110 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			110 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			C
		
	
	
	
//===-- lib/mulsf3.c - Single-precision multiplication ------------*- C -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements single-precision soft-float multiplication
 | 
						|
// with the IEEE-754 default rounding (to nearest, ties to even).
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define SINGLE_PRECISION
 | 
						|
#include "fp_lib.h"
 | 
						|
 | 
						|
fp_t __mulsf3(fp_t a, fp_t b) {
 | 
						|
    
 | 
						|
    const unsigned int aExponent = toRep(a) >> significandBits & maxExponent;
 | 
						|
    const unsigned int bExponent = toRep(b) >> significandBits & maxExponent;
 | 
						|
    const rep_t productSign = (toRep(a) ^ toRep(b)) & signBit;
 | 
						|
    
 | 
						|
    rep_t aSignificand = toRep(a) & significandMask;
 | 
						|
    rep_t bSignificand = toRep(b) & significandMask;
 | 
						|
    int scale = 0;
 | 
						|
    
 | 
						|
    // Detect if a or b is zero, denormal, infinity, or NaN.
 | 
						|
    if (aExponent-1U >= maxExponent-1U || bExponent-1U >= maxExponent-1U) {
 | 
						|
        
 | 
						|
        const rep_t aAbs = toRep(a) & absMask;
 | 
						|
        const rep_t bAbs = toRep(b) & absMask;
 | 
						|
        
 | 
						|
        // NaN * anything = qNaN
 | 
						|
        if (aAbs > infRep) return fromRep(toRep(a) | quietBit);
 | 
						|
        // anything * NaN = qNaN
 | 
						|
        if (bAbs > infRep) return fromRep(toRep(b) | quietBit);
 | 
						|
        
 | 
						|
        if (aAbs == infRep) {
 | 
						|
            // infinity * non-zero = +/- infinity
 | 
						|
            if (bAbs) return fromRep(aAbs | productSign);
 | 
						|
            // infinity * zero = NaN
 | 
						|
            else return fromRep(qnanRep);
 | 
						|
        }
 | 
						|
        
 | 
						|
        if (bAbs == infRep) {
 | 
						|
            // non-zero * infinity = +/- infinity
 | 
						|
            if (aAbs) return fromRep(bAbs | productSign);
 | 
						|
            // zero * infinity = NaN
 | 
						|
            else return fromRep(qnanRep);
 | 
						|
        }
 | 
						|
        
 | 
						|
        // zero * anything = +/- zero
 | 
						|
        if (!aAbs) return fromRep(productSign);
 | 
						|
        // anything * zero = +/- zero
 | 
						|
        if (!bAbs) return fromRep(productSign);
 | 
						|
        
 | 
						|
        // one or both of a or b is denormal, the other (if applicable) is a
 | 
						|
        // normal number.  Renormalize one or both of a and b, and set scale to
 | 
						|
        // include the necessary exponent adjustment.
 | 
						|
        if (aAbs < implicitBit) scale += normalize(&aSignificand);
 | 
						|
        if (bAbs < implicitBit) scale += normalize(&bSignificand);
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Or in the implicit significand bit.  (If we fell through from the
 | 
						|
    // denormal path it was already set by normalize( ), but setting it twice
 | 
						|
    // won't hurt anything.)
 | 
						|
    aSignificand |= implicitBit;
 | 
						|
    bSignificand |= implicitBit;
 | 
						|
    
 | 
						|
    // Get the significand of a*b.  Before multiplying the significands, shift
 | 
						|
    // one of them left to left-align it in the field.  Thus, the product will
 | 
						|
    // have (exponentBits + 2) integral digits, all but two of which must be
 | 
						|
    // zero.  Normalizing this result is just a conditional left-shift by one
 | 
						|
    // and bumping the exponent accordingly.
 | 
						|
    rep_t productHi, productLo;
 | 
						|
    wideMultiply(aSignificand, bSignificand << exponentBits,
 | 
						|
                 &productHi, &productLo);
 | 
						|
    
 | 
						|
    int productExponent = aExponent + bExponent - exponentBias + scale;
 | 
						|
    
 | 
						|
    // Normalize the significand, adjust exponent if needed.
 | 
						|
    if (productHi & implicitBit) productExponent++;
 | 
						|
    else wideLeftShift(&productHi, &productLo, 1);
 | 
						|
    
 | 
						|
    // If we have overflowed the type, return +/- infinity.
 | 
						|
    if (productExponent >= maxExponent) return fromRep(infRep | productSign);
 | 
						|
    
 | 
						|
    if (productExponent <= 0) {
 | 
						|
        // Result is denormal before rounding, the exponent is zero and we
 | 
						|
        // need to shift the significand.
 | 
						|
        wideRightShiftWithSticky(&productHi, &productLo, 1 - productExponent);
 | 
						|
    }
 | 
						|
    
 | 
						|
    else {
 | 
						|
        // Result is normal before rounding; insert the exponent.
 | 
						|
        productHi &= significandMask;
 | 
						|
        productHi |= (rep_t)productExponent << significandBits;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Insert the sign of the result:
 | 
						|
    productHi |= productSign;
 | 
						|
    
 | 
						|
    // Final rounding.  The final result may overflow to infinity, or underflow
 | 
						|
    // to zero, but those are the correct results in those cases.
 | 
						|
    if (productLo > signBit) productHi++;
 | 
						|
    if (productLo == signBit) productHi += productHi & 1;
 | 
						|
    return fromRep(productHi);
 | 
						|
}
 |