359 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			TableGen
		
	
	
	
			
		
		
	
	
			359 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			TableGen
		
	
	
	
| //===-- SparcInstr64Bit.td - 64-bit instructions for Sparc Target ---------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file contains instruction definitions and patterns needed for 64-bit
 | |
| // code generation on SPARC v9.
 | |
| //
 | |
| // Some SPARC v9 instructions are defined in SparcInstrInfo.td because they can
 | |
| // also be used in 32-bit code running on a SPARC v9 CPU.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| let Predicates = [Is64Bit] in {
 | |
| // The same integer registers are used for i32 and i64 values.
 | |
| // When registers hold i32 values, the high bits are don't care.
 | |
| // This give us free trunc and anyext.
 | |
| def : Pat<(i64 (anyext i32:$val)), (COPY_TO_REGCLASS $val, I64Regs)>;
 | |
| def : Pat<(i32 (trunc i64:$val)), (COPY_TO_REGCLASS $val, IntRegs)>;
 | |
| 
 | |
| } // Predicates = [Is64Bit]
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // 64-bit Shift Instructions.
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // The 32-bit shift instructions are still available. The left shift srl
 | |
| // instructions shift all 64 bits, but it only accepts a 5-bit shift amount.
 | |
| //
 | |
| // The srl instructions only shift the low 32 bits and clear the high 32 bits.
 | |
| // Finally, sra shifts the low 32 bits and sign-extends to 64 bits.
 | |
| 
 | |
| let Predicates = [Is64Bit] in {
 | |
| 
 | |
| def : Pat<(i64 (zext i32:$val)), (SRLri $val, 0)>;
 | |
| def : Pat<(i64 (sext i32:$val)), (SRAri $val, 0)>;
 | |
| 
 | |
| def : Pat<(i64 (and i64:$val, 0xffffffff)), (SRLri $val, 0)>;
 | |
| def : Pat<(i64 (sext_inreg i64:$val, i32)), (SRAri $val, 0)>;
 | |
| 
 | |
| defm SLLX : F3_S<"sllx", 0b100101, 1, shl, i64, I64Regs>;
 | |
| defm SRLX : F3_S<"srlx", 0b100110, 1, srl, i64, I64Regs>;
 | |
| defm SRAX : F3_S<"srax", 0b100111, 1, sra, i64, I64Regs>;
 | |
| 
 | |
| } // Predicates = [Is64Bit]
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // 64-bit Immediates.
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // All 32-bit immediates can be materialized with sethi+or, but 64-bit
 | |
| // immediates may require more code. There may be a point where it is
 | |
| // preferable to use a constant pool load instead, depending on the
 | |
| // microarchitecture.
 | |
| 
 | |
| // Single-instruction patterns.
 | |
| 
 | |
| // The ALU instructions want their simm13 operands as i32 immediates.
 | |
| def as_i32imm : SDNodeXForm<imm, [{
 | |
|   return CurDAG->getTargetConstant(N->getSExtValue(), MVT::i32);
 | |
| }]>;
 | |
| def : Pat<(i64 simm13:$val), (ORri (i64 G0), (as_i32imm $val))>;
 | |
| def : Pat<(i64 SETHIimm:$val), (SETHIi (HI22 $val))>;
 | |
| 
 | |
| // Double-instruction patterns.
 | |
| 
 | |
| // All unsigned i32 immediates can be handled by sethi+or.
 | |
| def uimm32 : PatLeaf<(imm), [{ return isUInt<32>(N->getZExtValue()); }]>;
 | |
| def : Pat<(i64 uimm32:$val), (ORri (SETHIi (HI22 $val)), (LO10 $val))>,
 | |
|       Requires<[Is64Bit]>;
 | |
| 
 | |
| // All negative i33 immediates can be handled by sethi+xor.
 | |
| def nimm33 : PatLeaf<(imm), [{
 | |
|   int64_t Imm = N->getSExtValue();
 | |
|   return Imm < 0 && isInt<33>(Imm);
 | |
| }]>;
 | |
| // Bits 10-31 inverted. Same as assembler's %hix.
 | |
| def HIX22 : SDNodeXForm<imm, [{
 | |
|   uint64_t Val = (~N->getZExtValue() >> 10) & ((1u << 22) - 1);
 | |
|   return CurDAG->getTargetConstant(Val, MVT::i32);
 | |
| }]>;
 | |
| // Bits 0-9 with ones in bits 10-31. Same as assembler's %lox.
