-zero index.
 | 
						|
    unsigned Cost = (Index != 0) ? 2 : 0;
 | 
						|
    if (ElemTy->isIntegerTy(32))
 | 
						|
      return Cost;
 | 
						|
    // If it's not a 32-bit value, there will need to be an extract.
 | 
						|
    return Cost + getVectorInstrCost(Instruction::ExtractElement, Val, Index);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Opcode == Instruction::ExtractElement)
 | 
						|
    return 2;
 | 
						|
 | 
						|
  return 1;
 | 
						|
}
 | 
						|
 | 
						|
/// --- Vector TTI end ---
 | 
						|
 | 
						|
unsigned HexagonTTIImpl::getPrefetchDistance() const {
 | 
						|
  return ST.getL1PrefetchDistance();
 | 
						|
}
 | 
						|
 | 
						|
unsigned HexagonTTIImpl::getCacheLineSize() const {
 | 
						|
  return ST.getL1CacheLineSize();
 | 
						|
}
 | 
						|
 | 
						|
int HexagonTTIImpl::getUserCost(const User *U,
 | 
						|
                                ArrayRef<const Value *> Operands) {
 | 
						|
  auto isCastFoldedIntoLoad = [this](const CastInst *CI) -> bool {
 | 
						|
    if (!CI->isIntegerCast())
 | 
						|
      return false;
 | 
						|
    // Only extensions from an integer type shorter than 32-bit to i32
 | 
						|
    // can be folded into the load.
 | 
						|
    const DataLayout &DL = getDataLayout();
 | 
						|
    unsigned SBW = DL.getTypeSizeInBits(CI->getSrcTy());
 | 
						|
    unsigned DBW = DL.getTypeSizeInBits(CI->getDestTy());
 | 
						|
    if (DBW != 32 || SBW >= DBW)
 | 
						|
      return false;
 | 
						|
 | 
						|
    const LoadInst *LI = dyn_cast<const LoadInst>(CI->getOperand(0));
 | 
						|
    // Technically, this code could allow multiple uses of the load, and
 | 
						|
    // check if all the uses are the same extension operation, but this
 | 
						|
    // should be sufficient for most cases.
 | 
						|
    return LI && LI->hasOneUse();
 | 
						|
  };
 | 
						|
 | 
						|
  if (const CastInst *CI = dyn_cast<const CastInst>(U))
 | 
						|
    if (isCastFoldedIntoLoad(CI))
 | 
						|
      return TargetTransformInfo::TCC_Free;
 | 
						|
  return BaseT::getUserCost(U, Operands);
 | 
						|
}
 | 
						|
 | 
						|
bool HexagonTTIImpl::shouldBuildLookupTables() const {
 | 
						|
  return EmitLookupTables;
 | 
						|
}
 |