 | |
| def LOX10 : SDNodeXForm<imm, [{
 | |
|   return CurDAG->getTargetConstant(~(~N->getZExtValue() & 0x3ff), MVT::i32);
 | |
| }]>;
 | |
| def : Pat<(i64 nimm33:$val), (XORri (SETHIi (HIX22 $val)), (LOX10 $val))>,
 | |
|       Requires<[Is64Bit]>;
 | |
| 
 | |
| // More possible patterns:
 | |
| //
 | |
| //   (sllx sethi, n)
 | |
| //   (sllx simm13, n)
 | |
| //
 | |
| // 3 instrs:
 | |
| //
 | |
| //   (xor (sllx sethi), simm13)
 | |
| //   (sllx (xor sethi, simm13))
 | |
| //
 | |
| // 4 instrs:
 | |
| //
 | |
| //   (or sethi, (sllx sethi))
 | |
| //   (xnor sethi, (sllx sethi))
 | |
| //
 | |
| // 5 instrs:
 | |
| //
 | |
| //   (or (sllx sethi), (or sethi, simm13))
 | |
| //   (xnor (sllx sethi), (or sethi, simm13))
 | |
| //   (or (sllx sethi), (sllx sethi))
 | |
| //   (xnor (sllx sethi), (sllx sethi))
 | |
| //
 | |
| // Worst case is 6 instrs:
 | |
| //
 | |
| //   (or (sllx (or sethi, simmm13)), (or sethi, simm13))
 | |
| 
 | |
| // Bits 42-63, same as assembler's %hh.
 | |
| def HH22 : SDNodeXForm<imm, [{
 | |
|   uint64_t Val = (N->getZExtValue() >> 42) & ((1u << 22) - 1);
 | |
|   return CurDAG->getTargetConstant(Val, MVT::i32);
 | |
| }]>;
 | |
| // Bits 32-41, same as assembler's %hm.
 | |
| def HM10 : SDNodeXForm<imm, [{
 | |
|   uint64_t Val = (N->getZExtValue() >> 32) & ((1u << 10) - 1);
 | |
|   return CurDAG->getTargetConstant(Val, MVT::i32);
 | |
| }]>;
 | |
| def : Pat<(i64 imm:$val),
 | |
|           (ORrr (SLLXri (ORri (SETHIi (HH22 $val)), (HM10 $val)), (i32 32)),
 | |
|                 (ORri (SETHIi (HI22 $val)), (LO10 $val)))>,
 | |
|       Requires<[Is64Bit]>;
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // 64-bit Integer Arithmetic and Logic.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| let Predicates = [Is64Bit] in {
 | |
| 
 | |
| // Register-register instructions.
 | |
| 
 | |
| def : Pat<(and i64:$a, i64:$b), (ANDrr $a, $b)>;
 | |
| def : Pat<(or  i64:$a, i64:$b), (ORrr  $a, $b)>;
 | |
| def : Pat<(xor i64:$a, i64:$b), (XORrr $a, $b)>;
 | |
| 
 | |
| def : Pat<(and i64:$a, (not i64:$b)), (ANDNrr $a, $b)>;
 | |
| def : Pat<(or  i64:$a, (not i64:$b)), (ORNrr  $a, $b)>;
 | |
| def : Pat<(xor i64:$a, (not i64:$b)), (XNORrr $a, $b)>;
 | |
| 
 | |
| def : Pat<(add i64:$a, i64:$b), (ADDrr $a, $b)>;
 | |
| def : Pat<(sub i64:$a, i64:$b), (SUBrr $a, $b)>;
 | |
| 
 | |
| // Add/sub with carry were renamed to addc/subc in SPARC v9.
 | |
| def : Pat<(adde i64:$a, i64:$b), (ADDXrr $a, $b)>;
 | |
| def : Pat<(sube i64:$a, i64:$b), (SUBXrr $a, $b)>;
 | |
| 
 | |
| def : Pat<(addc i64:$a, i64:$b), (ADDCCrr $a, $b)>;
 | |
| def : Pat<(subc i64:$a, i64:$b), (SUBCCrr $a, $b)>;
 | |
| 
 | |
| def : Pat<(SPcmpicc i64:$a, i64:$b), (CMPrr $a, $b)>;
 | |
| 
 | |
| // Register-immediate instructions.
 | |
| 
 | |
| def : Pat<(and i64:$a, (i64 simm13:$b)), (ANDri $a, (as_i32imm $b))>;
 | |
| def : Pat<(or  i64:$a, (i64 simm13:$b)), (ORri  $a, (as_i32imm $b))>;
 | |
| def : Pat<(xor i64:$a, (i64 simm13:$b)), (XORri $a, (as_i32imm $b))>;
 | |
| 
 | |
| def : Pat<(add i64:$a, (i64 simm13:$b)), (ADDri $a, (as_i32imm $b))>;
 | |
| def : Pat<(sub i64:$a, (i64 simm13:$b)), (SUBri $a, (as_i32imm $b))>;
 | |
| 
 | |
| def : Pat<(SPcmpicc i64:$a, (i64 simm13:$b)), (CMPri $a, (as_i32imm $b))>;
 | |
| 
 | |
| } // Predicates = [Is64Bit]
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // 64-bit Integer Multiply and Divide.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| let Predicates = [Is64Bit] in {
 | |
| 
 | |
| def MULXrr : F3_1<2, 0b001001,
 | |
|                   (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2),
 | |
|                   "mulx $rs1, $rs2, $rd",
 | |
|                   [(set i64:$rd, (mul i64:$rs1, i64:$rs2))]>;
 | |
| def MULXri : F3_2<2, 0b001001,
 | |
|                   (outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$i),
 | |
|                   "mulx $rs1, $i, $rd",
 | |
|                   [(set i64:$rd, (mul i64:$rs1, (i64 simm13:$i)))]>;
 | |
| 
 | |
| // Division can trap.
 | |
| let hasSideEffects = 1 in {
 | |
| def SDIVXrr : F3_1<2, 0b101101,
 | |
|                    (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2),
 | |
|                    "sdivx $rs1, $rs2, $rd",
 | |
|                    [(set i64:$rd, (sdiv i64:$rs1, i64:$rs2))]>;
 | |
| def SDIVXri : F3_2<2, 0b101101,
 | |
|                    (outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$i),
 | |
|                    "sdivx $rs1, $i, $rd",
 | |
|                    [(set i64:$rd, (sdiv i64:$rs1, (i64 simm13:$i)))]>;
 | |
| 
 | |
| def UDIVXrr : F3_1<2, 0b001101,
 | |
|                    (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2),
 | |
|                    "udivx $rs1, $rs2, $rd",
 | |
|                    [(set i64:$rd, (udiv i64:$rs1, i64:$rs2))]>;
 | |
| def UDIVXri : F3_2<2, 0b001101,
 | |
|                    (outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$i),
 | |
|                    "udivx $rs1, $i, $rd",
 | |
|                    [(set i64:$rd, (udiv i64:$rs1, (i64 simm13:$i)))]>;
 | |
| } // hasSideEffects = 1
 | |
| 
 | |
| } // Predicates = [Is64Bit]
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // 64-bit Loads and Stores.
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // All the 32-bit loads and stores are available. The extending loads are sign
 | |
| // or zero-extending to 64 bits. The LDrr and LDri instructions load 32 bits
 | |
| // zero-extended to i64. Their mnemonic is lduw in SPARC v9 (Load Unsigned
 | |
| // Word).
 | |
| //
 | |
| // SPARC v9 adds 64-bit loads as well as a sign-extending ldsw i32 loads.
 | |
| 
 | |
| let Predicates = [Is64Bit] in {
 | |
| 
 | |
| // 64-bit loads.
 | |
| def LDXrr  : F3_1<3, 0b001011,
 | |
|                   (outs I64Regs:$dst), (ins MEMrr:$addr),
 | |
|                   "ldx [$addr], $dst",
 | |
|                   [(set i64:$dst, (load ADDRrr:$addr))]>;
 | |
| def LDXri  : F3_2<3, 0b001011,
 | |
|                   (outs I64Regs:$dst), (ins MEMri:$addr),
 | |
|                   "ldx [$addr], $dst",
 | |
|                   [(set i64:$dst, (load ADDRri:$addr))]>;
 | |
| 
 | |
| // Extending loads to i64.
 | |
| def : Pat<(i64 (zextloadi1 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>;
 | |
| def : Pat<(i64 (zextloadi1 ADDRri:$addr)), (LDUBri ADDRri:$addr)>;
 | |
| def : Pat<(i64 (extloadi1 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>;
 | |
| def : Pat<(i64 (extloadi1 ADDRri:$addr)), (LDUBri ADDRri:$addr)>;
 | |
| 
 | |
| def : Pat<(i64 (zextloadi8 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>;
 | |
| def : Pat<(i64 (zextloadi8 ADDRri:$addr)), (LDUBri ADDRri:$addr)>;
 | |
| def : Pat<(i64 (extloadi8 ADDRrr:$addr)),  (LDUBrr ADDRrr:$addr)>;
 | |
| def : Pat<(i64 (extloadi8 ADDRri:$addr)),  (LDUBri ADDRri:$addr)>;
 | |
| def : Pat<(i64 (sextloadi8 ADDRrr:$addr)), (LDSBrr ADDRrr:$addr)>;
 | |
| def : Pat<(i64 (sextloadi8 ADDRri:$addr)), (LDSBri ADDRri:$addr)>;
 | |
| 
 | |
| def : Pat<(i64 (zextloadi16 ADDRrr:$addr)), (LDUHrr ADDRrr:$addr)>;
 | |
| def : Pat<(i64 (zextloadi16 ADDRri:$addr)), (LDUHri ADDRri:$addr)>;
 | |
| def : Pat<(i64 (extloadi16 ADDRrr:$addr)),  (LDUHrr ADDRrr:$addr)>;
 | |
| def : Pat<(i64 (extloadi16 ADDRri:$addr)),  (LDUHri ADDRri:$addr)>;
 | |
| def : Pat<(i64 (sextloadi16 ADDRrr:$addr)), (LDSHrr ADDRrr:$addr)>;
 | |
| def : Pat<(i64 (sextloadi16 ADDRri:$addr)), (LDSHri ADDRri:$addr)>;
 | |
| 
 | |
| def : Pat<(i64 (zextloadi32 ADDRrr:$addr)), (LDrr ADDRrr:$addr)>;
 | |
| def : Pat<(i64 (zextloadi32 ADDRri:$addr)), (LDri ADDRri:$addr)>;
 | |
| def : Pat<(i64 (extloadi32 ADDRrr:$addr)),  (LDrr ADDRrr:$addr)>;
 | |
| def : Pat<(i64 (extloadi32 ADDRri:$addr)),  (LDri ADDRri:$addr)>;
 | |
| 
 | |
| // Sign-extending load of i32 into i64 is a new SPARC v9 instruction.
 | |
| def LDSWrr : F3_1<3, 0b001011,
 | |
|                  (outs I64Regs:$dst), (ins MEMrr:$addr),
 | |
|                  "ldsw [$addr], $dst",
 | |
|                  [(set i64:$dst, (sextloadi32 ADDRrr:$addr))]>;
 | |
| def LDSWri : F3_2<3, 0b001011,
 | |
|                  (outs I64Regs:$dst), (ins MEMri:$addr),
 | |
|                  "ldsw [$addr], $dst",
 | |
|                  [(set i64:$dst, (sextloadi32 ADDRri:$addr))]>;
 | |
| 
 | |
| // 64-bit stores.
 | |
| def STXrr  : F3_1<3, 0b001110,
 | |
|                  (outs), (ins MEMrr:$addr, I64Regs:$src),
 | |
|                  "stx $src, [$addr]",
 | |
|                  [(store i64:$src, ADDRrr:$addr)]>;
 | |
| def STXri  : F3_2<3, 0b001110,
 | |
|                  (outs), (ins MEMri:$addr, I64Regs:$src),
 | |
|                  "stx $src, [$addr]",
 | |
|                  [(store i64:$src, ADDRri:$addr)]>;
 | |
| 
 | |
| // Truncating stores from i64 are identical to the i32 stores.
 | |
| def : Pat<(truncstorei8  i64:$src, ADDRrr:$addr), (STBrr ADDRrr:$addr, $src)>;
 | |
| def : Pat<(truncstorei8  i64:$src, ADDRri:$addr), (STBri ADDRri:$addr, $src)>;
 | |
| def : Pat<(truncstorei16 i64:$src, ADDRrr:$addr), (STHrr ADDRrr:$addr, $src)>;
 | |
| def : Pat<(truncstorei16 i64:$src, ADDRri:$addr), (STHri ADDRri:$addr, $src)>;
 | |
| def : Pat<(truncstorei32 i64:$src, ADDRrr:$addr), (STrr  ADDRrr:$addr, $src)>;
 | |
| def : Pat<(truncstorei32 i64:$src, ADDRri:$addr), (STri  ADDRri:$addr, $src)>;
 | |
| 
 | |
| // store 0, addr -> store %g0, addr
 | |
| def : Pat<(store (i64 0), ADDRrr:$dst), (STXrr ADDRrr:$dst, (i64 G0))>;
 | |
| def : Pat<(store (i64 0), ADDRri:$dst), (STXri ADDRri:$dst, (i64 G0))>;
 | |
| 
 | |
| } // Predicates = [Is64Bit]
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // 64-bit Conditionals.
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // Flag-setting instructions like subcc and addcc set both icc and xcc flags.
 | |
| // The icc flags correspond to the 32-bit result, and the xcc are for the
 | |
| // full 64-bit result.
 | |
| //
 | |
| // We reuse CMPICC SDNodes for compares, but use new BRXCC branch nodes for
 | |
| // 64-bit compares. See LowerBR_CC.
 | |
| 
 | |
| let Predicates = [Is64Bit] in {
 | |
| 
 | |
| let Uses = [ICC] in
 | |
| def BPXCC : BranchSP<0, (ins brtarget:$dst, CCOp:$cc),
 | |
|                      "b$cc %xcc, $dst",
 | |
|                      [(SPbrxcc bb:$dst, imm:$cc)]>;
 | |
| 
 | |
| // Conditional moves on %xcc.
 | |
| let Uses = [ICC], Constraints = "$f = $rd" in {
 | |
| def MOVXCCrr : Pseudo<(outs IntRegs:$rd),
 | |
|                       (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
 | |
|                       "mov$cond %xcc, $rs2, $rd",
 | |
|                       [(set i32:$rd,
 | |
|                        (SPselectxcc i32:$rs2, i32:$f, imm:$cond))]>;
 | |
| def MOVXCCri : Pseudo<(outs IntRegs:$rd),
 | |
|                       (ins i32imm:$i, IntRegs:$f, CCOp:$cond),
 | |
|                       "mov$cond %xcc, $i, $rd",
 | |
|                       [(set i32:$rd,
 | |
|                        (SPselectxcc simm11:$i, i32:$f, imm:$cond))]>;
 | |
| def FMOVS_XCC : Pseudo<(outs FPRegs:$rd),
 | |
|                       (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
 | |
|                       "fmovs$cond %xcc, $rs2, $rd",
 | |
|                       [(set f32:$rd,
 | |
|                        (SPselectxcc f32:$rs2, f32:$f, imm:$cond))]>;
 | |
| def FMOVD_XCC : Pseudo<(outs DFPRegs:$rd),
 | |
|                       (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond),
 | |
|                       "fmovd$cond %xcc, $rs2, $rd",
 | |
|                       [(set f64:$rd,
 | |
|                        (SPselectxcc f64:$rs2, f64:$f, imm:$cond))]>;
 | |
| } // Uses, Constraints
 | |
| 
 | |
| def : Pat<(SPselectxcc i64:$t, i64:$f, imm:$cond),
 | |
|           (MOVXCCrr $t, $f, imm:$cond)>;
 | |
| def : Pat<(SPselectxcc (i64 simm11:$t), i64:$f, imm:$cond),
 | |
|           (MOVXCCri (as_i32imm $t), $f, imm:$cond)>;
 | |
| 
 | |
| def : Pat<(SPselecticc i64:$t, i64:$f, imm:$cond),
 | |
|           (MOVICCrr $t, $f, imm:$cond)>;
 | |
| def : Pat<(SPselecticc (i64 simm11:$t), i64:$f, imm:$cond),
 | |
|           (MOVICCri (as_i32imm $t), $f, imm:$cond)>;
 | |
| 
 | |
| def : Pat<(SPselectfcc i64:$t, i64:$f, imm:$cond),
 | |
|           (MOVFCCrr $t, $f, imm:$cond)>;
 | |
| def : Pat<(SPselectfcc (i64 simm11:$t), i64:$f, imm:$cond),
 | |
|           (MOVFCCri (as_i32imm $t), $f, imm:$cond)>;
 | |
| 
 | |
| } // Predicates = [Is64Bit]
 |